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Abstract

The Chen-Lih-Wu Conjecture states that each connected graph with maximum
degree ∆ ≥ 3 that is not the complete graph K∆+1 or the complete bipartite graph
K∆,∆ admits an equitable coloring with ∆ colors. For planar graphs, the conjecture
has been confirmed for ∆ ≥ 13 by Yap and Zhang and for 9 ≤ ∆ ≤ 12 by Nakprasit.
In this paper, we present a proof that confirms the conjecture for graphs embeddable
into a surface with non-negative Euler characteristic with maximum degree ∆ ≥ 9 and
for planar graphs with maximum degree ∆ ≥ 8.
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1 Introduction

For a graph G, ∆(G) denotes the maximum degree of G. An equitable coloring of a graph
is a proper vertex coloring such that for any two color classes Vi and Vj, we have that
||Vi| − |Vj|| ≤ 1. A graph G is equitably k-colorable if it has an equitable coloring with k
colors.

The Hajnal-Szemerédi Theorem [2] states that every graph G is equitably k-colorable for
any k ≥ ∆(G)+1. The bound is sharp for complete graphs K∆+1 and for complete bipartite
graphs K∆,∆ when ∆ is odd. Chen, Lih and Wu [1] conjectured the following strengthening
of the Hajnal-Szemerédi Theorem.

Conjecture (Chen-Lih-Wu Conjecture [1]). If G is an r-colorable graph with ∆(G) ≤ r,
then either G has an equitable r-coloring, or r is odd and Kr,r ⊆ G.
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Lih and Wu [6] proved the conjecture for bipartite graphs. Chen, Lih and Wu [1] them-
selves proved the conjecture for r = 3 and for r ≥ |V (G)|/2. Kierstead and Kostochka
proved the conjecture in [3] for r = 4 and in [4] for r > |V (G)|/4. Yap and Zhang [12]
proved that the conjecture holds for planar graphs when r ≥ 13 and Nakprasit [7, 8] con-
firmed the conjecture for planar graphs when 9 ≤ r ≤ 12. These two results together can be
stated as follows.

Theorem 1 (Yap and Zhang [12] and Nakprasit [7, 8]). If r ≥ 9 and G is a planar graph
with ∆(G) ≤ r, then G has an equitable r-coloring.

Zhang [11] proved the conjecture for the wider class of 1-planar graphs (and more gener-
ally, for graphs with maximum average degree less than 8) but with the stronger restriction
on r: for r ≥ 17.

For lower maximum degrees, Chen-Lih-Wu Conjecture was proved for planar graphs
with extra restrictions, mainly with restrictions on cycle structure. In 2008, Zhu and Bu [13]
proved that the conjecture holds for C3-free planar graph with maximum degree ∆ ≥ 8. It
also holds for C4, C5-free planar graphs with maximum degree ∆ ≥ 7. In 2009, Li and Bu [5]
proved that the conjecture holds for C4, C6-free planar graph with maximum degree ∆ ≥ 6.
In 2012, Nakprasit and Nakprasit [9] proved that the conjecture holds for C3-free planar
graphs with maximum degree ∆ ≥ 6, C4-free planar graphs with maximum degree ∆ ≥ 7,
and planar graphs with maximum degree ∆ ≥ 5 and girth at least 6.

The aim of this paper is twofold. First, we present a significantly shorter proof of Theo-
rem 1. In fact, we prove it for a slightly broader class of graphs embeddable into a surface
with non-negative Euler characteristic. For simplicity, we call such graphs semi-planar.

Theorem 2. If r ≥ 9 and G is a semi-planar graph with ∆(G) ≤ r, then G has an equitable
r-coloring.

Our second goal is to extend Theorem 1 to planar graphs with maximum degree 8:

Theorem 3. If r ≥ 8 and G is a planar graph with ∆(G) ≤ r, then G has an equitable
r-coloring.

The structure of the paper is as follows. In the next section we introduce notation, cite
a known lemma and set up the proofs of both theorems. In Section 3 we prove the easier
Theorem 2, and in the longer Section 3 we prove Theorem 3.

2 Preliminaries and setup of proofs

Most notation used in the paper is standard. For a graph G, let ∆(G) denote the maximum
degree of G, δ(G) denote the minimum degree of G and δ∗(G) denote the minimum degree
over non-isolated vertices in G. For a vertex subset V ⊆ V (G) and some vertex x ∈ V
and u ̸∈ V , we use V − x to denote V \ {x} and V + u to denote V ∪ {u}. For an edge
xy ∈ E(G), G − xy denotes the graph obtained by removing xy from G. For two vertex
subsets X, Y ⊆ V (G), we use EG(X, Y ) to denote the set of edges connecting X with Y .

For a graph G, |G| denotes the number of vertices of G and ||G|| denotes the number of
edges of G.

Euler’s Formula yields the following simple claim.
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Lemma 4. (a) For each planar graph G with n ≥ 3 vertices, ∥G∥ ≤ 3n− 6 and δ(G) ≤ 5.
For each semi-planar graph G with n ≥ 3 vertices, ∥G∥ ≤ 3n and δ(G) ≤ 6.

(b) For each bipartite planar graph G with n ≥ 3 vertices, ∥G∥ ≤ 2n − 4 and δ(G) ≤ 3.
For each bipartite semi-planar graph G with n ≥ 3 vertices, ∥G∥ ≤ 2n and δ(G) ≤ 4.

We now show that it is sufficient to only consider graphs of order rs for some integer s.

Lemma 5. It is enough to prove Theorems 2 and 3 for graphs F with |F | divisible by r.

Proof. Suppose the theorem holds for graphs F with |F | divisible by r. Let G be a
semi-planar (or planar) graph with |G| = n = rs−p, where 0 < p < r. If 1 ≤ p ≤ 4, then set
G′ = G+Kp. In this case, G′ remains semi-planar (or planar). By construction, |G′| = n+p
is divisible by r and ∆(G′) ≤ r. So G′ has an equitable r-coloring f ′. All vertices of the
added Kp have different colors in f ′, and hence the restriction of f ′ to G is an equitable
r-coloring of G.

Suppose now p ≥ 5. By Lemma 4(a), either G is 6-regular or G has a vertex v1 of degree
at most 5. In the first case, the theorem follows from the Hajnal-Szemerédi Theorem. In
the second case, we can order the vertices of G as v1, . . . , vn so that for each 2 ≤ i < n,
dG−{v1,...,vi−1}(vi) ≤ 6. Let G′′ = G− {v1, . . . , vr−p}. Again, G′′ is semi-planar (and planar if
G is planar) and |G′′| = n− r+ p is divisible by r, so G′′ has an equitable r-coloring f ′. For
j = r − p, r − p − 1, . . . , 1, we color vj with color αj distinct from the colors of its colored
neighbors and from αj+1, αj+2, . . . , αr−p. Since p ≥ 5, for j ≥ 2, vj has at most 6 colored
neighbors, and the number of already used αi is r − p− j ≤ r − p− 2, we can find such αj

for each j ≥ 2. For j = 1, we have d(v1) ≤ 5 and the number of already used αi is r− p− 1.
Thus, we get an equitable r-coloring of G. ✷

We now describe the common setup for proofs of both Theorems 2 and 3. By Lemma 5,
it is enough to consider graphs with n = rs vertices for some s ≥ 1. We use induction
on ∥G∥. If G has no edges, the claim is trivial. So, let G be an edge-minimal n-vertex
semi-planar (or planar) graph G with ∆(G) ≤ r that is not equitably r-colorable. It may
have isolated vertices. Let V0 denote the set of such vertices and n0 = |V0|. Let x be a vertex
of a minimum degree in G− V0 (we say that d(x) = δ∗(G)) and let y be any neighbor of x.
By Lemma 4(a), either d(x) ≤ 5 or ∆(G) = 6. As in the proof of Lemma 5, if ∆(G) = 6,
then we are done by the Hajnal-Szemerédi Theorem, so we may assume d(x) ≤ 5.

