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Abstract

The Chen-Lih-Wu Conjecture states that each connected graph with maximum
degree A > 3 that is not the complete graph Ka11 or the complete bipartite graph
KA A admits an equitable coloring with A colors. For planar graphs, the conjecture
has been confirmed for A > 13 by Yap and Zhang and for 9 < A < 12 by Nakprasit.
In this paper, we present a proof that confirms the conjecture for graphs embeddable
into a surface with non-negative Euler characteristic with maximum degree A > 9 and
for planar graphs with maximum degree A > 8.
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1 Introduction

For a graph G, A(G) denotes the maximum degree of G. An equitable coloring of a graph
is a proper vertex coloring such that for any two color classes V; and Vj, we have that
I|Vi| = |V;]| < 1. A graph G is equitably k-colorable if it has an equitable coloring with &
colors.

The Hajnal-Szemerédi Theorem [2] states that every graph G is equitably k-colorable for
any k > A(G)+ 1. The bound is sharp for complete graphs Ka; and for complete bipartite
graphs Ka o when A is odd. Chen, Lih and Wu [1] conjectured the following strengthening
of the Hajnal-Szemerédi Theorem.

Conjecture (Chen-Lih-Wu Conjecture [1]). If G is an r-colorable graph with A(G) < r,
then either G' has an equitable r-coloring, or r is odd and K, , C G.
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Lih and Wu [6] proved the conjecture for bipartite graphs. Chen, Lih and Wu [1] them-
selves proved the conjecture for r = 3 and for r > |V(G)|/2. Kierstead and Kostochka
proved the conjecture in (3] for r = 4 and in [4] for » > |V(G)|/4. Yap and Zhang [12]
proved that the conjecture holds for planar graphs when r > 13 and Nakprasit [7, 8] con-
firmed the conjecture for planar graphs when 9 < r < 12. These two results together can be
stated as follows.

Theorem 1 (Yap and Zhang [12] and Nakprasit [7, 8]). If r > 9 and G is a planar graph
with A(G) < r, then G has an equitable r-coloring.

Zhang [11] proved the conjecture for the wider class of 1-planar graphs (and more gener-
ally, for graphs with maximum average degree less than 8) but with the stronger restriction
on r: for r > 17.

For lower maximum degrees, Chen-Lih-Wu Conjecture was proved for planar graphs
with extra restrictions, mainly with restrictions on cycle structure. In 2008, Zhu and Bu [13]
proved that the conjecture holds for Cs-free planar graph with maximum degree A > 8. It
also holds for Cy, Cs-free planar graphs with maximum degree A > 7. In 2009, Li and Bu [5]
proved that the conjecture holds for Cy, Cs-free planar graph with maximum degree A > 6.
In 2012, Nakprasit and Nakprasit [9] proved that the conjecture holds for Cs-free planar
graphs with maximum degree A > 6, Cy-free planar graphs with maximum degree A > 7,
and planar graphs with maximum degree A > 5 and girth at least 6.

The aim of this paper is twofold. First, we present a significantly shorter proof of Theo-
rem 1. In fact, we prove it for a slightly broader class of graphs embeddable into a surface
with non-negative Euler characteristic. For simplicity, we call such graphs semi-planar.

Theorem 2. Ifr > 9 and G is a semi-planar graph with A(G) < r, then G has an equitable
r-coloring.

Our second goal is to extend Theorem 1 to planar graphs with maximum degree 8:

Theorem 3. If r > 8 and G is a planar graph with A(G) < r, then G has an equitable
r-coloring.

The structure of the paper is as follows. In the next section we introduce notation, cite
a known lemma and set up the proofs of both theorems. In Section 3 we prove the easier
Theorem 2, and in the longer Section 3 we prove Theorem 3.

2 Preliminaries and setup of proofs

Most notation used in the paper is standard. For a graph G, let A(G) denote the maximum
degree of G, 6(G) denote the minimum degree of G and 0*(G) denote the minimum degree
over non-isolated vertices in G. For a vertex subset V' C V(@) and some vertex x € V
and v € V, we use V — z to denote V' \ {z} and V + u to denote V' U {u}. For an edge
xy € E(G), G — xy denotes the graph obtained by removing zy from G. For two vertex
subsets X, Y C V(G), we use Eg(X,Y) to denote the set of edges connecting X with Y.

For a graph G, |G| denotes the number of vertices of G and ||G|| denotes the number of
edges of G.

Euler’s Formula yields the following simple claim.
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Lemma 4. (a) For each planar graph G with n > 3 vertices, |G| < 3n — 6 and 6(G) < 5.
For each semi-planar graph G with n > 3 vertices, ||G|| < 3n and §(G) < 6.

(b) For each bipartite planar graph G with n > 3 vertices, ||G|| < 2n —4 and 6(G) < 3.
For each bipartite semi-planar graph G- with n > 3 wvertices, ||G|| < 2n and 6(G) < 4.

We now show that it is sufficient to only consider graphs of order rs for some integer s.
Lemma 5. [t is enough to prove Theorems 2 and 3 for graphs F with |F| divisible by r.

Proof. Suppose the theorem holds for graphs F' with |F| divisible by r. Let G be a
semi-planar (or planar) graph with |G| =n =rs—p, where 0 <p <r. If 1 <p < 4, then set
G’ = G+ K,,. In this case, G’ remains semi-planar (or planar). By construction, |G'| = n+p
is divisible by r and A(G’) < r. So G’ has an equitable r-coloring f’. All vertices of the
added K, have different colors in f’, and hence the restriction of f’ to G is an equitable
r-coloring of G.

Suppose now p > 5. By Lemma 4(a), either G is 6-regular or G has a vertex v; of degree
at most 5. In the first case, the theorem follows from the Hajnal-Szemerédi Theorem. In
the second case, we can order the vertices of G as vq,...,v, so that for each 2 < i < n,
de—{vr,...0i 13 (V) < 6. Let G" = G — {v1,...,v,—p}. Again, G” is semi-planar (and planar if
G is planar) and |G”| = n — r + p is divisible by r, so G” has an equitable r-coloring f’. For
j=r—pr—p-—1,...,1, we color v; with color «; distinct from the colors of its colored
neighbors and from o1, j49,..., ., Since p > 5, for j > 2, v; has at most 6 colored
neighbors, and the number of already used a; is r —p — j <r —p — 2, we can find such «;
for each j > 2. For j = 1, we have d(v;) < 5 and the number of already used «; is r —p — 1.
Thus, we get an equitable r-coloring of G. O

We now describe the common setup for proofs of both Theorems 2 and 3. By Lemma 5,
it is enough to consider graphs with n = rs vertices for some s > 1. We use induction
on ||G||. If G has no edges, the claim is trivial. So, let G be an edge-minimal n-vertex
semi-planar (or planar) graph G with A(G) < r that is not equitably r-colorable. It may
have isolated vertices. Let 1 denote the set of such vertices and ng = |Vy|. Let x be a vertex
of a minimum degree in G — V; (we say that d(z) = §*(G)) and let y be any neighbor of x.
By Lemma 4(a), either d(z) < 5 or A(G) = 6. As in the proof of Lemma 5, if A(G) = 6,
then we are done by the Hajnal-Szemerédi Theorem, so we may assume d(z) < 5.

