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Abstract

The defective chromatic number of a graph class is the infimum & such that there exists
an integer d such that every graph in this class can be partitioned into at most k induced
subgraphs with maximum degree at most d. Finding the defective chromatic number is
a fundamental graph partitioning problem and received attention recently partially due to
Hadwiger’s conjecture about coloring minor-closed families. In this paper, we prove that
the defective chromatic number of any minor-closed family equals the simple lower bound
obtained by the standard construction, confirming a conjecture of Ossona de Mendez, Oum,
and Wood. This result provides the optimal list of unavoidable finite minors for infinite
graphs that cannot be partitioned into a fixed finite number of induced subgraphs with
uniformly bounded maximum degree. As corollaries about clustered coloring, we obtain a
linear relation between the clustered chromatic number of any minor-closed family and the
tree-depth of its forbidden minors, improving an earlier exponential bound proved by Norin,
Scott, Seymour, and Wood and confirming the planar case of their conjecture.

(Y

Introduction

A proper coloring of a graph is a function that maps each vertex to a color so that no adjacent
vertices receive the same color. The minimum number of required colors to properly color a graph
G is the chromatic number x(G). Clearly, x(G) > w(G), where w(G) is the maximum size of a
set of pairwise adjacent vertices in G, called the cliqgue number of G. It is well-known that the
gap between x(G) and w(G) can be arbitrarily large. Looking for sufficient conditions for graphs
G to ensure a certain relationship between y(G) and w(G) is a very active area. To study such
sufficient conditions, it is convenient to consider a graph class instead of just a graph. For a graph
parameter p and a class F of graphs, we define p(F) = supger p(G).

An extreme case is to study the graphs G with x(G) = w(G). However, the disjoint union of an
arbitrary graph H and K, (g)4+1 is a graph G satisfying x(G) = w(G). So nothing informative can
be said about G unless we also consider the substructures of G. It leads to the notion of perfect
graphs. A graph G is perfectif x(H) = w(H) for every induced subgraph H of G. The celebrated
Strong Perfect Graph Theorem [G] provides a structural characterization of perfect graphs.

*chliu@tamu.edu. Partially supported by NSF under award DMS-1954054 and CAREER award DMS-2144042.
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The perfectness can also be defined for graph classes. For a partial order < defined on graphs,
we say that a class F of graphs is <-closed if for any graphs G and H with H < G, G € F implies
H € F. And we say that a =-closed graph class F is perfect with respect to < if x(F') = w(F’)
for every =<-closed subclass F’ of F. It is straightforward to show that a graph G is perfect if and
only if the class of all induced subgraphs of G is perfect with respect to the induced subgraph
relation.

Another example for chasing perfection is Hadwiger’s conjecture about graph minors. A graph
H is a minor of another graph G if H is isomorphic to a graph that can be obtained from a
subgraph of G by contracting edges. It is easy to show that every planar graph has no Ks-minor.
So the case t = 4 of the following conjecture proposed by Hadwiger implies the Four Color Theorem

Bl & 2.

Conjecture 1.1 ([I]). For every positive integer t, if F is the class of Kyy1-minor free graphs,
then x(F) < t.

Conjecture [Tl is very difficult. Wagner 28] proved that the case ¢t = 4 is equivalent to the
Four Color Theorem, and Robertson, Seymour, and Thomas [26] proved the case t = 5. The cases
t > 6 remain open. On the other hand, Delcourt and Postle [@] proved that the chromatic number
of Kyy1-minor free graphs is O(tloglogt), which is the currently best known upper bound and
improves earlier results in [I1] 2] 201 27].

Note that Conjecture [Tl is equivalent to stating that x(F) = w(F) for every minor-closed
family F. In other words, Hadwiger’s conjecture is equivalent to stating that every minor-closed
family is perfect with respect to the minor relation.

Due to the infamous difficulty of Hadwiger’s conjecture, some relaxations of proper coloring
were considered. One such relaxation is called defective coloring. For any real number r, we define
[r] to be the set {z € N: 1 <z <r}. For every positive integer k, a k-coloring of a graph G is a
function f : V(G) — [k]. For positive integers k and d, a k-coloring f of a graph G has defect d
if for every i € [k], the maximum degree of the subgraph of G induced by the vertices with color
7 is at most d. In other words, a graph has a k-coloring with defect d if and only if it can be
partitioned into at most k£ induced subgraphs with maximum degree at most d. Colorings with
defect 0 are exactly proper colorings.

For a graph class F, the defective chromatic number of F, denoted by xa(F), is the infimum
k such that there exists an integer N such that every graph in F has a k-coloring with defect
N. Namely, the defective chromatic number of F is the minimum number of parts required to
partition every graph in F into induced subgraphs with universally bounded maximum degree (or
equals oo if no such a partition exists).

Edwards, Kang, Kim, Oum, and Seymour [9 proved the following verbatim defective coloring
analog of Hadwiger’s conjecture.

Theorem 1.2 ([A). For every positive integer t, if F is the class of Ky q-minor free graphs, then
Xa(F) <t

The proof of Theorem in [@) is elegant, and the bound ¢ cannot be improved for the class of
Ky 1-minor free graphs. However, Theorem loses the essence for chasing perfection for minor-
closed families. Theorem is equivalent to stating that xa(F) < w(F) for every minor-closed
family. But unlike the chromatic number, the defective chromatic number is not lower bounded
by the clique number. In fact, the gap between ya(F) and w(F) can be arbitrarily large. For
example, for every positive integer ¢, if F is the class of graphs whose every component has at
most ¢ vertices, then F is minor-closed, w(F) = ¢, and xa(F) = 1.
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To chase perfection for minor-closed families with respect to defective coloring, we should
consider the correct analog for the clique number with respect to defective coloring. The right
answer seems to be the closure of rooted trees.

The closure of a rooted tree T is the graph with vertex-set V(7T') such that two distinct vertices
u, v are adjacent if and only if one of u and v is an ancestor of the other. The height of a rooted
tree T is the maximum number of vertices of a path from the root of T" to a leaf in 7. For a
positive integer k, a balanced k-ary tree is a rooted tree such that every path from the root to a
leaf has the same length, and every non-leaf has exactly k children. For positive integers h and k,
the closure of a balanced k-ary tree with height h is denoted by CT}, ;. For example, CT; , = K;
and CTQJC = Kl,k-

Like a clique, CT} can be constructed by repeatedly adding new vertices adjacent to all
existing vertices. For graphs G and H, we define GV H to be the graph obtained from a disjoint
union of G and H by adding an edge xy for each pair of vertices x € V(G) and y € V(H). For a
graph G and a positive integer k, we define kG to be the union of k disjoint copies of G. Then it
is easy to see that for every positive integer k, CT, ;, = K3, and CT), = K; V kCT),_1, for every
h > 2.

Also, CT}, ;, provides a lower bound for the defective chromatic number. A simple induction
on h shows that there exists no (h — 1)-coloring of CT}, j, with defect £k — 1. Therefore, if a graph
class F contains CT}, ; for infinitely many integers k, then xa(F) > h. So CT},x seems to be the
correct analog of cliques for defective coloring.

For a graph class F, we define

wa(F) :=sup{h € N: CT); € F for infinitely many positive integers k}.

So for every graph class F, xa(F) > wa(F).

The main result of this paper (Theorem [[L3)) shows that this inequality is always an equality for
minor-closed families and hence we obtain a characterization of the defective chromatic number
of minor-closed families and obtain perfectness.

Theorem 1.3. For every minor-closed family F, xa(F) = wa(F).

Theorem is an immediate corollary of both Theorem and Hadwiger’s conjecture. And
it seems that Theorem and Hadwiger’s conjecture are incomparable.

The parameter wa is closely related to the connected tree-depth. The connected tree-deptfﬂ of
a graph G, denoted by td(G), is the minimum h such that G is a subgraph of a closure of a rooted
tree with height h. Equivalently, td(G) is the minimum h such that G is a subgraph of CTj
for some integer k. Note that w(CT), ) = h for any positive integers h and k, so CT}, is not a
subgraph of CT},_; ;s for any &’. Hence td(CT}, ;) = h. So for every graph class F, CTarx €F
for any k, and hence wa (F) < td(F). Moreover, if F is the class of H-minor free graphs for some
graph H, then CTig ), € F for all integers £ > [V (H)]| (since H is a subgraph of CTg ) 1vn))
and CTgg gy, € F for all integers k (since every minor of CTrg ), has connected tree-depth
at most td(H) — 1), so wa(F) = td(H) — 1.

Ossona de Mendez, Oum, and Wood [23] proposed the following conjecture and proved the
case td(H) < 3.

'The connected tree-depth is a variant of a more commonly studied parameter, tree-depth. The tree-depth
of a graph G is the maximum of the connected tree-depth of the components of G. The difference between the
tree-depth and the connected tree-depth is always at most 1.



Conjecture 1.4 ([23]). Let H be a graph. If F is the class of H-minor free graphs, then xa(F) =
td(H) — 1.

Note that Conjecture [[4] is significantly stronger than the verbatim defective coloring analog
of Hadwiger’s conjecture (Theorem [[.2]). The key observation is that K, contains a K, ;-minor.
So Kyy1-minor free graphs do not contain K, as a subgraph and hence enjoy a local condition.
Such a forbidden subgraph condition was used to prove much stronger results, including defective
coloring for classes with bounded expansion 23] and clustered coloring for various graph classes
M8 7, O8] that were used to prove the currently best results about the verbatim clustered coloring
analog of Hadwiger’s conjecture and Hajés’ conjecture for topological minors [I8]. However, such
an argument does not work for Conjecture [[L4 because there exist no functions f and f’ such that
K ¢(ny.p(hx) contains CTy, for all integers k. So no upper bound for ya only involving td(H) can
be obtained by this argument, even when H = CT},; for some large k.

In fact, Conjecture [L4] is equivalent to our main result Theorem [[3l Conjecture [L4] imme-
diately follows from Theorem [[33] because we have observed that wa(F) = td(H) — 1 if F is the
class of H-minor free graphs. The converse direction holds since every minor-closed family F does
not contain CTy, (r)4+1,x for some fixed integer k (so every graph in F is CT,,, (#)41,-minor free)
and td(CTwA(]-')—i-l,k) = CUA(]:) + 1.

Corollary 1.5. Conjecture[I.4) is true.

Our Theorem can also be applied to clustered coloring. The clustered chromatic number
of a graph class F, denoted by x.(F), is the infimum £ such that there exists an integer N such
that every graph in F can be partitioned into at most k£ induced subgraphs with no component
on more than N vertices. Clearly, x.(F) > xa(F) for every graph class F. See 9] for a survey
about defective coloring and clustered coloring.

A corollary of a result of Alon, Ding, Oporowski, and Vertigan [2] builds a connection between
the defective chromatic number and the clustered chromatic number for minor-closed families
with bounded tree-widtH3 (Statement 2 in Theorem [[L@). The author and Oum [I4] proved a tight
result without the assumption for having bounded tree-width, building a connection between
the defective chromatic number and the clustered chromatic number for all minor-closed families
(Statement 1 in Theorem [L6)).

Theorem 1.6 ([2 [I4]). Let F be a minor-closed family.
1. Then x.(F) < 3xa(F).

2. If F has bounded tree-width (equivalently, F does not contain all planar gmphsﬁ), then
X«(F) < 2xa(F).

Norin, Scott, Seymour, and Wood [2I] proposed an analog of Conjecture [[4] for clustered
coloring.

Conjecture 1.7 ([2I). For every graph H, if F is the class of H-minor free graphs, then x.(F) <
2td(H) — 2.

2The tree-width of a graph G is the minimum k such that G is a subgraph of a chordal graph with clique number
at most k + 1.
3The equivalence follows from the Grid Minor Theorem [23].



Norin, Scott, Seymour, and Wood [2I] showed that the bound 2td(H) — 2 in Conjecture [ 7 is
tight for some graph H. They [I] also observed that Theorem [ and the known td(H) < 3 case
of Conjecture [[4] proved in 23] imply the td(H) < 3 case of Conjecture [L7 In general, they [2I]
showed that td(H) — 1 < y.(F) < 29E)+L —4if F is the class of H-minor free graphs. Moreover,
Norin, Scott, and Wood [22] proved that Conjecture [[7 holds if F also has bounded path—widt}H.
They B2 also showed that x,(F) = td(H) — 1 if F even has bounded tree-depth.

Theorem strengths or rediscovers all results stated in the previous paragraph. When F has
bounded tree-depth, every graph in F does not have arbitrarily long paths, so x.(F) = xa(F),
and hence Theorem rediscovers the result y.(F) = td(H) — 1 in 2 for any graph H such
that the class F of H-minor free graphs has bounded tree-depth. And by combining Corollary
and Theorem [[LG] we immediately obtain the following results, which improve the exponential
bound in [2]] to a linear bound and generalize the bounded path-width case in 2] to the bounded
tree-width case.

Corollary 1.8. Let H be a graph and F the class of H-minor free graphs.
1. Then x.(F) < 3td(H) — 3.
2. If F has bounded tree-width (equivalently, H is planar), then x.(F) < 2td(H) — 2.

Our Theorem is also related to known results about fractional defective and clustered
coloring. The fractional defective chromatic number Xﬂ(]—") (and fractional clustered chromatic
number x!(F), respectively) of a graph class F is the infimum k such that for every k' > k, there
exists an integer d such that for every graph G € F, there exist a real number p and at most pk’
induced subgraphs of G with maximum degree at most d (and with no component on more than d
vertices, respectively) such that every vertex of G is contained in at least p of them. Note that the
integer d is allowed to be dependent on &’. Clearly, ya(F) > xA(F) and x.(F) > x!(F) > x¥A(F)
for every graph class F.

Norin, Scott, and Wood 2] proved that x4 (F) = wa(F) for every minor-closed family F.
Hence Theorem [[3 implies that xa(F) = xh (F) for every minor-closed family F. In fact, Norin,
Scott, and Wood [22] also proved that x/(F) = wa(F) for every minor-closed family F. Our
Theorem can give a proof for the same result independent from the original proof in [22], but
we omit the details. In summary, we have the following corollary.

Corollary 1.9. For every proper minor-closed family F,

X+(F) > XL (F) = XA (F) = xalF) = wa(F) = mintd(H) — 1 >

min X (F).

Wl =

Note that the first inequality in Corollary is an equality for some minor-closed families and
is strict for some minor-closed families. For example, if F is the set of K;.;-minor free graphs,
then xa(F) =t [@ and x.(F) =t ﬂZﬂﬁ, if F is the set of graphs that are embeddable in a fixed
surface, then ya(F) =3 [0 and x.(F) =4 [].

Hadwiger’s conjecture can be restated as: if a graph does not have a proper t-coloring, then
K1 is its minor. So it states that K;,; is an unavoidable minor of every non-properly t-colorable

4The path-width of a graph G is the minimum % such that G is a subgraph of an interval graph with clique
number at most k 4+ 1. So the tree-width is at most the path-width.

°In fact, in an much earlier paper [, Dvoidk and Norin announced that a much stronger result that implies
X« (F) =t will be proved in a forthcoming paper.



graph. Theorem implies an analogous result for partitioning an infinite graphﬁ into (finite
or infinite) induced subgraphs with uniformly bounded maximum degree. Let G be an infinite
graph, and let h be a positive integer. Let Gi,q be the set of all finite induced subgraphs of G,
and let G.,;, be the set of all minors of graphs in Gi,q. So G, is a minor-closed family containing
Gina- The standard compactness argument shows that if d is an integer such that every graph in
Gina has an h-coloring with defect d, then so does G, so G can be partitioned into h (finite or
infinite) induced subgraphs with maximum degree at most d. Hence, if there exists no integer
d such that G can be partitioned into h induced subgraphs with maximum degree at most d,
then h < xA(Gina) < XA(Gmin) = WA(Gmin) by Theorem [[3] so CT), 1, is a minor of G for every
positive integer k. As every (finite) graph with connected tree-depth at most h + 1 is a minor of
CT}41x for some integer k, we obtain the following corollary.

Corollary 1.10. For every positive integer h and every infinite graph G, if there exists no integer
d such that G can be partitioned into h (finite or infinite) induced subgraphs with mazimum degree
at most d, then every (finite) graph with connected tree-depth at most h + 1 is a minor of G.