By induction hypothesis, G − xy has an equitable r-coloring, say φ. If vertices x and
y are in different color classes, then φ is also an equitable r-coloring of G. Thus, we may
assume that the color classes of G−x are V1, . . . , Vr, where |V2| = . . . = |Vr| = s, |V1| = s−1,
and y ∈ V1. We call such (partial) colorings of G almost equitable.

Define an auxiliary digraph H with the vertex set {V1 . . . , Vr} where a directed edge ViVj
exists if and only if some vertex v ∈ Vi has no neighbor in Vj. In order not to mix up vertices
and edges in H and G, we will call the vertices in H classes and edges in H arcs. We say
that v witnesses the arc ViVj, and vertex v is movable to Vj. A class Vi is reachable from
class Vj if H contains a path from Vj to Vi. Naturally, a class Vi is reachable from a set F
of classes, if it is reachable from at least one of classes in F . Call a class Vj accessible if V1
is reachable from Vj, i.e., H contains a path from Vj to V1. Let A be the set of accessible
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classes in H, and B be the set of classes not in A. Among all almost equitable colorings,
choose a coloring φ with maximum |A|.

Set a = |A|, b = |B|, A =
⋃

A and B =
⋃

B. Then a + b = r. Also for each U ∈ B and
each V ∈ A, every u ∈ U has a neighbor in V , and hence

for each U ∈ B and each V ∈ A, |EG−x(U, V )| ≥ |U | = s. (1)

By Lemma 4(b) applied to the bipartite graph formed by the edges of G− x connecting
A with B, this yields

a · b · s ≤ |EG−x(B,A)| ≤ 2(|A|+ |B|) = 2(rs− 1). (2)

For distinct classes X, Y ∈ A, we say X blocks Y if V1 is not reachable from Y in H−X.
A class in A is terminal if it blocks no any other class in A. In particular, if A = {V1}, then
V1 is terminal. Let A′ be the set of terminal classes in A, A′ =

⋃
A′ and a′ = |A′|.

Let D(x) be the set of classes with no neighbors of x. Since d(x) ≤ 5, |D(x)| ≥ r − 5. If
Vi ∈ A ∩ D(x), then H contains a Vi, V1-path, say Vi1 , Vi2 , . . . , Vit , where i1 = i and it = 1.
Moving x into Vi, and each witness vij of VijVij+1

to Vij+1
along the path yields an equitable

r-coloring of G. So, D(x) ⊆ B; in particular

b = |B| ≥ r − 5. (3)

For an edge vu ∈ EG(A,B) with v ∈ V ∈ A and u ∈ B, if NV (u) = {v}, then we say
that u and v are solo neighbors of each other, and each of them is a solo vertex.

For v ∈ A, let F0(v) be the set of classes in B that do not have neighbors of v. Call a
vertex u ∈ Vi ∈ A′ ordinary if some u′ ∈ Vi − u is movable to another class in A or a ≤ 2.

For v ∈ A, let Q(v) denote the set of solo neighbors of v in B and let q(v) = |Q(v)|.
Let Q′(v) denote the set of vertices u ∈ Q(v) that have non-neighbors in Q(v) − u and let
q′(v) = |Q′(v)|. We will use the following fact.

Lemma 6. Let v ∈ Vi ∈ A′ be an ordinary vertex. Let u ∈ Q′(v), say u ∈ Wj ∈ B.
(a) |N(v) ∩Wj| ̸= 1.
(b) If F0(v) ̸= ∅, then Wj is not reachable from F0(v).

Proof. Since u ∈ Q′(v), there is some u′ ∈ Q′(v) not adjacent to u, say u′ ∈ Wj′ ∈ B.
Suppose first that (a) does not hold, i.e., N(v)∩Wj = {u}. If some v′ ∈ Vi−v is movable

to another class in A or a = 1, then we let coloring φ′ be obtained from φ by moving v to
Wj and u to Vi. Each class in A − Vi remains accessible as Vi is a terminal class. And by
the case, the class Vi − v + u is still accessible. Moreover, now the class W ′

j containing u
′ is

also accessible with u′ becoming a witness, which contradicts the maximality of a.
If a = 2 and no v′ ∈ Vi − v is movable to another class in A, then since Vi ∈ A′, i = 2

and v is the unique vertex in V2 movable to V1. Then we consider φ′′ obtained from φ by
moving v to V1. In this coloring, V2 − v is the small class, and v is a witness that V1 + v is
accessible. Moreover, both Wj and Wj′ are now also accessible. This contradiction proves
(a).

The proof of (b) is similar. Moreover, the case when a = 2 and no v′ ∈ Vi − v is movable
to another class in A word by word repeats the previous paragraph. So suppose (b) does not
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hold and either some v′ ∈ Vi−v is movable to another class in A or a = 1. This means there
is W1 ∈ F0 and H contains a directed W1,Wj-path P . If Wj′ is a vertex in P distinct from
Wj, then we switch the roles of u and u′; thus we assume this is not the case. By renaming
the classes in B, we may assume P = W1,W2, . . . ,Wℓ. For h = 1, 2, . . . , ℓ − 1, let uh be a
witness for the arc WhWh+1.

Change φ as follows. Move v to W1, then for h = 1, 2, . . . , ℓ − 1, move uh from Wh to
Wh+1, and finally move u to Vi. Call the resulting coloring ψ. See Figure 1. Each class in
A− Vi remains accessible as Vi is a terminal class. And by the case, the class Vi − v + u is
still accessible. Moreover, if j′ ̸= j then class Wj′ is also accessible, and if j′ = j then class
Wj − u+ uℓ−1 is accessible with u

′ being a witness in both cases. This proves Lemma 6. ✷

P

u1u3u

u2u4

v

Vi W5 W4 W3 W2 W1

Figure 1: Obtaining ψ in the proof of Lemma 6(b), with ℓ = 5

For an arbitrary class V ∈ A and a vertex u ∈ B, let ∥V, u∥ denote the number of edges
incident to u and a vertex in V . For each u ∈ B and v ∈ V ∈ A, define the weights

w(v, u) =
1

∥V, u∥
and w(v) =

∑
uv∈E(G):u∈B

w(v, u). (4)

By definition, ∑
v∈V

w(v) =
∑

v∈V,u∈B
w(v, u) = |B| = bs. (5)

3 Proof of Theorem 2

For semi-planar G, we provide a bound on q′(v) in terms of q(v).

Claim 3.1. If q(v) ≥ 8, then q′(v) ≥ 5. Also, if q(v) = 7, then q′(v) ≥ 4.

Proof of claim. Let q = q(v) and q′ = q′(v). Consider graph F = G[Q(v) ∪ {v}].
Vertices in Q′(v) are those having degree less than q − 1 in F . Then |E(F )| ≥

(
q+1
2

)
−

(
q′

2

)
.

So, if q′ ≤ 4 and q ≥ 8, then

|E(F )| ≥ q

2
(q + 1)−

(
4

2

)
≥ 4(q + 1)− 6 > 3(q + 1),
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contradicting Lemma 4(a). If q′ ≤ 3 and q = 7, then similarly |E(F )| ≥ 7
2
(q + 1) − 3 =

3.5(q + 1)− 3 > 3(q + 1), a contradiction again. This proves the claim.