By induction hypothesis, G — xy has an equitable r-coloring, say . If vertices x and
y are in different color classes, then ¢ is also an equitable r-coloring of G. Thus, we may
assume that the color classes of G—z are Vi,...,V,, where |V| = ... = |V, | = s, [Vi| = s—1,
and y € V;. We call such (partial) colorings of G' almost equitable.

Define an auxiliary digraph H with the vertex set {V;...,V,} where a directed edge V;V;
exists if and only if some vertex v € V; has no neighbor in Vj. In order not to mix up vertices
and edges in ‘H and G, we will call the vertices in ‘H classes and edges in H arcs. We say
that v witnesses the arc V;V;, and vertex v is movable to V;. A class V; is reachable from
class V; if H contains a path from V; to V;. Naturally, a class V; is reachable from a set F
of classes, if it is reachable from at least one of classes in F. Call a class V; accessible if V)
is reachable from Vj, i.e., H contains a path from V; to V;. Let A be the set of accessible
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classes in H, and B be the set of classes not in A. Among all almost equitable colorings,
choose a coloring ¢ with maximum |.A4].

Set a = |Al, b= |B|, A=JA and B =|JB. Then a+ b =r. Also for each U € B and
each V € A, every u € U has a neighbor in V', and hence

for each U € B and each 'V € A, |Eq—(U, V)| > |U| = s. (1)

By Lemma 4(b) applied to the bipartite graph formed by the edges of G — x connecting
A with B, this yields

a-b-s<|Eg.(B,A)| <2(A| + |B|) = 2(rs — 1). 2)

For distinct classes X,Y € A, we say X blocks Y if V] is not reachable from Y in H — X.
A class in A is terminal if it blocks no any other class in A. In particular, if A = {V}}, then
Vi is terminal. Let A" be the set of terminal classes in A, A’ =J A’ and o’ = |A'|.

Let D(z) be the set of classes with no neighbors of z. Since d(x) <5, |D(z)| > r —5. If
Vi € AND(x), then H contains a V;, Vi-path, say V;,,Vi,,...,V;,, where i; = ¢ and 7, = 1.

Moving z into V;, and each witness v;; of V; Vi, to V; , along the path yields an equitable
r-coloring of G. So, D(x) C B; in particular
b=|B|>r—5. (3)

For an edge vu € Eg(A,B) with v € V € A and u € B, if Ny(u) = {v}, then we say
that u and v are solo neighbors of each other, and each of them is a solo vertex.

For v € A, let Fo(v) be the set of classes in B that do not have neighbors of v. Call a
vertex u € V; € A" ordinary if some v’ € V; — u is movable to another class in A or a < 2.

For v € A, let Q(v) denote the set of solo neighbors of v in B and let g(v) = |Q(v)].
Let Q'(v) denote the set of vertices u € Q(v) that have non-neighbors in Q(v) — u and let
¢ (v) =1Q'(v)|. We will use the following fact.

Lemma 6. Let v € V; € A" be an ordinary vertex. Let uw € Q'(v), say v € W, € B.
(a) IN(v) N W,| # 1.
(b) If Fo(v) # 0, then W; is not reachable from Fy(v).

Proof. Since u € Q'(v), there is some v’ € Q'(v) not adjacent to u, say v’ € W; € B.

Suppose first that (a) does not hold, i.e., N(v)NW; = {u}. If some v' € V; —v is movable
to another class in A or a = 1, then we let coloring ¢’ be obtained from ¢ by moving v to
W; and u to V;. Each class in A — V; remains accessible as V; is a terminal class. And by
the case, the class V; — v + u is still accessible. Moreover, now the class VVJ’ containing v’ is
also accessible with u’ becoming a witness, which contradicts the maximality of a.

If a = 2 and no v' € V; — v is movable to another class in A, then since V; € A’, i = 2
and v is the unique vertex in V5 movable to Vi. Then we consider ¢” obtained from ¢ by
moving v to V4. In this coloring, V5 — v is the small class, and v is a witness that V} 4+ v is
accessible. Moreover, both W; and W are now also accessible. This contradiction proves
(a).
The proof of (b) is similar. Moreover, the case when a = 2 and no v’ € V; — v is movable
to another class in .4 word by word repeats the previous paragraph. So suppose (b) does not
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hold and either some v € V; — v is movable to another class in A or a = 1. This means there
is Wi € Fy and H contains a directed Wy, Wj-path P. If Wj is a vertex in P distinct from
W;, then we switch the roles of u and u'; thus we assume this is not the case. By renaming
the classes in B, we may assume P = W Wy, ... . W,. For h =1,2,.... ¢ — 1, let uy be a
witness for the arc W, W, 1.

Change ¢ as follows. Move v to Wy, then for h = 1,2,...,/ — 1, move wu; from W}, to
Wii1, and finally move u to V;. Call the resulting coloring . See Figure 1. Each class in
A — V; remains accessible as Vj is a terminal class. And by the case, the class V; — v + u is
still accessible. Moreover, if 5/ # j then class W) is also accessible, and if j* = j then class
W; —u+up_q is accessible with «’ being a witness in both cases. This proves Lemma 6. O

P <0 <« 0 <0 <o

u us Uuq
c-1r-® “-r-® c-r-®
Ug U2
<-1-@® ~-1r-@
v
®-1----t---—-f--—----1 -

V; W5 W4 W3 W2 Wl

Figure 1: Obtaining 1 in the proof of Lemma 6(b), with { =5

For an arbitrary class V' € A and a vertex u € B, let ||V, u|| denote the number of edges
incident to u and a vertex in V. For each u € B and v € V € A, define the weights

1
w(v,u) = TVl and w(v) = ZweE(GMGB w(v,u). (4)

By definition,

Zvevw<v) - Zvev,ueBw(v’u> = |B| = bs. (5)

3 Proof of Theorem 2

For semi-planar GG, we provide a bound on ¢'(v) in terms of ¢(v).
Claim 3.1. If q(v) > 8, then ¢'(v) > 5. Also, if q(v) =7, then ¢'(v) > 4.

