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Abstract

The defective chromatic number of a graph class is the infimum k such that there exists
an integer d such that every graph in this class can be partitioned into at most k induced
subgraphs with maximum degree at most d. Finding the defective chromatic number is
a fundamental graph partitioning problem and received attention recently partially due to
Hadwiger’s conjecture about coloring minor-closed families. In this paper, we prove that
the defective chromatic number of any minor-closed family equals the simple lower bound
obtained by the standard construction, confirming a conjecture of Ossona de Mendez, Oum,
and Wood. This result provides the optimal list of unavoidable finite minors for infinite
graphs that cannot be partitioned into a fixed finite number of induced subgraphs with
uniformly bounded maximum degree. As corollaries about clustered coloring, we obtain a
linear relation between the clustered chromatic number of any minor-closed family and the
tree-depth of its forbidden minors, improving an earlier exponential bound proved by Norin,
Scott, Seymour, and Wood and confirming the planar case of their conjecture.

1 Introduction

A proper coloring of a graph is a function that maps each vertex to a color so that no adjacent
vertices receive the same color. The minimum number of required colors to properly color a graph
G is the chromatic number χ(G). Clearly, χ(G) ≥ ω(G), where ω(G) is the maximum size of a
set of pairwise adjacent vertices in G, called the clique number of G. It is well-known that the
gap between χ(G) and ω(G) can be arbitrarily large. Looking for sufficient conditions for graphs
G to ensure a certain relationship between χ(G) and ω(G) is a very active area. To study such
sufficient conditions, it is convenient to consider a graph class instead of just a graph. For a graph
parameter p and a class F of graphs, we define p(F) = supG∈F p(G).

An extreme case is to study the graphs G with χ(G) = ω(G). However, the disjoint union of an
arbitrary graph H and Kχ(H)+1 is a graph G satisfying χ(G) = ω(G). So nothing informative can
be said about G unless we also consider the substructures of G. It leads to the notion of perfect
graphs. A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G. The celebrated
Strong Perfect Graph Theorem [5] provides a structural characterization of perfect graphs.
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The perfectness can also be defined for graph classes. For a partial order � defined on graphs,
we say that a class F of graphs is �-closed if for any graphs G and H with H � G, G ∈ F implies
H ∈ F . And we say that a �-closed graph class F is perfect with respect to � if χ(F ′) = ω(F ′)
for every �-closed subclass F ′ of F . It is straightforward to show that a graph G is perfect if and
only if the class of all induced subgraphs of G is perfect with respect to the induced subgraph
relation.

Another example for chasing perfection is Hadwiger’s conjecture about graph minors. A graph
H is a minor of another graph G if H is isomorphic to a graph that can be obtained from a
subgraph of G by contracting edges. It is easy to show that every planar graph has no K5-minor.
So the case t = 4 of the following conjecture proposed by Hadwiger implies the Four Color Theorem
[3, 4, 24].

Conjecture 1.1 ([10]). For every positive integer t, if F is the class of Kt+1-minor free graphs,
then χ(F) ≤ t.

Conjecture 1.1 is very difficult. Wagner [28] proved that the case t = 4 is equivalent to the
Four Color Theorem, and Robertson, Seymour, and Thomas [26] proved the case t = 5. The cases
t ≥ 6 remain open. On the other hand, Delcourt and Postle [6] proved that the chromatic number
of Kt+1-minor free graphs is O(t log log t), which is the currently best known upper bound and
improves earlier results in [11, 12, 20, 27].

Note that Conjecture 1.1 is equivalent to stating that χ(F) = ω(F) for every minor-closed
family F . In other words, Hadwiger’s conjecture is equivalent to stating that every minor-closed
family is perfect with respect to the minor relation.

Due to the infamous difficulty of Hadwiger’s conjecture, some relaxations of proper coloring
were considered. One such relaxation is called defective coloring. For any real number r, we define
[r] to be the set {x ∈ N : 1 ≤ x ≤ r}. For every positive integer k, a k-coloring of a graph G is a
function f : V (G) → [k]. For positive integers k and d, a k-coloring f of a graph G has defect d
if for every i ∈ [k], the maximum degree of the subgraph of G induced by the vertices with color
i is at most d. In other words, a graph has a k-coloring with defect d if and only if it can be
partitioned into at most k induced subgraphs with maximum degree at most d. Colorings with
defect 0 are exactly proper colorings.

For a graph class F , the defective chromatic number of F , denoted by χ∆(F), is the infimum
k such that there exists an integer N such that every graph in F has a k-coloring with defect
N . Namely, the defective chromatic number of F is the minimum number of parts required to
partition every graph in F into induced subgraphs with universally bounded maximum degree (or
equals ∞ if no such a partition exists).

Edwards, Kang, Kim, Oum, and Seymour [9] proved the following verbatim defective coloring
analog of Hadwiger’s conjecture.

Theorem 1.2 ([9]). For every positive integer t, if F is the class of Kt+1-minor free graphs, then
χ∆(F) ≤ t.

The proof of Theorem 1.2 in [9] is elegant, and the bound t cannot be improved for the class of
Kt+1-minor free graphs. However, Theorem 1.2 loses the essence for chasing perfection for minor-
closed families. Theorem 1.2 is equivalent to stating that χ∆(F) ≤ ω(F) for every minor-closed
family. But unlike the chromatic number, the defective chromatic number is not lower bounded
by the clique number. In fact, the gap between χ∆(F) and ω(F) can be arbitrarily large. For
example, for every positive integer t, if F is the class of graphs whose every component has at
most t vertices, then F is minor-closed, ω(F) = t, and χ∆(F) = 1.
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To chase perfection for minor-closed families with respect to defective coloring, we should
consider the correct analog for the clique number with respect to defective coloring. The right
answer seems to be the closure of rooted trees.

The closure of a rooted tree T is the graph with vertex-set V (T ) such that two distinct vertices
u, v are adjacent if and only if one of u and v is an ancestor of the other. The height of a rooted
tree T is the maximum number of vertices of a path from the root of T to a leaf in T . For a
positive integer k, a balanced k-ary tree is a rooted tree such that every path from the root to a
leaf has the same length, and every non-leaf has exactly k children. For positive integers h and k,
the closure of a balanced k-ary tree with height h is denoted by CTh,k. For example, CT1,k = K1

and CT2,k = K1,k.
Like a clique, CTh,k can be constructed by repeatedly adding new vertices adjacent to all

existing vertices. For graphs G and H , we define G ∨H to be the graph obtained from a disjoint
union of G and H by adding an edge xy for each pair of vertices x ∈ V (G) and y ∈ V (H). For a
graph G and a positive integer k, we define kG to be the union of k disjoint copies of G. Then it
is easy to see that for every positive integer k, CT1,k = K1, and CTh,k = K1 ∨ kCTh−1,k for every
h ≥ 2.

Also, CTh,k provides a lower bound for the defective chromatic number. A simple induction
on h shows that there exists no (h− 1)-coloring of CTh,k with defect k − 1. Therefore, if a graph
class F contains CTh,k for infinitely many integers k, then χ∆(F) ≥ h. So CTh,k seems to be the
correct analog of cliques for defective coloring.

For a graph class F , we define

ω∆(F) := sup{h ∈ N : CTh,k ∈ F for infinitely many positive integers k}.

So for every graph class F , χ∆(F) ≥ ω∆(F).
The main result of this paper (Theorem 1.3) shows that this inequality is always an equality for

minor-closed families and hence we obtain a characterization of the defective chromatic number
of minor-closed families and obtain perfectness.

Theorem 1.3. For every minor-closed family F , χ∆(F) = ω∆(F).

Theorem 1.2 is an immediate corollary of both Theorem 1.3 and Hadwiger’s conjecture. And
it seems that Theorem 1.3 and Hadwiger’s conjecture are incomparable.

The parameter ω∆ is closely related to the connected tree-depth. The connected tree-depth1 of
a graph G, denoted by td(G), is the minimum h such that G is a subgraph of a closure of a rooted
tree with height h. Equivalently, td(G) is the minimum h such that G is a subgraph of CTh,k

for some integer k. Note that ω(CTh,k) = h for any positive integers h and k, so CTh,k is not a
subgraph of CTh−1,k′ for any k′. Hence td(CTh,k) = h. So for every graph class F , CTtd(F)+1,k 6∈ F

for any k, and hence ω∆(F) ≤ td(F). Moreover, if F is the class of H-minor free graphs for some
graph H , then CTtd(H),ℓ 6∈ F for all integers ℓ ≥ |V (H)| (since H is a subgraph of CTtd(H),|V (H)|),
and CTtd(H)−1,k ∈ F for all integers k (since every minor of CTtd(H)−1,k has connected tree-depth

at most td(H)− 1), so ω∆(F) = td(H)− 1.
Ossona de Mendez, Oum, and Wood [23] proposed the following conjecture and proved the

case td(H) ≤ 3.

1The connected tree-depth is a variant of a more commonly studied parameter, tree-depth. The tree-depth

of a graph G is the maximum of the connected tree-depth of the components of G. The difference between the
tree-depth and the connected tree-depth is always at most 1.
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Conjecture 1.4 ([23]). Let H be a graph. If F is the class of H-minor free graphs, then χ∆(F) =
td(H)− 1.

Note that Conjecture 1.4 is significantly stronger than the verbatim defective coloring analog
of Hadwiger’s conjecture (Theorem 1.2). The key observation is that Kt,t contains a Kt+1-minor.
So Kt+1-minor free graphs do not contain Kt,t as a subgraph and hence enjoy a local condition.
Such a forbidden subgraph condition was used to prove much stronger results, including defective
coloring for classes with bounded expansion [23] and clustered coloring for various graph classes
[16, 17, 18] that were used to prove the currently best results about the verbatim clustered coloring
analog of Hadwiger’s conjecture and Hajós’ conjecture for topological minors [18]. However, such
an argument does not work for Conjecture 1.4 because there exist no functions f and f ′ such that
Kf(h),f ′(h,k) contains CTh,k for all integers k. So no upper bound for χ∆ only involving td(H) can
be obtained by this argument, even when H = CTh,k for some large k.

In fact, Conjecture 1.4 is equivalent to our main result Theorem 1.3. Conjecture 1.4 imme-
diately follows from Theorem 1.3 because we have observed that ω∆(F) = td(H)− 1 if F is the
class of H-minor free graphs. The converse direction holds since every minor-closed family F does
not contain CTω∆(F)+1,k for some fixed integer k (so every graph in F is CTω∆(F)+1,k-minor free)

and td(CTω∆(F)+1,k) = ω∆(F) + 1.

Corollary 1.5. Conjecture 1.4 is true.

Our Theorem 1.3 can also be applied to clustered coloring. The clustered chromatic number
of a graph class F , denoted by χ∗(F), is the infimum k such that there exists an integer N such
that every graph in F can be partitioned into at most k induced subgraphs with no component
on more than N vertices. Clearly, χ∗(F) ≥ χ∆(F) for every graph class F . See [29] for a survey
about defective coloring and clustered coloring.

A corollary of a result of Alon, Ding, Oporowski, and Vertigan [2] builds a connection between
the defective chromatic number and the clustered chromatic number for minor-closed families
with bounded tree-width2 (Statement 2 in Theorem 1.6). The author and Oum [14] proved a tight
result without the assumption for having bounded tree-width, building a connection between
the defective chromatic number and the clustered chromatic number for all minor-closed families
(Statement 1 in Theorem 1.6).

Theorem 1.6 ([2, 14]). Let F be a minor-closed family.

1. Then χ∗(F) ≤ 3χ∆(F).

2. If F has bounded tree-width (equivalently, F does not contain all planar graphs3), then
χ∗(F) ≤ 2χ∆(F).

Norin, Scott, Seymour, and Wood [21] proposed an analog of Conjecture 1.4 for clustered
coloring.

Conjecture 1.7 ([21]). For every graph H, if F is the class of H-minor free graphs, then χ∗(F) ≤
2td(H)− 2.

2The tree-width of a graph G is the minimum k such that G is a subgraph of a chordal graph with clique number
at most k + 1.

3The equivalence follows from the Grid Minor Theorem [25].
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Norin, Scott, Seymour, and Wood [21] showed that the bound 2td(H)− 2 in Conjecture 1.7 is
tight for some graph H . They [21] also observed that Theorem 1.6 and the known td(H) ≤ 3 case
of Conjecture 1.4 proved in [23] imply the td(H) ≤ 3 case of Conjecture 1.7. In general, they [21]

showed that td(H)−1 ≤ χ∗(F) ≤ 2td(H)+1−4 if F is the class of H-minor free graphs. Moreover,
Norin, Scott, and Wood [22] proved that Conjecture 1.7 holds if F also has bounded path-width4.
They [22] also showed that χ∗(F) = td(H)− 1 if F even has bounded tree-depth.

Theorem 1.3 strengths or rediscovers all results stated in the previous paragraph. When F has
bounded tree-depth, every graph in F does not have arbitrarily long paths, so χ∗(F) = χ∆(F),
and hence Theorem 1.3 rediscovers the result χ∗(F) = td(H) − 1 in [22] for any graph H such
that the class F of H-minor free graphs has bounded tree-depth. And by combining Corollary
1.5 and Theorem 1.6, we immediately obtain the following results, which improve the exponential
bound in [21] to a linear bound and generalize the bounded path-width case in [22] to the bounded
tree-width case.

Corollary 1.8. Let H be a graph and F the class of H-minor free graphs.

1. Then χ∗(F) ≤ 3td(H)− 3.

2. If F has bounded tree-width (equivalently, H is planar), then χ∗(F) ≤ 2td(H)− 2.

Our Theorem 1.3 is also related to known results about fractional defective and clustered
coloring. The fractional defective chromatic number χ

f
∆(F) (and fractional clustered chromatic

number χf
∗(F), respectively) of a graph class F is the infimum k such that for every k′ > k, there

exists an integer d such that for every graph G ∈ F , there exist a real number p and at most pk′

induced subgraphs of G with maximum degree at most d (and with no component on more than d

vertices, respectively) such that every vertex of G is contained in at least p of them. Note that the
integer d is allowed to be dependent on k′. Clearly, χ∆(F) ≥ χ

f
∆(F) and χ∗(F) ≥ χf

∗(F) ≥ χ
f
∆(F)

for every graph class F .
Norin, Scott, and Wood [22] proved that χ

f
∆(F) = ω∆(F) for every minor-closed family F .

Hence Theorem 1.3 implies that χ∆(F) = χ
f
∆(F) for every minor-closed family F . In fact, Norin,

Scott, and Wood [22] also proved that χf
∗(F) = ω∆(F) for every minor-closed family F . Our

Theorem 1.3 can give a proof for the same result independent from the original proof in [22], but
we omit the details. In summary, we have the following corollary.

Corollary 1.9. For every proper minor-closed family F ,

χ∗(F) ≥ χf
∗(F) = χ

f
∆(F) = χ∆(F) = ω∆(F) = min

H 6∈F
td(H)− 1 ≥

1

3
· χ∗(F).

Note that the first inequality in Corollary 1.9 is an equality for some minor-closed families and
is strict for some minor-closed families. For example, if F is the set of Kt+1-minor free graphs,
then χ∆(F) = t [9] and χ∗(F) = t [7]5; if F is the set of graphs that are embeddable in a fixed
surface, then χ∆(F) = 3 [1] and χ∗(F) = 4 [8].

Hadwiger’s conjecture can be restated as: if a graph does not have a proper t-coloring, then
Kt+1 is its minor. So it states that Kt+1 is an unavoidable minor of every non-properly t-colorable

4The path-width of a graph G is the minimum k such that G is a subgraph of an interval graph with clique
number at most k + 1. So the tree-width is at most the path-width.

5In fact, in an much earlier paper [8], Dvořák and Norin announced that a much stronger result that implies
χ∗(F) = t will be proved in a forthcoming paper.
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graph. Theorem 1.3 implies an analogous result for partitioning an infinite graph6 into (finite
or infinite) induced subgraphs with uniformly bounded maximum degree. Let G be an infinite
graph, and let h be a positive integer. Let Gind be the set of all finite induced subgraphs of G,
and let Gmin be the set of all minors of graphs in Gind. So Gmin is a minor-closed family containing
Gind. The standard compactness argument shows that if d is an integer such that every graph in
Gind has an h-coloring with defect d, then so does G, so G can be partitioned into h (finite or
infinite) induced subgraphs with maximum degree at most d. Hence, if there exists no integer
d such that G can be partitioned into h induced subgraphs with maximum degree at most d,
then h < χ∆(Gind) ≤ χ∆(Gmin) = ω∆(Gmin) by Theorem 1.3, so CTh+1,k is a minor of G for every
positive integer k. As every (finite) graph with connected tree-depth at most h + 1 is a minor of
CTh+1,k for some integer k, we obtain the following corollary.

Corollary 1.10. For every positive integer h and every infinite graph G, if there exists no integer
d such that G can be partitioned into h (finite or infinite) induced subgraphs with maximum degree
at most d, then every (finite) graph with connected tree-depth at most h+ 1 is a minor of G.

Note that Corollary 1.10 is optimal since the closure of the balanced ℵ0-ary tree with height
h + 1 cannot be partitioned into h induced subgraphs with bounded maximum degree and every
finite minor of it has connected tree-depth at most h+ 1.

1.1 Proof sketch

Now we sketch the proof of Theorem 1.3. As discussed earlier, it suffices to prove the case
H = CTh,k for Conjecture 1.4, for any fixed integers h and k.

Let G be a CTh,k-minor free graph. We shall construct a sequence G1, G2, ..., Gt of graphs with
G1 = G such that Gt has a bounded number of vertices, and each Gi+1 is a minor of Gi. Note
that each vertex v of Gi corresponds to a connected subgraph of G contracted into v. When such
a subgraph of G corresponding to a vertex of Gi has only 1 vertex, we also treat this vertex of
Gi as a vertex of G. Then we construct a coloring by first coloring all vertices in V (Gt) ∩ V (G)
with color 1, and then when all vertices in V (Gi+1) ∩ V (G) are colored, we extend the coloring
to V (Gi) ∩ V (G) by coloring each vertex v in V (Gi) ∩ V (G) − V (Gi+1) greedily by using the
smallest color that does not appear on colored neighbors of v with large degree. Since G1 = G, all
vertices are colored eventually. There are two remaining tasks: one is to show that this coloring
has bounded defect, and the other is to show that at most h− 1 colors are used.

To show this coloring has bounded defect, we will ensure that when a vertex is about to be
colored, it only has bounded degree in the current graph. In other words, we will only contract
subgraphs of Gi induced by vertices with bounded degree to obtain Gi+1. Once we have this
property, showing that the aforementioned greedy coloring has bounded defect is relatively easy.

Showing at most h− 1 colors are used is more challenging. The key idea is that we keep some
information to ensure that when we are about to color a vertex v ∈ V (Gi) ∩ V (G), the set S of
colored neighbors of v with large degree only use at most h−1− j colors for some positive integer
j such that each vertex in S together with G − (V (Gi) ∩ V (G)) contains a CTj+1,k-minor in G.
As G is CTh,k-minor free, 1 ≤ j ≤ h − 2, so 1 ≤ h − 1 − j ≤ h − 2, and hence there is always
an available color for v and the upper bound h − 1 − j is positive. It would be convenient if we
think that we put a hyperedge on S ∪ {v} and label it with j, and direct the edges from S to v to
indicate that v should avoid the colors used by vertices in S.

6All graphs are finite in this paper, unless otherwise specified.
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So we need to ensure that such a CTj+1,k-minor can be constructed when we define Gi+1 from
Gi. Note that if there are k vertices in V (Gi) ∩ V (G) with the same neighborhood S in Gi, then
we can delete those k vertices from Gi to create Gi+1 to obtain the case for j = 1. Similarly, if
there are many distinct hyperedges whose common intersection equals their pairwise intersections,
then we can assemble many CTj+1,k-minors corresponding to those hyperedges to construct a
CTj+2,k-minor, put a hyperedge on the common intersection with label j + 1, and delete the
vertices not in the common intersection. In other words, if we are able to find a large set of
“homogeneous structures”, then we can upgrade hyperedges with label j to hyperedges with label
j + 1 to get flexibility for coloring and construct the corresponding CTj+2,k-minors. See Figure 1
for an example.

