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Abstract

Proper conflict-free coloring is an intermediate notion between proper coloring of
a graph and proper coloring of its square. It is a proper coloring such that for every
non-isolated vertex, there exists a color appearing exactly once in its (open) neighbor-
hood. Typical examples of graphs with large proper conflict-free chromatic number
include graphs with large chromatic number and bipartite graphs isomorphic to the
1-subdivision of graphs with large chromatic number. In this paper, we prove two
rough converse statements that hold even in the list-coloring setting. The first is for
sparse graphs: for every graph H, there exists an integer cy such that every graph
with no subdivision of H is (properly) conflict-free cpy-choosable. The second applies
to dense graphs: every graph with large conflict-free choice number either contains a
large complete graph as an odd minor or contains a bipartite induced subgraph that
has large conflict-free choice number. These give two incomparable (partial) answers
of a question of Caro, Petrusevski and Skrekovski. We also prove quantitatively better
bounds for minor-closed families, implying some known results about proper conflict-
free coloring and odd coloring in the literature. Moreover, we prove that every graph
with layered treewidth at most w is (properly) conflict-free (8w — 1)-choosable. This
result applies to (g, k)-planar graphs, which are graphs whose coloring problems have
attracted attention recently.

1 Introduction

Graph coloring is a central research area in graph theory. For an integer k, a k-coloring
of a graph G is a function ¢ : V(G) — [k]. A coloring of a graph G is properif it is a function
¢ with domain V(G) such that ¢(x) # ¢(y) for every xy € E(G). The chromatic number of
G, denoted by x(G), is the minimum k such that there exists a proper k-coloring of G.

*chliu@math.tamu.edu. Partially supported by NSF under award DMS-1954054 and CAREER award
DMS-2144042.



One topic in graph coloring is about the chromatic number of G2, where G? is the graph
with the same vertex-set as a graph G and two vertices are adjacent in G? if and only if the
distance between them in G is at most 2. For example, Wegner [48] proposed a conjecture
about the chromatic number of G2 for planar graphs G with maximum degree A; Erdds and
Nesettil (see [15, 18]) proposed a conjecture about the chromatic number of (L(G))? for a
graph G with maximum degree A, where L(G) is the line graph of G. A lot of work about
these two conjectures has been done. For example, see [3, 4, 6, 10, 21, 25, 26, 27, 28, 40, 47].
We remark that this is far from a complete list of results about coloring the square of a
graph, even just for the aforementioned two conjectures.

Note that x(G?) is tied to the maximum degree of G, since the vertices in the neigh-
borhood of any vertex require all different colors. In this paper we consider proper (open)
conflict-free colorings. Roughly speaking, such a coloring only requires some color appears
exactly once in the neighborhood of any vertex, so it is a relaxation of a proper coloring of
the square of a graph. We will define this notion formally later in this paper and observe
that the number of required colors is no longer tied to the maximum degree.

Besides being a relaxation of proper colorings of the square of a graph, conflict-free col-
oring was motivated by a frequency assignment problem for cellular networks [1]. Even,
Lotker, Ron and Smorodinsky [16] introduced conflict-free coloring for hypergraphs, which
is a vertex-coloring such that for every hyperedge e, there exists a color that appears exactly
once on the vertices contained in e. Cheilaris [8] considered the special case when the hyper-
edges are exactly the (open) neighborhoods of the vertices of a graph, while Abel, Alvarez,
Demaine, Fekete, Gour, Hesterberg, Keldenich and Scheffer [2] considered the special case
when the hyperedges are exactly the closed neighborhoods of the vertices of a graph.

In this paper, a conflict-free coloring refers to a conflict-free coloring with respect to
(open) neighborhoods. For a vertex v of a graph G, we define Ng(v) = {u € V(G) : uv €
E(G)} and define Ng[v] = Ng(v) U {v}.

Definition 1.1. A conflict-free coloring of a graph G is a function ¢ with domain V' (G) such
that for every vertex v of G, either Ng(v) = ), or there exists an element ¢, in the image
of ¢ such that [¢71({c,}) N Ng(v)| = 1. That is, if v is not an isolated vertex, then c, is a
color that appears in the neighborhood of v exactly once.