Proof of claim. Let ¢ = ¢(v) and ¢ = ¢/(v). Consider graph F' = ) U {v}
Vertices in @)'(v) are those having degree less than ¢ — 1 in F. Then |E(F)| > ( )
So, if ¢ <4 and ¢ > 8, then

[

Bz 20+ - (5) 2 46+ D =653+,

5



contradicting Lemma 4(a). If ¢ < 3 and ¢ = 7, then similarly |E(F)| > I(¢+1) -3 =
3.5(¢q+ 1) —3>3(q+ 1), a contradiction again. This proves the claim.

When r > 9, by (3), b >r —5>4; thus a < 5. If 3 <a <5, then
abs —2(rs — 1) =a(r —a)s —2rs +2 = (a — 2)rs — a*s +2 > 0,

contradicting (2). Thus, a < 2.

We now show a helpful property of the auxiliary digraph #.
Claim 3.2. The digraph H[B] has a strong component of order at least r — 2.

Proof. Since |B| > r — 2 > 7, if each strong component of H[B] has at most r — 3 vertices,
then the union U of some strong components of H has at least 3 and at most r — 3 vertices.

Suppose |[U| = m. Then for every pair (U;, W;) where U; € U and W; € B — U, either
U;W; is not an arc or WU, is not an arc in ‘H. By the construction of H, either every vertex
in W; has at least one neighbor in U;, or every vertex in U; has at least one neighbor in W;.
In both cases, |Eq_,(U;, W;)| > min{|W;|, |U;|} = s. Also by (1), |Eq—.(U;, A;)| > s for
each A; € A.

It follows that denoting U = |J;;, ¢, Ui and W = V(G) — U — x, we have

|Eg_o(UW)| > ms(r —m) >3s(r —3) =2rs+ (r — 9)s.

For r > 9 this is greater than 2(rs — 1), which contradicts Lemma 4(b) applied to the bipar-
tite graph formed by the edges of G — x connecting U with W. O

Now we can prove the theorem. Recall that 1 < a < 2.
Case 1: a = 2. Let A= {V},V5} and B = {W, ..., W,_5}. First, we show that

if some v € V5 has a solo neighbor in B, then v also has a neighbor in V. (6)

Indeed if v € V3 has a solo neighbor u € W; € B, then we consider a new coloring ¢’ obtained
from ¢ by moving v to V;. The new almost equitable coloring has the small class V5 — v,
and this class is reachable in the corresponding digraph H' from V; + v (with a witness v)
and from W; (with a witness «). This contradiction to the maximality of A in ¢ proves (6).

Since V5 € A, it contains a vertex u with no neighbors in V;. By (6), u has no solo
neighbors in B, and hence w(u) < d(u)/2 < r — 2. Since by (5), the average weight of
vertices in V5 is r — 2, this implies, that for some vy € V5 we have w(vy) > r — 2. By
definition,

w(en) < 4(w0) + 5 (1N o) N B] — aen)) = 5IN(e0) 1 B] + Sa(vo)

Again by (6), vy has a neighbor in V; and so |N(vg) N B| < r — 1. Hence, in order to have
w(vg) > 1 — 2, we need |N(vg) N Bl =7 — 1 and q(vg) > r — 2.
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Let Fy = Fo(v) is the set of classes in B that do not have neighbors of vy. By Lemma 6(a)
and Claim 3.1, among the r — 1 neighbors of vy in B, at least 4 vertices are not unique
neighbors of vy in their color classes. It follows that

4
|f0|2(r—2)—(7’—1—§):1. (7)
By Claim 3.2, every color class in B is reachable from Fy(v). But there is some u €
Q' (vo) N W where W € B, and with W reachable from Fy(v), we have a contradiction to
Lemma 6(b).

Case 2: a = 1. This case is similar to Case 1, but more complicated. We may assume
A={Vi} and B={Wy,..,W,_1}. Since |V}| = s — 1, by (5), the average weight of a vertex
in V] is (T 1) > r — 1. Fix a vertex vy € V; with w(vy) > r — 1. For this we need d(vy) = r
and q(vo) 2 r — 1. By Claim 3.1, ¢’(vg) > 5.

Recall Fy as in Case 1. By Lemma 6(a) and Claim 3.1, among the r neighbors of vy in B,
at least 5 vertices are not unique neighbors of vy in their color classes. So, similarly to (7),

we get
Rz e-0-0- |5[-2 Q

By Claim 3.2 and (8), we have the following cases.

Case 2.1: Every color class in B is reachable from Fy. There is some u € Q'(vg) N W
where W € B, and with W reachable from Fy, we have a contradiction to Lemma 6(b).

Case 2.2: Exactly one color class in B, say W,_; is not reachable from Fy. If there is
u € Q' (vg) "W where W € B\ {W,_1}, then we again have a contradiction to Lemma 6(b).
So, assume )'(vy) € W,_;. Consider the following new weight function w’.

For each u € B — W,._; and v € Vj,define the welght w (v,u) = w(v,u) = HV o> but for

uweW,_; and v eV welet w'(v,u) = sw(v,u) = 2HV 7+ Then for each v € V1, define

/ _ /
v (U> o ZUUEE(G):UEB w (U’ U)

By definition,

Zvevl w'(v) = Zvévl,ueB w'(v,u) = (r — 1.5)s. (9)

Since |Vi| = s — 1, the average new weight of a vertex in V; is % > r — 1.5. Fix
a vertex v € V; with w'(v') > r — 1.5. Since @'(vg) € W,_; and ¢'(vy) > 5, we have
w'(vg) < (q(vo) — ¢'(v0)) + 3(r — q(vo) + ¢'(vo)) < 7 —2.5. Thus v/ # vo. Since a =1, v/ is
ordinary.

By Lemma 3.2, we may assume the following:
For all Wi, W; such that 1 < 1,5 <r —2, H has a W;, W;-path. (10)

Let Q(v') = Q(v')—=W,_y. If |Q(v')| = m < r—3, then w'(v/) < m+3(r—m) <r—3+3 a
contradiction. Thus |Q(v')] > r—2 > 7. So, by Claim 3.1, |Q'(v)| > 4. Since by Lemma 6(a),
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among the r neighbors of v' in B, at least 4 vertices are not unique neighbors of v’ in their
color classes, similar to (7), |Fo(v')| > 1. Choose a smallest m such that W,, € Fo(v').

Case 2.2.1: 1 < m < r — 2. If some 4 vertices in Q'(v') are in W,_;, then w'(v') <
r—4(1/2) = r — 2, a contradiction. Thus some v € @'(v’) is not in W,_;. Say v € W, €
B — Fo(v'). Then by Lemma 6(b), W; is not reachable from W,,, but this is a contradiction
to (10).

Case 2.2.2: m = r—1. By the minimality of m and by Lemma 6(a), in this case ¢'(v") = 4,
and these four vertices are in exactly two color classes. Since q(v') > r —2 > 7, there is
2o € Q(v') —Q'(v"). This z is adjacent to v’ and to at least r — 3 vertices in Q(v'), and hence
has at most 2 neighbors in W, _;. Recall that at least 5 vertices in Q'(vy), say z1, ..., 25, are
in W,_1. So, we may assume that zy is not adjacent to z1, zo and z3.