Note that Corollary [LI0 is optimal since the closure of the balanced Ny-ary tree with height
h + 1 cannot be partitioned into h induced subgraphs with bounded maximum degree and every
finite minor of it has connected tree-depth at most h + 1.

1.1 Proof sketch

Now we sketch the proof of Theorem As discussed earlier, it suffices to prove the case
H = CTy, for Conjecture [[.4] for any fixed integers h and k.

Let G be a CT}, j-minor free graph. We shall construct a sequence G, Gy, ..., Gy of graphs with
Gy = G such that G; has a bounded number of vertices, and each G;,; is a minor of GG;. Note
that each vertex v of GG; corresponds to a connected subgraph of G contracted into v. When such
a subgraph of G corresponding to a vertex of GG; has only 1 vertex, we also treat this vertex of
G; as a vertex of G. Then we construct a coloring by first coloring all vertices in V(Gy) NV (G)
with color 1, and then when all vertices in V(G;11) N V(G) are colored, we extend the coloring
to V(G;) N V(G) by coloring each vertex v in V(G;) N V(G) — V(G;11) greedily by using the
smallest color that does not appear on colored neighbors of v with large degree. Since G; = G, all
vertices are colored eventually. There are two remaining tasks: one is to show that this coloring
has bounded defect, and the other is to show that at most A — 1 colors are used.

To show this coloring has bounded defect, we will ensure that when a vertex is about to be
colored, it only has bounded degree in the current graph. In other words, we will only contract
subgraphs of G; induced by vertices with bounded degree to obtain G;,;. Once we have this
property, showing that the aforementioned greedy coloring has bounded defect is relatively easy.

Showing at most h — 1 colors are used is more challenging. The key idea is that we keep some
information to ensure that when we are about to color a vertex v € V(G;) NV (G), the set S of
colored neighbors of v with large degree only use at most h — 1 — j colors for some positive integer
J such that each vertex in S together with G — (V(G;) N V(G)) contains a CT; 4 g-minor in G.
As G is CT}, p-minor free, 1 < j < h—-2,s01 < h—1—-7 < h— 2, and hence there is always
an available color for v and the upper bound h — 1 — j is positive. It would be convenient if we
think that we put a hyperedge on S U {v} and label it with j, and direct the edges from S to v to
indicate that v should avoid the colors used by vertices in S.

6All graphs are finite in this paper, unless otherwise specified.



So we need to ensure that such a CT},; y-minor can be constructed when we define G;1; from
G;. Note that if there are k vertices in V(G;) N V(G) with the same neighborhood S in G, then
we can delete those k vertices from G; to create G;y; to obtain the case for 7 = 1. Similarly, if
there are many distinct hyperedges whose common intersection equals their pairwise intersections,
then we can assemble many CT);-minors corresponding to those hyperedges to construct a
CT,42,-minor, put a hyperedge on the common intersection with label j + 1, and delete the
vertices not in the common intersection. In other words, if we are able to find a large set of
“homogeneous structures”, then we can upgrade hyperedges with label j to hyperedges with label
J + 1 to get flexibility for coloring and construct the corresponding CT ;9 j-minors. See Figure [II
for an example.

However, there are some technical issues. Since some vertex in those homogeneous structures
might also belong to other hyperedges that are not in a homogeneous structure, deleting such a
vertex loses too much information and cannot ensure the number of colors used in those hyperedges.
To deal with it, we should contract subgraphs instead of deleting vertices and somehow keep
the information for those hyperedges that cannot be upgraded. Figuring out what the “right
information” (about those hyperedges, labels, directed edges, and neighborhoods) that should be
kept for such a contraction is the main challenge behind the proof.

Now we give more details about the above strategy. We will construct a sequence of graphs
G4, Go, ... while keeping the information about hyperedges, labels, directed edges, and those
CTj41 g-minors. This is essentially the intuition behind the strong defective elimination scheme de-
fined in SectionsPland [l Tt is a sequence whose each entry is a tuple of the form (G;, M;, &;, D;, A;,
A’), where G; is a graph mentioned above, M; indicates what subgraphs of G are contracted into
vertices of G, &; is the set of the aforementioned hyperedges with labels, D; is the set of the
aforementioned directed edges, and A; and A} are partial information for those CT}; y-minors.
To make sure (Gj1, Mit1, i1, Diga, Aiga, Aiyp) can be constructed from (G;, M;, &, D;, A;, AY),
we should maintain many properties for (G;, M;, &;, D;, A;, A;) (i.e. conditions (D1)-(D12) stated
in Sections Pl and [l) during the construction, and those conditions are exactly the “right informa-
tion” mentioned above. Note that the precise definition of those terms might be slightly different
from the ones mentioned in the above proof sketch. But roughly speaking, (D1)-(D3) describe
relationships between G; and G;;1 by using standard language about minor models; (D4) de-
scribes properties about the set D; of directed edges; (D5) describes properties about the set &;
of hyperedges with labels; (D6) and (D7) describe further properties of D; and &; to limit their
complexities; (D9) and (D10) describe properties of the sets A;41 and A}, which are essentially
the branch sets of those CT; ;-minors corresponding to the hyperedges in &;; (D11) describes rela-
tionships between the branch sets of the CT; ;-minors corresponding to different hyperedges. All
those properties are fairly straightforward to verify based on our construction from G; to G;y1,
even thought it is tedious to describe them precisely and rigorously.

Now we provide more details about how we construct G;41 from G; and explain what (DS8)
describes. The key idea is to reduce the number of vertices in G; and try to upgrade hyperpedges
to allow extra feasible colors for vertices in V(G;) —V (G;41) mentioned in the above sketch. Recall
Figure [ for an example for upgrading a hyperedge.

Assume now we want to construct G,.; from G;. We can prove that there exist desired
“homogeneous structures”. Roughly speaking, we can prove that there exist a set U C V(G;)
with bounded size and pairwise disjoint sets X, Xs, ..., X; of V(G;) (for some large integer t) such
that each X only contains vertices with bounded degree in GG; and induces a connected subgraph
with bounded size, and U contains all large degree neighbors of the vertices in U;ZIX]-. By a
Ramsey-type argument, we may assume that the relationship between U and X; is “identical”
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Figure 1: The upper picture shows three hyperedges Si, Sz, S3 with label 2 and three 4CTy -
minors Hy, Hy, H3 in G — V(G;), where for every g € [3], every vertex in H, is adjacent to every
vertex in S, = {x,y,v,}, so each vertex in S, together with H, gives a CTj3-minor. The lower
picture shows that, if we construct G,;,; by “removing” U2:1 Sy — 02:1 Sy = {v1,v2,v3}, then we

obtain a hyperedge S’ = 02:1 Sy, = {x,y} such that for each vertex z (or y, respectively) in S, we
can contract the connected subgraph induced by {x, z, : ¢ € [3]} (or {y,y, : ¢ € [3]}, respectively),
so that it gives a CT,s-minor together with U2:1(Hq U {v,}), where each {z,,y,} is a set of two
vertices contained in a CTy 3 in H,. Note that this picture is a simplification of what we will really
do in the proof. In particular, each hyperedge contains some directed edges and extra vertices
with certain properties that the vertices x,y, v, in the picture do not have.



to the relationship between U and X/, for any j and j'. That is, if we can find a hyperedge
S intersecting both U and X, for some j, then for every other j’, we can find a hyperedge S’
intersecting both U and X/ such that SNU = SNU’; and if a subset U’ of U is the intersection of
U and the neighborhood of some vertex in X, then for every other j/, we can find a vertex in X}
such that U’ is also the intersection of U and its neighborhood. There are two cases for those Xj’s,
based on whether U also contains all small degree neighbors of X; or not. Again a Ramsey-type
argument allows us to assume that either U actually contains all neighbors of U;zl X, or for every
J, some neighbor of some vertex in X is not in U.

For the case that U contains all neighbors of U;Zl X, we construct G4 from G; by contracting
X into a single vertex ¢; 1 and deleting all X5, X3, ..., X;. Note that the “identicalness” of those
X,’s implies that X is sufficient to represent all other X,’s. Detailed properties for this case are
described in (D8h). For the case that some neighbor of X is not in U for all j, we can show that
X, itself is already “homogeneous” in the sense that if we can find a hyperedge S intersecting
both U and X, then we can find many hyperedges S’ with pairwise disjoint S’ — U such that each
S’ is contained in X; U U and intersects both U and X; with SNU = 5" NU. And we construct
Gy from G; by contracting X; into a single vertex ¢;,; and delete all edges between X; and its
neighbors not in U. Note that those deleted edges are between small degree vertices, so deleting
them does not affect the defect of any coloring much, but it will give us convenience to simplify
the proof. Detailed properties for this case are described in (D8g).

We remark that in either case in our construction, for any hyperedge S that involves with
V(G;) — V(Gis1), there exist many hyperedges “identical to S with respect to U” contained in
UU((V(G;) —V(Gis1)), so we can “remove” them to upgrade S as what we expected in Figure [II

(D8a)-(D8e) describe properties about U and ¢;11. (D8f) and (D8i) describes the “upgrade”
of the labels of the hyperedges mentioned earlier.

Properties (D8) can be verified from our construction of G;;; straightforward. The necessity
of those properties naturally arise in the analysis for our procedure of greedy coloring.

1.2 Organization and notations

In Sections Pl and B we show that a desired defective coloring follows from the existence of
a strong defective elimination scheme. In fact, we do not need the full strength of the strong
defective elimination scheme to construct a coloring. In particular, we do not need A; and A} that
record the information about the CT ;4 j-minors. In Section 2] we define the defective elimination
scheme by only keeping required information. In Section Bl we show how to use it to construct a
desired defective coloring.

In Section M we prove results that will be used for finding homogeneous structures in Section
B In Section Bl we define a strong elimination scheme by adding other required properties to a
defective elimination scheme and prove the existence of a strong defective elimination scheme to
complete the proof by inductively maintaining conditions (D1)-(D12). The proof sketch of the
two technical lemmas (Lemmas (5.1l and 5.2)) was described in the previous section about how to
construct G, from G;.

To close this section, we introduce some notations that will be used in the rest of the paper.

All graphs in the rest of the paper are finite and simple. Directed graphs are allowed to have
different edges with the same ends but with different directions.

Let G be a graph. Let S C V(G). Let £ be a nonnegative real number. We define NéZ[S] =
{u € V(Q) : there exists a path in G with length at most ¢ between u and some vertex in S}.
We denote N5'[S] by Ng[S]. When S consists of one vertex, say v, we denote N5‘[S] by N5‘[v]



and denote N5'[S] by Ng[v]. For a set S and a vertex v, we also define Ng(S) = Ng[S] — S and
Ng(v) = N(;[U] — {U}
For every subset S of V(G), the subgraph of G induced by S is denoted by G[5].

2 Defective elimination schemes

In this section, we define defective elimination schemes. We encourage the reader to read
Section [L]in advance to get an intuition behind those terminologies.

Let G be a graph. Let h > 3, k,r,d, N be positive integers. Then a (G, h,k,r,d, N)-defective
elimination scheme is a sequence ((G;, M;, &;, D;) : i € N) of tuples such that (G1, My,&;, D) =
(G {G[{v}] : v € V(G)},0,0), and for every i > 1, the following hold:

(D1) e Gy is a graph.

e M, is a collection {M;;1, : v € V(Gi41)} of disjoint connected induced subgraphs of
G.

(If v is a vertex of G4+ such that M, , consists of only one vertex, then we also treat v as
a vertex of G for simplicity.)

(D2) Gt is obtained from G[J,;crq.., V (M)] by contracting each member of M, into a vertex,
i+1
deleting all resulting loops and parallel edges, and deleting possibly other edges such that

e for every edge uv of G;iq, there exists v'v' € E(G;) such that M;,, € M;y;, and
M; v © Mit1,, and

e for any distinct vertices u,v of Gy, if V(M;11,) is adjacent in G to V(M;41,) but
uwv & E(Gi41), then either |V (M;1q1,)| > 2 or |[V(Mit1,)| > 2.

(Note that these two statements imply that when u, v are vertices in V(G) N (52, V(Ga),
we have for every a € [i + 1], uv € E(G) if and only if uwv € E(G,).)

(D3) Exactly one of the following holds:

o V(G)| <N, Giy1 =Gi, Migy =M;, E41 =&, and Diyy = D;.
o | M; 1| < |M;| and the following hold:
— every member of M; is either a member of M., a subgraph of a member of M1,
or disjoint from every member of M,1, and

— for every member M of M, — M;, its vertex-set is a union of the vertex-sets of
some members of M; — M, such that {v € V(G;) : V(M,;,) C V(M)} induces a
connected subgraph of Gj.

(That is, |V (Giz1)| < |V(Gy)|, and G411 is obtained from G; by contracting pairwise
disjoint connected subgraphs and deleting vertices and edges. Moreover, if v is a vertex
in V(G)NV(Giy1), then v € V(G) NN, VI(G,).)

a=1
(D4) D;yq is a set satisfying the following properties:
e Dy CH{(u,v),(v,u):uwv e E(Git1)}.

(We call a vertex v of G141 a head (with respect to D) if (u,v) € D;; for some
u € V(GH—I))
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The digraph with vertex-set V(G,y1) and edge-set D;y; has no directed cycle with
length 2 and has no directed path with length 2.

If there exists (uv/,v") € D; with M;,, C M; 11, and M, C M;,, for some edge uv of
Giy1, then (u,v) € Diyq.

If (u,v) € D;, then |V (M;11.)| = 1.

(D5) &i41 is a set whose each member is of the form (S, j), where

S is a subset of V(G,41) with |S| <7 +1,
Jj €lh—2], and
there exists a unique vertex v in S such that (u,v) € Dy for every u € S — {v}.

(We call this vertex v the sink for (S, 7). Note that it is possible S = {v}, so v is not
necessarily a head with respect to D;;1.)

(D6) For every v € V(Giy1), if either |V (M;41,)| > 2, or v is a head (with respect to D;4q), or v
is the sink for some member of &, then
(D6a) there are at most N vertices v of G; such that M;,, C M, ,, and
(D6b) if u is a vertex of G4 such that either |V (M;q1.,)| > 2, or u is a head (with respect to

D;i1), or u is the sink for some member of &1, then uv & E(G;11).

(D7) For any (S,j) € &, if S —{vs} € V(Giy1) and M; g C My, for some vertex vg of Gy,
where vg is the sink for (.S, 7), then (', j) € &1, where S" = {vs }U(Ng,,, (ver) NS —{vs}).