However, there are some technical issues. Since some vertex in those homogeneous structures
might also belong to other hyperedges that are not in a homogeneous structure, deleting such a
vertex loses too much information and cannot ensure the number of colors used in those hyperedges.
To deal with it, we should contract subgraphs instead of deleting vertices and somehow keep
the information for those hyperedges that cannot be upgraded. Figuring out what the “right
information” (about those hyperedges, labels, directed edges, and neighborhoods) that should be
kept for such a contraction is the main challenge behind the proof.

Now we give more details about the above strategy. We will construct a sequence of graphs
G1, G2, ... while keeping the information about hyperedges, labels, directed edges, and those
CTj+1,k-minors. This is essentially the intuition behind the strong defective elimination scheme de-
fined in Sections 2 and 5. It is a sequence whose each entry is a tuple of the form (Gi,Mi, Ei, Di,Ai,

A′
i), where Gi is a graph mentioned above, Mi indicates what subgraphs of G are contracted into

vertices of Gi, Ei is the set of the aforementioned hyperedges with labels, Di is the set of the
aforementioned directed edges, and Ai and A′

i are partial information for those CTj+1,k-minors.
To make sure (Gi+1,Mi+1, Ei+1, Di+1,Ai+1,A

′
i+1) can be constructed from (Gi,Mi, Ei, Di,Ai,A

′
i),

we should maintain many properties for (Gi,Mi, Ei, Di,Ai,A
′
i) (i.e. conditions (D1)-(D12) stated

in Sections 2 and 5) during the construction, and those conditions are exactly the “right informa-
tion” mentioned above. Note that the precise definition of those terms might be slightly different
from the ones mentioned in the above proof sketch. But roughly speaking, (D1)-(D3) describe
relationships between Gi and Gi+1 by using standard language about minor models; (D4) de-
scribes properties about the set Di of directed edges; (D5) describes properties about the set Ei
of hyperedges with labels; (D6) and (D7) describe further properties of Di and Ei to limit their
complexities; (D9) and (D10) describe properties of the sets Ai+1 and A′

i+1, which are essentially
the branch sets of those CTj,k-minors corresponding to the hyperedges in Ei; (D11) describes rela-
tionships between the branch sets of the CTj,k-minors corresponding to different hyperedges. All
those properties are fairly straightforward to verify based on our construction from Gi to Gi+1,
even thought it is tedious to describe them precisely and rigorously.

Now we provide more details about how we construct Gi+1 from Gi and explain what (D8)
describes. The key idea is to reduce the number of vertices in Gi and try to upgrade hyperpedges
to allow extra feasible colors for vertices in V (Gi)−V (Gi+1) mentioned in the above sketch. Recall
Figure 1 for an example for upgrading a hyperedge.

Assume now we want to construct Gi+1 from Gi. We can prove that there exist desired
“homogeneous structures”. Roughly speaking, we can prove that there exist a set U ⊆ V (Gi)
with bounded size and pairwise disjoint sets X1, X2, ..., Xt of V (Gi) (for some large integer t) such
that each Xj only contains vertices with bounded degree in Gi and induces a connected subgraph
with bounded size, and U contains all large degree neighbors of the vertices in

⋃t

j=1Xj. By a
Ramsey-type argument, we may assume that the relationship between U and Xj is “identical”
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Figure 1: The upper picture shows three hyperedges S1, S2, S3 with label 2 and three 4CT2,3-
minors H1, H2, H3 in G − V (Gi), where for every q ∈ [3], every vertex in Hq is adjacent to every
vertex in Sq = {x, y, vq}, so each vertex in Sq together with Hq gives a CT3,3-minor. The lower
picture shows that, if we construct Gi+1 by “removing”

⋃3
q=1 Sq −

⋂3
q=1 Sq = {v1, v2, v3}, then we

obtain a hyperedge S ′ =
⋂3

q=1 Sq = {x, y} such that for each vertex x (or y, respectively) in S ′, we
can contract the connected subgraph induced by {x, xq : q ∈ [3]} (or {y, yq : q ∈ [3]}, respectively),
so that it gives a CT4,3-minor together with

⋃3
q=1(Hq ∪ {vq}), where each {xq, yq} is a set of two

vertices contained in a CT2,3 in Hq. Note that this picture is a simplification of what we will really
do in the proof. In particular, each hyperedge contains some directed edges and extra vertices
with certain properties that the vertices x, y, vq in the picture do not have.
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to the relationship between U and Xj′, for any j and j′. That is, if we can find a hyperedge
S intersecting both U and Xj for some j, then for every other j′, we can find a hyperedge S ′

intersecting both U and Xj′ such that S∩U = S∩U ′; and if a subset U ′ of U is the intersection of
U and the neighborhood of some vertex in Xj , then for every other j′, we can find a vertex in Xj′

such that U ′ is also the intersection of U and its neighborhood. There are two cases for those Xj’s,
based on whether U also contains all small degree neighbors of Xj or not. Again a Ramsey-type
argument allows us to assume that either U actually contains all neighbors of

⋃t

j=1Xj, or for every
j, some neighbor of some vertex in Xj is not in U .

For the case that U contains all neighbors of
⋃t

j=1Xj , we construct Gi+1 from Gi by contracting
X1 into a single vertex qi+1 and deleting all X2, X3, ..., Xt. Note that the “identicalness” of those
Xj’s implies that X1 is sufficient to represent all other Xj’s. Detailed properties for this case are
described in (D8h). For the case that some neighbor of Xj is not in U for all j, we can show that
X1 itself is already “homogeneous” in the sense that if we can find a hyperedge S intersecting
both U and X1, then we can find many hyperedges S ′ with pairwise disjoint S ′−U such that each
S ′ is contained in X1 ∪ U and intersects both U and X1 with S ∩ U = S ′ ∩ U . And we construct
Gi+1 from Gi by contracting X1 into a single vertex qi+1 and delete all edges between X1 and its
neighbors not in U . Note that those deleted edges are between small degree vertices, so deleting
them does not affect the defect of any coloring much, but it will give us convenience to simplify
the proof. Detailed properties for this case are described in (D8g).

We remark that in either case in our construction, for any hyperedge S that involves with
V (Gi) − V (Gi+1), there exist many hyperedges “identical to S with respect to U” contained in
U ∪ (V (Gi)− V (Gi+1)), so we can “remove” them to upgrade S as what we expected in Figure 1.

(D8a)-(D8e) describe properties about U and qi+1. (D8f) and (D8i) describes the “upgrade”
of the labels of the hyperedges mentioned earlier.

Properties (D8) can be verified from our construction of Gi+1 straightforward. The necessity
of those properties naturally arise in the analysis for our procedure of greedy coloring.

1.2 Organization and notations

In Sections 2 and 3, we show that a desired defective coloring follows from the existence of
a strong defective elimination scheme. In fact, we do not need the full strength of the strong
defective elimination scheme to construct a coloring. In particular, we do not need Ai and A′

i that
record the information about the CTj+1,k-minors. In Section 2, we define the defective elimination
scheme by only keeping required information. In Section 3, we show how to use it to construct a
desired defective coloring.

In Section 4, we prove results that will be used for finding homogeneous structures in Section
5. In Section 5, we define a strong elimination scheme by adding other required properties to a
defective elimination scheme and prove the existence of a strong defective elimination scheme to
complete the proof by inductively maintaining conditions (D1)-(D12). The proof sketch of the
two technical lemmas (Lemmas 5.1 and 5.2) was described in the previous section about how to
construct Gi+1 from Gi.

To close this section, we introduce some notations that will be used in the rest of the paper.
All graphs in the rest of the paper are finite and simple. Directed graphs are allowed to have

different edges with the same ends but with different directions.
Let G be a graph. Let S ⊆ V (G). Let ℓ be a nonnegative real number. We define N≤ℓ

G [S] =
{u ∈ V (G) : there exists a path in G with length at most ℓ between u and some vertex in S}.
We denote N≤1

G [S] by NG[S]. When S consists of one vertex, say v, we denote N≤ℓ
G [S] by N≤ℓ

G [v]

9



and denote N
≤1
G [S] by NG[v]. For a set S and a vertex v, we also define NG(S) = NG[S]− S and

NG(v) = NG[v]− {v}.
For every subset S of V (G), the subgraph of G induced by S is denoted by G[S].

2 Defective elimination schemes

In this section, we define defective elimination schemes. We encourage the reader to read
Section 1.1 in advance to get an intuition behind those terminologies.

Let G be a graph. Let h ≥ 3, k, r, d, N be positive integers. Then a (G, h, k, r, d, N)-defective
elimination scheme is a sequence ((Gi,Mi, Ei, Di) : i ∈ N) of tuples such that (G1,M1, E1, D1) =
(G, {G[{v}] : v ∈ V (G)}, ∅, ∅), and for every i ≥ 1, the following hold:

(D1) • Gi+1 is a graph.

• Mi+1 is a collection {Mi+1,v : v ∈ V (Gi+1)} of disjoint connected induced subgraphs of
G.

(If v is a vertex of Gi+1 such that Mi+1,v consists of only one vertex, then we also treat v as
a vertex of G for simplicity.)

(D2) Gi+1 is obtained from G[
⋃

M∈Mi+1
V (M)] by contracting each member of Mi+1 into a vertex,

deleting all resulting loops and parallel edges, and deleting possibly other edges such that

• for every edge uv of Gi+1, there exists u′v′ ∈ E(Gi) such that Mi,u′ ⊆ Mi+1,u and
Mi,v′ ⊆ Mi+1,v, and

• for any distinct vertices u, v of Gi+1, if V (Mi+1,u) is adjacent in G to V (Mi+1,v) but
uv 6∈ E(Gi+1), then either |V (Mi+1,u)| ≥ 2 or |V (Mi+1,v)| ≥ 2.

(Note that these two statements imply that when u, v are vertices in V (G) ∩
⋂i+1

α=1 V (Gα),
we have for every α ∈ [i+ 1], uv ∈ E(G) if and only if uv ∈ E(Gα).)

(D3) Exactly one of the following holds:

• |V (Gi)| ≤ N , Gi+1 = Gi, Mi+1 = Mi, Ei+1 = Ei, and Di+1 = Di.

• |Mi+1| < |Mi| and the following hold:

– every member of Mi is either a member of Mi+1, a subgraph of a member of Mi+1,
or disjoint from every member of Mi+1, and

– for every member M of Mi+1 −Mi, its vertex-set is a union of the vertex-sets of
some members of Mi −Mi+1 such that {v ∈ V (Gi) : V (Mi,v) ⊆ V (M)} induces a
connected subgraph of Gi.

(That is, |V (Gi+1)| < |V (Gi)|, and Gi+1 is obtained from Gi by contracting pairwise
disjoint connected subgraphs and deleting vertices and edges. Moreover, if v is a vertex
in V (G) ∩ V (Gi+1), then v ∈ V (G) ∩

⋂i+1
α=1 V (Gα).)

(D4) Di+1 is a set satisfying the following properties:

• Di+1 ⊆ {(u, v), (v, u) : uv ∈ E(Gi+1)}.

(We call a vertex v of Gi+1 a head (with respect to Di+1) if (u, v) ∈ Di+1 for some
u ∈ V (Gi+1).)
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• The digraph with vertex-set V (Gi+1) and edge-set Di+1 has no directed cycle with
length 2 and has no directed path with length 2.

• If there exists (u′, v′) ∈ Di with Mi,u′ ⊆ Mi+1,u and Mi,v′ ⊆ Mi+1,v for some edge uv of
Gi+1, then (u, v) ∈ Di+1.

• If (u, v) ∈ Di, then |V (Mi+1,u)| = 1.

(D5) Ei+1 is a set whose each member is of the form (S, j), where

• S is a subset of V (Gi+1) with |S| ≤ r + 1,

• j ∈ [h− 2], and

• there exists a unique vertex v in S such that (u, v) ∈ Di+1 for every u ∈ S − {v}.

(We call this vertex v the sink for (S, j). Note that it is possible S = {v}, so v is not
necessarily a head with respect to Di+1.)

(D6) For every v ∈ V (Gi+1), if either |V (Mi+1,v)| ≥ 2, or v is a head (with respect to Di+1), or v
is the sink for some member of Ei+1, then

(D6a) there are at most N vertices v′ of Gi such that Mi,v′ ⊆ Mi+1,v, and

(D6b) if u is a vertex of Gi+1 such that either |V (Mi+1,u)| ≥ 2, or u is a head (with respect to
Di+1), or u is the sink for some member of Ei+1, then uv 6∈ E(Gi+1).

(D7) For any (S, j) ∈ Ei, if S −{vS} ⊆ V (Gi+1) and Mi,vS ⊆ Mi+1,vS′ for some vertex vS′ of Gi+1,
where vS is the sink for (S, j), then (S ′, j) ∈ Ei+1, where S

′ = {vS′}∪(NGi+1
(vS′)∩S−{vS}).

(D8) If Gi+1 6= Gi, then there exist a vertex qi+1 ∈ V (Gi+1) and sets Ui+1 and U+
i+1 with Ui+1 ⊆

U+
i+1 ⊆ V (Gi) ∩ V (Gi+1) ∩ V (G) such that the following hold.

(D8a) For every v ∈ V (Gi)− V (Gi+1) with |V (Mi,v)| = 1, degGi
(v) ≤ d.

(D8b) Ui+1 = {u ∈ U+
i+1 : degGi+1

(u) > d}.

(D8c) qi+1 6∈ U+
i+1 and Ui+1 ⊇ {x ∈ NGi+1

(qi+1) : degGi+1
(x) > d}.

(D8d) For every (S, j) ∈ Ei with Mi,vS ⊆ Mi+1,qi+1
, where vS is the sink for (S, j), we have

{x ∈ S − {vS} : degGi
(x) > d} ⊆ U+

i+1.

(D8e) If v ∈ V (G) ∩ V (Gi+1) ∩ NGi
(v′) − U+

i+1 with degGi
(v) ≤ d, for some v′ ∈ V (Gi) with

Mi,v′ ⊆ Mi+1,qi+1
, then Ui+1 ⊇ {x ∈ NGi+1

(v) ∩ V (G) : degGi+1
(x) > d}.

(D8f) ((Ui+1 ∩NGi+1
(qi+1)) ∪ {qi+1}, 1) ∈ Ei+1 and qi+1 is its sink.

(D8g) If
⋃

M∈Mi+1
V (M) =

⋃
M∈Mi

V (M), then

(D8ga) qi+1 ∈ V (Gi+1)− V (Gi),

(D8gb) for every M ∈ Mi, either M ∈ Mi+1 or M ⊆ Mi+1,qi+1
,

(D8gc) if uv is an edge of Gi such that u′ 6= v′ and u′v′ 6∈ E(Gi+1), where u
′ and v′ are the

vertices of Gi+1 such that Mi,u ⊆ Mi+1,u′ and Mi,v ⊆ Mi+1,v′ , then qi+1 ∈ {u′, v′},
and the vertex x ∈ {u′, v′}−{qi+1} satisfies x ∈ {u, v}∩V (G)−U+

i+1, degGi
(x) ≤ d,

and x is not the sink for some member of Ei, and

(D8gd) for every (S, j) ∈ Ei with Mi,vS ⊆ Mi+1,qi+1
, where vS is the sink for (S, j),
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∗ there exists (S ′, j) ∈ Ei with
⋃

v∈S′−U+
i+1

Mi,v ⊆ Mi+1,qi+1
, S ∩ U+

i+1 = S ′ ∩ U+
i+1

and vS′ 6∈ U+
i+1, where vS′ is the sink for (S ′, j), and

∗ there exists a bijection ι from S− ({vS}∪U+
i+1) to S ′− ({vS′}∪U+

i+1) such that
for every v ∈ S − ({vS} ∪ U+

i+1), NGi
(v) ∩ U+

i+1 = NGi
(ι(v)) ∩ U+

i+1.

(D8h) If
⋃

M∈Mi+1
V (M) 6=

⋃
M∈Mi

V (M), then

(D8ha) for every M ∈ Mi, either M ∈ Mi+1, or M ⊆ Mi+1,qi+1
, or M is disjoint from all

members of Mi+1,

(D8hb) for every v ∈ V (Gi) withMi,v disjoint from all members ofMi+1, we have NGi
(v) ⊆

(U+
i+1 ∩NGi+1

(qi+1)) ∪ {u ∈ V (Gi) : Mi,u is disjoint from all members of Mi+1},

(D8hc) every vertex in NGi+1
(qi+1) is in V (G) and is not a head (with respect to Di),

(D8hd) if uv is an edge of Gi such that Mi,u ⊆ Mi+1,u′ and Mi,v ⊆ Mi+1,v′ for some distinct
vertices u′, v′ of Gi, then u′v′ ∈ E(Gi+1),

(D8he) |V (Gi)− V (Gi+1)| ≤ N ,

(D8hf) for every vertex x ∈ V (Gi) ∩ V (G) −
⋃

M∈Mi+1
V (M), there exists a vertex x′ ∈

V (Mi+1,qi+1
) ∩ V (Gi) ∩ V (G) with NG(x) ∩ Ui+1 = NG(x

′) ∩ Ui+1, and

(D8hg) for every (S, j) ∈ Ei with V (Mi,vS) ⊆
⋃

M∈Mi
V (M)−

⋃
M∈Mi+1

V (M), where vS is

the sink for (S, j), there exists (S ′, j) ∈ Ei with |S ′| = |S| such that

∗ Mi,vS′ ⊆ Mi+1,qi+1
, where vS′ is the sink for (S ′, j),

∗ S ∩ V (Gi+1)− {vS} = S ′ ∩ V (Gi+1)− {vS′}, and

∗ there exists a bijection ι from S− (V (Gi+1)∪{vS}) to S ′∩V (Mi+1,qi+1
)−{vS′}

such that for every x ∈ S− (V (Gi+1)∪{vS}), NG(x)∩Ui+1 = NG(ι(x))∩Ui+1.

(D8i) For every (S, j) ∈ Ei with Mi,v ∪Mi,vS ⊆ Mi+1,qi+1
for some vertex v ∈ S −{vS}, where

vS is the sink for (S, j),

(D8ia) if C is the multiset {NG(x) ∩ Ui+1 6= ∅ : x ∈ S − ({vS} ∪ U+
i+1)}, then for every

function f that maps each member Z of C to a vertex in Z, we have (S ′, j) ∈ Ei,
where S ′ = (S ∩U+

i+1)∪{f(Z) : Z ∈ C}∪{qi+1} and qi+1 is the sink for (S ′, j), and

(D8ib) for every u ∈ S − ({vS} ∪ U+
i+1), if Cu is the multiset {NG(x) ∩ Ui+1 6= ∅ : x ∈

S − ({u, vS} ∪U+
i+1)}, and either S ∩U+

i+1 6= ∅ or Cu 6= ∅, then for every function f

that maps each member Z of Cu to a vertex in Z, we have (S ′, j + 1) ∈ Ei, where
S ′ = (S ∩ U+

i+1) ∪ {f(Z) : Z ∈ Cu} ∪ {qi+1} and qi+1 is the sink for (S ′, j + 1).

For a positive integer n, an n-(G, h, k, r, d, N)-defective elimination scheme is a sequence ((Gi,Mi,

Ei, Di) : i ∈ [n]) such that that (Gi,Mi, Ei, Di) satisfies (D1)-(D8) for every i ∈ [n], and
(G1,M1, E1, D1) = (G, {G[{v}] : v ∈ V (G)}, ∅, ∅).

3 Using a defective elimination scheme to color

For a function f and a subset S of its domain, we define f(S) = {f(x) : x ∈ S}.