By (8), we may assume that vy has no neighbors in Wj. Let W (z) be the class containing
2. By (10), H has a Wy, W(zo)-path, say Wiy, W, ..., W,, where W, = W(zy). For j =
1,2,...,¢0 —1, let u; be a witness for the arc W;W;,;.

Consider a new coloring ¢ obtained as follows. Move v’ to W,._1, then z; to V; — v/, then
vy to Wi, then for j =1,2,...,¢ -1, move u; from W; to W;,;, and finally move 2, to V;.
Since zpz1 ¢ E(G) and v" has no neighbors in W,_y, ¢’ is an almost equitable coloring of
G — x. But now the class W,_; — z; + v’ is accessible with a witness z,, contradicting the
maximality of a. O

4 Proof of Theorem 3

By Theorem 2, it is enough to consider the case r = 8. Since G is planar, we can give a
better bound on ¢/(v) in terms of ¢(v).

Claim 4.1. If q(v) > 5, then ¢'(v) > q(v) — 1.

Proof. Assume that ¢'(v) < g(v) — 2. Then there are two solo neighbors wu;, us of v adjacent
to all other vertices in Q(v). In particular, G' contains K3 4(,)—2 with parts {v,u;,us} and
Q(v) — {uy, us}, a contradiction to planarity of G. O

We now prove an analogue of Claim 3.2 on strong components of H.

Claim 4.2. Suppose a = |A| < 4.

(i) No union of some strong components of H has exactly 4 vertices.

(ii) Digraph H either has a strong component of size at least 5, or has two strong com-
ponents of size 3 and one strong component of size 2.

Proof. Suppose (i) does not hold, and the union of some strong components of H con-
sists of exactly 4 classes, say this union is U = {Uy,U,, U3, Us}. Let W = V(H) —U =
{W1, Wy, W5, Wy}. Then as in the proof of Claim 3.2, |Eq(U;, W;)| > min{|W;|, |U;|}. With-
out loss of generality, assume that |U;| = |Vi| = s — 1. Denoting U = U?:1 U; and
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W = Ujle W;, we have

4
Eq(U.W)| = [E(Ur,W)| + 3 |Eg(Us, W)| = 4(s — 1) + 125 = 165 — 4 > 2(8s — 1) — 4,

=2

contradicting Lemma 4(b). Thus (i) holds.

Let the sizes of the strong components of H be ay,...,a,, and a; > as > ... > a,,. Then
a; + ...+ a, = 8. If (ii) does not hold, then a; < 4. Moreover, by (i), a; < 3 and no sums
of several a; equal to 4. This is possible only if a; = ay =3 and az3 =2. O

Notice that by the way we define A and B, each strong component in H should be
contained in either A or B.

With r = 8, by (3) we have b > 3. So a =r — b < 5. By Claim 4.2, a = 4 would lead to
a contradiction. Thus it suffices to consider the cases when a = 1,2,3 and 5.

4.1 Proof of the case a =1

Recall the weight functions w(v,u) and w(v) defined by (4). By (5), with b =r —a =7 and
|A| = |Vi| = s—1, there is some vy € V; with d(vy) > w(vg) > 7s/(s—1) > 7. Thus d(vy) = 8.
Note that N(vg) C B. If g(vg) < 6, then w(vg) < q(vo) 4 (d(ve) — q(vg))/2 = 44 q(vo) /2 < T,
a contradiction, so q(vg) > 7 and ¢'(vg) > 6.

Let Fy denote the set of classes in B that do not have neighbors of vy, F denote the set
of classes reachable in H from Fy, f = |F| and F' = |JF. Notice that every color class V; is
trivially reachable from itself in #, so Fy C F. By Lemma 6(a) with ¢'(vg) > 6, at least 6
vertices in N(vg) are not unique neighbors of vy in their color classes. It follows that

T2 f2RIZ -1~ (r-g5) =2 (11)

Case 1.1: f =2, say F = {5, V3}. In this case, by (11), F = Fy. Then ¢'(vy) = 6 and
there are three classes Vg, V7, Vg such that Q'(vg) = N(vg) N (Vs U V7 U Vg). Specifically, by
Lemma 6(a), we get |N(vg) NV;| = |Q'(vo)NV;| = 2 for i € {6,7,8}. Since q(vg) > 7 > ¢'(vo),
some vertex v' € Q(vg) is adjacent to all of Q'(vp).

Let N(vg) N Vg = {w,w'}. Consider the coloring ¢” of G — = obtained from ¢ by
moving vp into Vs and moving w and w’ into Vi — vg. Denote V] = (V] — vp) U {w,w'} and
V§ = (Vs — {w,w'}) U{ve}. If z is not adjacent to Vg, then we extend ¢” to G by moving
x into Vg. This extension is an equitable coloring of G as |V/| = |Vg U {x}| = s while other
color classes remain unchanged. Thus we may assume that = has a neighbor ¢’ in V§.

Note that ¢” is an almost equitable coloring of G — z with the small class V{. By the
maximality of a, every vertex in V(G) — V§ has a neighbor in V§. Thus

[Ec(Vs, Vi)l 2 |Vil=s  forallie[7]—{1}. (12)

Now we count the edges between X = ViUVRUF and Y = V(G)—x—X = V;UV5UVUVA.
Since @ = 1 and f = 2, for color classes F; € F and B; € B\ F, there is no edge of the form
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F;B; or B;V; in ‘H. Thus
|[Ec(VAUFE)Y)| > |Eq(V1,Y)| + |Eq(F,Y)| > 4s + 8s = 12s. (13)
Further notice that
|Eq(Vs,Y) N Eq(V1,Y)| = [Ec(vo, N(v) — {w,w'})| = 6, (14)
and that
|EG(U,7 {w7 w/}) N (EG(VSI’ Y) U EG(VYMY)” = 0.
Thus by (12), we get

[Ec(Ve, V)| = [Ea(Vs, Y)|=[Ea(vo, N(v) = {w, w})|+[Ea(t, {w, w'})] > 4s—=6+2 = 4s—4.
Combining this with (13), we obtain
|E(X,Y)| > 125 +4s —4 =165 — 4 > 2(8s — 1) — 4,

a contradiction to Lemma 4(b).

Case 1.2: f € {3,4}. In this case we do not have a strong component of size at least 5
in H, and V; forms a strong component of size 1 by itself. Then we have a contradiction to
Claim 4.2.