When r ≥ 9, by (3), b ≥ r − 5 ≥ 4; thus a ≤ 5. If 3 ≤ a ≤ 5, then

abs− 2(rs− 1) = a(r − a)s− 2rs+ 2 = (a− 2)rs− a2s+ 2 > 0,

contradicting (2). Thus, a ≤ 2.

We now show a helpful property of the auxiliary digraph H.

Claim 3.2. The digraph H[B] has a strong component of order at least r − 2.

Proof. Since |B| ≥ r − 2 ≥ 7, if each strong component of H[B] has at most r − 3 vertices,
then the union U of some strong components of H has at least 3 and at most r− 3 vertices.

Suppose |U| = m. Then for every pair (Ui,Wj) where Ui ∈ U and Wj ∈ B − U , either
UiWj is not an arc or WjUi is not an arc in H. By the construction of H, either every vertex
in Wj has at least one neighbor in Ui, or every vertex in Ui has at least one neighbor in Wj.
In both cases, |EG−x(Ui,Wj)| ≥ min{|Wj|, |Ui|} = s. Also by (1), |EG−x(Ui, Aj)| ≥ s for
each Aj ∈ A.

It follows that denoting U =
⋃

Ui∈U Ui and W = V (G)− U − x, we have

|EG−x(U,W )| ≥ ms(r −m) ≥ 3s(r − 3) = 2rs+ (r − 9)s.

For r ≥ 9 this is greater than 2(rs− 1), which contradicts Lemma 4(b) applied to the bipar-
tite graph formed by the edges of G− x connecting U with W . ✷

Now we can prove the theorem. Recall that 1 ≤ a ≤ 2.

Case 1: a = 2. Let A = {V1, V2} and B = {W1, ...,Wr−2}. First, we show that

if some v ∈ V2 has a solo neighbor in B, then v also has a neighbor in V1. (6)

Indeed if v ∈ V2 has a solo neighbor u ∈ Wj ∈ B, then we consider a new coloring φ′ obtained
from φ by moving v to V1. The new almost equitable coloring has the small class V2 − v,
and this class is reachable in the corresponding digraph H′ from V1 + v (with a witness v)
and from Wj (with a witness u). This contradiction to the maximality of A in φ proves (6).

Since V2 ∈ A, it contains a vertex u with no neighbors in V1. By (6), u has no solo
neighbors in B, and hence w(u) ≤ d(u)/2 < r − 2. Since by (5), the average weight of
vertices in V2 is r − 2, this implies, that for some v0 ∈ V2 we have w(v0) > r − 2. By
definition,

w(v0) ≤ q(v0) +
1

2
(|N(v0) ∩ B| − q(v0)) =

1

2
|N(v0) ∩ B|+ 1

2
q(v0)

Again by (6), v0 has a neighbor in V1 and so |N(v0) ∩ B| ≤ r − 1. Hence, in order to have
w(v0) > r − 2, we need |N(v0) ∩ B| = r − 1 and q(v0) ≥ r − 2.
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Let F0 = F0(v) is the set of classes in B that do not have neighbors of v0. By Lemma 6(a)
and Claim 3.1, among the r − 1 neighbors of v0 in B, at least 4 vertices are not unique
neighbors of v0 in their color classes. It follows that

|F0| ≥ (r − 2)− (r − 1− 4

2
) = 1. (7)

By Claim 3.2, every color class in B is reachable from F0(v). But there is some u ∈
Q′(v0) ∩W where W ∈ B, and with W reachable from F0(v), we have a contradiction to
Lemma 6(b).

Case 2: a = 1. This case is similar to Case 1, but more complicated. We may assume
A = {V1} and B = {W1, ...,Wr−1}. Since |V1| = s− 1, by (5), the average weight of a vertex

in V1 is (r−1)s
s−1

> r − 1. Fix a vertex v0 ∈ V1 with w(v0) > r − 1. For this we need d(v0) = r
and q(v0) ≥ r − 1. By Claim 3.1, q′(v0) ≥ 5.

Recall F0 as in Case 1. By Lemma 6(a) and Claim 3.1, among the r neighbors of v0 in B,
at least 5 vertices are not unique neighbors of v0 in their color classes. So, similarly to (7),
we get

|F0| ≥ (r − 1)− (r −
⌈
5

2

⌉
) = 2. (8)

By Claim 3.2 and (8), we have the following cases.

Case 2.1: Every color class in B is reachable from F0. There is some u ∈ Q′(v0) ∩W
where W ∈ B, and with W reachable from F0, we have a contradiction to Lemma 6(b).

Case 2.2: Exactly one color class in B, say Wr−1 is not reachable from F0. If there is
u ∈ Q′(v0)∩W where W ∈ B \ {Wr−1}, then we again have a contradiction to Lemma 6(b).
So, assume Q′(v0) ⊆ Wr−1. Consider the following new weight function w′.

For each u ∈ B −Wr−1 and v ∈ V1,define the weight w′(v, u) = w(v, u) = 1
∥V1,u∥ , but for

u ∈ Wr−1 and v ∈ V1 we let w′(v, u) = 1
2
w(v, u) = 1

2∥V1,u∥ . Then for each v ∈ V1, define

w′(v) =
∑

uv∈E(G):u∈B
w′(v, u).

By definition, ∑
v∈V1

w′(v) =
∑

v∈V1,u∈B
w′(v, u) = (r − 1.5)s. (9)

Since |V1| = s − 1, the average new weight of a vertex in V1 is (r−1)s
s−1

> r − 1.5. Fix
a vertex v′ ∈ V1 with w′(v′) > r − 1.5. Since Q′(v0) ⊆ Wr−1 and q′(v0) ≥ 5, we have
w′(v0) ≤ (q(v0) − q′(v0)) +

1
2
(r − q(v0) + q′(v0)) ≤ r − 2.5. Thus v′ ̸= v0. Since a = 1, v′ is

ordinary.
By Lemma 3.2, we may assume the following:

For all Wi,Wj such that 1 ≤ i, j ≤ r − 2, H has a Wi,Wj-path. (10)

Let Q̂(v′) = Q(v′)−Wr−1. If |Q̂(v′)| = m ≤ r−3, then w′(v′) ≤ m+ 1
2
(r−m) ≤ r−3+ 3

2
, a

contradiction. Thus |Q̂(v′)| ≥ r−2 ≥ 7. So, by Claim 3.1, |Q′(v′)| ≥ 4. Since by Lemma 6(a),
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among the r neighbors of v′ in B, at least 4 vertices are not unique neighbors of v′ in their
color classes, similar to (7), |F0(v

′)| ≥ 1. Choose a smallest m such that Wm ∈ F0(v
′).

Case 2.2.1: 1 ≤ m ≤ r − 2. If some 4 vertices in Q′(v′) are in Wr−1, then w′(v′) ≤
r − 4(1/2) = r − 2, a contradiction. Thus some u ∈ Q′(v′) is not in Wr−1. Say u ∈ Wj ∈
B −F0(v

′). Then by Lemma 6(b), Wj is not reachable from Wm, but this is a contradiction
to (10).

Case 2.2.2: m = r−1. By the minimality ofm and by Lemma 6(a), in this case q′(v′) = 4,
and these four vertices are in exactly two color classes. Since q(v′) ≥ r − 2 ≥ 7, there is
z0 ∈ Q(v′)−Q′(v′). This z0 is adjacent to v

′ and to at least r−3 vertices in Q(v′), and hence
has at most 2 neighbors in Wr−1. Recall that at least 5 vertices in Q′(v0), say z1, . . . , z5, are
in Wr−1. So, we may assume that z0 is not adjacent to z1, z2 and z3.