By combining the two notions of proper colorings and (not necessarily proper) color-
ings and the two notions of conflict-free colorings (with respect to open neighborhoods) and
conflict-free colorings with respect to closed neighborhoods, there are four conflict-free-types
of colorings studied in the literature (for example, [2, 7, 17, 42]). For a graph G, we de-
fine xpet(G) and Xpete(G) to be the minimum & such that G' admits a proper conflict-free
k-coloring and a proper conflict-free k-coloring with respect to closed neighborhoods, respec-
tively; we define xict(G) and Xicre(G) to be the minimum & such that G admits a conflict-free
k-coloring and a conflict-free k-coloring with respect to closed neighborhoods, respectively.

It is easy to see that xict(G) < Xpet(G) > X(G) and Xicte(G) < Xpere(G) > x(G). In
fact, for every proper coloring, the color on each vertex v appears exactly once in the closed
neighborhood of v. So every proper coloring is a conflict-free coloring with respect to closed
neighborhoods. Hence Xpete(G) = x(G). Therefore, xper(G) is an upper bound for the other
three parameters Xpetc(G), Xict(G) and Xicr(G). In addition, as observed by Pach and Tardos

[42]> Xich(G) < 2X1Cf(G).



On the other hand, the gap between x,c(G) and the other 3 parameters can be arbitrarily
large. If G is a l-subdivision! of a graph H, then the neighbors of any vertex of degree 2
in G receive different colors in any proper conflict-free coloring, so xpet(G) > x(H), ? but
X(G) = 2 since G is bipartite. In addition, for the complete graph K, on n > 3 vertices,
by coloring one vertex with color 1, one vertex with color 2 and all other vertices color 3,
we obtain an improper conflict-free coloring (with respect to both open neighborhoods and
closed neighborhoods), so Xict(K,) < 3 and Xicte (£,) < 3, but xper(K5) > x(K,,) = n. This
implies that having bounded x;i.f and Yicte does not imply having bounded chromatic number.
So even though the analog of Hadwiger’s conjecture for conflict-free coloring with respect to
closed neighborhoods is true [2], it does not give any upper bound for the chromatic number
of proper minor-closed families.

In this paper we are interested in finding upper bounds for x,(G). The first reason is
that proper conflict-free coloring is an intermediate notion between proper coloring of a graph
G and proper coloring of its square G?. Unlike the chromatic number of G?; xpt(G) is not
necessarily tied to the maximum degree of G. The second reason is that proper conflict-free
coloring behaves very differently from proper coloring. As we discussed earlier, 1-subdivision
of a graph with large chromatic number has large Xper(G). So having maximum average
degree at most 4 does not imply that x,t(G) is bounded, even though it ensures bounded
chromatic number. The third reason is that xpc(G) is an upper bound of the other three
conflict-free-types of parameters xpcte(G), Xict(G) and xicte(G). So it suffices to find upper
bounds for xpct(G).

1.1  Our results
We start with a natural question from [7].

Question 1.2 ([7, Question 6.2]). Find a “generic” graph family F for which there exists a
constant ¢ such that Xpet(G)/x(G) < ¢ for every G € F.

As we mentioned earlier, unlike many coloring parameters, having bounded degeneracy
and bounded chromatic number does not ensure an upper bound for proper conflict-free
chromatic number. For every graph H, the 1-subdivision of H is 2-degenerate and bipartite,
but its proper conflict-free chromatic number is at least the chromatic number of H. Hence,
if a graph class has bounded proper conflict-free chromatic number, then there exist a graph
H, and a bipartite graph H, such that this class does not contain the 1-subdivision of H;
and does not contain the graph H,. That is, 1-subdivisions and bipartiteness are natural
obstructions for having small proper conflict-free chromatic number. Two of our main re-
sults of this paper (Theorems 1.3 and 1.9) are rough converse of this observation and give
partial answers for Question 1.2, where one addresses “subdivisions” and the other addresses
“induced bipartiteness”, even for the list-coloring setting.