Lemma 3.1. For any positive integers d and N , there exists a positive integer d∗ = d∗(d,N) such
that the following holds. Let h ≥ 3, k, r be positive integers. Let ((Gi,Mi, Ei, Di) : i ∈ N) be a
(G, h, k, r, d, N)-defective elimination scheme for some graph G. Then for every i ∈ N, there exists
an (h− 1)-coloring ci of G[V (Gi) ∩ V (G)] with defect d∗ such that
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1. for every v ∈ V (Gi) ∩ V (G) with ci(v) 6= 1 and for every β ∈ [ci(v) − 1], there exists
v′ ∈ NG(v) ∩ V (Gi) ∩ V (Gi+1) with degGi+1

(v′) > d and ci(v
′) = β, and

2. for every (S, j) ∈ Ei, |ci(S − {vS})| ≤ h− j − 1, where vS is the sink for (S, j).

Proof. Let d and N be positive integers. Define d∗ = 2N + d.
Let h ≥ 3, k, r be positive integers. Let ((Gi,Mi, Ei, Di) : i ∈ N) be a (G, h, k, r, d, N)-defective

elimination scheme for some graph G. For every positive integer i with Gi+1 6= Gi, let Ui+1, U
+
i+1

be the subsets of V (Gi) ∩ V (Gi+1) ∩ V (G) and the vertex qi+1 of Gi+1 mentioned in (D8). We
shall prove this lemma by induction on −i. Let i be a fixed positive integer.

When |V (Gi)| ≤ N , define ci to be the 1-coloring of G[V (Gi) ∩ V (G)]. Then ci has defect
N ≤ d∗. Note that there exists no vertex with color non-equal to 1, so Statement 1 of this lemma
holds. And for every (S, j) ∈ Ei, j ∈ [h− 2] by (D5), so h− j − 1 ≥ 1 and the lemma holds.

By (D3), this proves the base case of the induction, and we may assume that |V (Gi)| > N

and there exists an (h−1)-coloring ci+1 of G[V (Gi+1)∩V (G)] with defect d∗ such that the lemma
holds for ci+1.

Since |V (Gi)| > N , by (D3), |V (Gi)| > |V (Gi+1)|. In particular, Gi 6= Gi+1, so qi+1, Ui+1, U
+
i+1

exist.
For simplicity of notations, we denote qi+1, Ui+1, U

+
i+1 by q, U, U+, respectively.

Claim 1: For every v ∈ V (G) ∩ V (Gi)− V (Gi+1), we have [h− 1]− ci+1(NG(v) ∩ U) 6= ∅.
Proof of Claim 1: Let v ∈ V (G) ∩ V (Gi) − V (Gi+1). If Mi,v ⊆ Mi+1,q, then define v̄ = v;
if Mi,v 6⊆ Mi+1,q, then

⋃
M∈Mi

V (M) 6=
⋃

M∈Mi+1
V (M) by (D8gb), so Mi,v is disjoint from all

members of Mi+1 and v ∈ V (Gi)∩ V (G)−
⋃

M∈Mi+1
V (M) by (D8ha), and hence (D8hf) implies

that there exists v̄ ∈ V (Mi+1,q) ∩ V (Gi) ∩ V (G) with NG(v) ∩ U = NG(v̄) ∩ U . Note that
since v̄ ∈ V (G) ∩ V (Gi), (D8) and (D2) imply NG(v̄) ∩ U = NG(v̄) ∩ (U ∩ V (Gi) ∩ V (G)) =
(NG(v̄)∩V (Gi)∩V (G))∩U = NGi

(v̄)∩V (G)∩U = NGi
(v̄)∩U . Similarly, NG(v)∩U = NGi

(v)∩U .
Hence v̄ is defined to be a vertex in V (Mi+1,q) ∩ V (G), and NGi

(v) ∩ U = NG(v) ∩ U =
NG(v̄) ∩ U = NGi

(v̄) ∩ U .
Suppose to the contrary that there exists u ∈ NG(v̄)∩U − (NGi+1

(q)∩U). Since NG(v̄)∩U =
NGi

(v̄) ∩ U , uv̄ ∈ E(Gi). Since v̄ ∈ V (Mi+1,q) and u ∈ U ⊆ V (Gi+1) ∩ V (G), (D8gc) and (D8hd)
imply that uq ∈ E(Gi+1), contradicting to u 6∈ NGi+1

(q) ∩ U .
Hence NG(v̄) ∩U ⊆ NGi+1

(q)∩ U . By (D8f), ((NGi+1
(q) ∩U) ∪ {q}, 1) ∈ Ei+1 and q is its sink.

Since ci+1 satisfies the lemma, we know |ci+1(NGi+1
(q)∩U)| ≤ h−2, so [h−1] 6⊆ ci+1(NGi+1

(q)∩U).
Hence [h−1]− ci+1(NG(v̄)∩U) ⊇ [h−1]− ci+1(NGi+1

(q)∩U) 6= ∅. Since NG(v)∩U = NG(v̄)∩U ,
we know [h− 1]− ci+1(NG(v) ∩ U) = [h− 1]− ci+1(NG(v̄) ∩ U) 6= ∅. �

Define ci to be the (h− 1)-coloring of G[V (Gi)∩ V (G)] such that for every v ∈ V (Gi)∩ V (G),

• if v ∈ V (Gi+1), then ci(v) = ci+1(v);

• otherwise, ci(v) is the minimum in [h− 1]− ci+1(NG(v) ∩ U).

Note that ci is well-defined by Claim 1, and ci is an (h− 1)-coloring of G[V (Gi) ∩ V (G)].

Claim 2: If u is a vertex in U , and u′ is a vertex in NGi
(u) ∩ V (G) with ci(u) = ci(u

′), then
u′ ∈ V (Gi+1) ∩ V (G).
Proof of Claim 2: Suppose to the contrary that u′ 6∈ V (Gi+1). So u′ ∈ V (G)∩V (Gi)−V (Gi+1).
Hence ci(u

′) ∈ [h− 1]− ci+1(NG(u
′) ∩ U). So u ∈ NGi

(u′) ∩ U = NG(u
′) ∩ U (by (D2) and (D8))

and ci(u
′) = ci(u) = ci+1(u) ∈ ci+1(NG(u

′) ∩ U), a contradiction. �
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Claim 3: ci has defect d
∗.

Proof of Claim 3: Let v ∈ V (Gi)∩V (G). LetW = {x ∈ NGi
(v)∩V (G) : ci(v) = ci(x)}. To prove

this claim, it suffices to show |W | ≤ d∗. Since d∗ ≥ d + 2N , we may assume degGi
(v) > d + 2N .

This implies v ∈ V (Gi+1) by (D8a). So ci(v) = ci+1(v).
We first assume v ∈ U . By Claim 2, for every u′ ∈ W , we have u′ ∈ V (Gi+1) ∩ V (G), so

ci+1(u
′) = ci(u

′) = ci(v) = ci+1(v). So W ⊆ {x ∈ NGi+1
(v) ∩ V (G) : ci+1(v) = ci+1(x)} by (D2).

Hence |W | ≤ d∗ since ci+1 has defect d∗.
So we may assume v 6∈ U . By (D8ga), if

⋃
M∈Mi

V (M) =
⋃

M∈Mi+1
V (M), then q 6∈ V (Gi),

so q 6= v. Since degGi
(v) > d and v ∈ V (Gi) ∩ V (Gi+1) ∩ V (G), by (D8gb) and (D8gc), if⋃

M∈Mi
V (M) =

⋃
M∈Mi+1

V (M), then degGi+1
(v) ≥ degGi

(v) − |{y ∈ V (Gi) : Mi,y ⊆ Mi+1,q}|.

So by (D6a), if
⋃

M∈Mi
V (M) =

⋃
M∈Mi+1

V (M), then degGi+1
(v) ≥ degGi

(v) − N > d. If
⋃

M∈Mi
V (M) 6=

⋃
M∈Mi+1

V (M), then by (D8ha) and (D8hd), degGi+1
(v) ≥ degGi

(v)− |V (Gi)−

V (Gi+1)|, so degGi+1
(v) ≥ degGi

(v)−N > d by (D8he).
Hence degGi+1

(v) > d. By (D8c), we know U ⊇ NGi+1
(q) ∩ {x ∈ V (Gi+1) : degGi+1

(x) > d}.
Since v ∈ V (Gi+1)− U and degGi+1

(v) > d, we know v 6∈ NGi+1
(q).

Suppose to the contrary that NGi
(v) ∩ V (G) 6⊆ NGi+1

(v) ∩ V (G).
If
⋃

M∈Mi
V (M) =

⋃
M∈Mi+1

V (M), then since v ∈ V (Gi)∩V (Gi+1)−NGi+1
(q) and degGi

(v) >

d, (D8gc) implies thatNGi
(v)∩V (G)∩V (Mi+1,q) = ∅, so (D8gb) and (D8gc) imply NGi

(v)∩V (G) ⊆
NGi+1

(v) ∩ V (G), a contradiction.
So

⋃
M∈Mi

V (M) 6=
⋃

M∈Mi+1
V (M). Since v ∈ V (Gi)∩V (Gi+1)−NGi+1

(q), we have NGi
(v)∩

V (G) ∩ V (Mi+1,q) = ∅ by (D8hd). If there exists x ∈ NGi
(v) ∩ V (G) with Mi,x disjoint from all

members of Mi+1, then v ∈ NGi
(x), so (D8hb) implies either v ∈ NGi+1

(q) or v 6∈ V (Gi+1), a
contradiction. So NGi

(v) ∩ V (G) ⊆ NGi+1
(v) ∩ V (G) by (D8ha) and (D8hd), a contradiction.

Therefore, NGi
(v)∩V (G) ⊆ NGi+1

(v)∩V (G). So W ⊆ {x ∈ NGi+1
(v)∩V (G)∩V (Gi) : ci(x) =

ci(v)} ⊆ {x ∈ NGi+1
(v)∩ V (G) : ci+1(x) = ci+1(v)} has size at most d∗ since ci+1 has defect d

∗. �

Claim 4: For every v ∈ V (Gi)∩V (G) with ci(v) 6= 1 and for every β ∈ [ci(v)−1], there exists v′ ∈
NG(v)∩ V (Gi)∩ V (Gi+1) with degGi+1

(v′) > d and ci(v
′) = β. Moreover, if v ∈ V (Gi)− V (Gi+1),

then v′ ∈ U .
Proof of Claim 4: Let v ∈ V (Gi) ∩ V (G) with ci(v) 6= 1. Let β ∈ [ci(v)− 1].

We first assume v ∈ V (Gi+1). So ci+1(v) = ci(v) 6= 1. Since ci+1 satisfies this lemma, there
exists v′ ∈ NG(v) ∩ V (Gi+1) ∩ V (Gi+2) with degGi+2

(v′) > d and ci+1(v
′) = β. In particular, v′ ∈

V (G)∩ V (Gi)∩ V (Gi+1). Hence v′ ∈ NG(v)∩ V (Gi)∩ V (Gi+1) and degGi+1
(v′) ≥ degGi+2

(v′) > d

by (D2).
So we may assume v ∈ V (Gi) − V (Gi+1). Hence ci(v) = min([h − 1] − ci+1(NG(v) ∩ U)). So

there exists v′ ∈ NG(v) ∩ U such that ci+1(v
′) = β. Since v′ ∈ U , v′ ∈ V (Gi) ∩ V (Gi+1) by (D8),

so v′ ∈ NG(v) ∩ V (Gi) ∩ V (Gi+1) and ci(v
′) = ci+1(v

′) = β. Since v′ ∈ U , (D8b) implies that
degGi+1

(v′) > d. This proves the claim. �

Hence by Claims 3 and 4, to prove this lemma, it suffices to prove that |ci(S−{vS})| ≤ h−j−1
for every (S, j) ∈ Ei, where vS is the sink for (S, j).

Suppose to the contrary that there exists (S, j) ∈ Ei such that |ci(S − {vS})| ≥ h − j. We
further choose such an (S, j) such that (

⋃
x∈S V (Mi,x)) ∩ V (Mi+1,q) 6= ∅ if possible. Let vS be the

sink for (S, j).

Claim 5: Either

• S − {vS} 6⊆ V (Gi+1), or

14



• Mi,vS 6⊆
⋃

M∈Mi+1
M , or

•

⋃
M∈Mi

V (M) =
⋃

M∈Mi+1
V (M),Mi,vS ⊆ Mi+1,q, and there exists v ∈ S−({vS}∪V (Mi+1,q)∪

U+) with degGi
(v) ≤ d.

Proof of Claim 5: We assume that S − {vS} ⊆ V (Gi+1) and Mi,vS ⊆
⋃

M∈Mi+1
M . We shall

prove that the third statement of this claim holds. By (D3), there exists a vertex vS′ of Gi+1 with
Mi,vS ⊆ Mi+1,vS′ . Let S

′ = {vS′}∪(NGi+1
(vS′)∩(S−{vS})). By (D7), (S ′, j) ∈ Ei+1. Note that vS′ is

the sink for (S ′, j) by (D4) and (D5). Since ci+1 satisfies the lemma, |ci+1(S
′−{vS′})| ≤ h− j−1.

Hence ci(S − {vS}) 6= ci+1(S
′ − {vS′}). Note that S ′ − {vS′} ⊆ S − {vS}. So there exists

v ∈ (S − {vS})− (S ′ − {vS′}) such that ci(v) 6∈ ci+1(S
′ − {vS′}).

In particular, v ∈ (S − {vS})−NGi+1
(vS′). Hence S − {vS} 6⊆ NGi+1

(vS′). So vvS ∈ E(Gi) (by
(D5)) and vvS′ 6∈ E(Gi+1). Hence

⋃
M∈Mi

V (M) =
⋃

M∈Mi+1
V (M) by (D8hd). By (D8gc), one

of v and vS′ equals q. By (D8ga), q ∈ V (Gi+1) − V (Gi), so v 6= q, and hence q = vS′. That is,
Mi,vS ⊆ Mi+1,vS′ = Mi+1,q.

Again by (D8gc), v ∈ V (G)−U+ and degGi
(v) ≤ d. Since v ∈ S−{vS} ⊆ V (Gi+1) and v 6= q,

we know v 6∈ V (Mi+1,q). So v ∈ S − ({vS} ∪ V (Mi+1,q) ∪ U+). This proves the claim. �

Claim 6: Either

• (S − {vS}) ∩ V (Mi+1,q) 6= ∅, or

•

⋃
M∈Mi

V (M) =
⋃

M∈Mi+1
V (M),Mi,vS ⊆ Mi+1,q, and there exists v ∈ S−({vS}∪V (Mi+1,q)∪

U+) with degGi
(v) ≤ d.

Proof of Claim 6: Suppose to the contrary that this claim does not hold. In particular, (S −
{vS}) ∩ V (Mi+1,q) = ∅. So Mi,x 6⊆ Mi+1,q for every x ∈ (S − {vS})− V (Gi+1).

Suppose Mi,vS ⊆
⋃

M∈Mi+1
M . By Claim 5, S − {vS} 6⊆ V (Gi+1). Hence there exists v ∈

(S−{vS})−V (Gi+1). So Mi,v 6∈ Mi+1 andMi,v 6⊆ Mi+1,q. Hence
⋃

M∈Mi
V (M) 6=

⋃
M∈Mi+1

V (M)

by (D8gb). So by (D8ha), Mi,x is disjoint from all members of Mi+1 for every x ∈ (S − {vS})−
V (Gi+1). By the existence of v, S − {vS} 6= ∅. So by (D5), vS is a head with respect to Di.
Hence by (D8hc), vS 6∈ NGi+1

(q). Since Mi,v is disjoint from all members of Mi+1, by (D8hb),
vS ∈ NGi

(v) ⊆ NGi+1
(q) ∪ {u ∈ V (Gi) : Mi,u is disjoint from all members of Mi+1}. Hence Mi,vS

is disjoint from all members of Mi+1, contradicting Mi,vS ⊆
⋃

M∈Mi+1
M .

So Mi,vS 6⊆
⋃

M∈Mi+1
M . Hence

⋃
M∈Mi

V (M) 6=
⋃

M∈Mi+1
V (M) by (D8gb). By (D8ha),

V (Mi,vS) ⊆
⋃

M∈Mi
V (M)−

⋃
M∈Mi+1

V (M). So by (D8hg), there exists (S ′, j) ∈ Ei with |S ′| = |S|
such that

(i) Mi,vS′ ⊆ Mi+1,q, where vS′ is the sink for (S ′, j),

(ii) S ∩ V (Gi+1)− {vS} = S ′ ∩ V (Gi+1)− {vS′}, and

(iii) there exists a bijection ι from S − (V (Gi+1) ∪ {vS}) to S ′ ∩ V (Mi+1,q)− {vS′} such that for
every x ∈ S − (V (Gi+1) ∪ {vS}), NG(x) ∩ U = NG(ι(x)) ∩ U .

Since (S − {vS}) ∩ V (Mi+1,q) = ∅ and V (Mi,vS) ⊆
⋃

M∈Mi
V (M) −

⋃
M∈Mi+1

V (M), we know

(
⋃

x∈S V (Mi,x)) ∩ V (Mi+1,q) = ∅. Since (S, j) is chosen such that (
⋃

x∈S V (Mi,x)) ∩ V (Mi+1,q) 6= ∅
if possible, we know that (S ′, j) satisfies the lemma by (i). That is, |ci(S

′ − {vS′})| ≤ h− j − 1.
By (i), either
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(iv) vS′ = q ∈ V (Gi) ∩ V (Gi+1) and S ′ ∩ V (Mi+1,q)− {vS′} = ∅, or

(v) S ′ ∩ V (Mi+1,q) ⊆ S ′ − V (Gi+1).

If (iv) holds and S ′ − V (Gi+1) 6= ∅, then there exists u ∈ S ′ − {vS′} with Mi,u disjoint from
all members of Mi+1 by (D8ha), so (D8hb) implies that q = vS′ ∈ NGi

(u) ⊆ NGi+1
(q) ∪ (V (Gi)−

V (Gi+1)), a contradiction. So S ′ − V (Gi+1) = ∅ = S ′ ∩ V (Mi+1,q)− {vS′} when (iv) holds. Hence
when (iv) holds, ι is a bijection from S − (V (Gi+1) ∪ {vS}) to S ′ − (V (Gi+1) ∪ {vS′}) by (iii).

Since |S ′| = |S|, (ii) implies that |S − (V (Gi+1) ∪ {vS})| = |S ′ − (V (Gi+1) ∪ {vS′})|. By (iii),
|S−(V (Gi+1)∪{vS})| = |S ′∩V (Mi+1,q)−{vS′}|. Hence |S ′−(V (Gi+1)∪{vS′})| = |S ′∩V (Mi+1,q)−
{vS′}|. So if (v) holds, then S ′ ∩ V (Mi+1,q)− {vS′} = S ′ − (V (Gi+1) ∪ {vS′}), so (iii) imply that ι
is a bijection from S − (V (Gi+1) ∪ {vS}) to S ′ − (V (Gi+1) ∪ {vS′}).

Hence ι is a bijection from S − (V (Gi+1) ∪ {vS}) to S ′ − (V (Gi+1) ∪ {vS′}) in either case.
So by (iii), for every x ∈ S − (V (Gi+1) ∪ {vS}), ci(x) = min([h − 1] − ci+1(NG(x) ∩ U)) =
min([h−1]−ci+1(NG(ι(x))∩U)) = ci(ι(x)). So ci(S−(V (Gi+1)∪{vS})) = ci(S

′−(V (Gi+1)∪{vS′})).
By (ii), ci(S ∩ V (Gi+1)− {vS}) = ci(S

′ ∩ V (Gi+1) − {vS′}). Hence ci(S − {vS}) = ci(S
′ − {vS′})

has size at most h− j − 1, a contradiction. �

Claim 7: Mi,vS ⊆ Mi+1,q, |V (Mi+1,q)| ≥ 2, and {x ∈ S − {vS} : degGi
(x) > d} ⊆ U+.

Proof of Claim 7: Since Mi,vS ⊆ Mi+1,q implies {x ∈ S − {vS} : degGi
(x) > d} ⊆ U+ by (D8d),

it suffices to prove that Mi,vS ⊆ Mi+1,q and |V (Mi+1,q)| ≥ 2.
We first assume the second statement of Claim 6 holds. ThenMi,vS ⊆ Mi+1,q and

⋃
M∈Mi

V (M) =⋃
M∈Mi+1

V (M). Since |V (Gi)| 6= |V (Gi+1)|, (D8gb) implies that |V (Mi+1,q)| ≥ 2.