By (8), we may assume that v0 has no neighbors inW1. LetW (z0) be the class containing
z0. By (10), H has a W1,W (z0)-path, say W1,W2, . . . ,Wℓ, where Wℓ = W (z0). For j =
1, 2, . . . , ℓ− 1, let uj be a witness for the arc WjWj+1.

Consider a new coloring φ′ obtained as follows. Move v′ to Wr−1, then z1 to V1− v′, then
v0 to W1, then for j = 1, 2, . . . , ℓ− 1, move uj from Wj to Wj+1, and finally move z0 to V1.
Since z0z1 /∈ E(G) and v′ has no neighbors in Wr−1, φ

′ is an almost equitable coloring of
G − x. But now the class Wr−1 − z1 + v′ is accessible with a witness z2, contradicting the
maximality of a. ✷

4 Proof of Theorem 3

By Theorem 2, it is enough to consider the case r = 8. Since G is planar, we can give a
better bound on q′(v) in terms of q(v).

Claim 4.1. If q(v) ≥ 5, then q′(v) ≥ q(v)− 1.

Proof. Assume that q′(v) ≤ q(v)− 2. Then there are two solo neighbors u1, u2 of v adjacent
to all other vertices in Q(v). In particular, G contains K3,q(v)−2 with parts {v, u1, u2} and
Q(v)− {u1, u2}, a contradiction to planarity of G. ✷

We now prove an analogue of Claim 3.2 on strong components of H.

Claim 4.2. Suppose a = |A| ≤ 4.
(i) No union of some strong components of H has exactly 4 vertices.
(ii) Digraph H either has a strong component of size at least 5, or has two strong com-

ponents of size 3 and one strong component of size 2.

Proof. Suppose (i) does not hold, and the union of some strong components of H con-
sists of exactly 4 classes, say this union is U = {U1, U2, U3, U4}. Let W = V (H) − U =
{W1,W2,W3,W4}. Then as in the proof of Claim 3.2, |EG(Uj,Wi)| ≥ min{|Wi|, |Uj|}. With-
out loss of generality, assume that |U1| = |V1| = s − 1. Denoting U =

⋃4
i=1 Ui and
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W =
⋃4

j=1Wj, we have

|EG(U,W )| = |EG(U1,W )|+
4∑

i=2

|EG(Ui,W )| ≥ 4(s− 1) + 12s = 16s− 4 > 2(8s− 1)− 4,

contradicting Lemma 4(b). Thus (i) holds.
Let the sizes of the strong components of H be a1, . . . , am and a1 ≥ a2 ≥ . . . ≥ am. Then

a1 + . . . + am = 8. If (ii) does not hold, then a1 ≤ 4. Moreover, by (i), a1 ≤ 3 and no sums
of several ai equal to 4. This is possible only if a1 = a2 = 3 and a3 = 2. ✷

Notice that by the way we define A and B, each strong component in H should be
contained in either A or B.

With r = 8, by (3) we have b ≥ 3. So a = r − b ≤ 5. By Claim 4.2, a = 4 would lead to
a contradiction. Thus it suffices to consider the cases when a = 1, 2, 3 and 5.

4.1 Proof of the case a = 1

Recall the weight functions w(v, u) and w(v) defined by (4). By (5), with b = r− a = 7 and
|A| = |V1| = s−1, there is some v0 ∈ V1 with d(v0) ≥ w(v0) ≥ 7s/(s−1) > 7. Thus d(v0) = 8.
Note that N(v0) ⊆ B. If q(v0) ≤ 6, then w(v0) ≤ q(v0)+(d(v0)−q(v0))/2 = 4+q(v0)/2 ≤ 7,
a contradiction, so q(v0) ≥ 7 and q′(v0) ≥ 6.

Let F0 denote the set of classes in B that do not have neighbors of v0, F denote the set
of classes reachable in H from F0, f = |F| and F =

⋃
F . Notice that every color class Vi is

trivially reachable from itself in H, so F0 ⊆ F . By Lemma 6(a) with q′(v0) ≥ 6, at least 6
vertices in N(v0) are not unique neighbors of v0 in their color classes. It follows that

7 ≥ f ≥ |F0| ≥ (r − 1)− (r − 6

2
) = 2. (11)

Case 1.1: f = 2, say F = {V2, V3}. In this case, by (11), F = F0. Then q
′(v0) = 6 and

there are three classes V6, V7, V8 such that Q′(v0) = N(v0) ∩ (V6 ∪ V7 ∪ V8). Specifically, by
Lemma 6(a), we get |N(v0)∩Vi| = |Q′(v0)∩Vi| = 2 for i ∈ {6, 7, 8}. Since q(v0) ≥ 7 > q′(v0),
some vertex v′ ∈ Q(v0) is adjacent to all of Q′(v0).

Let N(v0) ∩ V8 = {w,w′}. Consider the coloring φ′′ of G − x obtained from φ by
moving v0 into V8 and moving w and w′ into V1 − v0. Denote V

′
1 = (V1 − v0) ∪ {w,w′} and

V ′
8 = (V8 − {w,w′}) ∪ {v0}. If x is not adjacent to V ′

8 , then we extend φ′′ to G by moving
x into V ′

8 . This extension is an equitable coloring of G as |V ′
1 | = |V ′

8 ∪ {x}| = s while other
color classes remain unchanged. Thus we may assume that x has a neighbor y′ in V ′

8 .
Note that φ′′ is an almost equitable coloring of G − x with the small class V ′

8 . By the
maximality of a, every vertex in V (G)− V ′

8 has a neighbor in V ′
8 . Thus

|EG(V
′
8 , Vi)| ≥ |Vi| = s for all i ∈ [7]− {1}. (12)

Now we count the edges between X = V1∪V8∪F and Y = V (G)−x−X = V4∪V5∪V6∪V7.
Since a = 1 and f = 2, for color classes Fi ∈ F and Bj ∈ B \F , there is no edge of the form
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FiBj or BjV1 in H. Thus

|EG(V1 ∪ F, Y )| ≥ |EG(V1, Y )|+ |EG(F, Y )| ≥ 4s+ 8s = 12s. (13)

Further notice that

|EG(V
′
8 , Y ) ∩ EG(V1, Y )| = |EG(v0, N(v)− {w,w′})| = 6, (14)

and that
|EG(v

′, {w,w′}) ∩ (EG(V
′
8 , Y ) ∪ EG(V1, Y ))| = 0.

Thus by (12), we get

|EG(V8, Y )| ≥ |EG(V
′
8 , Y )|−|EG(v0, N(v)−{w,w′})|+ |EG(v

′, {w,w′})| ≥ 4s−6+2 = 4s−4.

Combining this with (13), we obtain

|EG(X, Y )| ≥ 12s+ 4s− 4 = 16s− 4 > 2(8s− 1)− 4,

a contradiction to Lemma 4(b).

Case 1.2: f ∈ {3, 4}. In this case we do not have a strong component of size at least 5
in H, and V1 forms a strong component of size 1 by itself. Then we have a contradiction to
Claim 4.2.

Case 1.3: f = 5. Let B − F = {V2, V3} and C = V2 ∪ V3. Similarly to Case 2.2 in
Section 3, we have Q′(v0) ⊆ C. Consider the following new weight function w′.

For each u ∈ B \ C = F and v ∈ V1, define w
′(v, u) = w(v, u) = 1

||V1,u|| , but for u ∈ C

and v ∈ V1, let w
′(v, u) = 1

2
w(v, u) = 1

2||V1,u|| . For each v ∈ V1, define

w′(v) =
∑

uv∈E(G):u∈B
w′(v, u).