D8) If Gii1 # Gj, then there exist a vertex ¢, 41 € V(G,41) and sets U; 4, and U, with U4, C
i+1
U, CV(G) NV (Giy1) NV(G) such that the following hold.
(D8a) For every v € V(G;) — V(Gitq) with [V (M;,)| =1, degg, (v) < d.
(D8b) Uiy = {u € U, : degg,,  (u) > d}.
(D8¢) giy1 € U;y, and Uiy 2 {x € Ng,,,(¢i1) : degg,,, (x) > d}.
(D8d) For every (S,j) € & with M;,, € Miy14,,, where vg is the sink for (S, j), we have
{z € S —{vs}:degg, (x) > d} C U,
(D8e) If v € V(G) NV (Gi11) N Ng, (V') — Uiy, with degg, (v) < d, for some v' € V(G;) with
M C© Mitg,,,, then Uiyy 2 {x € Ng,,, (v) N V(G) : degg,,, (z) > d}.
(D8f) ((Uit1 N Nai i1 (1)) U{git1}, 1) € Eipr and giyq s its sink.
(D8ga) giv1 € V(Giy1) — VI(Gi),
(D8gb) for every M € M;, either M € M,y or M C Mii14,,,,

(D8gc) if uv is an edge of G; such that v’ # v’ and v'v' € E(G,41), where v’ and v’ are the
vertices of G411 such that M;, C M4y, and M;, C M4, then g1y € {u/,v'},
and the vertex z € {u/,v'} —{g;41} satisfies # € {u,v}NV(G)—-U},, degg, (z) < d,
and x is not the sink for some member of &;, and

(D8gd) for every (S,j) € & with M; s C M;114,,,, where vg is the sink for (.5, j),

11



 there exists (5,7) € & with Uves,_UjH M, C Mis14,,, SNUS, =5 NUL,
and vy € U;L |, where vg is the sink for (57, 7), and
% there exists a bijection ¢ from S — ({vs} UU,) to S — ({vsg } UU;L,) such that
for every v € S — ({vs} UU,), Ne,(v) N UL, = Ng, (e(v)) N UL,
(D8h) If Upren,,, V(M) # Uprens, V (M), then
(D8ha) for every M € M;, either M € M;1, or M C M;y1,,.,, or M is disjoint from all
members of M,
(D8hb) for every v € V(G;) with M, , disjoint from all members of M, 1, we have N, (v) C
(U1 N Neyyy (gig1)) U{u € V(Gy) : M, is disjoint from all members of M1},
(D8hc) every vertex in Ng,,,(gi+1) is in V(G) and is not a head (with respect to D;),
(D8hd) if wv is an edge of G; such that M;,, C M; 1y, and M;, C M, for some distinct
vertices v/, v’ of G;, then v'v' € E(Gyq),
(D8he) [V(Gi) = V(Git1)] < N,
(D8hf) for every vertex z € V(G;) N V(G) = Uprep,,, V (M), there exists a vertex 2’ €
V(M;s1,4.,.) NV(G;) NV(G) with Ng(z) N Uit = Ng(2') N Uiy, and
(D8hg) for every (S, 7) € & with V(M) © Uprenr, V(M) —Upren,,, V(M), where vg is
the sink for (.9, 7), there exists (S, j) € & with |S’| = |S| such that
* My, C© Miy1g,,, where vg is the sink for (S, j),
x SNV (Giz1) —{vs} =5 NV(Giy1) — {vs }, and
% there exists a bijection ¢ from S — (V(Git1) U{vs}) to "NV (Miy1.4,,,) — {vs}
such that for every x € S — (V(Giy1) U{vs}), No(z)NU;p1 = Neg(e(x)) NUsq.
(D8i) For every (S, j) € & with M;, U M, g € M;41,,,, for some vertex v € S — {vg}, where
vg is the sink for (S, j),

(D8ia) if C is the multiset {Ng(z) N Uity # 0 : 2 € S — ({vs} UU;,,)}, then for every
function f that maps each member Z of C to a vertex in Z, we have (5',j) € &,
where S = (SNUL ) U{f(Z) : Z € C} U{gi+1} and g;41 is the sink for (57, j), and

(D8ib) for every u € S — ({vs} UUL,), if C, is the multiset {Ng(z) NUjys # 0 : z €
S — ({u,vs} UU,)}, and either SNUZL, # 0 or C, # 0, then for every function f
that maps each member Z of C, to a vertex in Z, we have (S, + 1) € &;, where
S'=(SNUL)U{f(Z2):Z € C,} U{qi+1} and g;41 is the sink for (57,7 + 1).

For a positive integer n, an n-(G, h, k,r, d, N)-defective elimination scheme is a sequence ((G;, M,
&i,D;) : i € [n]) such that that (G;, M,;,&;, D;) satisfies (D1)-(D8) for every i € [n], and
(Gl,Ml, 81, Dl) = (G, {G[{U}] U E V(G)}, @, @)

3 Using a defective elimination scheme to color

For a function f and a subset S of its domain, we define f(S5) = {f(x):z € S}.

Lemma 3.1. For any positive integers d and N, there exists a positive integer d* = d*(d, N) such
that the following holds. Let h > 3, k,r be positive integers. Let ((G;, M;, &, D;) 1 i € N) be a
(G, h,k,r,d, N)-defective elimination scheme for some graph G. Then for every i € N, there exists
an (h —1)-coloring ¢; of GV (G;) N V(G)] with defect d* such that
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1. for every v € V(G;) N V(G) with ¢;(v) # 1 and for every f € [c;(v) — 1], there exists
v € Ng(v) NV (G;) NV (Giy1) with degGiH(v’) > d and ¢;(v') = B, and

2. for every (S,j) € &, |ci(S —{vs})| < h—j—1, where vg is the sink for (S, 7).

Proof. Let d and N be positive integers. Define d* = 2N + d.

Let h > 3, k, r be positive integers. Let ((G;, M;,&;, D;) :i € N) be a (G, h, k,r,d, N)-defective
elimination scheme for some graph G. For every positive integer i with G;1 # Gy, let Uiy, U,
be the subsets of V(G;) N V(Gi11) N V(G) and the vertex ¢;11 of G;11 mentioned in (D8). We
shall prove this lemma by induction on —i. Let ¢ be a fixed positive integer.

When |V(G;)| < N, define ¢; to be the 1-coloring of G[V(G;) N V(G)]. Then ¢; has defect
N < d*. Note that there exists no vertex with color non-equal to 1, so Statement 1 of this lemma
holds. And for every (S,7) € &, j € [h—2] by (D5), so h —j —1 > 1 and the lemma holds.

By (D3), this proves the base case of the induction, and we may assume that |V(G;)| > N
and there exists an (h — 1)-coloring ¢;+1 of G|V (G;41) NV (G)] with defect d* such that the lemma
holds for ¢;;1.

Since ‘V(Gl)| > N, by (DS), |V(G2)‘ > |V(GH_1)| In particular, Gz §£ Gi+1, SO ¢i+1, Ui+17 Ui—:-l
exist.

For simplicity of notations, we denote g;11, Ui+1, Uiy by ¢, U, U™, respectively.

Claim 1: For every v € V(G) N V(G;) — V(Git1), we have [h — 1] — ¢;11(Ng(v) NU) # 0.

Proof of Claim 1: Let v € V(G) NV(G;) — V(Giqt1). It M;,, € M4y, then define v = v;
if Miy € Mit1q, then Uprenr, V(M) # Upenr,,, V(M) by (D8gb), so M;, is disjoint from all
members of M, 1 and v € V(Gi) N V(G) — Uprenn,,, V(M) by (D8ha), and hence (D8hf) implies
that there exists v € V(M;41,) N V(G;) N V(G) with Ng(v) N U = Ng(v) N U. Note that
since v € V(G) NV(G;), (D8) and (D2) imply Ng(v) NU = Ng(v) N (UNV(G) NV(G)) =
(Neg(0)NV(G;)NV(G))NU = Ng,(0)NV(G)NU = Ng,(v)NU. Similarly, Ng(v)NU = Ng,(v)NU.

Hence v is defined to be a vertex in V(M;11,) N V(G), and Ng,(v) NU = Ng(v) NU =
Ng(0)NU = Ng,(v) N U.

Suppose to the contrary that there exists u € Ng(0) NU — (Ng,,,(¢) NU). Since Ng(v)NU =
Ng,(0)NU, uv € E(G;). Since 0 € V(M;11,) and u € U C V(Gi11) NV (G), (D8gc) and (D8hd)
imply that uq € E(Gi41), contradicting to v & Neg, ,(q¢) NU.

Hence Ng(v) NU C Ng,,,(q) NU. By (D8f), (Ne,,,(@) NU)U{q},1) € &1 and g is its sink.
Since c;41 satisfies the lemma, we know |¢;+1(Ng,,,(¢)NU)| < h—2,s0 [h—1] € ¢;11(Ne,,, (@)NU).
Hence [h—1] — ¢;41(Ng(0)NU) D [h—1] = ¢i41(Ng,,, (@) NU) # 0. Since Ng(v)NU = Ng(v)NU,
we know [h — 1] — ¢; 11 (Ng(v) NU) = [h — 1] — ;1 (Ng(0) NU) # 0. O

Define ¢; to be the (h — 1)-coloring of G[V (G;) NV (G)] such that for every v € V(G;) NV (G),
o ifv S V(Gi_;_l), then CZ‘(U) = CZ‘+1(U);
e otherwise, ¢;(v) is the minimum in [A — 1] — ¢;11 (Ng(v) N U).

Note that ¢; is well-defined by Claim 1, and ¢; is an (h — 1)-coloring of G[V (G;) NV (G)].

Claim 2: If u is a vertex in U, and v is a vertex in Ng,(u) N V(G) with ¢;(u) = ¢;(u'), then
u € V(Gipr) NV(G).

Proof of Claim 2: Suppose to the contrary that v’ & V(G;41). Sou' € V(G)NV(G;) =V (Git1).
Hence ¢;(u') € [h — 1] — ¢;41(Ng(w') NU). So u € Ng,(v') NU = Ng(u')NU (by (D2) and (D8))
and ¢;(u') = ¢;(u) = ¢i41(u) € cip1(Ng(u') NU), a contradiction. [
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Claim 3: ¢; has defect d*.

Proof of Claim 3: Let v € V(G;)NV(G). Let W = {x € Ng,(v)NV(G) : ¢;(v) = ¢;(z)}. To prove
this claim, it suffices to show |W| < d*. Since d* > d + 2N, we may assume degg (v) > d + 2N.
This implies v € V(Gy41) by (D8a). So ¢;(v) = ¢i41(v).

We first assume v € U. By Claim 2, for every ' € W, we have v’ € V(G41) N V(G), so
Cimi(u) = ¢;(u') = ¢;(v) = ciy1(v). So W C {z € Ng,,,(v) NV(G) : ciz1(v) = cipa(x)} by (D2).
Hence |W| < d* since ¢;;1 has defect d*.

So we may assume v € U. By (D8ga), if Uy;crq, VIM) = Upren, +1 V(M), then q &€ V(G,),
so ¢ # v. Since degg. (v) > d and v € V(G;) N V(Gipr) N V(G), by (D8gb) and (D8gc), if
Unrer, VM) = Unren,,, V(M), then degg,, (v) = degg,(v) — {y € V( i)+ Miy © Mig1g3]-
So by (D6a), if Uprenr, V(M) = Uprepn,,, V(M) then degg,, (v) > degg,(v) = N > d. If
Unrers, V(M) # Uprepn,,, V(M), then by (D8ha) and (D8hd), degg,,, (v) > degGi (v) — |V(G;) —
V(Git1)], so degg,,, (v) > degg,(v) — N > d by (D8he).

Hence degg,,,(v) > d. By (D8c), we know U 2 Ng,,(q) N{x € V(Gis1) : degg,,,(x) > d}.
Since v € V(Giy1) — U and degg, , (v) > d, we know v € Ng, ,(q).

Suppose to the contrary that Ng,(v) N V(G) € Ng,,,(v) N V(G).

EUpenm, VIM) =Upen,,, VM), then since v € V(G;) NV (Git1) — Ng,.,, (q) and degg, (v) >
d, (D8gc) implies that Ng, (v)NV(G)NV (M;11,,) = 0, so (D8gb) and (D8gc) imply Ng, (v)NV(G) C
Ng,,,(v) NV (G), a contradiction.

So Unrens; V(M) # Unrep,,, V(M). Since v € V(G;) NV (Git1) — Na,y, (¢), we have Ne, (v) N
V(G) NV (M;+1,4) = 0 by (D8hd). If there exists x € Ng,(v) N V(G) with M, . disjoint from all
members of M;y, then v € Ng,(x), so (D8hb) implies either v € Ng,, ,(q) or v & V(Git1), a
contradiction. So Ng,(v) NV (G) € Ng,,,(v) N V(G) by (D8ha) and (D8hd), a contradiction.

Therefore, N¢,(v)NV(G) C Ng,,,(v)NV(G). SoW C {z € Ng,,,(v)NV(G)NV(G;) : ¢i(x) =
ci(v)} C{z € Ng,,,(v)NV(G) : ciza(x) = ¢iy1(v)} has size at most d* since ¢;;q1 has defect d*. [

Claim 4: For every v € V(G;)NV(G) with ¢;(v) # 1 and for every § € [¢;(v) —1], there exists v’ €
Ne(v) NV(Gi) NV (Gig1) with degg,,, (v') > d and ¢;(v') = 8. Moreover, if v € V(G;) — V(Gita),
then v' € U.

Proof of Claim 4: Let v € V(G;) N V(G) with ¢;(v) # 1. Let 5 € [¢;(v) — 1].

We first assume v € V(G11). So ¢;11(v) = ¢;(v) # 1. Since ¢;1; satisfies this lemma, there
exists v' € Ng(v) N V(Gip1) N V(Gigg) with degg,,,(v') > d and ¢;11(v') = B. In particular, v' €
V(G)NV(Gi) NV (Giy1). Hence v' € Ng(v) NV(Gy) NV (Gig1) and degg,,, (V') > degg,,,(v') > d
by (D2).

So we may assume v € V(G;) — V(G,41). Hence ¢;(v) = min([h — 1] — ¢;11(Ng(v) NU)). So
there exists v € Ng(v) NU such that ¢;41(v") = 5. Since v' € U, v' € V(G;) NV (Giy1) by (D8),
so v € Ng(v) N V(G;) NV (Git1) and ¢; (V') = ¢41(v") = B. Since v/ € U, (D8b) implies that
degg,,,(v') > d. This proves the claim. U

Hence by Claims 3 and 4, to prove this lemma, it suffices to prove that |¢;(S—{vs})| < h—j—1
for every (S, j) € &;, where vg is the sink for (.5, 7).

Suppose to the contrary that there exists (5,7) € & such that |¢;(S — {vs})| > h —j. We
further choose such an (S, 7) such that ({J,cq V(M;z)) NV (M;41,4) # 0 if possible. Let vg be the
sink for (5, 7).

Claim 5: Either
o S—{vs} £ V(Gig1), or
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o M, & UMeMi+1 M, or

* Unien, VIM) = UM6M¢+1 V(M), M; s C M;1 4, and there exists v € S—({vg UV (M;41,4)U
U*) with degg, (v) < d.

Proof of Claim 5: We assume that S — {vs} C V(Git1) and M; e C Uprenr,,, M. We shall
prove that the third statement of this claim holds. By (D3), there exists a vertex vg of G;1; with
Mi,vs Q Mi+17vs/' Let S, = {US’}U(NGi+1 (US/)Q(S—{’US})). By (D?), (S,,j) c gi+1. Note that Vg is
the sink for (S’ 7) by (D4) and (D5). Since ¢;4 satisfies the lemma, |¢;11(S" —{vs })| < h—j—1.
Hence ¢;(S — {vs}) # ci1(S" — {vs'}). Note that S" — {vg} C S — {vs}. So there exists
ve (S—{vs}) — (8" — {vg}) such that ¢;(v) & c;i1(S" — {vg }).

In particular, v € (S — {vs}) — Ng,,, (vsr). Hence S — {vs} Z Ng,,, (vs). So vvg € E(G;) (by
(D5)) and vvg & E(Git1). Hence Uyen, V(M) = Upenr,,, V(M) by (D8hd). By (D8gc), one
of v and vy equals q. By (D8ga), ¢ € V(Gi11) — V(G;), so v # ¢, and hence ¢ = vg. That is,
M;ipg © Miy10y = Mig1,4-

Again by (D8gc), v € V(G) — U™ and degg, (v) < d. Since v € S —{vg} C V(Giy1) and v # q,
we know v € V(Mi414). Sov € S — ({vs} UV (M;41,) UUT). This proves the claim. O

Claim 6: Either
L] (S — {Us}) N V(Mi+17q) # (Z), or

® Unrer, VIM) = Uprepn,,, V(IM), My g © Mit 4, and there exists v € S—({vs UV (Miy1,4)U
U™) with degg, (v) < d.

Proof of Claim 6: Suppose to the contrary that this claim does not hold. In particular, (S —
{vs}) NV (Miy14) = 0. So M, € Miiq, for every x € (S — {vs}) — V(Giz1).

Suppose M; s C Uprepr,,, M. By Claim 5, S — {vs} € V(Giy1). Hence there exists v €
(S—{vs}) =V (Git1). So M, & M1 and My,  Miy1q. Hence Uy cpg, V(M) # Uprepn,,, V(M)
by (D8gb). So by (D8ha), M;, is disjoint from all members of M, for every x € (S — {vs}) —
V(Giy1). By the existence of v, S — {vg} # 0. So by (D5), vg is a head with respect to D;.
Hence by (D8hc), vs € Ng,,,(q). Since M;, is disjoint from all members of M,;;, by (D8hb),
vg € Ng,(v) € Ng,.,(q) U{u € V(G;) : M, is disjoint from all members of M;,1}. Hence M,
is disjoint from all members of M,4, contradicting M, ,, C UMGMZ_+1 M.