Hence we may assume the first statement of Claim 6 holds. That is, (S−{vS})∩V (Mi+1,q) 6= ∅.
Suppose to the contrary that Mi,vS ⊆ Mi+1,v for some v ∈ V (Gi+1)− {q}. Since (S − {vS}) ∩

V (Mi+1,q) 6= ∅, there exists (u′, vS) ∈ Di with Mi,u′ ⊆ Mi+1,q by (D5). Since Mi,vS ⊆ Mi+1,v, if
qv ∈ E(Gi+1), then (q, v) ∈ Di+1 by (D4). Since (D8f) implies that q is a sink for some member
of Ei+1, if (q, v) ∈ Di+1, then v is a head with respect to Di+1, so qv 6∈ E(Gi+1) by (D6b). So
qv 6∈ E(Gi+1). Since u′vS ∈ E(Gi) and qv 6∈ E(Gi+1), we have

⋃
M∈Mi+1

V (M) =
⋃

M∈Mi
V (M)

by (D8hd). Again since u′vS ∈ E(Gi) and qv 6∈ E(Gi+1), (D8gc) implies that v = vS and vS is not
the sink of a member of Ei, a contradiction.

So Mi,vS 6⊆ Mi+1,v for every v ∈ V (Gi+1)− {q}. Suppose to the contrary that Mi,vS 6⊆ Mi+1,q.
Then

⋃
M∈Mi+1

V (M) 6=
⋃

M∈Mi
V (M) by (D8gb), and hence Mi,vS is disjoint from every member

of Mi+1 by (D8ha). So (D8hb) implies that NGi
(vS) ⊆ NGi+1

(q) ∪ {x ∈ V (Gi) : Mi,x is disjoint
from all members of Mi+1}, contradicting (S − {vS}) ∩ V (Mi+1,q) 6= ∅.

Hence Mi,vS ⊆ Mi+1,q. Since (S − {vS}) ∩ V (Mi+1,q) 6= ∅, V (Mi+1,q) − V (Mi,vS) 6= ∅, so
|V (Mi+1,q)| ≥ 2. �

Claim 8: For every v ∈ S − ({vS} ∪U+) with ci(v) 6= 1 and for every β ∈ [ci(v)− 1], there exists
uv,β ∈ NG(v) ∩ U such that ci(uv,β) = β.
Proof of Claim 8: Let v ∈ S − ({vS} ∪ U+) with ci(v) 6= 1. Let β ∈ [ci(v) − 1]. Note that
v ∈ V (G)∩ V (Gi) by (D4) and (D5). By Claim 4, there exists u ∈ NG(v)∩V (Gi)∩ V (Gi+1) with
degGi+1

(u) > d and ci(u) = β. So to prove this claim, it suffices to show u ∈ U . By Claim 4, we
may assume v ∈ V (Gi) ∩ V (Gi+1).

Since both u and v are in V (G) ∩ V (Gi) ∩ V (Gi+1) and u ∈ NG(v), u ∈ NGi
(v) ∩ NGi+1

(v)
by (D2). By Claim 7, {x ∈ S − {vS} : degGi

(x) > d} ⊆ U+. Since v ∈ S − {vS} but v 6∈ U+,
degGi

(v) ≤ d. Note that v ∈ V (G) ∩ V (Gi+1) ∩NGi
(vS)− U+. Since Mi,vS ⊆ Mi+1,q by Claim 7,

(D8e) implies that u ∈ {x ∈ NGi+1
(v) ∩ V (G) : degGi+1

(x) > d} ⊆ U . �
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For every α ∈ ci(S − {vS}), let vα be a vertex in S − {vS} such that ci(vα) = α, and subject
to this, vα ∈ U+ if possible.

Let A = {α ∈ ci(S − {vS}) : vα 6∈ U+}. Note that for every α ∈ A, by the choice of vα, there
exists no vertex x in (S − {vS}) ∩ U+ such that ci(x) = α, so α 6∈ ci((S − {vS}) ∩ U+).

A segment is a maximal set of consecutive integers in A. We say that a segment I is tilted if
either min I = 1, or min I ≥ 2 and min I − 1 ∈ ci(S − {vS}) and vmin I−1 ∈ U+. For any two
distinct tilted segments I1, I2, we define I1 ≺ I2 if and only if min I1 < min I2. So ≺ is a total
order of all tilted segments. A tilted segment is ≺-minimum if it is the minimum respect to ≺.
For a non-≺-minimum tilted segment I, we define the precursor of I to be the tilted segment I ′

such that I ′ ≺ I and there exists no tilted segment I ′′ with I ′ ≺ I ′′ ≺ I; and we define g(I) to be
max I ′, where I ′ is the precursor of I.

Define g to be the function with domain ci(S − {vS}) such that for every x ∈ ci(S − {vS}),

• if x ∈ ci(S − {vS})−A, then g(x) = x,

• if x ∈ A and x is not the minimum of any tilted segment, then g(x) = x− 1,

• if x ∈ A and x is the minimum of some non-≺-minimum tilted segment I, then g(x) = g(I),

• if x ∈ A and x is the minimum of the ≺-minimum tilted segment, then g(x) = 0.

Note that g maps each element in A to 0 or an element in A ∪ (N− ci(S − {vS})).

Claim 9: |g(ci(S − {vS}))| ≥ h− j and |g(ci(S − {vS}))− {0}| ≥ h− j − 1.
Proof of Claim 9: We first show that g is injective. Suppose to the contrary that there exist
distinct x, y ∈ ci(S − {vS}) such that g(x) = g(y). If one of x, y is not in A, say x 6∈ A,
then g(x) = x ∈ ci(S − {vS}) − A, and since g maps each element in A to 0 or an element in
A ∪ (N− ci(S − {vS})), g(x) = g(y) implies that y ∈ ci(S − {vS})−A, so x = g(x) = g(y) = y, a
contradiction. So x, y ∈ A. Note that the minimum of the ≺-minimum tilted segment is the only
element mapped to 0 by g. So none of x, y is the minimum of the ≺-minimum tilted segment.
If each of x, y is the minimum of some non-≺-minimum tilted segment, then g(x) = g(y) implies
that x = y, a contradiction. Hence by symmetry, we may assume that x ∈ A is not the minimum
of any tilted segment and y is the minimum of some non-≺-minimum tilted segment I. So g(y) is
the maximum element of some tilted segment, but g(x) is not, a contradiction.

Hence g is injective. So |g(ci(S−{vS}))| ≥ |ci(S−{vS})| ≥ h−j. Hence |g(ci(S−{vS}))−{0}| ≥
h− j − 1. �

If (S−{vS})∩V (Mi+1,q) 6= ∅, then define S∗ = S and vS∗ = vS, and define ι to be the identity
function from S∗ to S∗; otherwise,

⋃
M∈Mi

V (M) =
⋃

M∈Mi+1
V (M) and Mi,vS ⊆ Mi+1,q by Claim

6, so (D8gd) implies that there exists (S∗, j) ∈ Ei with
⋃

v∈S∗−U+ Mi,v ⊆ Mi+1,q, S
∗∩U+ = S∩U+

and vS∗ 6∈ U+, where vS∗ is the sink for (S∗, j), and there exists a bijection ι : S − ({vS} ∪U+) →
S∗ − ({vS∗} ∪ U+) such that for every v ∈ S − ({vS} ∪ U+), NGi

(v) ∩ U+ = NGi
(ι(v)) ∩ U+.

Claim 10: Mi,v ∪Mi,vS∗ ⊆ Mi+1,q for some v ∈ S∗ − {vS∗}.
Proof of Claim 10: If (S − {vS}) ∩ V (Mi+1,q) 6= ∅, then Claim 7 implies that Mi,v ∪Mi,vS∗ ⊆
Mi+1,q for some v ∈ S∗ − {vS∗}. Otherwise, Claim 6 implies Mi,ι(v) ∪ Mi,vS∗ ⊆ Mi+1,q for some
v ∈ S − ({vS} ∪ U+). �

Note that for every α ∈ ci(S−{vS}), α 6∈ A if and only if vα ∈ U+. And if α = 1 and vα 6∈ U+,
then α = 1 ∈ A is the minimum of the ≺-minimum tilted segment, so g(α) = 0. So if vα 6∈ U+

and g(α) 6= 0, then ci(vα) 6= 1.
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Define f to be the function with domain {vα : α ∈ ci(S − {vS}), g(α) 6= 0} such that for every
α ∈ ci(S − {vS}) with g(α) 6= 0,

• if vα ∈ U+, then we define f(vα) = vα,

• if vα 6∈ U+, then since g(α) 6= 0, we know ci(vα) 6= 1, so there exists a vertex uvα,g(α) in
NG(vα) ∩ U with ci(uvα,g(α)) = g(α) by Claim 8, and we define f(vα) = uvα,g(α).

Claim 11: For every α ∈ ci(S − {vS}) with g(α) 6= 0, if vα 6∈ U+, then f(vα) = uvα,g(α) ∈
NG(vα) ∩ U = NGi

(vα) ∩ U and ci(f(vα)) = ci+1(f(vα)) = g(α).
Proof of Claim 11: Note that f(vα) = uvα,g(α) ∈ NG(vα) ∩ U = NGi

(vα) ∩ U by (D2) since
{vα}∪U ⊆ V (G)∩V (Gi). And since U ⊆ V (Gi)∪V (Gi+1) by (D8), ci(f(vα)) = ci+1(f(vα)) = g(α).
�

Claim 12: There exists a tilted segment.
Proof of Claim 12: Let C be the multiset {NG(x) ∩ U 6= ∅ : x ∈ S∗ − ({vS∗} ∪ U+)}. Note that
C equals the multiset {NG(ι(x)) ∩ U 6= ∅ : x ∈ S − ({vS} ∪ U+)}. For each Z ∈ C, let xZ be the
element in S − ({vS} ∪ U+) such that Z = NG(ι(xZ)) ∩ U . For every α ∈ A− {1}, let Zα be the
element in the multiset C such that xZα

= vα.
Suppose to the contrary that there exists no tilted segment. So 1 6∈ A and g(α) 6= 0 for every

α ∈ ci(S − {vS}). Let f
′ be a function such that for each member Z of the multiset C,

• if xZ ∈ {vα : α ∈ A}, then f ′(Z) = f(xZ),

• otherwise, f ′(Z) is an arbitrary element in Z.

So f ′ maps each member Z of C to a vertex in Z.
Recall that (S∗, j) is a member of Ei such that Mi,v ∪Mi,vS∗ ⊆ Mi+1,q for some v ∈ S∗ −{vS∗}

by Claim 10. So by (D8ia), (S ′, j) ∈ Ei+1, where S ′ = (S∗ ∩ U+)∪ {f ′(Z) : Z ∈ C} ∪ {q}, and q is
the sink for (S ′, j). Since ci+1 satisfies this lemma, |ci+1(S

′ − {q})| ≤ h− j − 1.
Note that for every α ∈ ci(S − {vS}), if α 6∈ A, then vα ∈ S ∩ U+ = S∗ ∩ U+ ⊆ S ′ − {q}

and g(α) = α = ci(vα) = ci+1(vα) ∈ ci+1(S
′ − {q}); if α ∈ A, then vα 6∈ U+, and since 1 6∈ A,

we know vα = xZα
, so f(vα) = f ′(Zα) ∈ {f ′(Z) : Z ∈ C} ⊆ S ′ − {q}, and hence by Claim 11,

g(α) = ci+1(f(vα)) ∈ ci+1(S
′ − {q}). Therefore, ci+1(S

′ − {q}) ⊇ g(ci(S − {vS})). So h− j − 1 ≥
|ci+1(S

′ − {q})| ≥ |g(ci(S − {vS}))|. But by Claim 9, h − j − 1 ≥ |g(ci(S − {vS}))| ≥ h − j, a
contradiction. �

By Claim 12, there exists a tilted segment. So there exists a unique element α∗ ∈ ci(S−{vS})
such that g(α∗) = 0. Note that α∗ ∈ A. So vα∗ 6∈ U+ and hence ι(vα∗) ∈ S∗ − ({vS∗} ∪ U+).

Let C∗ be the multiset {NG(x) ∩ U 6= ∅ : x ∈ S∗ − ({ι(vα∗), vS∗} ∪ U+)}. Note that C∗ equals
the multiset {NG(ι(x)) ∩ U 6= ∅ : x ∈ S − ({vα∗ , vS} ∪ U+)} by the definition of ι.

Claim 13: S ∩ U+ = S∗ ∩ U+ 6= ∅ or C∗ 6= ∅.
Proof of Claim 13: Recall S∗ ∩ U+ = S ∩ U+ by the definition of S∗. Suppose to the contrary
that S ∩ U+ = ∅ = C∗. If there exists y ∈ S − ({vS, vα∗} ∪ U+) with ci(y) 6= 1, then by Claim 8,
NG(y)∩U 6= ∅, so ι(y) ∈ S∗−({ι(vα∗), vS∗}∪U+) and NG(ι(y))∩U = NG(y)∩U 6= ∅ (by (D2) and
the property of ι), and hence C∗ 6= ∅, a contradiction. Therefore, ci(S − ({vS, vα∗} ∪ U+)) ⊆ {1}.
Since S ∩ U+ = ∅, ci(S − {vS}) = ci(S − ({vS} ∪ U+)). If ci(S − ({vS, vα∗} ∪ U+)) = ∅, then
ci(S − {vS}) = ci(S − ({vS} ∪U+)) = {ci(vα∗)} has size at most 1, contradicting |ci(S − {vS})| ≥
h− j ≥ 2 by (D5). So ci(S− ({vS, vα∗}∪U+)) = {1}. Since S ∩U+ = ∅, 1 ∈ A. So α∗ = 1. Hence
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ci(S − {vS}) = ci(S − ({vS} ∪ U+)) = {1, ci(vα∗)} = {1} has size smaller than h − j by (D5), a
contradiction. �

For each member Z of the multiset C∗, let xZ be an element in S − ({vα∗ , vS} ∪U+) such that
Z = NG(ι(xZ)) ∩ U . For every α ∈ A− {α∗}, let Zα be the member of the multiset C∗ such that
xZα

= vα.
Let f ′ be a function such that for each member Z of the multiset C∗,

• if xZ ∈ {vα : α ∈ A−{α∗}}, then f ′(Z) = f(xZ), (note that f(xZ) is defined since α∗ is the
unique element such that g(α∗) = 0)

• otherwise, f ′(Z) is an arbitrary element in Z.

So f ′ maps each member Z of C∗ to a vertex in Z. Recall that (S∗, j) is a member of Ei such that
Mi,v ∪ Mi,vS∗ ⊆ Mi+1,q for some v ∈ S∗ − {vS∗} by Claim 10. Hence by Claim 13 and (D8ib),
(S ′, j+1) ∈ Ei+1, where S

′ = (S∗∩U+)∪{f ′(Z) : Z ∈ C∗}∪{q} = (S∩U+)∪{f ′(Z) : Z ∈ C∗}∪{q},
and q is the sink for (S ′, j). Since ci+1 satisfies this lemma, |ci+1(S

′ − {q})| ≤ h− j − 2.
Note that for every α ∈ ci(S − {vS}), if α 6∈ A, then vα ∈ S ∩ U+ ⊆ S ′ − {q} and g(α) = α =

ci(vα) = ci+1(vα) ∈ ci+1(S
′ − {q}); if α ∈ A − {α∗}, then vα 6∈ U+ and g(α) 6= 0 and vα = xZα

,
so f(vα) = f ′(Zα) ∈ {f ′(Z) : Z ∈ C∗} ⊆ S ′ − {q}, and hence by Claim 11, g(α) = ci+1(f(vα)) ∈
ci+1(S

′ − {q}). Therefore, ci+1(S
′ − {q}) ⊇ g(ci(S − {vS}) − {α∗}) = g(ci(S − {vS})) − {0}. So

h− j − 2 ≥ |ci+1(S
′ − {q})| ≥ |g(ci(S − {vS}))− {0}|, contradicting Claim 9.

This proves the lemma.

4 Homogeneous structures

A geodesic in a graph G is a path P in G such that its length equals the distance between its
ends in G. Note that every subpath of a geodesic is a geodesic.

Lemma 4.1. For any positive integers t, k, ℓ, there exists a positive integer n = n(t, k, ℓ) with
n > tℓ such that for every graph G having a vertex v∗ with V (G) = N≤n

G [v∗], every function
f : V (G) → [t] and every geodesic P in G with an end v∗ on n− tℓ vertices, there exist a subpath
Q of P and a nonempty set S ⊆ [t] such that

1. for every x ∈ [t]− S, there exists no vertex u ∈ N
≤|S|ℓ
G [V (Q)] with f(u) = x, and

2. Q can be partitioned into k disjoint subpaths Q1, Q2, ..., Qk of Q with the same length such
that for any i ∈ [k] and x ∈ S, N

≤(|S|−1)ℓ
G [V (Qi)] contains a vertex vi,x with f(vi,x) = x.

Proof. For any positive integers y, z, define n(1, y, z) = y+z, and for every positive integer x ≥ 2,
n(x, y, z) = y · (n(x − 1, y, z) − (x − 1)z) + xz. Clearly, n(x, y, z) > xz for any positive integers
x, y, z.

Let t, k, ℓ be positive integers. Let n = n(t, k, ℓ). We shall prove this lemma by induction on t.
Let G, v∗, f, P be as stated in the lemma. When t = 1, P has n(1, k, ℓ) − ℓ ≥ k vertices, so

every subpath Q of P on k vertices and the set [1] satisfy the conclusion of this lemma (with
S = [1]). So we may assume that t ≥ 2 and the lemma holds when t is smaller.

Let W be a subpath of P on n(t−1, k, ℓ)− (t−1)ℓ vertices. Since W is a subpath of a geodesic
P , W is a geodesic.
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We first assume that there exists xW ∈ [t] such that there exists no vertex u ∈ N
≤(t−1)ℓ
G [V (W )]

with f(u) = xW . By symmetry, we may assume xW = t. Let H = G[N
≤(t−1)ℓ
G [V (W )]]. Let

vW be the end of W closest to v∗ in G. Hence V (W ) ⊆ N
≤n(t−1,k,ℓ)−(t−1)ℓ−1
H [vW ]. So V (H) =

N
≤n(t−1,k,ℓ)−1
H [vW ]. Hence V (H) = N

≤n(t−1,k,ℓ)
H [vW ]. Moreover, f |V (H) is a function from V (H) to

[t− 1], and W is a geodesic in H with an end vW on n(t− 1, k, ℓ)− (t− 1)ℓ vertices. Hence by the
induction hypothesis, there exist a subpath W ′ of W and a nonempty set SW ⊆ [t− 1] such that

(i) for every x ∈ [t− 1]− SW , there exists no u ∈ N
≤|SW |ℓ
H [V (W ′)] with f(u) = x, and

(ii) W ′ can be partitioned into k disjoint subpaths W1,W2, ...,Wk of W ′ with the same length

such that for every i ∈ [k] and x ∈ SW , N
≤(|SW |−1)ℓ
H [V (Wi)] contains a vertex wi,x with

f(wi,x) = x.