By definition,
∑

v∈V1
w′(v) =

∑
v∈V1,u∈B w

′(v, u) = 6s.
Since |V1| = s − 1, the average new weight of a vertex in V1 is 6s/(s − 1) > 6. Pick a

vertex v′ ∈ V1 with w′(v′) > 6. Let Q1(v
′) = Q(v′) ∩ F and q1(v

′) = |Q1(v
′)|. By definition,

for u ∈ Q(v′)−Q1(v
′), w′(v′, u) ≤ 1

2
. Thus

6 < w′(v′) ≤ q1(v
′) +

1

2
(8− q1(v

′)) = 4 +
q1(v

′)

2
,

so q1(v
′) ≥ 5. Denote by Q′

1(v
′) the set of vertices u ∈ Q1(v

′) that have non-neighbors in
Q1(v

′)− u and q′1(v
′) = |Q′

1(v
′)|.

Case 1.3.1: |N(v′) ∩ C| ≥ 1. Suppose first that every class in F has a neighbor of
v′. Let F ′(v′) denote the set of classes in F that contain vertices in Q′

1(v
′) and no other

neighbors of v′. Since q(v′) ≥ q1(v
′) ≥ 5, repeating the argument of Claim 4.1, we get

q′1(v
′) ≥ q1(v

′) − 1. So since |N(v′) ∩ F | ≤ 7, |F ′(v′)| ≥ 2. By Lemma 6(a), each class in
F ′(v′) has at least two vertices from Q′

1(v
′). If each of them has at least 3 such vertices, then

N(v′)∩F has at least 3|F ′(v′)|+ (5− |F ′(v′)|) = 2|F ′(v′)|+5 vertices. But this contradicts
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the fact that |N(v′) ∩ F | ≤ 7 and |F ′(v′)| ≥ 2. Thus, some color class V8 ⊆ F satisfies
|V8 ∩Q′

1(v
′)| = |V8 ∩N(v′)| = 2, say V8 ∩Q′

1(v
′) = {z, z′}.

Similarly to Case 1.1, we consider a coloring φ′′ of G−x obtained from φ by moving v′ into
V8 and moving z and z′ into V1−v. Denote V ′

1 = (V1−v′)∪{z, z′} and V ′
8 = (V8−{z, z′})∪{v′}.

As in Case 1.1, φ′′ is an equitable coloring of G−x with the small class V ′
8 . By the maximality

of a, every vertex in V (G)− V ′
8 has a neighbor in V ′

8 . Thus (12) holds again.
Now we count the edges between X = V1∪V8∪C and Y = V (G)−x−X = V4∪V5∪V6∪V7.

Similarly to (13), we get
|EG(V1 ∪ C, Y )| ≥ 12s.

As v′ has a neighbor in C, |N(v′) ∩ F | ≤ 7. So similarly to (14), we have

|EG(V
′
8 , Y ) ∩ EG(V1, Y )| = |EG(v

′, (N(v′) ∩ F )− {z, z′})| ≤ 5.

Hence
|EG(V8, Y )| ≥ |EG(V

′
8 , Y )− EG(V1, Y )| ≥ 4s− 5.

Therefore,
|EG(V1 ∪ C ∪ V8, Y )| ≥ 16s− 5 > 2(8s− 1)− 4,

a contradiction to Lemma 4(b).
Thus, we may assume that some class U ∈ F contains no neighbors of v′. Since a = 1,

by Claim 4.2, H has a strong component H1 of size at least 5. Since H has no edges from
F to V1, V2 or V3, the vertex set of H1 is F . Hence every class in F is reachable from U.
In particular, there is some vertex u ∈ Q′

1(v
′) that is contained in some class Vj and Vj is

reachable from U . However, as a ≤ 2, v′ is ordinary and this contradicts Lemma 6(b).

Case 1.3.2: |N(v′) ∩ C| = 0. Using the argument of Claim 4.1, we can show that as
q1(v

′) ≥ 5,
q′1(v

′) = |Q′
1(v

′)| ≥ q1(v
′)− 1.

So, there is at most one class in F containing the vertex from Q1(v
′) \Q′

1(v
′) (if exists), at

most 3 classes containing vertices from N(v′)\Q1(v
′), and hence there is a class V8 ∈ F with

V8 ∩ (N(v′)−Q′
1(v

′)) = ∅.
If V8 has no neighbors of v′ at all, then we can denote the class as U and apply the

argument at the end of Case 1.3.1 again. Otherwise, by Lemma 6(a), V8 has at least two
vertices from Q′

1(v
′), say {w1, w2} ⊆ V8 ∩Q′

1(v
′).

Recall that q′(v) ≥ 6. Without loss of generality, assume that {v1, v2, v3} ⊆ V2 ∩ Q′(v).
Since G is planar, it is K3,3-free, so by symmetry we can assume that w1 and v1 are not
adjacent in G. Take W1 ∈ F0 ⊆ F . By Claim 4.2, H contains a W1, V8-path P . Let
P = W1,W2, . . . ,Wℓ where Wℓ = V8. For j = 1, 2, . . . , ℓ − 1, let uj be a witness for the arc
WjWj+1.

Change φ as follows. Move v0 to W1, then for j = 1, 2, . . . , ℓ − 1, move uj from Wj to
Wj+1, move u to V2, move v1 to V1 and finally move w1 to V1. Class V1 − {v0, u}+ {v1, w1}
remains accessible, but now V2 − v1 + u is also accessible witnessed by v2, contradicting the
maximality of a.

Case 1.4: f = 6. Similarly to the argument of Case 2.1 in Section 3, suppose B−F = V2.
Then Q′(v) ⊆ V2. We pick two arbitrary sets X1, X2 ∈ F . Let X be the collection of classes
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in H reachable from X1 and X2. Then 2 ≤ |X | ≤ 6, since both V1 and V2 are not reachable
from X1 and X2. Consider these cases.

Case 1.4.1: 2 ≤ |X | ≤ 4. As in Case 1.2, we do not have a strong component of size
at least 5 in H, and V1 must form a strong component of size 1 by itself. Then we have a
contradiction to Claim 4.2.

Case 1.4.2: |X | = 5. Assume that V3 ∈ F \X . Since V1 forms a strong component in H,
by Claim 4.2, H[X ] is strongly connected.

As in Case 1.3, let C = V2 ∪ V3. Let w′(v, u) = w(v, u) = 1
||V1,u|| for each u ∈ B \ C and

v ∈ V1, but for u ∈ C and v ∈ V1, let w
′(v, u) = 1

2
w(v, u) = 1

2||V1,u|| . For each v ∈ V1, define

w′(v) =
∑

uv∈E(G):u∈B
w′(v, u).

By definition
∑

v∈V1
w′(v) =

∑
v∈V1,u∈B w

′(v, u) = 6s.
Since |V1| = s−1, the average new weight of a vertex in V1 is 6s/(s−1) > 6. Pick vertex

v′ ∈ V1 with w′(v′) > 6. We claim that we can repeat the argument from Case 1.3 with v′

and C defined identically. Thus, both |N(v′) ∩ C| ≥ 1 and |N(v′) ∩ C| = 0 would lead to a
contradiction.

Case 1.4.3: |X | = 6. Since X1, X2 were picked arbitrarily,

H[F ] is strongly connected. (15)

We again use the function w(v, u) = 1
||V,u|| defined by (4). For each v ∈ V1, define

w6(v) =
∑

uv∈E(G):u∈F\V3

w(v, u).