So Miwvs € Unrep,, M- Hence Uprenr, VIM) # Unrepn,,, V(M) by (D8gb). By (D8ha),
V(Miws) € Unrers, VIM)=Upren,,, V(M). So by (D8hg), there exists (57, j) € & with [S'] = [5]
such that

(i) Min, € M4, where vg is the sink for (57, 7),
(ii) SNV(Gi1) —{vs} = ' NV (Gis1) — {vs}, and

(ili) there exists a bijection ¢ from S — (V(Gi41) U {vs}) to "NV (M;11,) — {vs } such that for
every z € S — (V(Gi41) U{vs}), No(z) NU = Ng(u(z))NU.

Since (S — {vs}) NV (Miy1q) = 0 and V(M;u5) € Uprerr, VIM) = Uprem,,, V (M), we know

(Upes V(M;2)) NV (M;q1,4) = 0. Since (S, ) is chosen such that ({J,cq V(M;z)) NV (Mit1,4) # 0

if possible, we know that (', j) satisfies the lemma by (i). That is, |¢;(S" — {vs/})| < h —j — 1.
By (i), either
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(1V) Vg =q € V(Gz) N V(GH-I) and S’ N V(MH-LQ) — {’US/} = @, or
(v) &NV (Mi14) €5 = V(Gipr).

If (iv) holds and S" — V(Gi+1) # 0, then there exists u € S’ — {vg'} with M;,, disjoint from
all members of M, by (D8ha), so (D8hb) implies that ¢ = vy € Ng,(u) € Ng,,,(q¢) U (V(G;) —
V(Gi+1)), a contradiction. So 8" —V(Giy1) =0 =5"NV(M;41,4) — {vs} when (iv) holds. Hence
when (iv) holds, ¢ is a bijection from S — (V(G;11) U{vs}) to 8" — (V(Gii1) U {ve }) by (iii).

Since |S’| =[S/, (ii) implies that |S — (V(Giz1) U {vs})| = |9 — (V(Gis1) U{vs })|. By (iii),
1S = (V(Gis)U{us})| = [S'NV(Miyrq) —{vg }|- Hence |[S'— (V(Gipr)U{vs })| =[SOV (Miy1,4) —
{vg'}|. So if (v) holds, then "NV (M;41,4) — {vs} =5 — (V(Giy1) U {vs }), so (iil) imply that ¢
is a bijection from S — (V(Git1) U {vs}) to 8" — (V(Giy1) U {vg }).

Hence ¢ is a bijection from S — (V(Giy1) U {vs}) to 8" — (V(Git1) U {vg }) in either case.
So by (iii), for every x € S — (V(Gi1) U{vs}), ¢i(x) = min([h — 1] — ¢;11(Ng(z) NU)) =
min([h—1]—=ci11 (Na(e(2))NU)) = ci(u(x)). So ¢i(S—(V(Gipa)UH{vs})) = ci(S"=(V(Gira)U{vs })).
By (ii), ¢;(S N V(Gig1) — {vs}) = ci(S" NV (Git1) — {vs'}). Hence ¢;(S — {vs}) = (5" — {vs'})

has size at most h — j — 1, a contradiction. [

Claim 7: M;,; € Miy1q, [V(Miy14)| > 2, and {z € S — {vg} : degg, (z) > d} C U,
Proof of Claim 7: Since M;,; € M;1,, implies {x € S — {vg} : degg,(x) > d} C U™ by (D8d),
it suffices to prove that M, ,, € M4y, and |V (M;11,)| > 2.

We first assume the second statement of Claim 6 holds. Then M, ,, C M;;;, and UMeMi V(M) =
Unrem,,, V(M). Since [V(G;)| # [V(Git1)|, (D8gb) implies that [V/(M;11,4)] > 2.

Hence we may assume the first statement of Claim 6 holds. That is, (S—{vs})NV (M;11,4) # 0.
Suppose to the contrary that M;,, C M;.;, for some v € V(G,41) — {¢}. Since (S — {vs}) N
V(M;y1,) # 0, there exists (u/,vs) € D; with M, ,» C M1, by (D5). Since M; s C My, if
qu € E(Gj41), then (¢,v) € D;11 by (D4). Since (D8f) implies that ¢ is a sink for some member
of &1, if (q,v) € D;11, then v is a head with respect to D;;1, so qu € E(G,;y1) by (D6b). So
qu & E(Git1). Since u'vg € E(G;) and qu € E(Git1), we have Upeng,,, V(M) = Upenm, V(M)
by (D8hd). Again since u'vg € E(G;) and qu € E(G;41), (D8gc) implies that v = vg and vg is not

the sink of a member of &;, a contradiction.

So M, yg € My, for every v € V(Giy1) — {¢q}. Suppose to the contrary that M, ,, € M1 ,.
Then Uprepn,,, VM) # Uprens, V(M) by (D8gh), and hence M; 4 is disjoint from every member
of M;;1 by (D8ha). So (D8hb) implies that N, (vs) € Ng,,,(q) U {z € V(G;) : M;, is disjoint
from all members of M,;;}, contradicting (S — {vs}) NV (M;11,4) # 0.

Hence M;,o € M;i14. Since (S —{vs}) NV (Miz14) # 0, V(Miy14) — V(M) # 0, so
V(Mit1,4)] = 2. 0O

Claim 8: For every v € S — ({vs} UUT) with ¢;(v) # 1 and for every 8 € [c;(v) — 1], there exists
Uy 3 € Ne(v) NU such that ¢;(u, ) = B.

Proof of Claim 8: Let v € S — ({vg} UU™) with ¢;(v) # 1. Let 5 € [c;(v) — 1]. Note that
v e V(G)NV(G;) by (D4) and (D5). By Claim 4, there exists u € Ng(v) NV (G;) NV (G,yq) with
degg,,,(u) > d and ¢;(u) = . So to prove this claim, it suffices to show u € U. By Claim 4, we
may assume v € V(G;) NV (Gigq).

Since both u and v are in V(G) N V(G;) N V(Giy1) and v € Ng(v), u € Ng,(v) N Ng,,, (v)
by (D2). By Claim 7, {z € S — {vs} : degg, (z) > d} € U™T. Since v € S {’Us} but v & U™,
degq, (v) < d. Note that v € V(G) N V(Giy1) N Ne,(vs) — UT. Since M; g € My, by Claim 7,
(D8e) implies that u € {z € Ng,,,(v) NV(G) : degg,,,(¥) >d} CU. O
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For every a € ¢;(S — {vs}), let v, be a vertex in S — {vg} such that ¢;(v,) = «, and subject
to this, v, € U™ if possible.

Let A ={a € ¢(S —{vs}) : v, € UT}. Note that for every o € A, by the choice of v,, there
exists no vertex x in (S — {vg}) N U™ such that ¢;(z) = a, so a € ¢;((S — {vs}) NUT).

A segment is a maximal set of consecutive integers in A. We say that a segment [ is tilted if
either min7 = 1, or min/ > 2 and min/ — 1 € ¢;(S — {vs}) and vpm7—1 € UT. For any two
distinct tilted segments Iy, I, we define I; < I if and only if min I; < min/,. So < is a total
order of all tilted segments. A tilted segment is <-minimum if it is the minimum respect to <.
For a non-<-minimum tilted segment I, we define the precursor of I to be the tilted segment I’
such that I’ < I and there exists no tilted segment I” with I” < I” < I; and we define g(I) to be
max I’, where I’ is the precursor of I.

Define g to be the function with domain ¢;(S — {vg}) such that for every = € ¢;(S — {vs}),

o if v € ¢;(S—{vs}) — A, then g(x) =z,

e if x € A and x is not the minimum of any tilted segment, then g(x) =z — 1,

e if x € A and x is the minimum of some non-<-minimum tilted segment 7, then g(x) = g(I),
o if r € A and x is the minimum of the <-minimum tilted segment, then g(x) = 0.

Note that g maps each element in A to 0 or an element in AU (N — ¢;(S — {vs})).

Claim 9: [g(c;(S — {vs}))| = h —j and [g(ci(S — {vs})) = {0} = h —j — 1.
Proof of Claim 9: We first show that ¢ is injective. Suppose to the contrary that there exist
distinct z,y € ¢;(S — {vs}) such that g(x) = g(y). If one of z,y is not in A, say x ¢ A,
then g(x) = o € (S — {vs}) — A, and since g maps each element in A to 0 or an element in
AU (N =¢(S —{vs})), g(x) = g(y) implies that y € ¢;(S —{vs}) — A, sox = g(z) = g(y) =y, a
contradiction. So x,y € A. Note that the minimum of the <-minimum tilted segment is the only
element mapped to 0 by g. So none of z,y is the minimum of the <-minimum tilted segment.
If each of z,y is the minimum of some non-<-minimum tilted segment, then g(x) = g(y) implies
that © = y, a contradiction. Hence by symmetry, we may assume that x € A is not the minimum
of any tilted segment and y is the minimum of some non-<-minimum tilted segment I. So g(y) is
the maximum element of some tilted segment, but g(x) is not, a contradiction.

Hence g is injective. So |g(c;(S—{vs}))| > |ci(S—{vs})| > h—j. Hence |g(c;(S—{vs}))—{0}| >
h—j—1.0

If (S—{vs})NV(Mis1,) # 0, then define S* = S and vg- = vg, and define ¢ to be the identity
function from S* to 5*; otherwise, Uy e v, V(M) = Upenr,,, V(M) and M; g C Miy1,4 by Claim
6, so (D8gd) implies that there exists (S*, j) € & with (J,cqe_y+ Mip € Miy14, S*NUT =SNUT
and vg« € U, where vg« is the sink for (S*, j), and there exists a bijection ¢ : S — ({vs} UUT) —
S* — ({vg+} UUT) such that for every v € S — ({vs} UUT), Ng,(v) NUT = Ng,(¢e(v)) NUT.
Claim 10: M;, UM, ,.. € M;;14 for some v € S* — {vg-}.
Proof of Claim 10: If (S — {vg}) N V(Mi11,4) # 0, then Claim 7 implies that M;, U M;,.. C

M;it1,4 for some v € S* — {vg-}. Otherwise, Claim 6 implies M; ) U M; ... C Mty for some
veS—({vstuU™). O

Note that for every o € ¢;(S —{vs}), o & Aif and only if v, € UT. Andif« =1 and v, € U™,
then @« = 1 € A is the minimum of the <-minimum tilted segment, so g(«) = 0. So if v, & U™
and g(a) # 0, then ¢;(vy) # 1.

17



Define f to be the function with domain {v, : a € ¢;(S — {vs}), g(a) # 0} such that for every
a € (S —{vs}) with g(a) # 0,

e if v, € UT, then we define f(v,) = va,

o if v, & UT, then since g(a) # 0, we know c¢;(va) # 1, so there exists a vertex t,, 4(a) in
Ng(vo) NU with ¢;(ty, g(a)) = g() by Claim 8, and we define f(va) = Uy, g(a)-

Claim 11: For every a € ¢(S — {vs}) with g(a) # 0, if v, & U", then f(va) = Uy, g(a) €
Ne(va) NU = Ng,(va) NU and ¢;(f(va)) = cita(f(va)) = g(a).

Proof of Claim 11: Note that f(v.) = Uy, g@a) € Na(va) N U = Ng,(vy) N U by (D2) since
{va}UU C V(G)NV(Gi). Andsince U € V(Gi)UV (Giga) by (D8), ¢i(f(va)) = cisa(f(va)) = g().
U

Claim 12: There exists a tilted segment.
Proof of Claim 12: Let C be the multiset {Ng(x)NU # 0 : 2 € S* — ({vs-} UU™)}. Note that
C equals the multiset {Ng(e(z))NU #0:2€ S — ({vs} UUT)}. For each Z € C, let x; be the
element in S — ({vg} UU™) such that Z = Ng(«(xz)) NU. For every a € A — {1}, let Z, be the
element in the multiset C such that x,, = v,.

Suppose to the contrary that there exists no tilted segment. So 1 ¢ A and g(«) # 0 for every
a € ¢;(S —{vs}). Let f’ be a function such that for each member Z of the multiset C,

o if ;€ {v,:a€ A}, then f/(Z) = f(xz),
e otherwise, f/(Z) is an arbitrary element in Z.

So f" maps each member Z of C to a vertex in Z.

Recall that (S*, j) is a member of & such that M;, UM, ,.. C M; 4 for some v € S* — {vg-}
by Claim 10. So by (D8ia), (S',7) € &i11, where S" = (S*NUT)U{f(Z): Z € C}U{q}, and ¢ is
the sink for (S’ 7). Since ¢;4; satisfies this lemma, |¢;11(S" — {¢})| < h—7— 1.

Note that for every o € ¢;(S — {vg}), if @ € A, then v, € SNUT = S*NUT C S — {q}
and g(a) = a = ¢;(vy) = Ci11(va) € cit1(S" —{q}); if @ € A, then v, ¢ U™, and since 1 ¢ A,
we know v, = xz,, so f(vy) = f'(Zs) € {f(Z): Z € C} C S’ —{q}, and hence by Claim 11,
g9(a@) = cit1(f(va)) € cir1(S" —{q}). Therefore, c;p1(S" —{q}) 2 g(ci(S —{vs})). Soh—j—1=>
i1 (8" = {a})| = lg(ci(S — {vs}))[. But by Claim 9, h — j — 1 = [g(c;(S — {vs}))| = h = j, a
contradiction. [J

By Claim 12, there exists a tilted segment. So there exists a unique element a* € ¢;(S — {vs})
such that g(a*) = 0. Note that o* € A. So v, € U™ and hence t(vy+) € S* — ({vs-} UUT).

Let C* be the multiset {Ng(x) NU # 0 : z € S* — ({t(var),vs-} UUT)}. Note that C* equals
the multiset {Ng(t(x))NU £0:2 € S — ({var,vs} UUT)} by the definition of .

Claim 13: SNUt =S*NUT # 0 or C* # ().

Proof of Claim 13: Recall S*NU"™ = SNU™ by the definition of S*. Suppose to the contrary
that SNUT =0 = C*. If there exists y € S — ({vs, vor } UUT) with ¢;(y) # 1, then by Claim 8,
Ng(y)NU # 0, 50 1(y) € S*— ({t(var), vs- JUUT) and Ng(i(y))NU = Ng(y)NU # O (by (D2) and
the property of ¢), and hence C* # (), a contradiction. Therefore, ¢;(S — ({vs, vo-} UUT)) C {1}.
Since SNUT =0, ¢;(S — {vs}) = ¢;(S — {vs} UUN)). If ¢;(S — ({vg,vax} UUT)) = 0, then
ci(S —{vs}) = ¢ (S — ({vs} UUT)) = {ci(va) } has size at most 1, contradicting |¢;(S — {vs})| >
h—j >2by (D5). So ¢;(S— ({vs,va-}UUT)) = {1}. Since SNU*T =0, 1 € A. So a* = 1. Hence
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ci(S —{vs}) = (S — {vs} UUT)) = {1,¢i(var)} = {1} has size smaller than h — j by (D5), a
contradiction. [J

For each member Z of the multiset C*, let xz be an element in S — ({v,+, vs} UUT) such that
Z = Ng(t(zz))NU. For every a € A — {a*}, let Z, be the member of the multiset C* such that
Tz — Vg

Let f’ be a function such that for each member Z of the multiset C*,

o

o ifry € {v,:a € A—{a*}}, then f/(Z) = f(xz), (note that f(xz) is defined since a* is the
unique element such that g(a*) = 0)

e otherwise, f'(Z) is an arbitrary element in Z.

So f’ maps each member Z of C* to a vertex in Z. Recall that (S*, 7) is a member of &; such that
M; U Mo, © M, for some v € S* — {vg-} by Claim 10. Hence by Claim 13 and (D8ib),
(S',7+1) € E41, where " = (S*NUNU{f(Z) : Z € C*}U{q} = (SNUNU{f(Z) : Z € C*}U{q},
and ¢ is the sink for (57, j). Since ¢;41 satisfies this lemma, |¢;11(S" — {¢})| < h —7 — 2.