Since SW ⊆ [t − 1], |SW | ≤ t − 1. So G[N
≤|SW |ℓ
G [V (W ′)]] is a subgraph of H . Hence for every

i ∈ [|SW |], N≤iℓ
G [V (W ′)] = N≤iℓ

H [V (W ′)]. Recall that there exists no vertex u ∈ N
≤(t−1)ℓ
G [V (W )]

with f(u) = xW = t. So (i) implies that for every x ∈ [t]−SW , there exists no u ∈ N
≤|SW |ℓ
G [V (W ′)]

with f(u) = x. Hence this lemma follows from taking Q = W ′ and S = SW .
So we may assume that for every subpath P ′ of P on n(t − 1, k, ℓ)− (t− 1)ℓ vertices and for

every x ∈ [t], N
≤(t−1)ℓ
G [V (P ′)] contains a vertex vP ′,x with f(vP ′,x) = x. Since P has n(t, k, ℓ)−tℓ ≥

k · (n(t− 1, k, ℓ)− (t− 1)ℓ) vertices, there exists a subpath P ∗ of P on k · (n(t− 1, k, ℓ)− (t− 1)ℓ)
vertices. So P ∗ can be partitioned into k disjoint subpaths P1, P2, ..., Pk of P ∗ each having n(t −

1, k, ℓ)− (t−1)ℓ vertices. So for any i ∈ [k] and x ∈ [t], N
≤(t−1)ℓ
G [V (Pi)] contains a vertex vi,x with

f(vi,x) = x. Hence we are done by choosing Q = P ∗ and S = [t]. This proves the lemma.

Note that for every proper minor-closed family G, there exist positive integers r and k such
that every graph in G has edge-density at most k [19] and no Kr,r-minor. By taking ǫ = ǫ′ = 0 in
[13, Lemma 4.4], we obtain the following immediate corollary for proper minor-closed families.

Lemma 4.2 (special case of [13, Lemma 4.4]). For any proper minor-closed family G, there exists
a positive integer r = r(G) such that for any integers t ≥ 1, ℓ ≥ 2, there exist positive integers
d = d(G, t, ℓ), N = N(G, t, ℓ) such that for any graph G ∈ G with |V (G)| > N , there exist
X,Z,W ⊆ V (G) with Z ⊆ X, |Z| = t, W ⊆ V (G)−X and |W | ≤ r − 1 such that

1. every vertex in X has degree at most d in G,

2. for any distinct z, z′ ∈ Z, the distance in G[X ] between z, z′ is at least 2ℓ− 1, and

3. NG(N
≤ℓ−1
G[X] [z])−X = W for every z ∈ Z.

Note that Lemma 4.2 can also be derived from the machinery developed in [15], which is a
simpler version of the machinery developed in [13].

5 Strong elimination schemes

Let G be a graph. Let h ≥ 3, k, r, d, N be positive integers. Then a strong (G, h, k, r, d, N)-
defective elimination scheme is a sequence ((Gi,Mi, Ei, Di,Ai,A

′
i) : i ∈ N) of tuples such that

((Gi,Mi, Ei, Di) : i ∈ N) is a (G, h, k, r, d, N)-defective elimination scheme such that A1 = A′
1 = ∅,

and for every i ≥ 2, the following hold:

20



(Recall that we denote the member of Mi corresponding to a vertex v of Gi by Mi,v.)

(D9) Ai is a collection {Ai,Q : Q ∈ Ei}, and A′
i is a collection {A′

i,Q : Q ∈ Ei}.

(D10) For every Q = (S, j) ∈ Ei, Ai,Q is a set of pairwise disjoint connected subgraphs of
G[V (Mi,vS) ∪ (V (G) −

⋃
v∈V (Gi)

V (Mi,v))] (where vS is the sink for Q), and A′
i,Q is a set of

|S|−1 pairwise disjoint connected subgraphs of G[
⋃

v∈S V (Mi,v)∪(V (G)−
⋃

v∈V (Gi)
V (Mi,v))]

such that the following hold.

• For each member A of A′
i,Q,

– V (A) ∩ S − {vS} 6= ∅,

– A is disjoint from all members of Ai,Q, and

– A is adjacent in G to all members of Ai,Q.

(Note that |V (A)∩S−{vS}| = 1 for each A ∈ A′
i,Q since |A′

i,Q| = |S|−1 = |S−{vS}|.)

• Contracting each member of Ai,Q into a single vertex creates a (k + h− j)CTj,k-minor
in G.

(D11) For any Q1 = (S1, j1), Q2 = (S2, j2) ∈ Ei with distinct sinks,

• every member of Ai,Q1 is disjoint from every member of Ai,Q2,

• for α ∈ [2], every member of Ai,Qα
is disjoint from every member of A′

i,Q3−α
, and

• if A′
1 is a member of A′

i,Q1
and A′

2 is a member of A′
i,Q2

, then V (A′
1) ∩ V (A′

2) ⊆
V (A′

1) ∩ V (S1) ∩ V (A′
2) ∩ V (S2).

(D12) For every v ∈ V (Gi), if |V (Mi,v)| ≥ 2 or v is a head (with respect to Di) or the sink for some
member of Ei, then degGi

(v) ≤ r.

For any positive integer n, a strong n-(G, h, k, r, d, N)-defective elimination scheme is a sequence
((Gi,Mi, Ei, Di,Ai,A

′
i) : i ∈ [n]) of tuples such that ((Gi,Mi, Ei, Di) : i ∈ [n]) is an n-(G, h, k, r, d,

N)-defective elimination scheme and (Gi,Mi, Ei, Di,Ai,A
′
i) satisfies (D9)-(D12) for every i ∈ [n],

and A1 = A′
1 = ∅.

Lemma 5.1. For any positive integers h ≥ 3, k, r, there exists a positive integer t = t(h, k, r) such
that for any positive integers d ≥ 2, ℓ0, there exists a positive integer N∗ = N∗(h, k, r, d, ℓ0) such
that the following hold. Let G be a graph with no CTh,k-minor. Let N be an integer with N ≥ N∗.
Let i be a positive integer. Let ((Gα,Mα, Eα, Dα,Aα,A

′
α) : α ∈ [i]) be a strong i-(G, h, k, r, d, N)-

defective elimination scheme. If |V (Gi)| > N , and there exist X,Z,W ⊆ V (Gi) with Z ⊆ X,
|Z| = t, W ⊆ V (Gi)−X and |W | ≤ r − 1 such that

1. every vertex in X has degree at most d in Gi,

2. for any distinct z, z′ ∈ Z, the distance in Gi[X ] between z, z′ is at least 2ℓ0 − 1, and

3. NGi
(N≤ℓ0−1

Gi[X] [z]) = W for every z ∈ Z,

then there exists a graph Gi+1 with |V (Gi+1)| < |V (Gi)| and a tuple (Gi+1,Mi+1, Ei+1, Di+1,Ai+1,

A′
i+1) such that ((Gα,Mα, Eα, Dα,Aα,A

′
α) : α ∈ [i+1]) is a strong (i+1)-(G, h, k, r, d, N)-defective

elimination scheme.
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Proof. Let h ≥ 3, k, r be positive integers. Define t = 2(h−2)(r+1)2
r−1

(k+h)2r−1
· 22

r−1
. Let d ≥ 2, ℓ0

be positive integers. Define N∗ = (k + h)dℓ0.
Let G be a graph with no CTh,k-minor. Let N be an integer with N ≥ N∗. Let i be a

positive integer. Let ((Gα,Mα, Eα, Dα,Aα,A
′
α) : α ∈ [i]) be a strong i-(G, h, k, r, d, N)-defective

elimination scheme. Assume |V (Gi)| > N .
By assumption, there exist X,Z,W ⊆ V (Gi) with Z ⊆ X , |Z| = t, W ⊆ V (Gi) − X and

|W | ≤ r − 1 such that

(i) every vertex in X has degree at most d in Gi,

(ii) for any distinct z, z′ ∈ Z, the distance in Gi[X ] between z, z′ is at least 2ℓ0 − 1, and

(iii) NGi
(N≤ℓ0−1

Gi[X] [z]) = W for every z ∈ Z.

Claim 1: For every v ∈ W , v ∈ V (G) ∩ V (Gi), v is not a head (with respect to Di), and v is not
the sink for a member of Ei.
Proof of Claim 1: Suppose to the contrary that there exists a vertex v ∈ W such that |V (Mi,v)| ≥
2, or v is a head (with respect to Di), or v is the sink for some member of Ei. By (D12),
degGi

(v) ≤ r. By (iii), for every z ∈ Z, v is adjacent in Gi to a vertex in N
≤ℓ0−1
Gi[X] [z]. So (ii) implies

that degGi
(v) ≥ |Z|. Hence t = |Z| ≤ degGi

(v) ≤ r, a contradiction. �

Let σ be a linear ordering of the subsets of W . For any z ∈ Z, define the following:

• For any subset T ofW and nonnegative integers j0, j1, ..., j2|W | with j0 ∈ [h−2] and 0 ≤ jα ≤ r

for every α ∈ [2|W |],

– az,T,j0,...,j2|W |
= 1 if there exists (S, j0) ∈ Ei such that

∗ the sink vS for (S, j0) is in N
≤ℓ0−1
Gi[X] [z],

∗ S ∩W = T , and

∗ for every α ∈ [2|W |], there are exactly jα vertices x in S−{vS} such that NG(x)∩W

equals the α-th subset of W based on σ;

– otherwise, az,T,j0,...,j2|W |
= 0.

• For any T ⊆ W ,

– az,T = 1 if there exists v ∈ N
≤ℓ0−1
Gi[X] [z] ∩ V (G) such that NG(v) ∩W = T ;

– az,T = 0 otherwise.

Since |W | ≤ r − 1, there exists Z1 ⊆ Z with

|Z1| ≥
|Z|

22|W |(h−2)(r+1)2
|W |

≥
t

22r−1(h−2)(r+1)2r−1 ≥ (k + h)22
r−1

such that az1,T,j0,j1,...,j2|W |
= az2,T,j0,j1,...,j2|W |

for any z1, z2 ∈ Z1, T ⊆ W and nonnegative integers

j0 ∈ [h− 2], j1, ..., j2|W | with 0 ≤ jα ≤ r for every α ∈ [2|W |]. Similarly, there exists Z2 ⊆ Z1 with

|Z2| ≥
|Z1|

22r−1 ≥ (k+h)22
r−1

22r−1 ≥ k + h such that az1,T = az2,T for any z1, z2 ∈ Z2 and T ⊆ W . Let Z∗

be a subset of Z2 with |Z∗| = k + h.
Let z∗ be a vertex in Z∗. Define Gi+1 to be the graph obtained from Gi−

⋃
z∈Z∗−{z∗}N

≤ℓ0−1
Gi[X] [z]

by contracting N
≤ℓ0−1
Gi[X] [z

∗] into a new vertex v∗, and deleting resulting parallel edges and loops.
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Note that |V (Gi+1)| < |V (Gi)| since |Z∗| ≥ k + h ≥ 3. Define Mi+1 = (Mi − {Mi,v : v ∈⋃
z∈Z∗ N

≤ℓ0−1
Gi[X] [z]}) ∪ {G[

⋃
v∈N

≤ℓ0−1

Gi[X]
[z∗]

V (Mi,v)]}. Then (Gi+1,Mi+1) satisfies (D1)-(D3) by (ii).

Note that Mi+1,v∗ = G[
⋃

v∈N
≤ℓ0−1

Gi [X]
[z∗]

V (Mi,v)].

Define Di+1 = {(u, v) ∈ Di : u, v ∈ V (Gi) ∩ V (Gi+1)} ∪ {(w, v∗) : w ∈ W}. By (iii) and Claim
1, (Gi+1,Mi+1, Di+1) satisfies (D4).

Let U+
i+1 = W and qi+1 = v∗. Let Ui+1 = {v ∈ U+

i+1 : degGi+1
(v) > d}.

Define the following:

• Ei+1,0 = {(S, j) ∈ Ei : S ⊆ V (Gi) ∩ V (Gi+1)}.

• Ei+1,1 = {({v∗} ∪ (S ∩ W ) ∪ T, j) : there exists (S, j) ∈ Ei whose sink vS is in N
≤ℓ0−1
Gi[X] [z

∗],

T ⊆ Ui+1 − S, there exists a matching in Gi between T and (S − {vS}) ∩ N
≤ℓ0−1
Gi[X] [z

∗] with

size |T |}.

• Ei+1,2 = {({v∗}∪ (S ∩W )∪ T, j +1) : there exists (S, j) ∈ Ei whose sink vS is in N
≤ℓ0−1
Gi[X] [z

∗],

T ⊆ Ui+1 − S, (S ∩W ) ∪ T 6= ∅, there exist u ∈ (S − {vS}) ∩N
≤ℓ0−1
Gi[X] [z

∗] and a matching in

Gi between T and (S − {vS, u}) ∩N
≤ℓ0−1
Gi[X] [z

∗] with size |T |}.

• Ei+1,3 = {({v∗} ∪ Ui+1, 1)}.

• Ei+1 = Ei+1,0 ∪ Ei+1,1 ∪ Ei+1,2 ∪ Ei+1,3.

Note that every vertex in V (Gi+1) − {v∗} is in V (Gi). And v∗ is obtained by contracting
a subgraph of Gi with |N≤ℓ0−1

Gi[X] [z
∗]| ≤

∑ℓ0−1
j=0 dj ≤ dℓ0 ≤ N∗ ≤ N vertices in Gi by (i). So

(Gi+1,Mi+1, Di+1) satisfies (D6a). And Claim 1 implies that (Gi+1,Mi+1, Di+1, Ei+1) satisfies
(D6b).

Claim 2: If there exist Ai+1 and A′
i+1 such that (Ei+1,Ai+1,A

′
i+1) satisfies (D9) and (D10), then

Ei+1 satisfies (D5).
Proof of Claim 2: Since Ei satisfies (D5), every member of Ei+1,0 satisfies (D5). And for every
(S, j) ∈ Ei+1 − Ei+1,0, S ⊆ {v∗} ∪W , so |S| ≤ |W |+ 1 ≤ r, and v∗ is the unique vertex in S such
that (u, v∗) for every u ∈ S − {v∗}. So to show that Ei+1 satisfies (D5), it suffices to show that
j ∈ [h−2] for every (S, j) ∈ Ei+1− (Ei+1,0∪Ei+1,1). Since h ≥ 3, it suffices to show that j ∈ [h−2]
for every (S, j) ∈ Ei+1,2.

Let (S, j) ∈ Ei+1,2. Note that j ∈ [h − 1] since Ei satisfies (D5). And note that there exists
a non-sink vertex for (S, j) by the definition of Ei+1,2. So if there exist Ai+1 and A′

i+1 such that
(Ei+1,Ai+1,A

′
i+1) satisfies (D9) and (D10), then A′

i+1,(S,j) 6= ∅, so contracting a member ofA′
i+1,(S,j)

into a vertex and each member of Ai+1,(S,j) into a vertex creates a (K1 ∨ (k + h− j)CTj,k)-minor
in G, so G has a CTj+1,k-minor. Since G is CTh,k-minor free, j + 1 ≤ h− 1. That is, j ∈ [h− 2].
�

Claim 3: Ei+1 satisfies (D7).
Proof of Claim 3: Let (S, j) be a member of Ei with sink vS such that S−{vS} ⊆ V (Gi+1) and
Mi,vS ⊆ Mi+1,vS′ for some vS′ ∈ V (Gi+1). Let S

′ = {vS′} ∪ (NGi+1
(vS′) ∩ S − {vS}). To prove this

claim, it suffices to prove (S ′, j) ∈ Ei+1.
We first assume vS 6∈ N

≤ℓ0−1
Gi[X] [z

∗]. So vS′ = vS. Recall that vS 6∈ W by Claim 1. Since every

vertex in S−{vS} is adjacent in Gi to vS by (D4) and (D5), (iii) implies that S ⊆ V (Gi)∩V (Gi+1),
so S ′ = S and (S ′, j) ∈ Ei+1,0 ⊆ Ei+1. So we may assume vS ∈ N≤ℓ0−1

Gi[X] [z
∗]. In particular, vS′ = v∗.
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Since S − {vS} ⊆ V (Gi+1), S − {vS} ⊆ W by (iii). So S ′ − {v∗} = S ∩W and (S ′, j) ∈ Ei+1,1 (by
taking T = ∅). �

Claim 4: (Gi+1,Mi+1, Di+1, Ei+1) satisfies (D8a)-(D8h).
Proof of Claim 4: Recall that we defined qi+1 = v∗ and U+

i+1 = W . So qi+1 ∈ V (Gi+1) and
Ui+1 ⊆ U+

i+1 ⊆ V (Gi) ∩ V (Gi+1) ∩ V (G) by Claim 1.
Every vertex v in V (Gi) − V (Gi+1) with |V (Mi,v)| = 1 is in X , so (D8a) follows from (i).

And (D8b) follows from the definition of U+
i+1 and Ui+1. Note that qi+1 = v∗ 6∈ W = U+

i+1,
so (D8c) follows from (iii). Similarly, (D8d) follows from (i) and (iii). By (iii), there exists no
v′ ∈ V (Gi) with Mi,v′ ⊆ Mi+1,qi+1

such that NGi
(v′)− U+

i+1 6= ∅, so (D8e) holds. And (iii) implies
Ui+1 ∩ NGi+1

(qi+1) = Ui+1 ∩ W = Ui+1, so ((Ui+1 ∩ NGi+1
(qi+1)) ∪ {v∗}, 1) = (Ui+1 ∪ {v∗}, 1) ∈

Ei+1,3 ⊆ Ei+1, so (D8f) holds. Since |Z∗| ≥ k + h ≥ 2,
⋃

M∈Mi
V (M) 6=

⋃
M∈Mi+1

V (M), so (D8g)
holds.

So it suffices to prove (D8h). (D8ha) clearly holds. For every M ∈ Mi disjoint from all
members of Mi+1, M = Mi,v for some v ∈ N≤ℓ0−1

Gi[X] [z] with z ∈ Z∗ − {z∗}, so (D8hb) follows

from (iii). And (D8hc) follows from Claim 1; (D8hd) follows from the definition of Gi+1. By (i),
|V (Gi) − V (Gi+1)| =

∑
z∈Z∗|N

≤ℓ0−1
Gi[X] [z]| ≤ |Z∗| ·

∑ℓ0−1
j=0 dj ≤ (k + h) · dℓ0 ≤ N∗ ≤ N , so (D8he)

holds.
Let x ∈ V (Gi) ∩ V (G) −

⋃
M∈Mi+1

V (M). So x ∈ N
≤ℓ0−1
Gi[X] [z] for some z ∈ Z∗ − {z∗}, and

hence az,NG(x)∩W = 1. By the definition of Z2, az∗,NG(x)∩W = az,NG(x)∩W = 1. So there exists

x′ ∈ N≤ℓ0−1
Gi[X] [z

∗]∩V (G) ⊆ V (Mi+1,qi+1
)∩V (Gi)∩V (G) such that NG(x

′)∩W = NG(x)∩W . Since

Ui+1 ⊆ W , (D8hf) holds.
Let (S, j) ∈ Ei with V (Mi,vS) ⊆

⋃
M∈Mi

V (M) −
⋃

M∈Mi+1
V (M), where vS is the sink for

(S, j). So vS ∈ N
≤ℓ0−1
Gi[X] [z] for some z ∈ Z∗ − {z∗}. Let T = S ∩W . For every α ∈ [2|W |], let jα be

the number of vertices y in S−{vS} such that NG(y)∩W equals the α-th subset of W based on σ.
So az,T,j,j1,...,j2|W |

= 1. By the definition of Z1, az∗,T,j,j1,...,j2|W |
= 1. Hence there exists (S ′, j) ∈ Ei

such that the sink vS′ for (S ′, j) is in N≤ℓ0−1
Gi[X] [z

∗], S ′ ∩W = T , and for every α ∈ [2|W |], there are

exactly jα vertices y in S ′ − {vS′} such that NG(y) ∩W equals the α-th subset of W based on σ.
In particular, |S ′| = 1 +

∑
α∈[2|W |] jα = |S|, S ∩ V (Gi+1) − {vS} = T = S ′ ∩ V (Gi+1) − {vS′} by

(iii), and there exists a bijection ι such that (D8hg) holds. Therefore, (D8h) holds. �

Claim 5: (Gi+1,Mi+1, Di+1, Ei+1) satisfies (D8).
Proof of Claim 5: By Claim 4, it suffices to show that (Gi+1,Mi+1, Di+1, Ei+1) satisfies (D8i).
Let (S, j) ∈ Ei with Mi,v ∪Mi,vS ⊆ Mi+1,qi+1

for some v ∈ S−{vS}, where vS is the sink for (S, j).
Let C be the multiset {NG(x) ∩ Ui+1 6= ∅ : x ∈ S − ({vS} ∪ U+

i+1)}. So for every T ∈ C, there
exists xT ∈ S − ({vS} ∪ U+

i+1) = S − ({vS} ∪W ) such that T = NG(xT ) ∩ Ui+1. Note that we can
choose those xT such that xT1 6= xT2 whenever T1 and T2 are distinct members of the multiset C.
Let f be a function that maps each member T of C to a vertex in T . Then there exists a matching
in G between {f(T ) : T ∈ C} (as a set) and {xT : T ∈ C} with size |{f(T ) : T ∈ C}| (as a set).
So there exists a matching in G between {f(T ) : T ∈ C} − S ⊆ Ui+1 − S and {xT : T ∈ C} with
size |{f(T ) : T ∈ C} − S|. Since Ui+1 ∪ (S − {vS}) ⊆ V (G) ∩ V (Gi), this matching is also in Gi

by (D2). Note that {xT : T ∈ C} ⊆ S − ({vS} ∪W ) ⊆ (S − {vS}) ∩ N≤ℓ0−1
Gi[X] [z

∗] by (iii). Hence

({v∗}∪ (S ∩W )∪{f(T ) : T ∈ C}, j) = ({v∗}∪ (S ∩W )∪ ({f(T ) : T ∈ C}−S), j) ∈ Ei+1,1 ⊆ Ei+1.
So (D8ia) holds.