By definition
∑

v∈V1
w6(v) =

∑
v∈V1,u∈F\V3

w(v, u) = 6s. Since a ≤ 2, u is ordinary.

Since |V1| = s − 1, the average weight of a vertex in V1 is 6s/(s − 1) > 6. Pick vertex
u ∈ V1 with w6(u) > 6. Notice that w6(v0) < |N(v0) \Q′(v0)| ≤ 2, so u and v0 are distinct.
Let Q6(u) = Q(u)∩(F \V3) and q6(u) = |Q6(u)|. Denote Q′

6(u) the set of vertices w ∈ Q6(u)
that have non-neighbors in Q′

6(u)− w.
If |N(u)∩V2| ≥ 1, then q6(u) ≥ 6. By Claim 4.1, there is at most 1 class in F containing

vertex from Q6(u) \Q′
6(u), and at most 1 class containing vertices from N(u) \Q6(u). Thus

by Lemma 6(a), |F0(u)| ≥ 2. Pick z ∈ Q′
6(u) and the color class of z is W (z). Then by (15),

W (z) is reachable from F0(u), but this is a contradiction to Lemma 6(b).
If |N(u) ∩ V2| = 0, then q6(u) ≥ 5. Since G is planar, it is K3,3-free. Then there is some

u′ ∈ Q′
6(u) that is not adjacent to some v1 ∈ V2 ∩ Q′(v). Let the color class of u′ be U ′.

Take W1 ∈ F0 ⊆ F . By (15), H contains a W1, U
′-path P . Let P = W1,W2, . . . ,Wℓ where

Wℓ = U ′. For j = 1, 2, . . . , ℓ− 1, let uj be a witness for the arc WjWj+1.
Change φ as follows. Move v0 to W1, then for j = 1, 2, . . . , ℓ − 1, move uj from Wj to

Wj+1, move u to V2, move v1 to V1 and finally u′ to V1. Class V1 −{v0, u}+ {v1, u′} remains
accessible, but now V2 − v1 + u is also accessible, witnessed by some v2 ∈ V2 ∩Q′(v) distinct
from v1. This contradicts the maximality of a.

Case 1.5: f = 7. There is some u ∈ Q′(v0) ∩ W where W ∈ B = F . But with W
reachable from F0, we have a contradiction to Lemma 6(b).
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4.2 Proof of the case a = 2

Let A = {V1, V2}. For each u ∈ B and v ∈ V2, let w(v, u) =
1

∥V,u∥ . Then for each v ∈ V2, let

w2(v) =
∑

uv∈E(G):u∈B
w(u, v).

By definition
∑

v∈V2
w2(v) =

∑
v∈V2,u∈B w(v, u) = 6s.

There is a movable vertex v′ ∈ V2, and by (6), v′ has no solo neighbors in B. So
w2(v

′) ≤ 8· 1
2
= 4. Then there is a vertex v0 ∈ V2 with w2(v0) > 6. Notice that such v0 should

not be movable in A, so |N(v0) ∩ B| ≤ 7. To have w2(v0) > 6, we need q(v0) = |Q(v0)| ≥ 6.
For each class U ∈ B, by Lemma 6(a), if |Q′(v0)∩U | ̸= 0, then |Q′(v0)∩U | ≥ 2. Thus there
are distinct color classes U1, U2 ∈ F0(v0). Let U be the collection of classes in B reachable
from F0(v0). Then as a = 2, 2 ≤ |U| ≤ 6. If |U| = 2, then |A ∪ U| = 4, contradicting
Claim 4.2(i). For the same reason, |U| ̸= 4. The remaining cases are as follows.

Case 2.1: |U| = 3, say U = {U1, U2, U3}. Let U =
⋃
U , W = B \ U = {W1,W2,W3}

and W =
⋃

W . For i = 1, 2, let Mi denote the set of vertices in Vi movable to Vr−i. If
m2 ≥ m1 + 2, we move a vertex from M2 to V1, and relabel V1 as V ′

2 and V2 as V ′
1 . Then

there are m2 − 1 vertices movable from V ′
1 to V ′

2 and m1 + 1 movable from V ′
2 to V ′

1 . So, we
may assume

m2 ≤ m1 + 1. (16)

Since no vertex in Ui is movable to Wj for 1 ≤ i, j ≤ 3,

|EG(U,W )| ≥ |U||W|s = 9s. (17)

Suppose that there are k2 isolated vertices in V2. Since d(x) = δ∗(G) ≥ 2,

|EG(M2, B)| ≥ 2(m2 − k2).

By the symmetry between U and W , we can assume

|EG(M2, U)| ≥ m2 − k2.

If for every vertex z ∈ U , |N(z) ∩ (V2 \M2)| ≥ 1, then

|EG(V2, U)| = |EG(V2 \M2, U)|+ |EG(M2, U)| ≥ 3s+m2 − k2. (18)

Otherwise there is a vertex z ∈ U with |N(z)∩ (V2 \M2)| = 0. Since z is not movable to
V2, it is adjacent to some vertices in M2. If there is any v1 ∈ M1 that is adjacent to y and
v2 ∈ M2 that is not adjacent to z, then we can switch v1 and v2 to increase |N(z) ∩M2|.
When |N(z)∩M2| is maximized in this way, we either have M2 ⊆ N(z) or |N(z)∩M2| < m2

and |N(z) ∩M1| = 0. In the latter case, we can switch N(z) ∩M2 with equal number of
vertices in M1 since m2 ≤ m1 + 1. The switched vertices remain movable to the other class.
However, z would become movable to V2 , since z has no neighbor in V2 after the switch, a
contradiction to the maximality of a. So M2 ⊆ N(z), and hence |N(z) ∩M2| = m2. Let Z
be the collection of all such z ∈ U that |N(z) ∩ (V2 \M2)| = 0 and |N(z) ∩M2| = m2. If
k = |Z|, then

|EG(V2, U)| ≥ 3s− k + km2, (19)
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where k,m2 ≥ 1.
Now we count the edges between V2 ∪ W and V1 ∪ U , with k2 isolated vertices in V2

removed, so there should be 8s−1−k2 vertices. When k = 0, we use the bounds (17), (18),
|EG(V2, V1)| ≥ s−m2 and |EG(W,V1)| ≥ 3s to derive that

|EG(V2 ∪W,V1 ∪ U)| = |EG(V2 ∪W,U)|+ |EG(V2 ∪W,V1)|

≥ (9s+ 3s+m2 − k2) + (3s+ s−m2) = 16s− k2 > 2(8s− 1− k2)− 4.

When k ≥ 1, we use the bound (19) instead of (18):

|EG(V2 ∪W,V1 ∪ U)| = |EG(V2 ∪W,U)|+ |EG(V2 ∪W,V1)|

≥ (9s+ 3s− k2 + km2) + (3s+ s−m2) ≥ 16s− k2 > 2(8s− 1− k2)− 4.

In both cases we get a contradiction to Lemma 4(b).

Case 2.2: |U| = 5. Denote {V3} = B \ U . We should have Q′(v0) ⊆ V3. Consider a new
weight function w′

2 where w′
2(v, u) = w2(v, u) = 1

||V2,u|| for v ∈ V2 and u ∈ B \ V3, but for

u ∈ V3, w
′
2(v, u) =

1
2||V2,u|| . For each v ∈ V2, define

w′
2(v) =

∑
uv∈E(G):u∈B

w′
2(v, u).

By definition
∑

v∈V2
w′

2(v) =
∑

v∈V2,u∈B w
′
2(v, u) =

11
2
s. Note that w′

2(v0) ≤ 5· 1
2
+2 = 9

2
< 11

2
.