Case 1.3: f =5. Let B—F = {V,,V3} and C = V5, U V3. Similarly to Case 2.2 in
Section 3, we have Q'(vg) C C. Consider the following new weight function w’.
For each w € B\ C = F and v € Vi, define w'(v,u) = w(v,u) = HTlull’ but for u € C

and v € Vi, let w'(v,u) = %w(v,u) = . For each v € V}, define

_1
2[[Va,ull

/ _ /
v (U) - ZU’UEE(G):UEB w (U’ u)

By definition, >y, w'(v) = >, vy wep W' (v, u) = 6s.

Since |Vj| = s — 1, the average new weight of a vertex in Vj is 6s/(s — 1) > 6. Pick a
vertex v' € Vi with w/(v") > 6. Let Q1(v') = Q(v') N F and ¢;(v") = |Q1(v")|. By definition,
for u € Q(v') — Q1 ('), w'(v',u) < 5. Thus

q1(v')
2 )

6 <w'(v) <q)+ %(8 —q(v) =4+

so q1(v") > 5. Denote by Q) (v") the set of vertices u € @Q1(v") that have non-neighbors in
@Q1(v') —w and ¢ (v') = |@y(v)].

Case 1.3.1: |[N(v') N C| > 1. Suppose first that every class in F has a neighbor of
v'. Let F'(v') denote the set of classes in F that contain vertices in @Q}(v’) and no other
neighbors of v'. Since ¢(v') > ¢ (v') > 5, repeating the argument of Claim 4.1, we get
¢ (V") > q1(v') = 1. So since [IN(V' )N F| <7, |F'(v)] > 2. By Lemma 6(a), each class in
F'(v') has at least two vertices from @} (v'). If each of them has at least 3 such vertices, then
N(@')N F has at least 3|F'(v")| 4+ (5 — | F'(v")|) = 2|F' (V)| + 5 vertices. But this contradicts
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the fact that |[N(v') N F| < 7 and |F'(v')| > 2. Thus, some color class Vg C F satisfies
Ve n Q1 (v)] = [Va N N(V)] = 2, say Vs N Q' (v') = {2, 2},

Similarly to Case 1.1, we consider a coloring ¢” of G —x obtained from ¢ by moving v’ into
Vs and moving z and 2z’ into V; —v. Denote V] = (Vi—0v")U{z, 2’} and V§ = (Vz—{z, 2’} )U{v'}.
Asin Case 1.1, ¢” is an equitable coloring of G—xz with the small class V{. By the maximality
of a, every vertex in V(G) — V{ has a neighbor in V{. Thus (12) holds again.

Now we count the edges between X = ViUVzUC and Y = V(G)—x—X = V;UV5UVUVA.
Similarly to (13), we get

|[Ec(ViUC,Y)| > 12s.

As v’ has a neighbor in C, |[N(v) N F| < 7. So similarly to (14), we have
|Ea(Vs,Y) N Ec(V1,Y)| = [Ec(v', (N(v) N F) = {z,2'})| < 5.

Hence
|Ea(Vs,Y)| > |Ea(Vg,Y) — Eg(V1,Y)| > 45 — 5.

Therefore,
|[Ec(ViUCUVg,Y)| > 16s —5 > 2(8s — 1) — 4,

a contradiction to Lemma 4(b).

Thus, we may assume that some class U € F contains no neighbors of ¢v’. Since a = 1,
by Claim 4.2, H has a strong component H; of size at least 5. Since H has no edges from
F to V1, V5 or V3, the vertex set of H; is F. Hence every class in F is reachable from U.
In particular, there is some vertex u € @)}(v’) that is contained in some class V; and Vj is
reachable from U. However, as a < 2, v’ is ordinary and this contradicts Lemma 6(b).

Case 1.3.2: |[N(v') N C| = 0. Using the argument of Claim 4.1, we can show that as

a1 (Ul) Z 57

() =1 () Z ¢ () - 1.
So, there is at most one class in F containing the vertex from @Q;(v’) \ Q7 (v") (if exists), at
most 3 classes containing vertices from N (v')\ Q1(v’), and hence there is a class Vg € F with
Vs (N() = Q1(v)) = 0.

If Vg has no neighbors of v’ at all, then we can denote the class as U and apply the
argument at the end of Case 1.3.1 again. Otherwise, by Lemma 6(a), V5 has at least two
vertices from Q] (v'), say {wy,wy} C Ve N QL (V).

Recall that ¢’(v) > 6. Without loss of generality, assume that {vi,ve,v3} C Vo N Q' (v).
Since G is planar, it is K3 3-free, so by symmetry we can assume that w; and v; are not
adjacent in G. Take W, € Fy C F. By Claim 4.2, H contains a Wi, Vg-path P. Let
P =W, Wy, ...,W, where Wy, = Vg. For j =1,2,...,¢ —1, let u; be a witness for the arc
W;Wii1.

Change ¢ as follows. Move vy to Wy, then for j = 1,2,...,¢ — 1, move u; from W; to
W41, move u to Vo, move vy to V4 and finally move w; to Vi. Class Vi — {vg, u} + {v1, w1}
remains accessible, but now V5 — v; 4+ u is also accessible witnessed by vy, contradicting the
maximality of a.

Case 1.4: f = 6. Similarly to the argument of Case 2.1 in Section 3, suppose B—F = V5.
Then Q' (v) C V,. We pick two arbitrary sets X, Xy € F. Let X be the collection of classes
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in H reachable from X; and X5. Then 2 < |X| < 6, since both V] and V5 are not reachable
from X; and X,. Consider these cases.

Case 1.4.1: 2 < |X| < 4. As in Case 1.2, we do not have a strong component of size
at least 5 in H, and V; must form a strong component of size 1 by itself. Then we have a
contradiction to Claim 4.2.

Case 1.4.2: |X| =5. Assume that V3 € F\ X. Since V; forms a strong component in H,
by Claim 4.2, H[X] is strongly connected.
As in Case 1.3, let C' = Vo, U V3. Let w'(v,u) = w(v,u) = 7o for each u € B\ C and

Vil
v € Vi, but for u € C' and v € Vi, let w'(v,u) = %w(v,u) = . For each v € V1, define

L
2[[Vi,ull

/ o /
v (U> N ZUUGE(G):UEB w (U’ ’LL)

By definition }_ i, w'(v) = >~ oy, wep W' (v, u) = 6s.

Since V]| = s — 1, the average new weight of a vertex in V; is 6s/(s — 1) > 6. Pick vertex
v' € Vi with w'(v’) > 6. We claim that we can repeat the argument from Case 1.3 with v’
and C' defined identically. Thus, both |[N(v) N C| > 1 and |N(v') N C| = 0 would lead to a
contradiction.

Case 1.4.8: |X| = 6. Since X7, X5 were picked arbitrarily,
H[F] is strongly connected. (15)

We again use the function w(v,u) = W defined by (4). For each v € Vi, define
w(v,u).