Let u ∈ S−({vS}∪U
+
i+1). So u ∈ S−({vS}∪W ). Let Cu be the multiset {NG(x)∩Ui+1 6= ∅ : x ∈

S−({vS, u}∪U
+
i+1)}. So for every T ∈ Cu, there exists yT ∈ S−({vS, u}∪U

+
i+1) = S−({vS, u}∪W )

such that T = NG(yT ) ∩Ui+1. Note that we can choose those yT such that yT1 6= yT2 whenever T1
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and T2 are distinct members of the multiset Cu. Assume either S ∩ U+
i+1 6= ∅ or Cu 6= ∅. Let fu be

a function that maps each member T of Cu to a vertex in T . Then there exists a matching in G

between {fu(T ) : T ∈ Cu} (as a set) and {yT : T ∈ Cu} with size |{fu(T ) : T ∈ Cu}| (as a set). Let
T ∗ be the set {fu(T ) : T ∈ Cu}− (S ∩W ). So there exists a matching in G between T ∗ ⊆ Ui+1−S

and {yT : T ∈ Cu} with size |T ∗|. Since Ui+1∪ (S−{vS}) ⊆ V (G)∩V (Gi), this matching is also in
Gi by (D2). Note that {yT : T ∈ Cu} ⊆ S−({vS, u}∪W ) ⊆ (S−{vS , u})∩N

≤ℓ0−1
Gi[X] [z

∗] by (iii). Since

either S ∩W = S ∩U+
i+1 6= ∅ or Cu 6= ∅, we know (S ∩W )∪T ∗ = (S ∩W )∪{fu(T ) : T ∈ Cu} 6= ∅.

Hence ({v∗} ∪ (S ∩W ) ∪ {fu(T ) : T ∈ Cu}, j + 1) = ({v∗} ∪ (S ∩W ) ∪ T ∗, j + 1) ∈ Ei+1,2 ⊆ Ei+1.
Therefore, (D8i) holds and hence (D8) holds. �

For every Q ∈ Ei+1,0, we know Q ∈ Ei, and we define Ai+1,Q and A′
i+1,Q to be Ai,Q and A′

i,Q,
respectively. Since (Ai,A

′
i) satisfies (D10), (D10) holds for every member of Ei+1,0.

For every Q ∈ Ei+1,1, we define the following:

• Let (SQ, jQ) be a member of Ei such that Q = ({v∗} ∪ (SQ ∩ W ) ∪ TQ, jQ), where TQ ⊆
Ui+1−SQ, vSQ

is the sink for (SQ, jQ) and is in N≤ℓ0−1
Gi[X] [z

∗], and there exists a matching MTQ

in Gi between TQ and (SQ − {vSQ
}) ∩N≤ℓ0−1

Gi[X] [z
∗] with size |TQ|.

• Let Ai+1,Q = Ai,(SQ,jQ).

• For every vertex v ∈ SQ − {vSQ
}, let Av be the member of A′

i,(SQ,jQ) such that v ∈ V (Av).

• For every vertex u ∈ TQ, let u′ be the vertex in (SQ − {vSQ
}) ∩ N≤ℓ0−1

Gi[X] [z
∗] ⊆ V (Mi+1,v∗)

matched with u in MTQ
, and let Ai+1,u = G[V (Au′) ∪ {u}].

• Let A′
i+1,Q = {Av : v ∈ SQ ∩W} ∪ {Ai+1,u : u ∈ TQ}.

Clearly, (D10) holds for every member of Ei+1,1.
For every Q ∈ Ei+1,2, we define the following:

• Let (SQ, jQ) be a member of Ei such that Q = ({v∗} ∪ (SQ ∩ W ) ∪ TQ, jQ + 1), where
TQ ⊆ Ui+1−SQ, vSQ

is the sink for (SQ, jQ) and is in N
≤ℓ0−1
Gi[X] [z

∗], and there exist uQ ∈ (SQ−

{vSQ
})∩N≤ℓ0−1

Gi[X] [z
∗] and a matching MTQ

in Gi between TQ and (SQ−{vSQ
, uQ})∩N≤ℓ0−1

Gi[X] [z
∗]

with size |TQ|.

• For every z ∈ Z∗ − {z∗}, by the definition of Z1, there exists (Sz, jQ) ∈ Ei with sink
vSz

∈ N
≤ℓ0−1
Gi[X] [z] such that Sz ∩ W = SQ ∩ W , and there exists a bijection ιz between

(SQ−{vSQ
})∩N

≤ℓ0−1
Gi[X] [z

∗] and (Sz−{vSz
})∩N

≤ℓ0−1
Gi[X] [z] such that NG(v)∩W = NG(ιz(v))∩W

for every v ∈ (SQ − {vSQ
}) ∩N≤ℓ0−1

Gi[X] [z
∗].

• Let ZQ be a subset of Z∗ − {z∗} with size k + h − jQ − 1. (Note that ZQ exists since
|Z∗| ≥ k + h and jQ ≥ 1.)

• For every z ∈ ZQ, define the following:

– For every v ∈ Sz − {vSz
}, let Az,v be the member of A′

i,(Sz ,jQ) with v ∈ V (Az,v).

– Let A(1)
i,(Sz,jQ) be a subset of Ai,(Sz,jQ) such that contracting each member of A(1)

i,(Sz,jQ)

into a vertex creates a CTjQ,k-minor.

(Note that A
(1)
i,(Sz ,jQ) exists since Ai,(Sz,jQ) satisfies (D10).)
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– Let Ai+1,z = G[V (Az,ιz(uQ)) ∪
⋃

A∈A
(1)
i,(Sz,jQ)

V (A)].

– Let A
(2)
i,(Sz,jQ) be a subset of Ai,(Sz,jQ) −A

(1)
i,(Sz,jQ) such that contracting each member of

A
(2)
i,(Sz ,jQ) into a vertex creates a kCTjQ,k-minor.

(Note that A
(2)
i,(Sz ,jQ) exists since Ai,(Sz,jQ) satisfies (D10) and jQ ∈ [h− 2] by (D5).)

– Let Ai+1,z = {Ai+1,z} ∪ A
(2)
i,(Sz,jQ).

(Note that since Ai,(Sz,jQ) and A′
i,(Sz,jQ) satisfy (D10), contracting each member of Ai+1,z

into a vertex creates a (K1 ∨ kCTjQ,k)-minor and hence a CTjQ+1,k-minor.)

• Let Ai+1,Q =
⋃

z∈ZQ
Ai+1,z.

(Note that members of Ai+1,Q are pairwise disjoint since (Ai,A
′
i) satisfies (D11). Since

|ZQ| = k + h− jQ − 1, contracting each member of Ai+1,Q into a vertex creates a (k + h −
jQ − 1)CTjQ+1,k-minor.)

• For every vertex w ∈ TQ, there exists wQ ∈ SQ − {vSQ
} matched with w in MTQ

, and we let
Ai+1,w = G[{w} ∪

⋃
z∈ZQ

V (Az,ιz(wQ))].

(Note that the definition of ιz implies that ιz(wQ) is adjacent in G to w, so Ai+1,w is con-
nected.)

• Let A′
i+1,Q = {G[V (

⋃
z∈ZQ

Az,v)] : v ∈ SQ ∩W} ∪ {Ai+1,w : w ∈ TQ}.

Since (Ai,A
′
i) satisfies (D10) and (D11), we know that (D10) holds for every member of Ei+1,2.

For the unique member ({v∗} ∪ Ui+1, 1) of Ei+1,3, define Ai+1,({v∗}∪Ui+1,1) =
{G[

⋃
v∈N

≤ℓ0−1

Gi [X]
[z]
V (Mi,v)] : z ∈ Z∗ − {z∗}}, and A′

i+1,({v∗}∪Ui+1,1)
= {G[{v}] : v ∈ Ui+1}. Clearly,

(D10) holds for ({v∗} ∪ Ui+1, 1).
Therefore, (Ei+1,Ai+1,A

′
i+1) satisfies (D9) and (D10). Hence Ei+1 satisfies (D5) by Claim 2.

Claim 6: (Ai+1,A
′
i+1) satisfies (D11).

Proof of Claim 6: Suppose to the contrary that there exist members Q1 = (S1, j1) and Q2 =
(S2, j2) of Ei+1 with distinct sinks violating (D11). Since (Ai,A

′
i) satisfies (D11), we may assume

Q1 6∈ Ei+1,0 by symmetry. Hence Q1 ∈
⋃3

α=1 Ei+1,α, so the sink of Q1 is v∗. Since Q1 and Q2

have distinct sink, Q2 ∈ Ei+1,0. In particular, by Claim 1, the sink for Q2, denoted by vQ2 , is in
V (Gi)− (W ∪

⋃
z∈Z∗ N

≤ℓ0−1
Gi[X] [z]), and S2 ∩

⋃
z∈Z∗ N

≤ℓ0−1
Gi[X] [z] = ∅.

Suppose to the contrary that Q1 ∈ Ei+1,3. Then every member of Ai+1,Q1 is contained in
G[

⋃
z∈Z∗−{z∗}

⋃
v∈N

≤ℓ0−1

Gi [X]
[z]
V (Mi,v)] ⊆ G[V (G) −

⋃
v∈V (Gi+1)

Mi+1,v] by definition. Since vQ2 ∈

V (Gi) − (W ∪
⋃

z∈Z∗ N
≤ℓ0−1
Gi[X] [z]) and Q2 ∈ Ei+1,0, V (Mi+1,vQ2

) = V (Mi,vQ2
) is disjoint from every

member of Ai+1,Q1. And V (G)−
⋃

v∈V (Gi)
V (Mi,v) is disjoint from

⋃
z∈Z∗−{z∗}

⋃
v∈N

≤ℓ0−1

Gi [X]
[z]
V (Mi,v).

By (D10), every member of Ai+1,Q2 = Ai,Q2 is contained in G[V (Mi,vQ2
)∪ (V (G)−

⋃
v∈V (Gi)

Mi,v)]
and hence is disjoint from every member of Ai+1,Q1. And every member of A′

i+1,Q2
= A′

i,Q2
is

contained in G[
⋃

v∈S2
V (Mi,v) ∪ (V (G)−

⋃
v∈V (Gi)

V (Mi,v)] (by (D10)) and hence is disjoint from

every member of Ai+1,Q1 (since S2 ∩
⋃

z∈Z∗ N
≤ℓ0−1
Gi[X] [z] = ∅). Moreover, every member of A′

i+1,Q1

consists of a vertex a′ in Ui+1 ⊆ W ⊆ V (Gi) ∩ V (Gi+1) ∩ V (G) by Claim 1, so it is disjoint
from every member of Ai+1,Q2 = Ai,Q2 by (D10) (since vQ2 6∈ W ); and it intersects an member of
A′

i+1,Q2
= A′

i,Q2
only possibly at a′ ∈ V (S1), and if it happens, a′ ∈ V (S1)∩V (S2) (since vQ2 6∈ W
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and a′ ∈ W ⊆ V (G) ∩ V (Gi) ∩ V (Gi+1) by Claim 1). So Q1 and Q2 do not violate (D11), a
contradiction.

So Q1 ∈ Ei+1,1∪Ei+1,2. Hence (SQ1, jQ1) ∈ Ei is defined; when Q1 ∈ Ei+1,2, ZQ1 and (Sz, jQ1) ∈ Ei
are defined for every z ∈ ZQ1. Note that the sinks for (SQ1, jQ1) and (Sz, jQ1) are in

⋃
z∈Z∗ N

≤ℓ0−1
Gi[X] [z]

but the sink for Q2 is not. Since (Ai,A
′
i) satisfies (D10) and (D11) and S2 ∩

⋃
z∈Z∗ N

≤ℓ0−1
Gi[X] [z] =

∅, every member of Ai+1,Q1 is disjoint from every member of Ai+1,Q2 ∪ A′
i+1,Q2

. Moreover, for
every A ∈ A′

i+1,Q1
, V (A) ⊆ W ∪

⋃
z∈Z∗

⋃
v∈N

≤ℓ0−1

Gi[X]
[z]
V (Mi,v) ∪ (V (G) −

⋃
v∈V (Gi)

V (Mi,v)) and

V (A) ∩ W = V (A) ∩ W ∩ S1 is a set with size at most 1. Hence every member of A′
i+1,Q1

is
disjoint from every member of Ai+1,Q2, and if some member A1 ∈ A′

i+1,Q1
intersects some member

A2 ∈ A′
i+1,Q2

, then V (A1)∩V (A2) ⊆ V (A1)∩V (A2)∩W ⊆ (V (A1)∩S1)∩(V (A2)∩W∩V (Gi+1)) ⊆
V (A1) ∩ S1 ∩ V (A2) ∩ S2 by Claim 1, contradicting that Q1 and Q2 are counterexamples. �

To prove this lemma, it suffices to show that (Gi+1,Mi+1, Di+1, Ei+1) satisfies (D12). Let
v ∈ V (Gi+1) such that either |V (Mi+1,v)| ≥ 2, or v is a head with respect to Di+1 or the sink for
some member of Ei+1. It suffices to show degGi+1

(v) ≤ r.
Suppose to the contrary that degGi+1

(v) > r. By (iii), degGi+1
(v∗) = |W | ≤ r − 1. So

v 6= v∗. Hence v ∈ V (Gi) ∩ V (Gi+1). In particular, degGi+1
(v) ≤ degGi

(v) and Mi,v = Mi+1,v. So
degGi

(v) > r. Since (Gi,Mi, Di, Ei) satisfies (D12), |V (Mi+1,v)| = |V (Mi,v)| = 1, v is not a head
with respect to Di, and v is not the sink for some member of Ei. Hence by the definition of Di+1,
since v 6= v∗, v is not a head with respect to Di+1. So v is a sink for some member of Ei+1. By the
definition of Ei+1, v is the sink for some member of Ei+1,0 since v 6= v∗. However, Ei+1,0 ⊆ Ei. So v

is the sink for some member of Ei, a contradiction. This proves the lemma.

Lemma 5.2. For any positive integers h ≥ 3, k, there exist positive integers r = r(h, k), d =
d(h, k), N = N(h, k) such that the following hold. Let G be a graph with no CTh,k-minor. Let i be
a positive integer. Let ((Gα,Mα, Eα, Dα,Aα,A

′
α) : α ∈ [i]) be a strong i-(G, h, k, r, d, N)-defective

elimination scheme. If |V (Gi)| > N , then there exist a graph Gi+1 with |V (Gi+1)| < |V (Gi)| and a
tuple (Gi+1,Mi+1, Ei+1, Di+1,Ai+1,A

′
i+1) such that the sequence ((Gα,Mα, Eα, Dα,Aα,A

′
α) : α ∈

[i+ 1]) is a strong (i+ 1)-(G, h, k, r, d, N)-defective elimination scheme.

Proof. Let h ≥ 3, k be positive integers. Let G be the class of CTh,k-minor-free graphs. Define
the following:

• Define r = r4.2(G), where r4.2 is the integer r mentioned in Lemma 4.2.

• Let t0 = (h− 2)(r + 1)2r−1r2
r−1

.

• Let t1 = 3r+t0.

• Let k0 = 1 + (h+ k − 1)(6t1 + 1).

• Let ℓ0 = n4.1(t1, k0, 3) + 1, where n4.1 is the integer n mentioned in Lemma 4.1.

• Let t = t5.1(h, k, r), where t5.1 is the integer t mentioned in Lemma 5.1.

• Define d = d4.2(G, t, ℓ0) + 1, where d4.2 is the integer d mentioned in Lemma 4.2.

• Let N1 = N4.2(G, t, ℓ0), where N4.2 is the integer N mentioned in Lemma 4.2.

• Let N2 = N5.1(h, k, r, d, ℓ0), where N5.1 is the integer N∗ mentioned in Lemma 5.1.
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• Define N = dℓ0 +N1 +N2.

Let G be a graph with no CTh,k-minor. Let i be a positive integer. Let ((Gα,Mα, Eα, Dα,

Aα,A
′
α) : α ∈ [i]) be a strong i-(G, h, k, r, d, N)-defective elimination scheme. Assume |V (Gi)| >

N .
By (D1) and (D2), Gi is a minor of G. So Gi is CTh,k-minor-free. That is, Gi ∈ G. Since

|V (Gi)| > N ≥ N1, by Lemma 4.2 (by taking G = Gi), there exist X,Z,W ⊆ V (Gi) with Z ⊆ X ,
|Z| = t, W ⊆ V (Gi)−X and |W | ≤ r − 1 such that

(i) every vertex in X has degree in Gi at most d,

(ii) for any distinct z, z′ in Z, the distance in Gi[X ] between z, z′ is at least 2ℓ0 − 1, and

(iii) NGi
(N≤ℓ0−1

Gi[X] [z])−X = W for every z ∈ Z.

Since |V (Gi)| > N ≥ N2, if NGi
(N≤ℓ0−1

Gi[X] [z]) ⊆ W for every z ∈ Z, then (iii) implies that

NGi
(N≤ℓ0−1

Gi[X] [z]) = W for every z ∈ Z, so we are done by Lemma 5.1, (i) and (ii).

Hence we may assume that there exists z∗ ∈ Z such that NGi
(N≤ℓ0−1

Gi[X] [z]) 6⊆ W . By (iii),

N≤ℓ0
Gi[X][z

∗] − N≤ℓ0−1
Gi[X] [z

∗] 6= ∅. So there exists a geodesic in Gi[X ] starting from z∗ with length
ℓ0 − 1. Note that this geodesic contains a subpath Pz∗ starting from z∗ on ℓ0 − 1 − 3t1 vertices,
and Pz∗ is also a geodesic in Gi[N

≤ℓ0−1
Gi[X] [z

∗]].

For every (S, j) ∈ Ei, the type of (S, j) is defined to be the sequence

(j, |S|, S ∩W, |{v ∈ S − {vS} : NGi
(v) ∩W = T}| : T ⊆ W ),

where vS is the sink for (S, j). By (D5), there are at most (h − 2) · (r + 1) · 2|W | · r2
|W |

≤
(h − 2)(r + 1)2r−1r2

r−1
≤ t0 different types for members of Ei. For every v ∈ N≤ℓ0−1

Gi[X] [z
∗], let

φ(v) = (NGi
(v) ∩W, aτ : τ is a type for members of Ei), where for every τ ,

• aτ = 0 if v is not in S for every member (S, j) of Ei with type τ ;

• aτ = 1 if v is the sink for some member (S, j) of Ei with type τ ;

• aτ = 2 otherwise.