Hence there is some u ∈ V2 − v0 with w′
2(u) >

11
2
. Then |Q(u) \ V3| ≥ 5, so |N(u) ∩ V1| ≥ 1

and by Claim 4.1, q′(u) ≥ q(u)− 1.
Case 2.2.1: |N(u)∩U3| = 0 for some U3 ∈ U . We have 2 classes V1, V2 not reachable from

the other 6 classes and class V3 not reachable from the remaining 5 classes. So, {V3} forms
a strong component in H. Hence by Claim 4.2, H(U) is strongly connected. Take some
z ∈ Q′(u) \ V3 with color class W (z). Then in particular W (z) is reachable from F0(v0), but
this is a contradiction to Lemma 6(b).

Case 2.2.2: |N(u) ∩ U | ≥ 1 for every U ∈ U . As |N(u) \ V1| ≤ 7, |Q(u) \ V3| ≥ 5 and
|Q′(u) \ V3| ≥ |Q(u) \ V3| − 1 ≥ 4, at most 3 classes in U contain vertices in N(u) \ Q′(u).
So, by Lemma 6(a), some two classes in U contain at least two vertices in Q′(u) each; thus
at least 4 together. For this to happen, we need |N(u) \ V1| = 7, |Q(u) ∩ V3| = 0 and
Q(u) \Q′(u′) ̸= ∅, say z ∈ Q(u) \Q′(u′). Note that |N(z) ∩ (B \ V3)| ≥ 4, and z is adjacent
to u and some vertex in V1 by definition. Thus |N(z)∩Q′(v)| ≤ 2, so there are v1, v2 ∈ Q′(v)
that are not adjacent to z. Let the color class of z be W (z). Pick U1 ∈ F0(v0). Then
there is a U1,W (z) path P . Let P = W1,W2, . . . ,Wℓ where W1 = U1,Wℓ = W (z). For
j = 1, 2, . . . , ℓ− 1, let uj be a witness for the arc WjWj+1.

Now we change φ as follows. Move v0 to U1, then for j = 1, 2, . . . , ℓ − 1, move uj from
Wj to Wj+1, move z and v1 to V2, and finally u to V3. Now V2 − {v0, u} + {v1, z} remains
accessible as both v0 and u are not movable, but now in addition V3 − v1 + u becomes
accessible with witness v2, a contradiction to maximality of a.

Case 2.3: |U| = 6. As q(v0) ≥ 6, by Claim 4.1, there are z ∈ Q′(v0) with color class
W (z). By the case W (z) is reachable from F0(v0), but this contradicts Lemma 6(b).
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4.3 Proof of the case a = 3

4.3.1 Setup

Let A = {V1, V2, V3}, B = {W1, . . . ,W5}.
We first show that V2 and V3 can be chosen to be terminal classes. Assume not, say V2

blocks V3. Then there is a vertex v2 ∈ V2 movable to V1 and a vertex v3 ∈ V3 movable to V2.
We move v2 to V1, so V2 becomes the smaller class. Notice that v2 is movable from V1 + v2
to V2 − v2 and v3 remains movable from V3 to V2 − v2. So in the new H, both V1 + v2 and
V3 are terminal and |V2 − v2| = s− 1 while |V1 + v2| = s. Thus, we can assume that both V2
and V3 are terminal classes.

Lemma 7. For 2 ≤ j ≤ 3, each solo vertex v ∈ Vj has neighbors in V1 and V5−j, and thus
is ordinary.

Proof. Since both V2 and V3 are terminal classes, without loss of generality we can assume
that there is a movable v ∈ V2 that has a solo neighbor u ∈ W (u) ∈ B, and v′ ∈ V3 witnesses
the directed edge V3V1 in H.

If v is movable to V3, then we move v′ to V1 and v to V3. In the new coloring φ′, V2−v as
the smaller class, V3−v′+v and W (u) are accessible with regard to V2−v. No other class in
B is accessible otherwise we get a larger a. V1+ v

′ should not be in a strong component with
classes other in H since V1 is not. However, if V1 + v′ can reach V2 − v, we also get a larger
a. Thus V1 + v′ must be in a strong component by itself in the auxiliary digraph regarding
the new coloring, but this contradicts Claim 4.2 as we would have no strong component of
size 5 and one strong component of size 1.

If v is movable to V1, then we move v to V1. Now we take V2−v as the smaller class, then
V1 and W (u) are accessible with regard to V2 − v. Again, no other class in B is accessible
otherwise we get a larger a. V3 would be in a strong component in the auxiliary digraph
regarding the new coloring, but this contradicts Claim 4.2 as we would have no strong com-
ponent of size 5 and one strong component of size 1. ✷

Denote the size of a largest strong component of H contained in B by b0. By Claim 4.2,
either b0 = 3 or b0 = 5.

Case 3.1: b0 = 3. By Claim 4.2, we may assume that the vertex sets of strong com-
ponents of H contained in B are B1 = {W1,W2} and B2 = {W3,W4,W5}. Recall that V0
denotes the set of isolated vertices in G, and n0 = |V0|. By the definition of B, V0 ⊂ A. Let
n′
0 = |V0 − V1|.
Consider the following discharging procedure DP.

At the beginning, each edge of G−x has charge 1, so the sum of all charges is |E(G−x)|.
Then each edge e = uv ∈ E(G− x) shares its charge among its ends according to the rules
below.

(R1) if v ∈ V1, then the edge sends all charge to u;

(R2) if v ∈ A− V1 and u is its solo neighbor in B, then the e sends all charge to u;

(R3) in all other cases, e sends 1
2
to each endpoint.
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So, denoting the charge of a vertex v ∈ V (G) by ch(v), we have∑
v∈V (G)

ch(v) = |E(G− x)|. (20)

If a non-isolated vertex v ∈ A− V1 has a solo neighbor in B, then by Lemma 7 it has a
neighbor in each of the other two classes in A, thus by rules (R2) and (R3) its charge is at
least 1

2
+1 = 3

2
. If this non-isolated v ∈ A− V1 has no solo neighbors, then again by (R3) or

(R2), v receives charge at least 1
2
from each incident edge, and hence ch(v) ≥ 3

2
.

Each vertex u ∈ B receives at least 3 from the edges connecting u with A. Since B1 and
B2 are vertex sets of disjoint strong components of H, at least s edges connect any class in
B1 with any class in B2. Hence the vertices of B receive total charge at least 6s from these
edges. Thus,∑

v∈V (G)
ch(v) ≥ (2s− 1− n′

0) ·
3

2
+ 5s · 3 + 6s = 24s− n′

0 −
3

2
> 3(8s− 1− n′

0)− 6.

Together with (20), this contradicts Lemma 4(b).

Case 3.2: b0 = 5. For each u ∈ B and v ∈ V2, define the weight w3(v, u) =
1

∥V,u∥ . Then
for each v ∈ V2, define

w3(v) =
∑

uv∈E(G):u∈B
w3(v, u).

By definition,
∑

v∈V2
w3(v) =

∑
v∈V2,u∈B w3(v, u) = 5s.

Since V2 is accessible, there is some v ∈ V2 movable to V1. Then by Lemma 7, v has no
solo neighbor, so w3(v) ≤ 8 · 1

2
= 4. Thus there is some v′ ∈ V2 with w3(v

′) > 5.
Now we know that v′ has a neighbor in V1 and a neighbor in V3, so |N(v′) ∩ B| ≤ 6.