Note that for every a € ¢;(S — {vg}), if « &€ A, then v, € SNUT C 5" — {q} and g(a) = a =
¢i(Va) = ciy1(va) € cin1(S" —{q}); if « € A —{a*}, then v, € UT and g(«a) # 0 and v, = 22,
so f(va) = f'(Za) € {f'(Z) : Z € C*} C 5" — {q}, and hence by Claim 11, g(a) = ¢;11(f(va)) €
ci+1(S" — {q}). Therefore, ¢;11(S" = {q}) 2 g(ci(S — {vs}) — {a"}) = g(ci(S = {vs})) — {0} So
h—j—22>|ci(S"—{q})| > |g(c:(S — {vs})) — {0}|, contradicting Claim 9.

This proves the lemma. m

4 Homogeneous structures

A geodesic in a graph G is a path P in G such that its length equals the distance between its
ends in G. Note that every subpath of a geodesic is a geodesic.

Lemma 4.1. For any positive integers t,k,{, there exists a positive integer n = n(t, k,{) with
n > t0 such that for every graph G having a vertex v* with V(G) = NG"[v*], every function
f:V(G) = [t] and every geodesic P in G with an end v* on n — tl vertices, there exist a subpath
Q of P and a nonempty set S C [t| such that

1. for every x € [t] — S, there exists no vertex u € Né‘sw[V(Q)] with f(u) =z, and

2. Q) can be partitioned into k disjoint subpaths Q1,Qs, ..., Qr of Q with the same length such
that for any i € [k] and x € S, NGS(‘S|_1)Z[V(QZ-)] contains a vertex v; , with f(v;,) = x.

Proof. For any positive integers y, z, define n(1,y, z) = y+ 2z, and for every positive integer x > 2,
n(z,y,z) =y-(n(zx—1,y,2) — (x — 1)z) + xz. Clearly, n(x,y,z) > zz for any positive integers
xT,Y, 2.

Let t, k, ¢ be positive integers. Let n = n(t, k, £). We shall prove this lemma by induction on t.

Let G,v*, f, P be as stated in the lemma. When ¢t = 1, P has n(1,k,¢) — ¢ > k vertices, so
every subpath @ of P on k vertices and the set [1] satisfy the conclusion of this lemma (with
S = [1]). So we may assume that £ > 2 and the lemma holds when ¢ is smaller.

Let W be a subpath of P on n(t—1, k, £) — (t —1)¢ vertices. Since W is a subpath of a geodesic
P, W is a geodesic.
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We first assume that there exists zy € [t] such that there exists no vertex u € Ng S0y ()]
with f(u) = xw. By symmetry, we may assume zy = t. Let H = G[N; NSODE [V(W)]]. Let
vy be the end of W closest to v* in G. Hence V(W) C Nén(t LiO=(=1) 1[UW]. So V(H) =
NGO ) Hence V(H) = N 9 vy ]. Moreover, flymy is a function from V(H) to
[t —1], and W is a geodesic in H with an end vy on n(t — 1, k, ¢) — (t — 1)¢ vertices. Hence by the
induction hypothesis, there exist a subpath W’ of W and a nonempty set Sy C [t — 1] such that

(i) for every x € [t — 1] — Sy, there exists no u € N<|SW|Z[V(W’)] with f(u) =z, and

(ii) W' can be partitioned into k disjoint subpaths Wy, Ws, ..., Wy of W’ with the same length
such that for every ¢ € [k] and z € Sy, N;“SW‘_W[V(VVZ-)] contains a vertex w;, with

f(ww) = XT.

Since Sy C [t — 1], |[Sw| <t —1. So G[N, <‘SW|Z[V(W’)]] is a subgraph of H. Hence for every
i € [|Swl], NS“IV(W")] = N5“[V(W")]. Recall that there exists no vertex u € N<(t bt V(W)
with f(u) = zw = t. So (i) implies that for every x € [t] — Sy, there exists no u € NG‘SWM[V(W’)]
with f(u) = z. Hence this lemma follows from taking @@ = W’ and S = Sy .

So we may assume that for every subpath P’ of P on n(t — 1,k,¢) — (t — 1)¢ vertices and for
every z € [t], N<(t e [V(P")] contains a vertex vps , with f(vps,) = x. Since P has n(t, k, ) —tl >
k-(n(t—1,k €) (t — 1)¢) vertices, there exists a subpath P* of P on k- (n(t —1,k,¢) — (t — 1){)
vertices. So P* can be partitioned into k disjoint subpaths P, P, ..., P, of P* each having n(t —
1,k,¢) — (t — 1)¢ vertices. So for any i € [k] and z € [t], Ng(t_l)e [V(P;)] contains a vertex v; , with
f(viz) = x. Hence we are done by choosing () = P* and S = [t]. This proves the lemma. m

Note that for every proper minor-closed family G, there exist positive integers r and k such
that every graph in G has edge-density at most k£ [[9] and no K, ,-minor. By taking e = ¢ =0 in
I3 Lemma 4.4], we obtain the following immediate corollary for proper minor-closed families.

Lemma 4.2 (special case of [I3] Lemma 4.4]). For any proper minor-closed family G, there exists
a positive integer v = r(G) such that for any integers t > 1, > 2, there exist positive integers
d = d(G,t,0),N = N(G,t,{) such that for any graph G € G with |V(G)| > N, there exist
X, Z,W CV(G) with ZC X, |Z|=t, W CV(G) — X and |W| <r —1 such that

1. every vertex in X has degree at most d in G,

2. for any distinct z,2' € Z, the distance in G[X| between z, 2" is at least 2¢ — 1, and

3. NG(Ng[l;ql[ z]) = X =W for every z € Z.

Note that Lemma can also be derived from the machinery developed in [[3], which is a
simpler version of the machinery developed in [I3].

5 Strong elimination schemes
Let G be a graph. Let h > 3,k,r,d, N be positive integers. Then a strong (G, h,k,r,d, N)-
defective elimination scheme is a sequence ((G;, M;,&;, D;, Aiy Al) = i € N) of tuples such that

(Gy, My, &, D;) -i € N)isa (G, h, k,r,d, N)-defective elimination scheme such that A; = A} = 0,
and for every ¢ > 2, the following hold:
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(Recall that we denote the member of M; corresponding to a vertex v of G; by M, ,.)
(D9) A; is a collection {A; g : Q € &}, and A; is a collection {A] 5 : Q € &}

(D10) For every @ = (S,5) € &, Aig is a set of pairwise disjoint connected subgraphs of
GlV(Miws) U (V(G) = Uyevia V(Miw))] (where vg is the sink for @), and Aj ; is a set of
|5|—1 pairwise disjoint connected subgraphs of G[U,cg V(Mi0) U(V(G) —U,ev (g, V (Mio))]
such that the following hold.

e For each member A of A,
= V(A) NS —{ust #0,
— A is disjoint from all members of A, o, and
— A is adjacent in G to all members of A, ¢.

(Note that [V(A)NS —{vs}| = 1 for each A € Aj , since |A] 5| = |S|—1 =[S —{vs}|)
e Contracting each member of A, ¢ into a single vertex creates a (k + h — j)CT} z-minor
in G.
(D11) For any @1 = (51, 1), Q2 = (S2, j2) € &; with distinct sinks,

e every member of A; g, is disjoint from every member of A, o,,
e for a € [2], every member of A, g, is disjoint from every member of A}, , and

e if A} is a member of A, and Aj is a member of A, , then V(A}) N V(4;) C
V(A) NV (S1) NV (A NV (S,).

(D12) For every v € V(G;,), it |V(M;,)| > 2 or v is a head (with respect to D;) or the sink for some
member of &, then degg (v) <.

For any positive integer n, a strong n-(G, h, k,r,d, N)-defective elimination scheme is a sequence
(Giyy, M, &, Dy Ay AL) =i € [n]) of tuples such that ((Gy, M, &, D;) =i € [n]) is an n-(G, h, k,r,d,
N)-defective elimination scheme and (G;, M;, &, D;, A;, A;) satisfies (D9)-(D12) for every ¢ € [n],
and A; = A} = 0.

Lemma 5.1. For any positive integers h > 3, k,r, there exists a positive integer t = t(h, k,r) such
that for any positive integers d > 2, ¢y, there exists a positive integer N* = N*(h, k,r,d, ly) such
that the following hold. Let G be a graph with no CTy, ,-minor. Let N be an integer with N > N*.
Let i be a positive integer. Let ((Go, Ma,Ea, Do, Aa, AL) = a € [i]) be a strong i-(G, h,k,r,d, N)-
defective elimination scheme. If |V(G;)| > N, and there exist X, Z, W C V(G;) with Z C X,
|Z| =t, W CV(G;) — X and |W| <r —1 such that

1. every vertex in X has degree at most d in G,
2. for any distinct z,2' € Z, the distance in G;[X| between z, 2" is at least 20y — 1, and
3. NGi(NGSf[(}(_]l[Z]) =W for every z € Z,

then there exists a graph Gii1 with |V (Giy1)| < |[V(G;)| and a tuple (Giy1, My, Eiv1, Div1, Aiva,
1) such that ((Ga, Ma, Eq, Do, Aa, Ay) = a € [i4-1]) is a strong (i+1)-(G, h, k,r, d, N)-defective

elimination scheme.

21



Proof. Let h > 3, k,r be positive integers. Define ¢t = o(h=2)(r+ D) (k)21 9271 [t g > 2,4
be positive integers. Define N* = (k + h)d®.

Let G be a graph with no CT} j-minor. Let N be an integer with N > N*. Let i be a
positive integer. Let ((Ga, Ma, Eay Doy Aay AL) = o € [i]) be a strong i-(G, h, k, 7, d, N)-defective
elimination scheme. Assume |V (G;)| > N.

By assumption, there exist X,Z, W C V(G;) with Z C X, |Z]| = ¢, W C V(G;) — X and
|W| <7 —1 such that

(i) every vertex in X has degree at most d in G;,
(ii) for any distinct z, 2" € Z, the distance in G;[X] between z, 2’ is at least 2, — 1, and

(iii) NGi(Ngf[‘}{_]l[z]) = W for every z € Z.

Claim 1: For every v € W, v € V(G) NV(G;), v is not a head (with respect to D;), and v is not
the sink for a member of &;.
Proof of Claim 1: Suppose to the contrary that there exists a vertex v € W such that |V (M, )| >

2, or v is a head (with respect to D;), or v is the sink for some member of &. By (D12),

degq, (v) < r. By (iii), for every z € Z, v is adjacent in G; to a vertex in Nqo ]1[ z]. So (ii) implies

that degg.(v) > |Z|. Hence t = |Z] < degg, (v) < 7, a contradiction. [J
Let o be a linear ordering of the subsets of W. For any z € Z, define the following:

e For any subset 7" of W and nonnegative integers jo, j1, ..., jow) with jo € [h—2] and 0 < j, <r
for every a € [2W],

— ATy = 1 if there exists (5, jo) € &; such that

* the sink vg for (5, jp) is in NSZ[OX}l[z],

x SNW =T, and

x for every a € [2W], there are exactly j, vertices z in S —{vg} such that Ng(x)NW
equals the a-th subset of W based on o;

— otherwise, az 1jo.....j,w = 0-
e Forany T'"C W,

— a,r = 1 if there exists v € Négfx 2] N V(@) such that Ng(v) N W =T}

— a,,r = 0 otherwise.
Since |W| < r — 1, there exists Z; C Z with

2] t

> or—1
22‘W‘(h—2)(7‘+1)2‘w‘ - 227‘ l(h 2)(7,,_,’_1)27‘ 1 = (k+h>2

| Z1| >

such that Uy oo sgnsengw) = 2, Tyjosgtseesdyl ] for any 21,20 € Zy, T C W and nonnegative integers

jo € [h — 2], 71, ..., Jow) With 0 < j, < r for every o € [2W]]. Similarly, there exists Z, C Z; with
r—1

| Zo| > 21| > (kth)2? > k + h such that a,, 7 = a,, r for any 21,20 € Zy and T' C W. Let Z*

2'r 1 - 227‘71

be a subset of Zy with |Z*| =k + h.

Let z* be a vertex in Z*. Define GG;1; to be the graph obtained from G; — UzEZ* - Néﬁ‘}al[z]

by contracting N, q&]l[ *] into a new vertex v*, and deleting resulting parallel edges and loops.

22



Note that |V(Gi+1)| < |V(G;)| since |Z2*| > k+ h > 3. Define M;1; = (M; — {M,;, : v €
U.,ezr gﬁ?xl[ 2]} UH{GIU, St *]V(Mi,v)]}. Then (Gjy1, M;ii1) satisfies (D1)-(D3) by (ii).

Note that Mi-i-l,v* = G[U €N<ZO 1[2*} V(Mlﬂ))]
G;[X]

Define D; 1 = {(u,v) € D; : u,v € V(G) NV (Gip1)} U{(w,v*) : w € W}. By (iii) and Claim
1, (Giz1, Mjs1, Diyq) satisfies (D4).

Let Uy, = W and gy = v*. Let Uy = {v € U, : degg,,, (v) > d}.

Define the following:

o Eitio=1{(57) €& : S CV(G)NV(Gis1)}.

o Eitia = {({v}U(SNW)UT,j) : there exists (5,7) € & whose sink vg is in Nézfx}l[ 2*],
T C Uiyq — S, there exists a matching in G; between T and (S — {vs}) N NSZ[0 ]l[z*] with
size |T|}.

o Eiio={({v"U(SNW)UT, j+1) : there exists (5, j) € & whose sink vg is in Nézfx}l[ 2*,
T CUp— S, (SNW)UT # 0, there exist u € (S — {vg}) N NSZ0 '[2*] and a matching in

Gi[X]
G; between T and (S — {vg,u}) N Nq0 '[2*] with size |T|}.

G;[X]
o Sz ={({v'}Ulip, 1)}
® &1 =&t UE 11 UE12UE 3.

Note that every vertex in V(GZH) — {v } is in V(G;). And v* is obtained by contracting
a subgraph of G; with \Nq 24| < ZO '@/ < dl < N* < N vertices in G; by (i). So
(Giyx1, Mir1, Di11) satisfies (D6a) And Claim 1 implies that (G;y1, M1, Dit1, 1) satisfies
(D6b).

Claim 2: If there exist A,y and A;,, such that (41, Aiy1, A},) satisfies (D9) and (D10), then
Eiy1 satisfies (D5).
Proof of Claim 2: Since &; satisfies (D5), every member of &1 satisfies (D5). And for every
(S,7) € Eiv1 — Eir10, S CTH{v* }UW, 50 |S| < |W|+ 1 <r, and v* is the unique vertex in S such
that (u,v*) for every u € S — {v*}. So to show that &, satisfies (D5), it suffices to show that
J € [h—2] for every (S,j) € Eir1— (Eir1.0U&i41.1). Since h > 3, it suffices to show that j € [h — 2]
for every (S,7) € Eiv10.

Let (S,j) € &E+12. Note that j € [h — 1] since &; satisfies (D5). And note that there exists
a non-sink vertex for (S, j) by the definition of £;15. So if there exist 4,;; and A}, such that
(Eiv1, Aipr, Ay y) satisfies (D9) and (D10), then A}, . # 0, so contracting a member of Aj,; 4
into a vertex and each member of A; ;1 (s ;) into a vertex creates a (K; V (k+ h — j)CT};)-minor
in G, so G has a CT;,; j-minor. Since G is CT}, y-minor free, j +1 < h — 1. That is, j € [h — 2].
0]

Claim 3: & satisfies (D7).
Proof of Claim 3: Let (S5, 7) be a member of & with sink vg such that S —{vs} C V(G;41) and
Mg © Mig1,,, for some vy € V(Gig1). Let S = {vg'} U (Ng,,, (vsr) NS — {vg}). To prove this
claim, it suffices to prove (S5’ j) € &i11.

We first assume vg & ;g[‘}ql[z*] So vgr = vg. Recall that vg € W by Claim 1. Since every
vertex in S —{vg} is adjacent in G; to vg by (D4) and (D5), (iii) 1mphes that S C V(G;) NV (Giy1),

so S"= S and (5',7) € Ei110 C Ei41. So we may assume vg € N— ot 1[ *]. In particular, ver = v*.
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Since S — {vs} C V(Git1), S —{vs} C W by (iii). So " — {v*} = SNW and (5',7) € 411 (by
taking T' = 0). O

Claim 4: (Gi+1>Mi+1> Di+1, gz’+1) satisfies (D8a)-(D8h)
Proof of Claim 4: Recall that we defined ¢;;; = v* and U;_il =W. So git1 € V(Giy1) and
Ui—l—l Q Uz-:-l Q V(Gz) N V(G2+1) N V(G) by Claim 1.