Let Y0 be the image of φ. Note that |Y0| ≤ 2|W | · 3t0 ≤ 3r+t0 = t1. We call φ(v) the type of v.
Let H = Gi[N

≤ℓ0−1
Gi[X] [z

∗]]. Note that H is a graph such that V (H) = N≤ℓ0−1
Gi[X] [z

∗] = N≤ℓ0−1
H [z∗],

and φ is a function from N≤ℓ0−1
Gi[X] [z

∗] = V (H) to the set Y0 with size at most t1, and Pz∗ is a

geodesic in Gi[N
≤ℓ0−1
Gi[X] [z

∗]] = H on ℓ0 − 1 − 3t1 vertices. So by Lemma 4.1 (with taking G = H),

there exist a subpath P ′
z∗ of Pz∗ and a nonempty set Y ⊆ Y0 such that

(iv) for every y ∈ Y0 − Y , φ−1({y}) is disjoint from N
≤3|Y |
H [V (P ′

z∗)] = N
≤3|Y |

Gi[N
≤ℓ0−1

Gi[X]
[z∗]]

[V (P ′
z∗)], and

(v) P ′
z∗ can be partitioned into k0 disjoint subpaths P ′

z∗,1, ..., P
′
z∗,k0

such that for every α ∈ [k0]

and y ∈ Y , φ−1({y}) intersects N
≤3(|Y |−1)
H [V (P ′

z∗,α)] = N
≤3(|Y |−1)

Gi[N
≤ℓ0−1

Gi[X]
[z∗]]

[V (P ′
z∗,α)].

Note that P ′
z∗ is a subpath of Pz∗ , and Pz∗ starts at z∗ and has at most ℓ0 − 1− 3t1 vertices. So
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(vi) for every α ∈ [3t1] and for every subpath P ′′ of P ′
z∗, we have N

≤α
H [V (P ′′)] =

N
≤α

Gi[N
≤ℓ0−1

Gi[X]
[z∗]]

[V (P ′′)] = N
≤α

Gi[X][V (P ′′)] ⊆ N
≤ℓ0−1
Gi[X] [z

∗].

Let
O0 = N

≤3(|Y |−1)+1
Gi[X] [V (P ′

z∗)].

Let

O = O0 ∪ {x ∈ NGi[X](O0) : |V (Mi,x)| ≥ 2, or x is the sink for some member of Ei}.

Note that O ⊆ N
≤3|Y |−1
Gi[X] [V (P ′

z∗)] and NGi[X][O] ⊆ N
≤3|Y |
Gi[X] [V (P ′

z∗)]. So (iv), (v) and (vi) imply that

(vii) for every y ∈ Y0 − Y , φ−1({y}) is disjoint from NGi[X][O], and

(viii) P ′
z∗ can be partitioned into k0 disjoint subpaths P ′

z∗,1, ..., P
′
z∗,k0

such that for every α ∈ [k0]

and y ∈ Y , φ−1({y}) intersects O ∩N
≤3|Y |
Gi[X] [V (P ′

z∗,α)].

Define Gi+1 to be the graph obtained from Gi by contracting O into a new vertex v∗, deleting
resulting parallel edges and loops, and deleting all edges between v∗ and NGi

(O)∩X = NGi[X](O).
DefineMi+1 = {G[

⋃
v∈O V (Mi,v)]}∪(Mi−{Mi,v : v ∈ O}). Note thatMi+1,v∗ = G[

⋃
v∈O V (Mi,v)].

Since Y 6= ∅, |O| ≥ 2, so |V (Gi+1)| < |V (Gi)|. Hence (Gi+1,Mi+1) satisfies (D1) and (D3).
Since (Gi,Mi) satisfies (D2) and |V (Mi+1,v∗)| ≥ |O| ≥ 2, (Gi+1,Mi+1) satisfies (D2).

Define qi+1 = v∗. Define U+
i+1 = NGi

(O)−X .

Claim 1: The following statements hold.

• U+
i+1 = NGi

(O) ∩W and U+
i+1 ⊆ W ∩ V (Gi) ∩ V (Gi+1).

• For any v ∈ O and T ⊆ NGi
(v), T ∩W = T ∩ U+

i+1.

• For every w ∈ W , |V (Mi,w)| = 1 and w is not a head (with respect to Di) and is not the
sink for a member of Ei.

Proof of Claim 1: Since W ⊆ V (Gi) − X , U+
i+1 = NGi

(O) − X ⊇ NGi
(O) ∩ W . And since

O ⊆ N≤ℓ0−1
Gi[X] [z

∗], U+
i+1 = NGi

(O) − X ⊆ (W ∪ X) − X ⊆ W by (iii). Since U+
i+1 ⊆ NGi

(O),

U+
i+1 ⊆ NGi

(O) ∩ W . Hence U+
i+1 = NGi

(O) ∩ W . In particular, U+
i+1 ⊆ W ∩ V (Gi). Since

U+
i+1 ∩O = ∅, U+

i+1 ⊆ V (Gi) ∩ V (Gi+1). This proves the first statement of this claim.
Let v ∈ O. Let T ⊆ NGi

(v). So T ⊆ NGi
[O]. Since O ⊆ X , O ∩ W = ∅. So T ∩ W =

T ∩W −O ⊆ NGi
(O) ∩W = U+

i+1 by the first statement of this claim. Hence T ∩W ⊆ T ∩ U+
i+1.

By the first statement of this claim, U+
i+1 ⊆ W , so T ∩U+

i+1 ⊆ T ∩W . So T ∩U+
i+1 = T ∩W . This

proves the second statement of this claim.
And by (ii) and (iii), for every w ∈ W , degGi

(w) ≥ |Z| = t > r, so |V (Mi,w)| = 1 and w is not
a head (with respect to Di) and is not the sink for a member of Ei since (Gi,Mi, Di, Ei) satisfies
(D12). �

Note that U+
i+1 = NGi+1

(v∗) = NGi+1
(qi+1). Define Di+1 = {(u, v) ∈ Di : {u, v} ⊆ V (Gi) ∩

V (Gi+1)} ∪ {(u, v∗) : u ∈ U+
i+1}. Since Di satisfies (D4), Claim 1 implies that Di+1 satisfies (D4).

By possibly changing the indices, we may assume that P ′
z∗,1, ..., P

′
z∗,k0

appear in P ′
z∗ in the order

listed. Since P ′
z∗,1, ..., P

′
z∗,k0

are pairwise disjoint subpaths of a geodesic in Gi[X ], we know that
for any α, β ∈ [k0], the distance in Gi[X ] between V (P ′

z∗,α) and V (P ′
z∗,β) is at least |β − α|.
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For every α ∈ [h+k], letOα = O∩N
≤3|Y |
Gi[X] [V (P ′

z∗,1+(α−1)(6t1+1))]. Since k0 ≥ 1+(h+k−1)(6t1+1),

all Oα’s are well-defined. Since |Y | ≤ t1, we know that O1, O2, ..., Oh+k are pairwise disjoint.

Claim 2: If (S, j) is a member of Ei with sink vS such that vS ∈ O, then for every α ∈ [h + k],

• there exists a member (Sα, j) of Ei with Sα ⊆ Oα ∪ (NGi
(Oα) ∩U+

i+1), Sα ∩U+
i+1 = S ∩U+

i+1,
and vSα

∈ Oα, where vSα
is the sink for (Sα, j), and

• there exists a bijection ι(S,j),α : S − ({vS} ∪U+
i+1) → Sα − ({vSα

} ∪U+
i+1) such that for every

v ∈ S − ({vS} ∪ U+
i+1), NGi

(ι(S,j),α(v)) ∩ U+
i+1 = NGi

(v) ∩ U+
i+1.

Proof of Claim 2: Let (S, j) be a member of Ei with sink vS such that vS ∈ O. By (vii),

φ(vS) ∈ Y . Let α ∈ [h+k]. By (v) and (vi), there exists vα ∈ N
≤3(|Y |−1)
Gi[X] [V (P ′

z∗,1+(α−1)(6t1+1))] ⊆ Oα

such that φ(vα) = φ(vS). By the definition of φ, vα is the sink for some member (Sα, jα) of Ei
such that the type of (Sα, jα) equals the type of (S, j). In particular, jα = j, |Sα| = |S|, and
Sα ∩ W = S ∩ W . Since every vertex in Sα − {vα} is adjacent in Gi to vα, Sα ⊆ NGi

[vα] ⊆

N
≤3(|Y |−1)+1
Gi[X] [V (P ′

z∗,1+(α−1)(6t1+1))]∪ (NGi
[vα]−X) ⊆ Oα∪ (NGi

(Oα)−X) ⊆ Oα∪ (NGi
(Oα)∩U+

i+1).

Since vS ∈ O and S − {vS} ⊆ NGi
(vS), the second statement of Claim 1 implies that (S −

{vS})∩W = (S−{vS})∩U+
i+1. Since vS ∈ O ⊆ X , vS 6∈ W ∪U+

i+1, so S∩W = S∩U+
i+1. Similarly,

since vα ∈ Oα ⊆ O and Sα−{vα} ⊆ NGi
(vα), we have Sα∩W = Sα∩U+

i+1. Since S∩W = Sα∩W ,
we have S ∩ U+

i+1 = Sα ∩ U+
i+1.

By the definition of the type of members of Ei, for every T ⊆ W , |{v ∈ S−{vS} : NGi
(v)∩W =

T}| = |{v ∈ Sα − {vα} : NGi
(v) ∩ W = T}|. So this together with S ∩ U+

i+1 = Sα ∩ U+
i+1 imply

that there exists a bijection ι(S,j),α : S − ({vS} ∪ U+
i+1) → Sα − ({vα} ∪ U+

i+1) such that for every
v ∈ S − ({vS} ∪ U+

i+1), NGi
(v) ∩W = NGi

(ι(S,j),α(v)) ∩W . Since Sα − U+
i+1 ⊆ Oα ⊆ O, for every

v ∈ Sα − U+
i+1, NGi

(v) ∩W = NGi
(v) ∩ U+

i+1 ⊆ U+
i+1 by the second statement of Claim 1. So for

every v ∈ S − ({vS} ∪ U+
i+1), NGi

(v) ∩W = NGi
(ι(S,j),α(v)) ∩W = NGi

(ι(S,j),α(v)) ∩ U+
i+1 ⊆ U+

i+1,
and hence NGi

(v) ∩ W = NGi
(v) ∩ U+

i+1 (since U+
i+1 ⊆ W by Claim 1). Therefore, for every

v ∈ S− ({vS}∪U+
i+1), NGi

(v)∩U+
i+1 = NGi

(v)∩W = NGi
(ι(S,j),α(v))∩W = NGi

(ι(S,j),α(v))∩U+
i+1.

�

Let Ui+1 = {v ∈ U+
i+1 : degGi+1

(v) > d}. Define the following:

• Ei+1,0 = {(S, j) ∈ Ei : S ⊆ V (Gi) ∩ V (Gi+1)}.

• Ei+1,1 = {({v∗}∪(S∩U+
i+1)∪T, j) : there exists (S, j) ∈ Ei whose sink vS is in O, T ⊆ Ui+1−S,

there exists a matching in Gi between T and (S − {vS}) ∩ O with size |T |}.

• Ei+1,2 = {({v∗} ∪ (S ∩ U+
i+1) ∪ T, j + 1) : there exists (S, j) ∈ Ei whose sink vS is in O,

T ⊆ Ui+1 − S, (S ∩ U+
i+1) ∪ T 6= ∅, there exist u ∈ (S − {vS}) ∩ O and a matching in Gi

between T and (S − {vS, u}) ∩O with size |T |}.

• Ei+1,3 = {({v∗} ∪ Ui+1, 1)}.

• Ei+1 = Ei+1,0 ∪ Ei+1,1 ∪ Ei+1,2 ∪ Ei+1,3.

Claim 3: If there exist Ai+1 and A′
i+1 such that (Ei+1,Ai+1,A

′
i+1) satisfies (D9) and (D10), then

Ei+1 satisfies (D5).
Proof of Claim 3: Let (S, j) ∈ Ei+1. Since Ei satisfies (D5), every member of Ei+1,0 satisfies (D5)
by the definition of Di+1. So we may assume (S, j) ∈ Ei+1 − Ei+1,0. Then S − {v∗} ⊆ U+

i+1 ⊆ W .
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So |S| ≤ 1+ |W | ≤ r. By Claim 1, v∗ is the unique vertex v in S such that (u, v) ∈ Di+1 for every
u ∈ S − {v}. And if (S, j) 6∈ Ei+1,2, then j ∈ [h− 2] since Ei satisfies (D5).

So we may assume (S, j) ∈ Ei+1,2 and it suffices to show j ∈ [h − 2]. Hence there exists
(S ′, j−1) ∈ Ei such that S = {v∗}∪(S ′∩U+

i+1)∪T for some T ⊆ Ui+1−S ′ with (S ′∩U+
i+1)∪T 6= ∅.

In particular, S − {v∗} 6= ∅ and j ≤ (h− 2) + 1 = h− 1. If there exist Ai+1 and A′
i+1 such that

(Ai+1,A
′
i+1) satisfies (D9) and (D10), then since S − {v∗} 6= ∅ and j ≤ h − 1, contracting each

member of Ai+1,(S,j)∪A′
i+1,(S,j) into a vertex creates a (K1∨ (k+h− j)CTj,k)-minor in G, so there

exists a CTj+1,k-minor in G. Since G is CTh,k-minor-free, j + 1 ≤ h− 1. So j ∈ [h− 2]. �

Claim 4: (Gi+1,Mi+1, Di+1, Ei+1) satisfies (D6) and (D7).
Proof of Claim 4: Let v ∈ V (Gi+1) such that either |V (Mi+1,v)| ≥ 2 or v is a head with respect
to Di+1 or the sink for some member of Ei+1. If v 6= v∗, then there exists at most 1 ≤ N vertex v′

of Gi such that Mi,v′ ⊆ Mi+1,v. If v = v∗, then {v′ ∈ V (Gi) : Mi,v′ ⊆ Mi+1,v∗} = O ⊆ NGi[X][O0] ⊆

N≤ℓ0−1
Gi[X] [z

∗] which has size at most
∑ℓ0−1

α=0 dα ≤ dℓ0 ≤ N by (i). So (D6a) holds. Suppose to the

contrary that there exists u ∈ V (Gi+1) such that uv ∈ E(Gi+1), and either |V (Mi+1,u)| ≥ 2 or u is
a head with respect to Di+1 or the sink for some member of Ei+1. For x ∈ {u, v}, if x 6= v∗, then
x ∈ V (Gi)∩ V (Gi+1), so either |V (Mi,x)| = |V (Mi+1,x)| ≥ 2, or x is a head with respect to Di (by
the definition of Di+1) or the sink for some member of Ei+1,0 ⊆ Ei. So if none of u and v equals
v∗, then {u, v} ⊆ V (Gi) ∩ V (Gi+1), and uv 6∈ E(Gi) (since (Gi,Mi, Di, Ei) satisfies (D6b)), so
uv 6∈ E(Gi+1), a contradiction. Hence one of u and v equals v∗. Then the vertex x ∈ {u, v}−{v∗}
satisfies either |V (Mi,x)| = |V (Mi+1,x)| ≥ 2, or x is a head with respect to Di or the sink for some
member of Ei. But x ∈ NGi+1

(v∗) ⊆ U+
i+1 ⊆ W by the first statement of Claim 1, contradicting

the third statement of Claim 1. This shows that (Gi+1,Mi+1, Di+1, Ei+1) satisfies (D6b).
Let (S, j) ∈ Ei. Let vS be the sink for (S, j). Let vS′ be the vertex of Gi+1 such that Mi,vS ⊆

Mi+1,vS′ . Assume S − {vS} ⊆ V (Gi+1). Let S
′ = {vS′} ∪ (NGi+1

(vS′)∩ (S − {vS})). To prove that
(Gi+1,Mi+1, Ei+1) satisfies (D7), it suffices to show (S ′, j) ∈ Ei+1.

We first assume vS′ 6= v∗. Then vS′ = vS. Since S − {vS} ⊆ V (Gi+1), S ⊆ V (Gi) ∩ V (Gi+1)
and v∗ 6∈ S. So S ′ = S and (S ′, j) = (S, j) ∈ Ei+1,0 ⊆ Ei+1.

So we may assume vS′ = v∗. Then S ′ = {v∗} ∪ (NGi+1
(v∗) ∩ (S − {vS})) = {v∗} ∪ (U+

i+1 ∩ S)
and vS ∈ O. So (S ′, j) ∈ Ei+1,1 ⊆ Ei+1 (by taking T = ∅). Hence (Gi+1,Mi+1, Ei+1) satisfies (D7).
�

Recall that qi+1 = v∗.

Claim 5: (Gi+1,Mi+1, Ei+1, Di+1) satisfies (D8a)-(D8h).
Proof of Claim 5: By definition and Claim 1, Ui+1 ⊆ U+

i+1 ⊆ W ∩ V (Gi) ∩ V (Gi+1) ⊆ V (G) ∩
V (Gi) ∩ V (Gi+1). Note that V (Gi)− V (Gi+1) ⊆ O ⊆ X . So (D8a) follows from (i). And (D8b)
and (D8c) follow from the definition of Ui+1. If (S, j) ∈ Ei with Mi,vS ⊆ Mi+1,qi+1

, where vS is the
sink for (S, j), then (i) implies that {x ∈ S−{vS} : degGi

(x) > d} ⊆ NGi
(vS)−X ⊆ NGi

[O]−X =
NGi

(O)−X = U+
i+1, so (D8d) holds.

Now we prove (D8e). Let v ∈ V (G) ∩ V (Gi+1) ∩ NGi
(v′) − U+

i+1 with degGi
(v) ≤ d for some

v′ ∈ V (Gi) with Mi,v′ ⊆ Mi+1,qi+1
. Then v ∈ V (Gi+1) ∩ NGi

[O] − U+
i+1 = (V (Gi+1) ∩ NGi

[O]) −
(NGi

(O)−X) = V (Gi+1)∩NGi
(O)−(NGi

(O)−X) = V (Gi+1)∩NGi
(O)∩X ⊆ V (Gi+1)∩NGi[X](O).

Recall that NGi[X][O] ⊆ N
≤3|Y |
Gi[X] [V (P ′

z∗)] ⊆ N≤ℓ0−1
Gi[X] [z

∗]. So NGi
(v) − X ⊆ NGi

[NGi[X][O]] − X ⊆

NGi
[N≤ℓ0−1

Gi[X] [z
∗]] − X = W by (iii). In addition, by the definition of Gi+1, NGi+1

(v) ∩ V (G) ⊆

NGi
(v)∩V (Gi+1)∩V (Gi). So {x ∈ NGi+1

(v)∩V (G) : degGi+1
(x) > d} ⊆ {x ∈ NGi

(v) : degGi
(x) >

d} ⊆ NGi
(v) − X by (i). Therefore, {x ∈ NGi+1

(v) ∩ V (G) : degGi+1
(x) > d} ⊆ NGi

(v) − X ⊆
NGi

(v) ∩ W . Since v ∈ NGi[X](O), φ(v) ∈ Y by (vii). So by (viii), there exists v′′ ∈ O with
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φ(v′′) = φ(v). By the definition of φ, we have NGi
(v) ∩ W = NGi

(v′′) ∩ W ⊆ NGi
[O] ∩ W =

NGi
(O)∩W = U+

i+1 by Claim 1. So {x ∈ NGi+1
(v)∩ V (G) : degGi+1

(x) > d} ⊆ {x ∈ NGi
(v)∩W :

degGi+1
(x) > d} ⊆ {x ∈ U+

i+1 : degGi+1
(x) > d} = Ui+1. Hence (D8e) holds.

Since NGi+1
(qi+1) = U+

i+1, Ui+1 ∩ NGi+1
(qi+1) = Ui+1. So ((Ui+1 ∩ NGi+1

(qi+1)) ∪ {qi+1}, 1) =
(Ui+1 ∪ {qi+1}, 1) ∈ Ei+1,3 ⊆ Ei+1, and qi+1 is its sink. Hence (D8f) holds.