By definition ) . we(v) = 3° ey wer\vy W(v,u) = 6s. Since a < 2, u is ordinary.

Since |V1| = s — 1, the average weight of a vertex in Vj is 6s/(s — 1) > 6. Pick vertex
u € Vi with wg(u) > 6. Notice that wg(vg) < [N (vo) \ Q' (vo)] < 2, so u and vy are distinct.
Let Qg(u) = Q(u)N(F\V3) and gs(u) = |Qg(u)|. Denote Qf(u) the set of vertices w € Qg(u)
that have non-neighbors in Qf(u) — w.

If [N(u) N V3| > 1, then gg(u) > 6. By Claim 4.1, there is at most 1 class in F containing
vertex from Qg(u) \ Q(u), and at most 1 class containing vertices from N(u)\ Qg(u). Thus
by Lemma 6(a), |Fo(u)| > 2. Pick z € Qf(u) and the color class of z is W (z). Then by (15),
W (z) is reachable from Fy(u), but this is a contradiction to Lemma 6(b).

If [N(u) N V2| =0, then gg(u) > 5. Since G is planar, it is Kj3-free. Then there is some
u' € Qg(u) that is not adjacent to some v; € Vo N Q'(v). Let the color class of u' be U'.
Take Wy € Fy C F. By (15), H contains a Wi, U’-path P. Let P = Wy, W, ..., W, where
Wy=U'" For j=1,2,...,0 —1, let u; be a witness for the arc W;W, ;.

Change ¢ as follows. Move vy to W, then for j = 1,2,...,¢ — 1, move u; from W; to
W41, move u to Vo, move vy to V4 and finally v’ to V4. Class Vi — {vg, u} + {v1, %'} remains
accessible, but now V5 — vy + u is also accessible, witnessed by some vy € Vo N Q' (v) distinct
from v;. This contradicts the maximality of a.

Case 1.5: f = 7. There is some u € Q'(vg) N W where W € B = F. But with W
reachable from Fj, we have a contradiction to Lemma 6(b).

We (U> - ZU’UGE(G):UEF\Vg
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4.2 Proof of the case a =2

Let A = {V},V4}. For each u € B and v € V5, let w(v,u) = ||V1uH' Then for each v € V5, let

2 (U) - ZU’UEE(G):UGB w<u’ ’U).

By definition » 0 oy, w2 (v) = 37 v, wep w(v, u) = 6s.

There is a movable vertex v € V3, and by (6), v has no solo neighbors in B. So
w(v') < 8-5 = 4. Then there is a vertex vy € Vo with ws(vg) > 6. Notice that such vy should
not be movable in A, so |N(vg) N B| < 7. To have wq(vg) > 6, we need q(vy) = |Q(vo)| > 6.
For each class U € B, by Lemma 6(a), if |Q'(vo) NU| # 0, then |@Q'(vo) NU| > 2. Thus there
are distinct color classes Uy, Uy € Fo(vg). Let U be the collection of classes in B reachable
from Fo(vg). Then as a = 2, 2 < [U]| < 6. If U] = 2, then |AUU| = 4, contradicting
Claim 4.2(i). For the same reason, || # 4. The remaining cases are as follows.

Case 2.1: |U| = 3, say U = {U;,Us,Us}. Let U = JU, W = B\U = {W,, Wy, W5}
and W = |JW. For i = 1,2, let M; denote the set of vertices in V; movable to V,_;. If
my > my + 2, we move a vertex from M, to V;, and relabel V; as Vi and V; as V. Then
there are my — 1 vertices movable from V{ to VJ and m; + 1 movable from Vj to V/. So, we
may assume

me < my + 1. (16)

Since no vertex in U; is movable to W for 1 <4,5 <3,
|Ec(U,W)| = [U|[W]s = 9s. (17)
Suppose that there are ks isolated vertices in V5. Since d(x) = §*(G) > 2,
|Eq(Ms, B)| > 2(mg — ka).
By the symmetry between U and VW, we can assume
|Eq(My,U)| > my — k.
If for every vertex z € U, |[N(z) N (Vo \ Mz)| > 1, then
|Ba(Va, U)| = [Ba(Va \ Ma, U)] + | E(Ma,U)| > 35 +msz — k. (18)

Otherwise there is a vertex z € U with |N(2) N (V,\ Ms)| = 0. Since z is not movable to
V5, it is adjacent to some vertices in M. If there is any v; € M; that is adjacent to y and
vy € M, that is not adjacent to z, then we can switch v; and vy to increase |N(z) N Ms|.
When |N(z) N M| is maximized in this way, we either have My C N(z) or [N (z) N Ma| < mq
and |N(z) N M;| = 0. In the latter case, we can switch N(z) N M,y with equal number of
vertices in M since mo < my + 1. The switched vertices remain movable to the other class.
However, z would become movable to V5 , since z has no neighbor in V5 after the switch, a
contradiction to the maximality of a. So My C N(z), and hence |N(z) N My| = mq. Let Z
be the collection of all such z € U that |[N(z) N (Vo \ M2)| = 0 and |[N(2) N My| = my. If
k =|Z|, then
|Eq(Va, U)| > 3s — k + kma, (19)
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where k,my > 1.

Now we count the edges between Vo U W and V) U U, with ks isolated vertices in V5
removed, so there should be 8s — 1 — ko vertices. When k = 0, we use the bounds (17), (18),
|Eq(Va, V1)| > s —mg and |Eq(W, V1)| > 3s to derive that

|Ec(V2 UW,ViUU)| = |Ec(Va UW,U)| + |Eg(Va U W, 1))
> (9s4+3s+mg — ko) + (3s +5—mgy) =165 — kg > 2(8s — 1 — ko) —
When k£ > 1, we use the bound (19) instead of (18):
|Ec(VaUW, Vi UU)| = |[Ec(V2UW,U)| + |Ea(V2 UW, Vi)

> (9s+3s — kg + kmo) + (3s + s —mg) > 165 — ko > 2(8s — 1 — k) — 4.
In both cases we get a contradiction to Lemma 4(b).

Case 2.2: |[U| = 5. Denote {V3} =B\U. We Should have Q)'(vg) C V3. Consider a new
weight function wj where wj(v,u) = wy(v,u) = for v € V4 and v € B\ V3, but for

u € Vs, wh(v,u) = For each v € V4, define

IIV V2 ,ull

1
2[|[Va,ul]”

/ _ /
’LUQ(’U) - ZU’UEE(G):UEB MQ(U, U)

By definition Y .y, wh(v) = 3 vy wep Wh(v, u) = 4s. Note that wh(vg) < 5-3+2 =
Hence there is some u € V3 — vy with wh(u) > 5. Then |Q(u) \ V3] > 5, so ]N( n
and by Claim 4.1, ¢'(u) > q(u) — 1.