Let G be a graph. Let k be a real number. A k-list-assignment of G is a function that
maps each vertex of G to a set with size at least k. For a k-list-assignment L of G, an

IThe 1-subdivision of a graph H is the graph obtained from H by subdividing each edge exactly once.

2An (< k)-subdivision of a graph H is a graph obtained from H by subdividing each edge e of H s,
times, for some 0 < s, < k. The same observation shows that xpcr(G) > x(H) for every graph G that is an
(< 1)-subdivision of H.



L-coloring is a function ¢ with domain V(G) such that ¢(v) € L(v) for every v € V(G). An
L-coloring ¢ is proper if ¢(z) # ¢(y) for every xy € F(G). An L-coloring ¢ is conflict-free
if for every vertex v of G, either Ng(v) = (), or there exists a color ¢, in the image of ¢
such that [¢~'({c,}) N Ng(v)] = 1. We say that G is conflict-free k-choosable? if for every
k-list-assignment L of (G, there exists a proper conflict-free L-coloring of G.

Our first answer for Question 1.2 is the following.

Theorem 1.3. For every graph H, there exists a real number cy such that every graph that
does nmot contain a subdivision of H (as a subgraph) is conflict-free cy-choosable.*

Note that graphs satisfying Theorem 1.3 are sparse in the sense that the number of edges
is at most a linear function of the number of vertices. Our second answer for Question 1.2
addresses induced bipartite subgraphs and odd minors, which applies to graphs that have
quadratically many edges. We discuss our other results for sparse graphs before stating this
second answer.

Minor-closed families are special cases of Theorem 1.3. A graph H is a minor of another
graph G if H is isomorphic to a graph that is obtained from a subgraph of G by contracting
edges. A class F of graphs is minor-closed if every minor of a member of F is in F. A minor-
closed family is proper if it does not contain all graphs. Clearly, if F is a proper minor-closed
family, then there exists a graph H such that every graph in F does not contain H as a
minor, so every graph in F does not contain a subdivision of H.

We prove a more explicit upper bound for minor-closed families by using degeneracy.
Let d be a real number. We say a graph G is d-degenerate if every subgraph of G has a
vertex of degree at most d. We say a class F of graphs is d-degenerate if every graph in F
is d-degenerate.

A classical result of Mader [37] implies that for every proper minor-closed family F,
there exists a real number k such that F is k-degenerate. The optimal degeneracy for many
minor-closed families has been determined exactly or asymptotically, such as for the class of
H-minor free graphs when H is a small complete graph [30, 38, 44], a large complete graph
[45], a complete bipartite graph [9, 31, 32, 33, 34], the Petersen graph [22], a dense graph

3We use the terminology “conflict-free k-choosable” instead of “proper conflict-free k-choosable” because
in the context of graph coloring, being k-choosable already requires the corresponding colorings being proper.
We follow the same convention here.

4This paper provides two proofs of this result. The first proof is explicitly stated in this paper and
relies on the machinery about clique-sums developed in Section 3. The second proof is implicitly stated
in this paper and uses Lemma 5.1 proved in Section 5. The motivation of Lemma 5.1 in this paper is to
study (g, k)-planar graphs and graphs with bounded layered treewidth, which will be described later in this
section. The author did not notice the relationship between Lemma 5.1 and Theorem 1.3 until one day
before he announced the first draft of this paper on arXiv [35] when a draft of Hickingbotham [24] appeared
on arXiv. Hickingbotham [24] independently discovered Lemma 5.1 with essentially the same proof as ours
and observed that known results in the literature immediately show that Lemma 5.1 applies to graph classes
with bounded expansion and hence implies Theorem 1.3. See the concluding remarks in Section 6 for details
and our further generalization of Hickingbotham’s observation. We still keep our original proof of Theorem
1.3 by using clique-sums, because this proof is just a simple application of the machinery. This machinery
will also be used to prove our second answer for Question 1.2 in terms of odd minors and induced bipartite
subgraphs. In particular, this machinery is applicable to graphs with unbounded degeneracy (so beyond the
scope of Lemma 5.1) and can probably be further developed to provide better bounds for other notions of
colorings.