Every vertex v in V(G;) — V(Gyy1) with |V (M;,)| = 1is in X, so (D8a) follows from (i).
And (D8b) follows from the definition of U}, and U;1y. Note that ¢y1 = v* ¢ W = Uj,,
so (D8c) follows from (iii). Similarly, (D8d) follows from (i) and (iii). By (iii), there exists no
v € V(G;) with M; ,» € M1, such that Ng,(v') — UL, # 0, so (D8e) holds. And (iii) implies
Uis1 N Neyy (Gi1) = Uit O W = Uiga, 50 (Ui N Neyyy (@i41)) U {o'} 1) = (Ui U{o"}, 1) €
Eit1,3 C Eit, so (D8E) holds. Since [Z*| > k+h > 2, Upenm, V(M) # Upren,,, VM), so (D8g)
holds.

So it suffices to prove (D8h). (D8ha) clearly holds. For every M € M, disjoint from all
members of M,1, M = M,, for some v € Néef}al[z] with z € Z* — {z*}, so (D8hb) follows
from (iii). And (D8hc) follows from Claim 1; (D8hd) follows from the definition of G,41. By (i),
V(Gi) = V(Ginn)| = S ING [l < 12°] - 555 dF < (ki + h) - d < N* < N, so (D8he)
holds.

Let z € V(G;) N V(G) — UMGM&1 V(M). So z € Néﬁ‘}al[z] for some z € Z* — {z*}, g.lnd
hence a. n.)rw = 1. By the definition of Zs, .« ny@z)ow = @z Ne@)w = 1. So there exists
x e Néf[(}al[z*] NV(G) CV(Mij1,4,.,)NV(G;) NV (G) such that Ng(2') "W = Ng(x) "W, Since
Ussr C W, (DShf) holds.

Let (S,7) € & with V(Miwg) € Uprepr, V(M) — Upren,,, V(M), where vg is the sink for
(S,7). Sowg € Néf[‘}(_]l[z] for some z € Z* — {z*}. Let T = SN W. For every a € [2™1], let j, be
the number of vertices y in S — {vg} such that Ng(y) "W equals the a-th subset of W based on o.
S0 @z1jji,....j,wy = 1. By the definition of Z1, az+1,....j,w, = 1. Hence there exists (5, j) € &

such that the sink vg for (5',7) is in Ngf[(}(_}l[z*], S'NW =T, and for every a € [2W]], there are
exactly j, vertices y in S" — {vs/} such that Ng(y) N W equals the a-th subset of W based on o.
In particular, || =1+ 3 cpwija =[S, SNV(Git1) —{vs} =T = S'NV(Gi1) — {vs} by

(iii), and there exists a bijection ¢ such that (D8hg) holds. Therefore, (D8h) holds. [

Claim 5: (Gi1, M1, Diy1,Ei11) satisfies (D8).
Proof of Claim 5: By Claim 4, it suffices to show that (G;i1, Miy1, Diy1,E41) satisfies (D8i).
Let (S,j) € & with M;, UM, s € Mii14,,, for some v € S — {vg}, where vg is the sink for (.5, 7).

Let C be the multiset {Ng(z) NUiy1 #0: 2 € S — ({vs} UUL,)}. So for every T € C, there
exists zp € S — ({vs} UU,) =S — ({vs} UW) such that T = Ng(xr) N Uiy1. Note that we can
choose those zp such that zp, # vy, whenever 77 and 75 are distinct members of the multiset C.
Let f be a function that maps each member T of C to a vertex in T'. Then there exists a matching
in G between {f(T):T € C} (as a set) and {xr : T € C} with size [{f(T) : T € C}| (as a set).
So there exists a matching in G between {f(T"): T € C} — S C U;11 — S and {x7 : T € C} with
size |[{f(T): T € C} — S|. Since Uj41 U (S —{vs}) C V(G) N V(G;), this matching is also in G;
by (D2). Note that {zr : T € C} C S — ({vs} UW) C (S —{us}) N Ngf[(}(_}l[z*] by (iii). Hence
o o (SNW)U{f(T): T €C},j) = (o u(SNW)U{f(T): T € C}=5),j) € Eiraa € Eira-
So (D8ia) holds.

Let u € S—({vs}UU,). Sou € S—({vs}UW). Let C, be the multiset {Ng(z)NUipq # 0 :z €
S—({vs,u}UUL ) }. So for every T € C,, there exists yr € S—({vs, u}UUL,) = S—({vs, u}UW)
such that T'= Ng(yr) N U;11. Note that we can choose those yr such that y7, # yr, whenever T}
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and T, are distinct members of the multiset C,. Assume either SN U;’rl # () or C, # . Let f, be
a function that maps each member T" of C, to a vertex in 7. Then there exists a matching in G
between {f,(T): T € C,} (as a set) and {yr : T' € C,} with size [{f.(T): T € C,}| (as a set). Let
T* be the set {f,(T) : T € C,} —(SNW). So there exists a matching in G between T* C U; 41 — S
and {yr : T € C,} with size |T*|. Since U;+1 U (S —{vs}) C V(G)NV(G;), this matching is also in
G; by (D2). Note that {yr : T'€ C,} C S—({vs,u}UW) C (S—{vs,u})ﬁNéf&_]l[z*] by (iii). Since
either SNW = SNU, #0 or C, # 0, we know (SNW)UT* = (SNW)U{f(T): T € C,} #0.
Hence ({v*}U (SNW)U{fu(T): T €C,},j+1)={v U (SNW)UT* j+1)€ Et12 C Eitr.
Therefore, (D8i) holds and hence (D8) holds. [J

For every Q € i1, we know Q) € &;, and we define A;;; g and Aj, ;| 5 to be A; g and Aj ,

respectively. Since (A;, A;) satisfies (D10), (D10) holds for every member of &1 .
For every @) € &;41.1, we define the following:

e Let (Sg,Jjo) be a member of & such that @ = ({v*} U (Sg N W) U Ty, jg), where T C
Uis1 —Sg, vs,, is the sink for (Sg, jo) and is in Ngf[(}(_}l[z*], and there exists a matching Mr,

in G; between Ty and (Sg — {vs, }) N Néf[‘fx_]l[z*] with size |Tp].
o Let Ai—H,Q = Ai,(SQ,jQ)-

o For every vertex v € Sq — {vs,}, let A, be the member of A} . ) such that v € V(4,).

e For every vertex u € Tg, let v’ be the vertex in (Sq — {vs,}) N Néﬁ‘}al[z*] C V(Mit1,0+)
matched with u in Mz, , and let A;1 ., = G[V (Ay) U {u}].

o Let A

()

o=1{A v ESoNW}U{Ai1:u € T}

Clearly, (D10) holds for every member of &1 ;.
For every @) € &;412, we define the following:

e Let (Sg,jg) be a member of & such that Q = ({v*} U (Sg N W) U Ty, jo + 1), where
<lp—1

Ty C Uit1 — Sg, vs,, is the sink for (Sg, jo) and is in N@i[x] [2*], and there exist ug € (Sg —
{vse}) ﬂNéf[(}al[z*] and a matching Mg, in G; between Ty and (S —{vs,, ug}) ﬂNéf[‘}(_]l[z*]
with size |Tp|.

e For every z € Z* — {2*}, by the definition of Z;, there exists (S,,jg) € & with sink
vg, € Néf[‘}(_}l[z] such that S, N W = S N W, and there exists a bijection ¢, between
(So— {USQ})QNGgﬁ‘}al[z*] and (S, —{vsz})ﬂNGgﬁ‘}al[z] such that Ng(v)NW = Ng(t,(v))NW
for every v € (Sg — {vs,}) N NGSZ[OX_}l[z*]

o Let Zy be a subset of Z* — {z*} with size k + h — jo — 1. (Note that Z; exists since
|Z*| > k+ h and jg > 1.)

e For every z € Z, define the following:
— For every v € S, — {vg.}, let A, be the member of A’ ) with v € V(A,,).

Z,(Sz,jQ
— Let .Az(.l()sz io) be a subset of A; s, j,) such that contracting each member of AE

into a vertex creates a CT}, y-minor.

(Note that Agl()sz jo) €Xists since Ai(s.,jo) satisfies (D10).)

1)
7(SZ7jQ)
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— Let Ai-i—l,z = G[V(Az tz(ug) ) U UAGA(I) V(A)]

1,(Sz, JiQ )
— Let A(2) jo) be asubset of Ais. o) — -Az(',()sz, jo) Such that contracting each member of

Z

.AZ (S-.0 ) Into a vertex creates a kCT, r-minor.

(Note that A  exists since A; (s, j,) satisfies (D10) and jo € [h — 2] by (D5).)

:(Sz.d0
— Let Ai+1 z {Az-l—l z} U A (Sz.50)"
(Note that since A; (s. jo) and A (s. Jjo) satisfy (D10), contracting each member of A, 44 ,

into a vertex creates a (K7 V kCTJQ,k) minor and hence a CT}, 1 j-minor.)

o Let Aiy10 = UzezQ Atz

(Note that members of A1 are pairwise disjoint since (A;,.A%) satisfies (D11). Since
|Zg| =k + h — jo — 1, contracting each member of A;.; ¢ into a vertex creates a (k + h —
Jo — 1)CT}j, 41 ,-minor.)

e For every vertex w € Tg, there exists wg € Sg — {vs, } matched with w in Mg,, and we let
Ai-l-l,w = G[{w} U UzeZQ V(AZ,Lz(wQ))]'

(Note that the definition of ¢, implies that ¢,(wg) is adjacent in G to w, so A;1;,, is con-
nected.)

o Let Ajy o = {G[V(U.ez, A20)] 1 v € Sq NWHU{Aij1, - w € To}

Since (A;, A}) satisfies (D10) and (D11), we know that (D10) holds for every member of &1 5.
For the wunique member ({v*} U Ujyi,1) of &g, define Ay (qoryovi,) =
(GlUyengoorig V)] < 2 € 2° = =}, and ALy opopry = {GHEH 0 € Uia}. Clearly,
(D10) holds for ({v*} UU;4q,1).
Therefore, (£i11, Ait1, Aj,) satisfies (D9) and (D10). Hence &1 satisfies (D5) by Claim 2.

Claim 6: (A;;1, A}, ) satisfies (D11).
Proof of Claim 6: Suppose to the contrary that there exist members @ = (51, 1) and Qs =
(52, jo) of &41 with distinct sinks violating (D11). Since (A;, A}) satisfies (D11), we may assume
Q1 & &1 by symmetry. Hence @y € Ui:l Eit1,a, 50 the sink of () is v*. Since Q; and @)
have distinct sink, Q2 € & 410. In particular, by Claim 1, the sink for )2, denoted by vg,, is in
NS N

V(G;) — (WU UzEZ* G [?X'}l[ z]), and So N U, ¢4 N, [Ox]l[z] =0.

Suppose to the contrary that 1 € &13. Then every member of A, ; ¢, is contained in
GlU.cz—1y U, eNg[O’]l[}V(Mivv)] C GV(G) = Usevc,, ) Mi+1,0) by definition. Since vg, €

V(G;) = (W UU,eye gé[gql[z]) and Q2 € 410, V(MHLU%) = V(Mz’,v@2) is disjoint from every
member of A; 11 o,. And V(G) — Uvev(Gi) V(M;,) is disjoint from UzeZ*—{z*} UveNéfE));]l[z] V(M;,).
By (D10), every member of A;11,9, = A g, is contained in G[V (Mg, ) U(V(G) —U,ev ;) Miv)]
and hence is disjoint from every member of A;;q,. And every member of Aj o, = Ajg, is
contained in G[U,es, V(Min) U (V(G) = Uev(a;) V(Min)] (by (D10)) and hence is disjoint from
every member of A1y g, (since Sy N,y Néf[(}al[z] = (). Moreover, every member of A, o
consists of a vertex ¢’ in Uiyy € W C V(G;) NV (Git1) N V(G) by Claim 1, so it is disjoint
from every member of A;1 g, = A g, by (D10) (since vg, € W); and it intersects an member of

11,0, = Aig, only possibly at a’ € V(S1), and if it happens, a’ € V/(S1) NV (S2) (since v, ¢ W
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and o € W C V(G) NV (G;) N V(Giy1) by Claim 1). So @ and () do not violate (D11), a
contradiction.

So Q1 € Ei+11UE+12. Hence (Sg,, jo,) € & is defined; when Q1 € &1, Zg, and (S, jo,) € &
are defined for every z € Z,. Note that the sinks for (SQl,le) and (5., jg,) arein J, 4. Néé[‘)X_}l[z]
but the sink for ), is not. Since (A;, Aj) satisfies (D10) and (D11) and S, N, <Z[OX]1[,2] =
0, every member of A;;1q, is disjoint from every member of A1 o, U A}, o,- Moreover, for

every A € Aj o, V(A) € WU,y UveNé_‘[O);]l[z] V(M) U (V(G) — Uvev(Gi) V(M;,)) and
VA)NW = V(A) NW NS, is a set with size at most 1. Hence every member of Aj,, 5 is
disjoint from every member of Ay, q,, and if some member A; € A}, ,, intersects some member
A2 S ‘AH—LQz’ then V(A )QV(AQ) Q V(Al)ﬂV(Ag)ﬂW Q (V(Al)ﬂSl) ( (Ag)ﬁWﬂV(Gi+1)) Q
V(A1) NS NV (Az) NSy by Claim 1, contradicting that ¢ and ()3 are counterexamples. [

To prove this lemma, it suffices to show that (G;y1, M1, Diy1,E11) satisfies (D12). Let
v € V(Gi11) such that either |V (M;11,)| > 2, or v is a head with respect to D, or the sink for
some member of £.. It suffices to show degGm( v) <r.

Suppose to the contrary that degg,  (v) > r. By (iii), degg,,  (v*) = W] < r—1. So
v # v*. Hence v € V(G;) NV (Giyq). In particular, degg,,, (v) < degg,(v) and M;, = M;y1,. So
degq, (v) > r. Since (Gy, M;, Dy, &;) satisfies (D12), [V (Miy1,)| = [V(M;,)| = 1, v is not a head
with respect to D;, and v is not the sink for some member of &;. Hence by the deﬁmtlon of Djiq,
since v # v*, v is not a head with respect to D;,1. So v is a sink for some member of £, ;. By the
definition of &1, v is the sink for some member of &4 since v # v*. However, £119 C &;. Sov
is the sink for some member of &;, a contradiction. This proves the lemma. m

Lemma 5.2. For any positive integers h > 3.k, there exist positive integers v = r(h,k),d =
d(h,k), N = N(h, k) such that the following hold. Let G be a graph with no CTy, ,-minor. Let i be
a positive integer. Let ((Go, Mo, Eay Doy Aay AL) o € [i]) be a strong i-(G, h, k,r,d, N)-defective
elimination scheme. If |V (G;)| > N, then there exist a graph Giy1 with |V (Gi1)] < |V(G;)| and a
tuple (Giz1, Mig1, i1, D1, Aipr, Al ) such that the sequence ((Go, Ma, Eq, Do, Aa, AL) @ o €
[i +1]) is a strong (i + 1)-(G, h, k,r,d, N)-defective elimination scheme.

Proof. Let h > 3,k be positive integers. Let G be the class of CT} j-minor-free graphs. Define
the following:

e Define r = 15(G), where 1) is the integer r mentioned in Lemma 2]

o Let tg= (h—2)(r+1)27 172",

o Let t; = 3T,

o Let ko =1+ (h+k—1)(6t; +1).

o Let {y = ny(t1, ko, 3) + 1, where ngr) is the integer n mentioned in Lemma .1}

e Let t = #5|(h, k,7), where {7 is the integer ¢+ mentioned in Lemma (.11

e Define d = dg9(F,t, o) + 1, where dgg is the integer d mentioned in Lemma

e Let Ny = Ng9/(G,t,4), where N9y is the integer N mentioned in Lemma [£.2]

o Let Ny = Ngq(h, k,7,d, 4o), where Ng7)is the integer N* mentioned in Lemma [B.11
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° Deﬁne N = df() + Nl + NQ.