Case 2.2.1: |N(u)NUs| = 0 for some Us € U. We have 2 classes V7, V; not reachable from
the other 6 classes and class V3 not reachable from the remaining 5 classes. So, {V3} forms
a strong component in H. Hence by Claim 4.2, H(U) is strongly connected. Take some
z € Q'(u)\ V3 with color class W (z). Then in particular W (z) is reachable from Fy(vy), but
this is a contradiction to Lemma 6(b).

Case 2.2.2: IN(u) NU| > 1 for every U € U. As [N(u) \ V1| <7, |Q(u) \ V5] > 5 and
Q' (u) \ V3| > [Q(u) \ V3] —1 > 4, at most 3 classes in U contain vertices in N(u) \ Q'(u).
So, by Lemma 6(a), some two classes in U contain at least two vertices in @)’(u) each; thus
at least 4 together. For this to happen, we need |N(u)\ Vi| = 7, |Q(u) N V3] = 0 and
Qu)\ Q' (u) # 0, say z € Q(u) \ Q' (v'). Note that |[N(z) N (B\ V3)| > 4, and z is adjacent
to u and some vertex in V; by definition. Thus |N(2)NQ'(v)| < 2, so there are vy, vy € Q'(v)
that are not adjacent to z. Let the color class of z be W(z). Pick U; € Fo(vy). Then
there is a Uy, W(z) path P. Let P = Wy, Ws, ..., W, where Wy = Uy, W, = W(z). For
j=1,2,...,0—1,let u; be a witness for the arc W,;W;,;.

Now we change ¢ as follows. Move vy to Uy, then for j = 1,2,...,¢ — 1, move u; from
W; to W41, move z and v; to Vs, and finally u to V3. Now Vo — {vg, u} + {v1, 2} remains
accessible as both vy and u are not movable, but now in addition V3 — v; + u becomes
accessible with witness vq, a contradiction to maximality of a.

Case 2.3: |U| = 6. As q(vg) > 6, by Claim 4.1, there are z € Q'(vy) with color class
W (z). By the case W(z) is reachable from Fy(vg), but this contradicts Lemma 6(b).

l\DI@

<
i

Vi
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4.3 Proof of the case a = 3
4.3.1 Setup

Let A = {‘/1,‘/2,‘/3}, B = {Wl, ey W5}

We first show that V5 and V3 can be chosen to be terminal classes. Assume not, say V5
blocks V3. Then there is a vertex vy € V5 movable to V; and a vertex v € V3 movable to V5.
We move vy to Vi, so V5 becomes the smaller class. Notice that vy is movable from V] + v,
to Vo — vy and v3 remains movable from V3 to V5 — v5. So in the new H, both V; + vy and
V3 are terminal and |Va — v9| = s — 1 while |V} + v5] = s. Thus, we can assume that both V5
and V3 are terminal classes.

Lemma 7. For 2 < j < 3, each solo vertex v € V; has neighbors in Vy and Vs_;, and thus
1S ordinary.

Proof. Since both V, and V3 are terminal classes, without loss of generality we can assume
that there is a movable v € V5 that has a solo neighbor u € W(u) € B, and v € V3 witnesses
the directed edge V3V; in H.

If v is movable to V3, then we move v’ to V4 and v to V3. In the new coloring ¢, Vo — v as
the smaller class, V3 —v'+wv and W (u) are accessible with regard to V5 —v. No other class in
B is accessible otherwise we get a larger a. V4 +v" should not be in a strong component with
classes other in H since V; is not. However, if V} 4+ ¢’ can reach V5 — v, we also get a larger
a. Thus Vi + v must be in a strong component by itself in the auxiliary digraph regarding
the new coloring, but this contradicts Claim 4.2 as we would have no strong component of
size 5 and one strong component of size 1.

If v is movable to V7, then we move v to V;. Now we take V5 — v as the smaller class, then
Vi and W (u) are accessible with regard to V5 — v. Again, no other class in B is accessible
otherwise we get a larger a. V3 would be in a strong component in the auxiliary digraph
regarding the new coloring, but this contradicts Claim 4.2 as we would have no strong com-
ponent of size 5 and one strong component of size 1. O

Denote the size of a largest strong component of H contained in B by by. By Claim 4.2,
either by = 3 or by = 5.

Case 3.1: by = 3. By Claim 4.2, we may assume that the vertex sets of strong com-
ponents of H contained in B are By = {W;, W} and By = {W3, Wy, W5}. Recall that V;
denotes the set of isolated vertices in GG, and ng = |Vj|. By the definition of B, V5 C A. Let
ng = Vo — V.

Consider the following discharging procedure DP.

At the beginning, each edge of G — x has charge 1, so the sum of all charges is |F(G —z)].
Then each edge e = uv € E(G — x) shares its charge among its ends according to the rules
below.

(R1) if v € V4, then the edge sends all charge to u;

(R2) if v € A — V; and wu is its solo neighbor in B, then the e sends all charge to u;

(R3) in all other cases, e sends 1 to each endpoint.
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So, denoting the charge of a vertex v € V(G) by ch(v), we have
ZUEV(G) ch(v) = |E(G — )| (20)

If a non-isolated vertex v € A — V] has a solo neighbor in B, then by Lemma 7 it has a
neighbor in each of the other two classes in A, thus by rules (R2) and (R3) its charge is at
least 1 +1 = 2. If this non-isolated v € A — V} has no solo neighbors, then again by (R3) or
(R2), v receives charge at least 5 from each incident edge, and hence ch(v) > 2.

Each vertex u € B receives at least 3 from the edges connecting u with A. Since B; and
By are vertex sets of disjoint strong components of H, at least s edges connect any class in
By with any class in By. Hence the vertices of B receive total charge at least 6s from these
edges. Thus,

3 3
> —1=n).Z . _ 2 oy
ZveV(G) ch(v) > (2s — 1 —ny) 5 + 5534 6s = 24s — ny 5 > 3(8s —1—ng) — 6.

Together with (20), this contradicts Lemma 4(b).

Case 3.2: by = 5. For each u € B and v € V,, define the weight w3(v,u) = ==. Then
for each v € V5, define

’wg(U) - Zu'vGE(G):uEB ’11)3<U, U)

By definition, oy, w3(v) = 3~ cv, uep wa(v, u) = 5s.

Since V5 is accessible, there is some v € V5 movable to Vi. Then by Lemma 7, v has no
solo neighbor, so ws(v) < 8- 3 = 4. Thus there is some v € V5 with ws(v') > 5.

Now we know that v’ has a neighbor in V; and a neighbor in V5, so |[N(v') N B| < 6.
In order to achieve ws(v") > 5, we need ¢(v) > 5, and hence by Claim 4.1, ¢’(v') > 4. By
Lemma 6(a), each neighbor of v in @’(v") must be in a class containing some other neighbor
of v/, so there is some class W' € B that is not adjacent to v'. Then we pick some z € Q'(v')
with color class W (z). By the case, W (z) is reachable from W’ but by Lemma 7, v’ is
ordinary, and this leads to a contradiction to Lemma 6(b).