(D8ga) and (D8gb) clearly hold. Now we prove (D8gc). Let uivi be an edge of Gi such that
ui+1 6= vi+1 and ui+1vi+1 6∈ E(Gi+1), where ui+1, vi+1 are the vertices of Gi+1 withMi,ui

⊆ Mi+1,ui+1

and Mi,vi ⊆ Mi+1,vi+1
. Then the definition of Gi+1 implies that one of ui, vi is in O and the other

is in NGi
(O) ∩ X . So qi+1 = v∗ ∈ {ui+1, vi+1} and the vertex x ∈ {ui+1, vi+1} − {qi+1} is in

NGi
(O) ∩ X . Hence x ∈ V (Gi) ∩ V (Gi+1) and there exists y ∈ O such that x ∈ NGi

(y). Since
x ∈ X , (i) implies that degGi

(x) ≤ d. And x ∈ X implies x 6∈ U+
i+1. So it suffices to show x ∈ V (G)

and x is not the sink for a member of Ei. Suppose to the contrary that |V (Mi,x)| = |V (Mi+1,x)| ≥ 2
or x is the sink for some member of Ei. If y ∈ O0, then x ∈ O, a contradiction. So y ∈ O − O0.
That is, y ∈ NGi[X](O0), and either |V (Mi,y)| ≥ 2, or y is the sink for some member of Ei. Since
(Gi,Mi, Di, Ei) satisfies (D6b), xy 6∈ E(Gi), a contradiction. Hence (D8gc) holds.

Now we prove (D8gd). Let (S, j) ∈ Ei with Mi,vS ⊆ Mi+1,qi+1
, where vS is the sink for

(S, j). So vS ∈ O. By Claim 2, there exists (S ′, j) ∈ Ei with S ′ ⊆ O1 ∪ (NGi
(O1) ∩ U+

i+1),
S ′ ∩ U+

i+1 = S ∩ U+
i+1, and vS′ ∈ O1 ⊆ O, where vS′ is the sink for (S ′, j), and there exists a

bijection ι : S− ({vS}∪U+
i+1) → S ′− ({vS′}∪U+

i+1) such that NGi
(ι(v))∩U+

i+1 = NGi
(v)∩U+

i+1 for
every v ∈ S− ({vS}∪U+

i+1). So S ′−U+
i+1 ⊆ O1 ⊆ O. Hence

⋃
s∈S′−U+

i+1
Mi,s ⊆ Mi+1,qi+1

. Therefore

(D8gd) holds.
Since

⋃
M∈Mi

V (M) =
⋃

M∈Mi+1
V (M), (D8h) holds. �

Claim 6: (Gi+1,Mi+1, Ei+1, Di+1) satisfies (D8).
Proof of Claim 6: By Claim 5, it suffices to show (D8i). Let (S, j) ∈ Ei with Mi,v ∪ Mi,vS ⊆
Mi+1,qi+1

for some v ∈ S − {vS}, where vS is the sink for (S, j). So vS ∈ O. By Claim 2, there
exists (S ′, j) ∈ Ei with S ′ ⊆ O ∪ (NGi

(O) ∩ U+
i+1), S

′ ∩ U+
i+1 = S ∩ U+

i+1 and vS′ ∈ O, where vS′

is the sink for (S ′, j), and there exists a bijection ι : S − ({vS} ∪ U+
i+1) → S ′ − ({vS′} ∪ U+

i+1)
such that NGi

(ι(v)) ∩ U+
i+1 = NGi

(v) ∩ U+
i+1 for every v ∈ S − ({vS} ∪ U+

i+1). Since U+
i+1 ∪ (S −

{vS}) ∪ (S ′ − {vS′}) ⊆ V (G) ∩ V (Gi) (by (D4) and (D5)), (D2) implies that NG(ι(v)) ∩ U+
i+1 =

NGi
(ι(v)) ∩ U+

i+1 = NGi
(v) ∩ U+

i+1 = NG(v) ∩ U+
i+1 for every v ∈ S − ({vS} ∪ U+

i+1).
Let C be the multiset {NG(x) ∩ Ui+1 6= ∅ : x ∈ S − ({vS} ∪ U+

i+1)}. So for every T ∈ C, there
exists xT ∈ S − ({vS} ∪ U+

i+1) such that T = NG(xT ) ∩ Ui+1 = NGi
(ι(xT )) ∩ Ui+1. Note that we

can choose those xT such that xT1 6= xT2 for any distinct members T1, T2 of the multiset C. Let f
be a function that maps each member T of C to a vertex in T . Then there exists a matching in Gi

between {f(T ) : T ∈ C} (as a set) and {ι(xT ) : T ∈ C} with size |{f(T ) : T ∈ C}| (as a set). So
there exists a matching in Gi between {f(T ) : T ∈ C} − S ′ ⊆ Ui+1 − S ′ and {ι(xT ) : T ∈ C} with
size |{f(T ) : T ∈ C}−S ′|. Note that {ι(xT ) : T ∈ C} ⊆ S ′−({vS′}∪U+

i+1) ⊆ (S ′−{vS′})∩O. Hence
({v∗}∪(S∩U+

i+1)∪{f(T ) : T ∈ C}, j) = ({v∗}∪(S ′∩U+
i+1)∪({f(T ) : T ∈ C}−S ′), j) ∈ Ei+1,1 ⊆ Ei+1.

So (D8ia) holds.
Let u ∈ S−({vS}∪U

+
i+1). So ι(u) ∈ S ′−({vS′}∪U+

i+1) ⊆ (S ′−{vS′})∩O. Let Cu be the multiset
{NG(x)∩Ui+1 6= ∅ : x ∈ S−({vS, u}∪U+

i+1)}. So for every T ∈ Cu, there exists yT ∈ S−({vS, u}∪
U+
i+1) such that T = NG(yT )∩Ui+1 = NGi

(ι(yT ))∩Ui+1. Note that we can choose those yT such that
yT1 6= yT2 for any distinct members T1, T2 of the multiset Cu. Assume either S∩U+

i+1 6= ∅ or Cu 6= ∅.
Let fu be a function that maps each member T of Cu to a vertex in T . Then there exists a matching
in Gi between {fu(T ) : T ∈ Cu} (as a set) and {ι(yT ) : T ∈ Cu} with size |{fu(T ) : T ∈ Cu}| (as a
set). Let T ∗ be the set {fu(T ) : T ∈ Cu} − (S ′ ∩ U+

i+1). So there exists a matching in Gi between
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T ∗ ⊆ Ui+1−S ′ and {ι(yT ) : T ∈ Cu} ⊆ S ′−({vS′, ι(u)}∪U+
i+1) ⊆ (S ′−{vS′, ι(u)})∩O with size |T ∗|.

Since either S ∩U+
i+1 6= ∅ or Cu 6= ∅, we know (S ′∩U+

i+1)∪T ∗ = (S ∩U+
i+1)∪{fu(T ) : T ∈ Cu} 6= ∅.

Hence ({v∗}∪ (S∩U+
i+1)∪{fu(T ) : T ∈ Cu}, j+1) = ({v∗}∪ (S ′∩U+

i+1)∪T ∗, j+1) ∈ Ei+1,2 ⊆ Ei+1.
Therefore, (D8i) holds and hence (D8) holds. �

For every Q ∈ Ei+1,0, we know Q ∈ Ei, and we define Ai+1,Q and A′
i+1,Q to be Ai,Q and A′

i,Q,
respectively. Since (Ai,A

′
i) satisfies (D10), (D10) holds for every member of Ei+1,0.

For every Q ∈ Ei+1,1, we define the following:

• Let (SQ, jQ) be a member of Ei with vSQ
∈ O such that Q = ({v∗} ∪ (SQ ∩ U+

i+1) ∪ TQ, jQ),
where TQ ⊆ Ui+1−SQ, vSQ

is the sink for (SQ, jQ), and there exists a matching in Gi between
TQ and (SQ − {vSQ

}) ∩ O with size |TQ|.

• Let (S ′
Q, jQ) be the member (S1, j) of Ei and ι(SQ,jQ),1 be the bijection mentioned in Claim 2

when taking (S, j) = (SQ, jQ) and α = 1. Let vS′
Q
be the sink for (S ′

Q, jQ).

(Note that Claim 2 implies that SQ ∩ U+
i+1 = S ′

Q ∩ U+
i+1 and there exists a matching MTQ

in
Gi between TQ and ι(SQ,jQ),1((SQ − {vSQ

}) ∩O) with size |TQ|.)

• Let Ai+1,Q = Ai,(S′
Q
,jQ).

• For every vertex v ∈ S ′
Q − {vS′

Q
}, let Av be the member of A′

i,(S′
Q
,jQ) such that v ∈ V (Av).

• For every vertex u ∈ TQ, let u′ be the vertex in ι(S′
Q
,jQ),1((SQ − {vSQ

}) ∩ O) ⊆ O matched

with u in MTQ
, and let Ai+1,u = G[V (Au′) ∪ {u}].

• Let A′
i+1,Q = {Av : v ∈ S ′

Q ∩ U+
i+1} ∪ {Ai+1,u : u ∈ TQ}.

Clearly, (D10) holds for every member of Ei+1,1.
For every Q ∈ Ei+1,2, we define the following:

• Let (SQ, jQ) be a member of Ei with vSQ
∈ O such that Q = ({v∗}∪ (SQ∩U+

i+1)∪TQ, jQ+1),
where TQ ⊆ Ui+1 − SQ, vSQ

is the sink for (SQ, jQ), and there exist uQ ∈ (SQ − {vSQ
}) ∩ O

and a matching in Gi between TQ and (SQ − {vSQ
, uQ}) ∩O with size |TQ|.

• For every α ∈ [h+ k], let (Sα, jQ) be the member (Sα, j) of Ei and ια be the bijection ι(S,j),α
mentioned in Claim 2 when taking (S, j) = (SQ, jQ) and α = α. Let vSα

be the sink for
(Sα, jQ).

(Note that Claim 2 implies that for every α ∈ [h + k], SQ ∩ U+
i+1 = Sα ∩ U+

i+1, vSα
∈ Oα,

and there exists a matching MTQ,α in Gi between TQ and ια((SQ − {vSQ
, uQ}) ∩ O) =

Sα ∩ Oα − {vSα
, ια(uQ)} with size |TQ|.)

• For every α ∈ [h+ k − jQ − 1], define the following:

– For every v ∈ Sα − {vSα
}, let Aα,v be the member of A′

i,(Sα,jQ) with v ∈ V (Aα,v).

– Let A
(1)
i,(Sα,jQ) be a subset of Ai,(Sα,jQ) such that contracting each member of A

(1)
i,(Sα,jQ)

into a vertex creates a CTjQ,k-minor.

(Note that A
(1)
i,(Sα,jQ) exists since Ai,(Sα,jQ) satisfies (D10).)

– Let Ai+1,α = G[V (Aα,ια(uQ)) ∪
⋃

A∈A
(1)
i,(Sα,jQ)

V (A)].
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– Let A
(2)
i,(Sα,jQ) be a subset of Ai,(Sα,jQ) −A

(1)
i,(Sα,jQ) such that contracting each member of

A
(2)
i,(Sα,jQ) into a vertex creates a kCTjQ,k-minor.

(Note that A
(2)
i,(Sα,jQ) exists since Ai,(Sα,jQ) satisfies (D10) and jQ ∈ [h− 2] by (D5).)

– Let Ai+1,α = {Ai+1,α} ∪ A
(2)
i,(Sα,jQ).

(Note that since Ai,(Sα,jQ) and A′
i,(Sα,jQ) satisfy (D10), contracting each member of

Ai+1,α into a vertex creates a (K1 ∨ kCTjQ,k)-minor and hence a CTjQ+1,k-minor.)

• Let Ai+1,Q =
⋃

α∈[h+k−jQ−1]Ai+1,α.

(Note that members ofAi+1,Q are pairwise disjoint since (Ai,A
′
i) satisfies (D11) andO1, O2, ...,

Oh+k are pairwise disjoint. And contracting each member of Ai+1,Q into a vertex creates a
(k + h− jQ − 1)CTjQ+1,k-minor.)

• For every vertex w ∈ TQ, let Ai+1,w = G[{w} ∪
⋃

α∈[h+k−jQ−1] V (Aα,wα
)], where for every

α ∈ [h+ k − jQ − 1], wα is the vertex in Sα ∩Oα − {vSα
, ια(uQ)} matched with w in MTQ,α.

(Note that Ai+1,w is connected.)

• Let A′
i+1,Q = {G[V (

⋃
α∈[h+k−jQ−1] Aα,v)] : v ∈ SQ ∩ U+

i+1} ∪ {Ai+1,w : w ∈ TQ}.

Since (Ai,A
′
i) satisfies (D10) and (D11), we know that (D10) holds for every member of Ei+1,2.

For the unique member ({v∗}∪Ui+1, 1) of Ei+1,3, define Ai+1,({v∗}∪Ui+1,1) = {G[
⋃

v∈Oα
V (Mi,v)] :

α ∈ [h + k − 1]}, and A′
i+1,({v∗}∪Ui+1,1)

= {G[{v}] : v ∈ Ui+1}. By (iii), (viii) and the definition of

φ, (D10) holds for ({v∗} ∪ Ui+1, 1).
Therefore, (Ei+1,Ai+1,A

′
i+1) satisfies (D9) and (D10). Hence Ei+1 satisfies (D5) by Claim 3.

Claim 7: (Ai+1,A
′
i+1) satisfies (D11).

Proof of Claim 7: Suppose to the contrary that there exist members Q1 = (S1, j1) and Q2 =
(S2, j2) of Ei+1 with distinct sinks violating (D11). Since (Ai,A

′
i) satisfies (D11), we may assume

Q1 6∈ Ei+1,0 by symmetry. Hence Q1 ∈
⋃3

α=1 Ei+1,α, so the sink of Q1 is v∗. Since Q1 and Q2 have
distinct sinks, Q2 ∈ Ei+1,0. In particular, by the third statement of Claim 1, the sink for Q2 is in
V (Gi)− (W ∪O). This implies S2 ∩O = ∅ by the definition of O and (D6) (for (Gi,Mi, Di, Ei)).
Since (Ai,A

′
i) satisfies (D10), it is straightforward to verify thatQ1 6∈ Ei+1,3. So Q1 ∈ Ei+1,1∪Ei+1,2.

Hence (SQ1, jQ1) ∈ Ei is defined; when Q1 ∈ Ei+1,1, (S
′
Q1
, jQ1) and ι(SQ1

,jQ1
),1 are defined; when

Q1 ∈ Ei+1,2, (Sα, jQ1) and ια (for α ∈ [h + k]) are defined. Note that the sinks for (S ′
Q1
, jQ1)

and (Sα, jQ1) are in O. Since (Ai,A
′
i) satisfies (D10) and (D11), every member of Ai+1,Q1 is

disjoint from every member of Ai+1,Q2 ∪ A′
i+1,Q2

. Moreover, for every A ∈ A′
i+1,Q1

, V (A) ⊆
U+
i+1∪O∪(V (G)−

⋃
v∈V (Gi)

V (Mi,v)) and V (A)∩U+
i+1 = V (A)∩U+

i+1∩S1 is a set with size at most
1. Hence every member of A′

i+1,Q1
is disjoint from every member of Ai+1,Q2, and if some member

A1 ∈ A′
i+1,Q1

intersects some member A2 ∈ A′
i+1,Q2

, then V (A1)∩V (A2) ⊆ V (A1)∩V (A2)∩U
+
i+1 ⊆

(V (A1) ∩ S1) ∩ (V (A2) ∩ U+
i+1 ∩ V (Gi+1)) ⊆ V (A1) ∩ S1 ∩ V (A2) ∩ S2. So Q1 and Q2 do not form

a counterexample, a contradiction. �

To prove this lemma, it suffices to show that (Gi+1,Mi+1, Di+1, Ei+1) satisfies (D12). Let
v ∈ V (Gi+1) such that either |V (Mi+1,v)| ≥ 2, or v is a head with respect to Di+1 or the sink for
some member of Ei+1. It suffices to show degGi+1

(v) ≤ r.

Suppose to the contrary that degGi+1
(v) > r. By the definition of Gi+1, degGi+1

(v∗) = |U+
i+1| ≤

|W | ≤ r − 1. So v 6= v∗. Hence v ∈ V (Gi) ∩ V (Gi+1). In particular, degGi+1
(v) ≤ degGi

(v) and
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Mi,v = Mi+1,v. So degGi
(v) > r. Since (Gi,Mi, Di, Ei) satisfies (D12), |V (Mi+1,v)| = |V (Mi,v)| =

1, v is not a head with respect to Di, and v is not the sink for some member of Ei. Hence by the
definition of Di+1, since v 6= v∗, v is not a head with respect to Di+1. So v is a sink for some
member of Ei+1. By the definition of Ei+1, v is the sink for some member of Ei+1,0 since v 6= v∗.
However, Ei+1,0 ⊆ Ei. So v is the sink for some member of Ei, a contradiction. This proves the
lemma.

Lemma 5.3. For any positive integers h ≥ 3 and k, there exist positive integers r = r(h, k), d =
d(h, k), N = N(h, k) such that for every graph G with no CTh,k-minor, there exists a strong
(G, h, k, r, d, N)-defective elimination scheme.

Proof. Let h ≥ 3 and k be positive integers. Define r = r5.2(h, k), d = d5.2(h, k) and N5.2(h, k),
where r5.2, d5.2, N5.2 are the integers r, d, N mentioned in Lemma 5.2, respectively.

Let G be a graph with no CTh,k-minor. Let (G1,M1, E1, D1,A1,A
′
1) = (G, {G[{v}] : v ∈

V (G)}, ∅, ∅, ∅, ∅). So the sequence ((Gα,Mα, Eα, Dα,Aα,A
′
α) : α ∈ [1]) is a strong 1-(G, h, k, r, d, N)-

defective elimination scheme.
Suppose to the contrary that there exists no strong (G, h, k, r, d, N)-defective elimination

scheme. Then there exists the maximum positive integer i such that the sequence ((Gα,Mα, Eα, Dα,

Aα,A
′
α) : α ∈ [i]) is a strong i-(G, h, k, r, d, N)-defective elimination scheme. By Lemma 5.2 and

the maximality of i, |V (Gi)| ≤ N . For every α ∈ N − [i], define (Gα,Mα, Eα, Dα,Aα,A
′
α) =

(Gi,Mi, Ei, Di,Ai,A
′
i). Then ((Gα,Mα, Eα, Dα,Aα,A

′
α) : α ∈ N) is a strong (G, h, k, r, d, N)-

elimination scheme, a contradiction.

Theorem 5.4. For any positive integers h ≥ 3 and k, there exists a positive integer d∗ such that
every graph with no CTh,k-minor has an (h− 1)-coloring with defect d∗.

Proof. Let h ≥ 3 and k be positive integers. Let r = r5.3(h, k), d = d5.3(h, k) and N =
N5.3(h, k), where r5.3, d5.3, N5.3 are the integers r, d, N mentioned in Lemma 5.3. Define d∗ =
d3.1(d,N), where d3.1 is the integer d∗ mentioned in Lemma 3.1.

Let G be a graph with no CTh,k-minor. By Lemma 5.3, there exists a strong (G, h, k, r, d, N)-
defective elimination scheme. So there exists a (G, h, k, r, d, N)-defective elimination scheme. By
Lemma 3.1, there exists an (h− 1)-coloring of G[V (G1) ∩ V (G)] = G with defect d∗.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3: Let F be a minor-closed family. If ω∆(F) = 0, then K1 6∈ F , so F = ∅.
If ω∆(F) = 1, then K1,k 6∈ F for some integer k, so K1,k is not a minor (and hence a subgraph) of
any graph in F , so F has bounded maximum degree, and hence χ∆(F) = 1. If ω∆(F) = ∞, then
χ∆(F) = ∞. So we may assume that 2 ≤ ω∆(F) < ∞. Hence there exist a positive integer k such
that CTω∆(F)+1,k 6∈ F . So every graph in F is CTω∆(F)+1,k-minor free. Hence χ∆(F) ≤ ω∆(F) by
Theorem 5.4. �
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