Let G be a graph with no CTj, g-minor. Let ¢ be a positive integer. Let ((Gu, Ma,Ens Da,
Ay, AL) -« € [i]) be a strong i-(G, h, k,r, d, N)-defective elimination scheme. Assume |V(G;)| >
N.

By (D1) and (D2), G; is a minor of G. So G; is CTj y-minor-free. That is, G; € G. Since
|V(G;)| > N > Ny, by Lemma [L.2 (by taking G = G;), there exist X, Z,W C V(G;) with Z C X,
|[Z| =t, W CV(G;) — X and |W| < r — 1 such that

(i) every vertex in X has degree in GG; at most d,
(ii) for any distinct z, 2’ in Z, the distance in G;[X| between z, 2’ is at least 2{; — 1, and
(iii) NGi(Néf[‘}{_]l[z]) — X =W for every z € Z.

Since |V(G;)] > N > Ny, if Ng (NS [z]) € W for every z € Z, then (iii) implies that

Gi[X]
NGi(Néf[‘))ql[ |) =W for every z € Z, so we are done by Lemma [B1] (i) and (ii).
Hence we may assume that there exists z* € Z such that Ng.(Ngé[‘fxl[ z]) € W. By (iii),
Néﬁ‘}q [2*] — NGQ[OX]l[ *] # 0. So there exists a geodesic in G;[X] starting from z* with length

ly — 1. Note that this geodesic contains a subpath P,. starting from z* on ¢y — 1 — 3t; vertices,
and P, is also a geodesic in G| ge[‘}ql[z*]]
For every (S, j) € &, the type of (S, j) is defined to be the sequence

(,1S], SOAW,|{v € S — {vs} : Ne,(w) "W =T} : T C W),

Q\W\

where vg is the sink for (S,j). By (D5), there are at most (h — 2) - (r + 1) - 2" <
(h —2)(r + )22 < t, different types for members of &. For every v € NQ[O 1[ *], let
o(v) = (Ng,(v) N W, a, : T is a type for members of &), where for every T,

e a, =0 if v is not in S for every member (5, j) of & with type 7;
e a, = 1 if v is the sink for some member (5, j) of & with type T;
e a, = 2 otherwise.

Let Yy be the image of ¢. Note that |Yp| < 2IWI. 3t < 3+ = ¢, We call ¢(v) the type of v.
Let H = Gi[NG'%'[2]]. Note that H is a graph such that V(H) = N5 '[z"] = N7 '[z"],

and ¢ is a function from Ngffx_]l[z*] = V(H) to the set Y, with size at most ¢;, and P.. is a
geodesic in G; [Néf[‘fx_]l[z*]] = H on o — 1 — 3t; vertices. So by Lemma Il (with taking G = H),
there exist a subpath P.. of P,» and a nonempty set Y C Y{ such that

z

iv) for every y € Yo — Y, 7' ({y}) is disjoint from Ny =¥l (pry) = N<3‘Y|<Z . [V(PL)], and
? GilNg (x [*]] ?

(v) P.. can be partitioned into ko disjoint subpaths P.. |, ..., P, such that for every a € [k

z z

and y € Y, 97 ({y}) intersects NGOV (PL )] = NN V(P )

Note that P.. is a subpath of P,«, and P, starts at z* and has at most £; — 1 — 3t; vertices. So

z
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(vi) for every a € [3t1] and for every subpath P” of P.L, we have N;*[V(P")]

<a 1/ SO{ 1/ SZ —1 * z*)
Let

Op = NG VM v (PL)).

Let
O = OgU {z € Ng,x)(Op) : [V(M;,)] > 2, or x is the sink for some member of &;}.

Note that O € N5y ™ [V(PL.)] and Ne,ix[0] € N1y [V (PL)]. So (iv), (v) and (vi) imply that

(vii) for every y € Yy — Y, ¢~ ({y}) is disjoint from Ng,x1[O], and
(viii) Pl

and y €Y, ¢~ '({y}) intersects O N N<3‘Y|[V(PZ’*7Q)].

can be partitioned into ko disjoint subpaths P |, ..., P,

*
z

k, Such that for every a € [k

Define G, to be the graph obtained from G; by contracting O into a new vertex v*, deleting
resulting parallel edges and loops, and deleting all edges between v* and N¢,(O)NX = Ng,1x1(0).
Define M1 = {G[U,co V(M) }U(M; —{M;, : v € O}). Note that M;, 1 = G[U,co V(M;)]-

Since Y # (0, |O| > 2, so |[V(Giy1)| < |V(G;)]. Hence (Giy1, Miy1) satisfies (D1) and (D3).
Since (G;, M) satisfies (D2) and |V (M;y1.+)| > , (Gig1, Miq1) satisfies (D2).

Define ¢;11 = v*. Define U, = Ng,(0) — X.

Claim 1: The following statements hold.

e Ul =Ng(O)NW and UL, CWNV(G) NV(Git).
e Forany v € O and T C Ng,(v), TNW =T NU;,.

e For every w € W, |V(M,;,)| = 1 and w is not a head (with respect to D;) and is not the
sink for a member of &;.

Proof of Claim 1: Since W C V(G;) — X, U, = Ng,(0) — X D Ng,(O) N W. And since
O C N5'5g'lz), Uy = Na,(0) = X € (WU X) — X CW by (iii). Since U, € Ng,(0),

Uy € Ng,(O)nW. Hence UL, = Ng,(0)NW. In particular, U, C W NV(G;). Since

UfLinO=0,U%, CV(G;) NV (Git1). This proves the first statement of this claim.

Let v € O. Let T C Ng,(v). So T C Ng,[O]. Since O C X, ONW =0. SoTNW =
TNW —0 C Ng,(O)NW = U, by the first statement of this claim. Hence TNW C T NUL,.
By the first statement of this claim, U, CW,so TNUL, CTNW. So TNUS, =TNW. This
proves the second statement of this claim.

And by (ii) and (iii), for every w € W, degq (w) > |Z] =t > r, so |V (M;.)| = 1 and w is not
a head (with respect to D;) and is not the sink for a member of &; since (G;, M;, D;, &;) satisfies
(D12). O

Note that U, = Ng,,,(v*) = Ng,,,(¢i41). Define Dy = {(u,v) € D; : {u,v} C V(G;) N
V(Gig1)} U{(u,v*) :uw e U, }. Since D; satisfies (D4), Claim 1 implies that D satisfies (D4).
By possibly changing the indices, we may assume that P ;, ..., P\, “appear in P, in the order
listed. Since P. ..., Pl. ;, are pairwise disjoint subpaths of a geodesm in G;[X], we know that

for any o, B € [ko], the distance in G[X] between V(P,. ,) and V(P.. 5) is at least |3 — af.
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For every a € [h+k], let O, = OON<3|Y|[V(PZ’* 1t (a1) (6, 1)) Since kg > 1+(h+k—1)(6t1+1),
all O,’s are well-defined. Since |Y| < t;, we know that Oy, O,, ..., Oy are pairwise disjoint.

Claim 2: If (S, j) is a member of & with sink vg such that vg € O, then for every a € [h + k],

e there exists a member (S,, j) of & with S, € O, U (N, (0a) NUL,), Sa NUL = SNU,
and vg, € O,, where vg, is the sink for (S,, j), and

e there exists a bijection ¢(s ) : S — ({vs} UUL,) = Sa — ({vs,} UU;L,) such that for every
veS— ({'US} U Ui—:-l)a NG@'(L(SJ)A(U)) N Ui—:-l = NGi ('U) N Uz—:l

Proof of Claim 2: Let (5,j) be a member of & with sink vg such that vg € O. By (vii),
o(vs) € Y. Let a € [h+k]. By (v) and (vi), there exists v, € N<3g?]/| b [V(PZ’ 1t(a—1)6t41))] € Oa
such that ¢(v,) = ¢(vs). By the definition of ¢, v, is the sink for some member (S,, j.) of &
such that the type of (S,,j.) equals the type of (S,j). In particular, j, = j, |S.| = |S]|, and
Se NW = SNW. Since every vertex in S, — {v,} is adjacent in G; to v,, Sa C Ng,[va] C
Naix PV (P 1 ayon o)) Y (N [ta] = X) € 00U (N6, (Oa) = X) € OaU (N, (0a) NU).

Since vg € O and S — {vs} C Ng,(vs), the second statement of Claim 1 implies that (S —
{fosHhNW = (S —{vs})NU;,. Since vg € O C X, vg & WUU |, s0 SNW = SNUL,. Similarly,
since v, € O C O and Sy, —{va} C Ng,(va), we have S,NW = S,NU; ;. Since SNW = S, NW,
we have SNU, = S, NU,.

By the definition of the type of members of &;, for every T'C W, [{v € S—{vg} : Ng, (v)NW =
TH = {v € So —{va} : Ng,(v) "W = T}|. So this together with SN U, = S, N U, imply
that there exists a bijection ¢(gj)o 1 S — ({vs} UUZL ) = Sa — ({va} UU,) such that for every
veS—{vstUUL,), N, (v) NW = Ng,(¢s,5),0(v)) NW. Since S, — U, € O, C O, for every
v € Sy — Uiy, Ng,(v)NW = Ng,(v) N UL, C UL, by the second statement of Claim 1. So for
every v € S - ({us} UUL,), Noy(0) 1 = Noy(1(51a(0)) 0 W = Noy(uis () 0 UZy € Ul
and hence Ng,(v) N W = Ng,(v) N U, (since U, € W by Claim 1). Therefore, for every
veS—{vstUlUi,), Ng,(v)NUS, = Ng, () NW = N, (1(5.j).0(0)) "W = Ng, (1(s.j).0(0)) NUZL .
0]

Let Upyr = {v € U, : degg,,, (v) > d}. Define the following:
® gi-i—l,O = {(S,]) € (S'Z S Q V(Gz) N V(Gz—i-l)}

o &1 = {({v IU(SNU;)UT, j) : there exists (S, j) € & whose sink vgisin O, T C U1 —S,
there exists a matching in G; between T" and (S — {vs}) N O with size |T|}.

e Eivio = {({v'}U(SNUL) UT,j+1) : there exists (S,j) € & whose sink vg is in O,
T C U1 =S, (SNUL)UT # 0, there exist u € (S — {vs}) N O and a matching in G;
between T" and (S — {vg,u}) N O with size |T'|}.

o Eiiz = {({vt U Ui, 1)}
o Eit1 =& UE11UE12U 3.

Claim 3: If there exist A;1, and A;_ | such that (&1, Aiy1, Aj ) satisfies (D9) and (D10), then
Eiy1 satisfies (D5).

Proof of Claim 3: Let (S, j) € £1. Since &; satisfies (D5), every member of &1 satisfies (D5)
by the definition of D; 1. So we may assume (S,j) € &1 — Eiy1,0. Then S — {v*} C UL, CW.
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So |S| <1+ |W]| < r. By Claim 1, v* is the unique vertex v in S such that (u,v) € D,y for every
ueS—{v}. Andif (S,7) € Eir12, then j € [h — 2] since &; satisfies (D5).

So we may assume (S5,j) € &1 and it suffices to show j € [h — 2]. Hence there exists

(8',j—1) € & such that S = {v*}U(S'NU},)UT for some T' C Uy — S with (S'"NUL ) UT # 0.
In particular, S — {v*} # 0 and j < (h —2) 4+ 1 = h — 1. If there exist A;1; and A/, such that
(A1, A} ) satisfies (D9) and (D10), then since S — {v*} # () and j < h — 1, contracting each
member of A;.q,(s,;) UA; (g into a vertex creates a (K1 V (k+h—j)CT}x)-minor in G, so there
exists a CT,41 p-minor in G. Since G is CT), j-minor-free, j+1 < h—1. Soj e [h—2]. O
Claim 4: (Giy1, M1, Diy1,Ei11) satisfies (D6) and (D7).
Proof of Claim 4: Let v € V(G,4+1) such that either |V (M;41,)| > 2 or v is a head with respect
to D; ;1 or the sink for some member of £ 1. If v 2 v*, then there exists at most 1 < N vertex v’
of G; such that M; ,, C M;i1,. If v =% then {v' € V(G;) : M € Mit1.+} = O C Ng,x1[00] C
Ngffx_]l[z*] which has size at most Zﬁf:_ol d* < d% < N by (i). So (D6a) holds. Suppose to the
contrary that there exists u € V(G;41) such that uwv € E(G;11), and either |V (M;41.)] > 2 or w is
a head with respect to D;y1 or the sink for some member of £,4. For x € {u,v}, if x # v* then
x € V(G;)NV(Giy1), so either |V(M; )| = |V (Mis1.)] > 2, or z is a head with respect to D; (by
the definition of D;;;) or the sink for some member of &1 C &;. So if none of u and v equals
v*, then {u,v} C V(G;) NV (Git1), and uwv € E(G;) (since (G;, M;, D;, &;) satisfies (D6b)), so
uv € E(G,41), a contradiction. Hence one of u and v equals v*. Then the vertex = € {u,v} — {v*}
satisfies either |V(M, )| = |V (M;41.)| > 2, or z is a head with respect to D; or the sink for some
member of &. But z € Ng,,,(v*) C U, € W by the first statement of Claim 1, contradicting
the third statement of Claim 1. This shows that (G;i1, M;11, Diy1,E1) satisfies (D6D).

Let (S,7) € &;. Let vg be the sink for (9, j). Let vg be the vertex of G;4; such that M, ,, C
M1,y - Assume S —{vg} C V(Giy1). Let 8" = {vs'} U (Ne,,, (vs) N (S — {vs})). To prove that
(Giv1, Miy1, &) satisfies (D7), it suffices to show (57, ) € E41.

We first assume vg: # v*. Then vg = vg. Since S — {vs} C V(Gis1), S C V(G;) NV (Giyq)
and v* € S. So §" =S and (5,7) = (5,)) € Eir1.0 C Eia.

So we may assume vy = v*. Then S" = {v*} U (Ng,,, (v*) N (S —{vs})) = {v*} U (UL, NS)
and vg € O. So (5',7) € €411 C &1 (by taking T' = 0). Hence (Git1, Mit1, &) satisfies (D7).
U

Recall that ¢; .1 = v*.

Claim 5: (Giy1, M1, i1, Dig1) satisfies (D8a)-(D8h).
Proof of Claim 5: By definition and Claim 1, U;y; C UL, CWNV(G) NV (Gia) € V(G) N
V(G;) NV (Giy1). Note that V(G;) — V(Gie1) € O C X. So (D8a) follows from (i). And (D8b)
and (D8c) follow from the definition of U;q. If (S,7) € & with M;,, € M;i1,, ., Where vg is the
sink for (S, j), then (i) implies that {z € S—{vg} : degg, (r) > d} € Ng,(vg) =X C Ng,[0] - X =
Ng,(0) — X = U;,, so (D8d) holds.

Now we prove (D8e). Let v € V(G) N V(Giy1) N Ng, (v') — Ujfy, with degg (v) < d for some
v e V(Gz) with M,’ﬂ)/ - Mi+1,qz'+1‘ Then v € V(Gz—i-l) N NGi [O] — U;_l = (V(Gz—i-l) N NGi [O]) —
(Ng,(0)~ X) = V(Gis1)NNe, (0)— (N, (0) —X) = V(Gre1) NG, (O)NX € V(1) Ney (O).
Recall that Ne,x[0] € NGiy [V (PL)] © N5&'[=]. So Ne,(v) — X C Ne,[Ne,w[O)] - X €
N, [NGG 7)) = X = W by (iii). In addition, by the definition of Gy, Ne,,,(v) N V(G) C
Ne, (v)NV(Gip1)NV(Gi). So{z € Ng,,,(v)NV(G) : degg, ,(v) > d} C {x € Ng,(v) : degg, (z) >
d} € Ng,(v) — X by (i). Therefore, {z € Ng,,,(v) NV(G) : degg,,, (z) > d} C Ng,(v) — X C
Ng,(v) N W. Since v € Ng,x1(0), ¢(v) € Y by (vii). So by (viii), there exists v" € O with
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¢(v") = ¢(v). By the definition of ¢, we have Ng,(v) "W = Ng,(v")NW C Ng,[O]NW =
Ng,(0)NW = U}, by Claim 1. So {z € Ng,,,(v)NV(G) : degg, ,(x) > d} € {z € Ng,(v) "W :
degg,,,(v) > d} C{x € U}, : degg,,,(x) > d} = Uiyy. Hence (D8e) holds.