In order to achieve w3(v
′) > 5, we need q(v′) ≥ 5, and hence by Claim 4.1, q′(v′) ≥ 4. By

Lemma 6(a), each neighbor of v′ in Q′(v′) must be in a class containing some other neighbor
of v′, so there is some class W ′ ∈ B that is not adjacent to v′. Then we pick some z ∈ Q′(v′)
with color class W (z). By the case, W (z) is reachable from W ′, but by Lemma 7, v′ is
ordinary, and this leads to a contradiction to Lemma 6(b).

4.4 Proof of the case a = 5

In this case, since d(x) ≤ 5 and x has a neighbor in each class of A, we have d(x) = 5 and
x has no neighbors in B. First, we take a closer look at H[A].

We call H[A] nice, if every accessible class other than V1 blocks at most one accessible
class. All 5-vertex nice in-trees rooted at V1 are listed in Figure 2. The two 5-vertex in-trees
rooted at V1 with d−H[A](V1) ≥ 2 that are not nice are listed in Figure 3.

Lemma 8. If a = 5, then we can choose an almost equitable coloring φ so that H[A] is nice.

Proof. Note that if d−H[A](V1) ≥ 3, then H[A] is nice. So, we have the following cases.

Case 1: d−H[A](V1) = 2. Then H[A] contains one of the two digraphs in Figure 3.

Case 1.1: H[A] contains
−→
T ′
3,1. Let φ′ be obtained from φ by moving a witness v3 of the

arc V3V1 into V1. Then V3−v3 is the new small class, and the arcs V4(V3−v3), V5(V3−v3) and
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V2 V3 V4 V5

V1

V2
V3

V4

V5

V1

V2

V3 V4

V5

V1

Figure 2: Nice digraphs:
−−→
K4,1,

−→
T3 and

−→
T2,2.

V5

V4

V3 V2

V1

V5

V3

V4

V2

V1

Figure 3: Digraphs with d−H[A](V1) ≥ 2 that are not nice:
−→
T3,1 and

−→
T ′
3,1.

(V1+v3)(V3−v3) are present in the newH. So, if at least one of V1+v3, V3−v3, V4, V5 is an out-
neighbor of V2 in the newH, then the newH[A] is nice. Otherwise, |E(V2, V1∪V3∪V4∪V5)| ≥
4s, and hence

|E(V2 ∪ V6 ∪ V7 ∪ V8, V1 ∪ V3 ∪ V4 ∪ V5)| ≥ 4s+ 4|V6 ∪ V7 ∪ V8| ≥ 16s = 2n,

contradicting Lemma 4(b).

Case 1.2: H[A] contains
−→
T3,1. If V5V2 ∈ E(H), then H[A] is nice, a contradiction. So,

|E(V2, V5)| ≥ s. Again, let φ′ be obtained from φ by moving a witness v3 of V3V1 into V1.
Again, V3−v3 is the new small class, and the arcs V4(V3−v3), V5(V3−v3) and (V1+v3)(V3−v3)
are present in the new H. So, if one of V1 + v3, V3 − v3 is an out-neighbor of V2 in the new
H, then H[A] is nice, and if V2V4 ∈ E(H), then we get Case 1.1. Otherwise, as in Case 1.1,

|E(V2 ∪ V6 ∪ V7 ∪ V8, V1 ∪ V3 ∪ V4 ∪ V5)| ≥ s+ 3s+ 4|V6 ∪ V7 ∪ V8| ≥ 16s = 2n,

contradicting Lemma 4(b).
Case 2: d−H[A](V1) = 1. Suppose V2V1 ∈ E(H) and v2 ∈ V2 a witness of this arc. Since

each vertex in A is accessible, d−H[A](V2) ≥ 1, say V3V2 ∈ E(H). Let φ′ be obtained from φ
by moving v2 into V1. Then V2−v2 is the new small class, all classes in A are still accessible,
and V2 − v2 has at least two in-neighbors in the new H. So either the new H is nice or we
have Case 1. ✷

Lemma 9. If H[A] is nice, then each solo vertex v ∈ Vi ∈ A − V1 has a neighbor in each
class of A− Vi. In particular, v is ordinary.

17



Proof. Suppose v ∈ Vi ∈ A − V1 has a solo neighbor u ∈ W ∈ B and has no neighbor in
Vj for some Vj ∈ A − Vi. If H − Vi has a Vj, V1-path P , say P = W1,W2, . . . ,Wℓ, where
W1 = Vj, Wℓ = V1 and wh is a witness of WhWh+1 for h = 1, . . . , ℓ− 1, then we change φ as
follows. Since x has no neighbors in B, move it into the class of u, then move u to Vi, v to
Vj = W1, and then for h = 1, 2, . . . , ℓ − 1, move wh from Wh to Wh+1. This would yield an
equitable coloring on G, so assume that H− Vi has no such path.

This means that Vi blocks Vj. Since H[A] is nice, Vj is the unique vertex in H[A] blocked
by Vi, and v has neighbors in each class of A− Vj − Vi. Since Vi is the only out-neighbor of
Vj in H[A], we have |EG(Vj, A− Vi)| ≥ 3s.

If u is not adjacent to some vertex v′ that is movable from Vj to Vi, then we can move v
to Vj and v′ to Vi. Since H[A] is nice, all classes of A remain accessible, but now the class
of u also becomes accessible, contradicting the maximality of a. Thus u is adjacent to all
vertices movable from Vj to Vi. Let M be the set of these movable vertices and m = |M |.

Now we count the edges connecting A\Vj − v+u and B∪Vk+ v−u. Since v is adjacent
to each class in A − Vj − Vi and to u, at most 4 edges connect v to B − u. No vertex in
B − u is movable to A− Vj, thus

|EG(B + v − u,A− Vj − v + u)| ≥ 4(3s− 1)− 4 + 3 + 1 = 12s− 4. (21)

Since |EG(Vj, A− Vi − Vj)| ≥ 3s, we get

|EG(Vj, A−Vj−v+u)| = |EG(Vj, A−Vi−Vj)|+ |EG(Vj, Vi+u)| ≥ 3s+s−m+m = 4s. (22)

Summing (21) with (22) gives 16s− 4 edges in a bipartite planar graph with 8s− 1 vertices,
a contradiction to Lemma 4(b). ✷

Suppose now that φ satisfies Lemma 8. Recall that V0 denotes the set of isolated vertices
in G, and n0 = |V0|. By the definition of B, V0 ⊂ A. Let n′

0 = |V0 − V1|. Consider the
discharging procedure DP described in Case 3.1 of Subsection 4.3.1. We will show that the
new charges of vertices of G satisfy

ch(u) ≥ 5 for each u ∈ B, and ch(v) ≥ 2.5 for each v ∈ A− V1 − V0, (23)

which would imply that

E(G− x) =
∑

w∈V (G)−V1−V0

ch(w) ≥ 5(3s) + 2.5(4s− n′
0) = 25s− 2.5n′

0 > 3(|V (G)| − n0).

Together with (20), this contradicts Lemma 4(a). Thus, it remains to prove (23).
For u ∈ B and Vi ∈ A, u has a neighbor in Vi. If it is a unique neighbor of u in Vi, then

u gets 1 from uv by (R2), otherwise at least two edges connect u to Vi and u gets 1/2 from
each of them. This proves the first part of (23).

If v ∈ A − V1 has a solo neighbor in B, then by Lemma 9, it has an edge to V1 (from
which it gets 1 by (R1)) and at least 3 edges to other classes in A (from each of which it
gets 1/2 by (R3)). Thus in this case the second part of (23) holds.

Finally, if v ∈ A− V1 − V0 has no solo neighbors in B, then v receives by (R3) a charge
of 1

2
from each incident edge, and by the case, there are at least 5 of them. This proves (23)
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and hence finishes the proof of Theorem 3. ✷
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