4.4 Proof of the case a =5

In this case, since d(z) < 5 and x has a neighbor in each class of A, we have d(z) = 5 and
x has no neighbors in B. First, we take a closer look at H[A].

We call H[A] nice, if every accessible class other than V) blocks at most one accessible
class. All 5-vertex nice in-trees rooted at V are listed in Figure 2. The two 5-vertex in-trees
rooted at Vi with d;; (V1) = 2 that are not nice are listed in Figure 3.

Lemma 8. If a =5, then we can choose an almost equitable coloring ¢ so that H[A] is nice.

Proof. Note that if dy, (V1) = 3, then H[A] is nice. So, we have the following cases.

Case 1: dy (V1) = 2. Then H[A] contains one of the two digraphs in Figure 3.

—
Case 1.1: H[A] contains Ty ,. Let ¢’ be obtained from ¢ by moving a witness vs of the
arc V3V) into V4. Then V3 —wj3 is the new small class, and the arcs V3 (Vi —wv3), V5(V3—wv3) and
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Figure 2: Nice digraphs: Ky, ﬁ and 75 5.

Vs

Vs Vo Vo
V3

Vi Vi

Figure 3: Digraphs with d; (V1) = 2 that are not nice: T3; and T5 ;.

(Vi4v3)(V3—wv3) are present in the new H. So, if at least one of V; +wv3, Vs—wv3, Vi, V5 is an out-
neighbor of V5 in the new H, then the new H[A] is nice. Otherwise, |E(V,, VIUV3UV,UVE)| >
4s, and hence

|[E(VaUVeUVZU VR, VIUVEU VLU VE)| > 4s + 4|V U V7 U VR| > 165 = 2n,

contradicting Lemma 4(b).

Case 1.2: H[A] contains 7?]_) If V;Vo € E(H), then H[A| is nice, a contradiction. So,
|E(Va, V5)| > s. Again, let ¢ be obtained from ¢ by moving a witness vz of V3V] into V;.
Again, V3—u3 is the new small class, and the arcs Vy(Vz—v3), V5(Vz—w3) and (Vi +wv3)(Vz—wvs3)
are present in the new H. So, if one of Vj 4+ v3, V3 — v3 is an out-neighbor of V5 in the new
H, then H[A] is nice, and if V5V, € E(H), then we get Case 1.1. Otherwise, as in Case 1.1,

[E(VaUVeUVZUVR, VIUVEUVLUVS)| > s+ 3s 4+ 4]V UV U V| > 165 = 2n,

contradicting Lemma 4(b).

Case 2: d;[A](Vl) = 1. Suppose V,V; € E(H) and vy € V, a witness of this arc. Since
each vertex in A is accessible, dy (V2) > 1, say V3V2 € E(H). Let ¢ be obtained from ¢
by moving v, into Vi. Then V5 — v 1s the new small class, all classes in A are still accessible,
and V5 — vy has at least two in-neighbors in the new H. So either the new H is nice or we
have Case 1. O

Lemma 9. If H[A] is nice, then each solo vertex v € V; € A —Vy has a neighbor in each
class of A —V;. In particular, v is ordinary.
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Proof. Suppose v € V; € A — V; has a solo neighbor u € W € B and has no neighbor in
V; for some V; € A—V,. If H -V, has a V}, Vi-path P, say P = Wy, Ws, ..., W,, where
Wy =V;, Wy =V, and wy, is a witness of W W),y for h =1,...,¢ — 1, then we change ¢ as
follows. Since x has no neighbors in B, move it into the class of u, then move u to V;, v to
V; = Wi, and then for h = 1,2,...,¢ — 1, move wy, from W} to Wj41. This would yield an
equitable coloring on (G, so assume that H — V; has no such path.

This means that V; blocks V;. Since H[A] is nice, V; is the unique vertex in #[.A] blocked
by V;, and v has neighbors in each class of A —V; — V,. Since V; is the only out-neighbor of
V; in H[A], we have |Eq(V;, A —V;)| > 3s.

If u is not adjacent to some vertex v’ that is movable from V; to V;, then we can move v
to V; and v’ to V;. Since H|[A] is nice, all classes of A remain accessible, but now the class
of u also becomes accessible, contradicting the maximality of a. Thus u is adjacent to all
vertices movable from V; to V;. Let M be the set of these movable vertices and m = |M]|.

Now we count the edges connecting A\ V; —v+u and BU V), +v — u. Since v is adjacent
to each class in A — V; —V; and to u, at most 4 edges connect v to B — u. No vertex in
B — u is movable to A — V}, thus

|[E¢(B+v—u, A=V, —v+u)| >4(3s—1)—4+3+1=12s — 4. (21)
Since |Eq(V;, A—V; —V;)| > 3s, we get
|Ea(Vi, A=Vy—v-+w) = |Ea(Vy, A= Vi— V)| +1Ea(V;, Vit w)] 2 3s+s—m-+m = 4s. (22)

Summing (21) with (22) gives 16s — 4 edges in a bipartite planar graph with 8s — 1 vertices,
a contradiction to Lemma 4(b). O

Suppose now that ¢ satisfies Lemma 8. Recall that Vj denotes the set of isolated vertices
in G, and ng = |Vg|. By the definition of B, V; C A. Let n{ = |V — Vi|. Consider the
discharging procedure DP described in Case 3.1 of Subsection 4.3.1. We will show that the
new charges of vertices of G satisfy

ch(u) > 5 for each u € B, and ch(v) > 2.5 for eachv € A —V; — Vg, (23)
which would imply that

E(G—x)= Z ch(w) > 5(3s) + 2.5(4s — ny) = 25s — 2.5n; > 3(|V(G)| — no).
weV(G)-Vi—-Wy

Together with (20), this contradicts Lemma 4(a). Thus, it remains to prove (23).

For uw € B and V; € A, u has a neighbor in V;. If it is a unique neighbor of u in V;, then
u gets 1 from uv by (R2), otherwise at least two edges connect u to V; and u gets 1/2 from
each of them. This proves the first part of (23).

If v € A — V) has a solo neighbor in B, then by Lemma 9, it has an edge to V] (from
which it gets 1 by (R1)) and at least 3 edges to other classes in A (from each of which it
gets 1/2 by (R3)). Thus in this case the second part of (23) holds.

Finally, if v € A — V; — V4 has no solo neighbors in B, then v receives by (R3) a charge
of % from each incident edge, and by the case, there are at least 5 of them. This proves (23)
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and hence finishes the proof of Theorem 3. O
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