Since Ng,,,(¢i+1) = Uy, Uis1 N Na,, (@ig1) = Uipr. So ((Uigr N Neyy, (Gi41)) U{gin ), 1) =
(Uis1 U{qis1}, 1) € Eir13 € i1, and ¢4q is its sink. Hence (D8f) holds.

(D8ga) and (D8gb) clearly hold. Now we prove (D8gc). Let u;v; be an edge of G; such that
Uiy1 7 Vipr and U101 € E(Gigr), where uiq 1, vi41 are the vertices of Gy with M;,, © My 4,
and M;,, € Mit1,,,,.- Then the definition of GG;1; implies that one of u;, v; is in O and the other
is in Ng,(0O) N X. So giy1 = v* € {uip1,v;11} and the vertex z € {ujr1,vip1} — {git1} is in
N¢,(O)N X. Hence x € V(G;) N V(G;41) and there exists y € O such that © € Ng,(y). Since
x € X, (i) implies that degq (z) < d. And x € X implies x € U,. So it suffices to show z € V(G)
and x is not the sink for a member of &;. Suppose to the contrary that |V (M, )| = |V (Mit1.)] > 2
or x is the sink for some member of &;. If y € Oy, then x € O, a contradiction. So y € O — O,.
That is, y € Ng,x](Oo), and either |V (M;,)| > 2, or y is the sink for some member of &;. Since
(Gi, M;, D;, &) satisfies (D6b), zy € E(G;), a contradiction. Hence (D8gc) holds.

Now we prove (D8gd). Let (S,j) € & with M;,, € Mii14,,, where vg is the sink for
(S,7). So wvs € O. By Claim 2, there exists (5',j) € & with S" C Oy U (Ng,(01) NUL,),
S'NUL, = SNUL,, and vy € O C O, where vg is the sink for (5, 7), and there exists a
bijection ¢ : S — ({vs}UU,) = S — ({vs } UU;L,) such that Ng,(«(v)) U, = Ng,(v)NUZL, for
every v € S— ({vg}UUL ). So S'—U;7; € Oy C O. Hence Uses'—UjH M; s C Miy1,4,,,- Therefore
(D8gd) holds.

Since Uprenr, V(M) = Uprenm,,, V(M), (D8h) holds. O

Claim 6: (G;1, M1, 11, Dit1) satisfies (D8).

Proof of Claim 6: By Claim 5, it suffices to show (D8i). Let (5,j) € & with M;, U M,,, C
Mit1,4,,, for some v € S — {vg}, where vg is the sink for (5,7). So vg € O. By Claim 2, there
exists (', j) € & with ' C OU (Ne,(0)NUL,), S'NUL, = SNUL, and vy € O, where vg
is the sink for (S’,7), and there exists a bijection ¢ : S — ({vs} UU,) — 5 — {vs} UUL,)
such that Ng,(«(v)) N UL, = Ng,(v) NUR, for every v € S — ({vs} UUL,). Since U, U (S —
{vs}h U (S" = {vsg'}) CV(G)NV(G;) (by (D4) and (D5)), (D2) implies that Ne(u(v)) N UL, =
Ne,(1(v)) N U, = Ng,(v) N UL, = Ng(v) N UL for every v € S — ({vs} UUS).

Let C be the multiset {Ng(z) NUiy1 #0: 2 € S — ({vs} UUL,)}. So for every T € C, there
exists p € S — ({vs} U UL ,) such that T = Ng(zr) N Uiy1 = Ng,(t(z7)) N Ui Note that we
can choose those zp such that xp, # xp, for any distinct members 77,75, of the multiset C. Let f
be a function that maps each member 7" of C to a vertex in T'. Then there exists a matching in G;
between {f(T) : T € C} (as a set) and {c(zr) : T € C} with size [{f(T) : T € C}| (as a set). So
there exists a matching in G; between {f(T): T € C} — S C Uy — S" and {v(xr) : T € C} with
size { f(T) : T € C}—5'|. Note that {¢(z7) : T € C} € S'—({vg }UU; ;) C (8'—{vs })NO. Hence
{o yu(SNU)UA(T) - T € €}, j) = (v tu(S'NUL U S(T) : T € C}=5"), ) € Eivaa € Einr.
So (D8ia) holds.

Let u € S—({vs}UUL,). Sou(u) € 8'—({vs JUUS,) C (S"—{vs })NO. Let C, be the multiset
{Ng(x)NUiy1 #0: 2 € S—({vs,u}UU;;,)}. So for every T € C,, there exists yr € S — ({vg, u}U
U;%,) such that T' = Ng(yr)NUit1 = Ne, (¢(yr))NUit1. Note that we can choose those yr such that
yr, # yr, for any distinct members T, T5 of the multiset C,. Assume either SNU, # 0 or C, # 0.
Let f, be a function that maps each member T of C, to a vertex in T'. Then there exists a matching
in G; between {f,(T): T € C,} (as a set) and {c(yr) : T € C,} with size |{f.(T): T € C,}| (as a
set). Let T* be the set {f,(T): T € C,} — (S'NUL,). So there exists a matching in G; between
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T* C U1 —S" and {u(yr) : T € Cu} € 8'—({vgr, t(w) }UU ) C (8" —{vgr, t(u) })NO with size |T7.
Since either SNU L, # 0 or C, # 0, we know (S'NUL ) UT* = (SNUL ) U{fu(T) : T € C,} # 0.
Hence ({v*}U(SNUL ) U{fu(T) : T € Cu}, j+1) = {v*}U(S'"NUL)UT*, j+1) € Eiy12 C Eipar.
Therefore, (D8i) holds and hence (D8) holds. [

For every Q € 110, we know @ € &;, and we define A;;; g and Aj, ;| 5 to be A; g and Aj
respectively. Since (A;, A;) satisfies (D10), (D10) holds for every member of & 1.
For every @) € &;41.1, we define the following:

Let (Sg,jq) be a member of & with vg, € O such that @ = ({v*} U (So NU;,) U Ty, jg),
where Ty C Ui 1 —Sg, vs,, is the sink for (Sg, jg), and there exists a matching in G; between
T and (Sg — {vs, }) N O with size |Tg|.

Let (S, jg) be the member (51, ) of & and (s, j,),1 be the bijection mentioned in Claim 2
when taking (5, j) = (S, jq) and v = 1. Let vg;, be the sink for (5, jo)-

(Note that Claim 2 implies that So N U, = S N U, and there exists a matching Mg, in
G between Ty and (s, ,j,),1((Sq — {vs, }) N O) with size |Tg].)

Let Ai—H,Q = Ai,(S@,jQ)'
For every vertex v € 5; — {vs, }, let A, be the member of ‘A;}(%JQ) such that v € V(A,).

For every vertex u € T, let ' be the vertex in (s, j4)1((Sq — {vs,}) N O) € O matched
with w in Mr,, and let A;y1, = GV (Aw) U{u}].

Let A, o = {4y v € SHNUTL P U{Ai1 s u € Tp}

Clearly, (D10) holds for every member of &1 ;.
For every @) € &;412, we define the following:

Let (Sq, jo) be a member of & with vg, € O such that Q@ = ({v*}U(SuNUL,)UTy, jo+1),
where Ty C Us1 — Sg, vs,, is the sink for (Sg, jo), and there exist ug € (Sg — {vs,}) N O
and a matching in G; between Ty and (Sg — {vs,, uq}) N O with size [Tg|.

For every a € [h+ k], let (S4, jg) be the member (S,,j) of & and ¢, be the bijection ¢(g ) q
mentioned in Claim 2 when taking (S, j) = (Sg,Jjg) and a = a. Let vg, be the sink for

(Soij)'

(Note that Claim 2 implies that for every o € [h+ k], So NU;, = S, NUL,, vs, € O,,
and there exists a matching Mg, in G; between Ty and ta((Sq — {vs,, uq}) N O) =
Sa N Oy — {vs,, ta(ug)} with size |Ty].)

For every a € [h+ k — jg — 1], define the following:

— For every v € S, — {vs, }, let A,, be the member of A;7(5a7jQ) with v € V(A,.).

— Let Agl()sa jo) De a subset of Ai (Sa.jo) such that contracting each member of Agl()sa io)
into a vertex creates a CT), x-minor.
(Note that Ag’l()sm jo) €Xists since Ai (S..,j0) satisfies (D10).)

— Let A,'.,.La = G[V(AQ,LQ(HQ)) U UAeAl(.l) V(A)].

(Sayi@)
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— Let Agz() Jjo) De asubset of A; g, o) — Ag’l()sm jo) Such that contracting each member of

A®

i,(Se,JQ)
(Note that A

into a vertex creates a k:CTijk-minor.

i) EXists since Ai(S..,j0) satisfies (D10) and jg € [h — 2] by (D5).)

— Let Ai+1 a {Az+1 a} U ‘Az (Sasi@)”

(Note that since Ajs,,jo) and A g .
Aii1,4 into a vertex creates a (K, v kCTj, r)-minor and hence a CT}, 1 -minor.)

) satisfy (D10), contracting each member of

o Let AZ’+1,Q = Uae[h+k—jQ—1] -Ai-i-l,ow

(Note that members of A, ¢ are pairwise disjoint since (A;, A}) satisfies (D11) and Oy, Os, ...,
O+ are pairwise disjoint. And contracting each member of A, ¢ into a vertex creates a
(k+h — jo — 1)CTj,41,,-minor.)

o For every vertex w € Tg, let Ais1w = G{w} U Uaepii—jo—1y V(Aaw, )], where for every
a € lh+k—jo— 1], w, is the vertex in S, N O, — {Usa, to(uq)} matched with w in Mz, ..

(Note that A;41,, is connected.)
o Let Al o = {GV(Uuepinjo1 Aaw)] 1 v € S N UK U {Ainrw : w € To}.

Since (A;, A}) satisfies (D10) and (D11), we know that (D10) holds for every member of &1 o.
For the unique member ({v*} UUiy1,1) of &4y 3, define Aii1 (oyuviss ) = {GlUpeo, V(Min)] :
a€[h+k—1]}, and Al aon,,,0) = {GH{vH : v € Uia}. By (iil), (viii) and the definition of
¢, (D10) holds for ({v*} U U1, 1).
Therefore, (£i11, Ait1, Aj,) satisfies (D9) and (D10). Hence &1 satisfies (D5) by Claim 3.

Claim 7: (A4, A;j,,) satisfies (D11).
Proof of Claim 7: Suppose to the contrary that there exist members )1 = (S1,71) and Qs =
(S, j2) of &1 with distinct sinks violating (D11). Since (A;, A}) satisfies (D11), we may assume
Q1 & Ei+1,0 by symmetry. Hence () € Ui:1 Eit1.a, so the sink of Q) is v*. Since @); and ()2 have
distinct sinks, Q2 € &i1+10. In particular, by the third statement of Claim 1, the sink for )2 is in
V(G;) — (W UO). This implies So N O = () by the definition of O and (D6) (for (G;, M;, D;, &)).
Since (A;, A}) satisfies (D10), it is straightforward to verify that Q1 & &£113. So Q1 € Ei111UE 41 2.
Hence (Sq,, jg,) € & is defined; when Q1 € Eiy1,1, (55, Jo,) and ¢(sy, jg,).1 are defined; when
Q1 € Eiv12, (Sasjo,) and ¢, (for a € [h + k]) are defined. Note that the sinks for (SQwJQl)
and (S,,J0,) are in O. Since (A;, A;) satisfies (D10) and (D11), every member of A1 ¢, is
disjoint from every member of A;yiq, U A}, o,- Moreover, for every A € Aj, o, V(A) C
Ui UOU(V(G) =U,ev(ay V(Mip)) and V(A)NUL, = V(A)HUZJrl NS is a set with size at most
1. Hence every member of A}, 5 is disjoint from every member of A;,, q,, and if some member
Ay € A}, o, intersects some member Ay € Aj, | ., then V(A;)NV(Ay) C V(A)NV (A)NUS, C
(V(A) NS N (V(A) NUL, NV (Gig1)) CV(A) N SNV (A) NSy, So @ and Q2 do not form
a counterexample, a contradiction. []

To prove this lemma, it suffices to show that (G,y1, M1, Dit1, 1) satisfies (D12). Let
v € V(Gi11) such that either |V (M;11,)| > 2, or v is a head with respect to D, or the sink for
some member of £,. It suffices to show degGm(v) <r.

Suppose to the contrary that degg,,  (v) > r. By the definition of Gy, degg, , (v*) = |Uj},| <
[W| <7 —1. Sov # v*. Hence v € V(G;) NV (Giy1). In particular, degg,, (v) < degg, (v) and
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My = Miy1,. So degg, (v) > r. Since (G, My, D;, &) satisfies (D12), |V(Miy1.)| = |V(Miw)| =
1, v is not a head with respect to D;, and v is not the sink for some member of &;. Hence by the
definition of D, ;, since v # v*, v is not a head with respect to D;y1. So v is a sink for some
member of &,1. By the definition of &, v is the sink for some member of &1 since v # v*.
However, &119 C &. So v is the sink for some member of &;, a contradiction. This proves the
lemma. m

Lemma 5.3. For any positive integers h > 3 and k, there exist positive integers v = r(h, k), d =
d(h,k), N = N(h,k) such that for every graph G with no CT}, x-minor, there exists a strong
(G, h,k,r,d, N)-defective elimination scheme.

Proof. Let h > 3 and k be positive integers. Define r = 15=(h, k), d = dgg(h, k) and Ng(h, k),
where 157, di, N are the integers r, d, N mentioned in Lemma [B.2] respectively.

Let G be a graph with no CT} j-minor. Let (Gi, My,&, Dy, Ay, AY) = (G {G[{v}] : v €
V(G)},0,0,0,0). Sothe sequence ((Go, My, Eay Day Aa, AL = a € [1]) is astrong 1-(G, h, k,r,d, N)-
defective elimination scheme.

Suppose to the contrary that there exists no strong (G, h,k,r,d, N)-defective elimination
scheme. Then there exists the maximum positive integer ¢ such that the sequence ((Go, Ma, Eq, Da,
Ay, AL) s € [i]) is a strong i-(G, h, k, 1, d, N)-defective elimination scheme. By Lemma and
the maximality of 4, |V(G;)| < N. For every a € N — [i], define (Go, My, En, Doy Aa, AL) =
(G, M, E, Dy Ay A). Then ((Goy, My, Ea, Do,y Aa, AL) @ a € N) is a strong (G, h, k,r,d, N)-
elimination scheme, a contradiction. m

Theorem 5.4. For any positive integers h > 3 and k, there exists a positive integer d* such that
every graph with no CTy, ,-minor has an (h — 1)-coloring with defect d*.

Proof. Let h > 3 and k be positive integers. Let r = ngg(h, k), d = dgg(h, k) and N =
Ng3(h, k), where 153}, d5 3, Ng3) are the integers r,d, N mentioned in Lemma [B.3] Define d* =
dg(d, N), where dg is the integer d* mentioned in Lemma 311

Let G be a graph with no CT}, y-minor. By Lemma 53] there exists a strong (G, h, k,r,d, N)-
defective elimination scheme. So there exists a (G, h, k, r, d, N)-defective elimination scheme. By
Lemma B.T], there exists an (h — 1)-coloring of G[V(G1) N V(G)] = G with defect d*. =

Now we are ready to prove Theorem

Proof of Theorem [I.3t Let F be a minor-closed family. If wa(F) = 0, then K; & F, so F = (.
If wa(F) =1, then K, ¢ F for some integer k, so K is not a minor (and hence a subgraph) of
any graph in F, so F has bounded maximum degree, and hence ya(F) = 1. If wa(F) = oo, then
Xa(F) = o0o. So we may assume that 2 < wa (F) < oo. Hence there exist a positive integer k such
that CTo, (7416 € F. So every graph in F is CT,, ()41 ,-minor free. Hence xa(F) < wa(F) by
Theorem (.41 O
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