[39, 46], or a properly 4-colorable graph in a monotone class admitting strongly sublinear
balanced separators [23].

We prove that the conflict-free choice number of a proper minor-closed family can be up-
per bounded in terms of its degeneracy and hence can be combined with the aforementioned
results about degeneracy.

Theorem 1.4. Let d be a nonnegative integer. If F is a d-degenerate minor-closed family,
then every graph G in F is conflict-free (2d + 1)-choosable.”

Besides combining Theorem 1.4 with aforementioned results about degeneracy, Theorem
1.4 already implies a number of results in the literature.

If F is the class of graphs with treewidth® at most w, then F is w-degenerate, so every
graph in F is conflict-free (2w + 1)-choosable. Outerplanar graphs have treewidth at most 2,
so Theorem 1.4 implies that every outerplanar graph is conflict-free 5-choosable. It implies an
earlier result in [17] stating that every outerplanar graph is properly conflict-free 5-colorable,
which is tight since the 5-cycle is not properly conflict-free 4-colorable. In addition, every
forest has treewidth at most 1, so Theorem 1.4 implies that every forest is conflict-free 3-
choosable. It implies an earlier result in [7] stating that every forest is properly conflict-free
3-colorable, which is tight since the 3-vertex path is not properly conflict-free 2-colorable.

We remark that it is easy to prove that every graph with maximum degree A is conflict-
free (2A + 1)-choosable. See [12]. Moreover, the coefficient 2 can be improved to 1 if A =3
[36] and to 1.6550826 if A is sufficiently large [12]. Graphs with maximum degree A are A-
degenerate, but 1-degenerate graphs can have arbitrarily large maximum degree. Theorem
1.4 shows that the condition on maximum degree (for coefficient 2) can be replaced by the
one on degeneracy if we restrict the graphs to be in minor-closed families.

Another implication of Theorem 1.4 is about odd coloring. A k-coloring ¢ of a graph G
is odd if for every v € V(G), either Ng(v) = 0, or there exists ¢, in the image of ¢ such
that [¢~*({c,}) N Ng(v)| is odd. Clearly, every proper conflict-free coloring is a proper odd
coloring. Cranston, Lafferty and Song [11] proved that every d-degenerate proper minor-
closed family is properly odd (2d + 1)-colorable, and hence this is a special case of Theorem
1.4.

An extensively studied minor-closed family is the class of graphs embeddable in a fixed
surface. We can prove a slightly better bound than Theorem 1.4 in this case.

Theorem 1.5. Let ¥ be a surface with Euler genus p. If p € {0,1}, then every graph
embeddable in X is conflict-free 11-choosable. If p > 2, then every graph embeddable in ¥ is
conflict-free V3180 V723+48”—ch005able.

Another result of Cranston, Lafferty and Song [11] is about odd coloring on 1-planar
graphs. For nonnegative integers g and k, a graph is (g, k)-planar if it can be drawn in
a surface of Euler genus ¢ such that every edge contains at most k crossings. Note that

We remark that the strength of this result is on the quantitative side. Even though Lemma 5.1 and
the aforementioned independent work of Hickingbotham [24] can be applied to minor-closed families, they
provide quantitatively much worse bound than Theorem 1.4, unless some known results in the literature are
significantly improved.

6Treewidth will be defined in Section 3.



(0, k)-planar graphs are also called k-planar graphs in the literature. The class of 1-planar
graphs is not a topological minor-closed family, so Theorem 1.3 does not apply to this class.
On the other hand, Cranston, Lafferty and Song [11] proved that every 1-planar graph is
properly odd 23-colorable. They [11] also stated that “it seems non-trivial to prove a more
general result for k-planar graphs”. Another result of this paper solves this case via layered
treewidth”.

Theorem 1.6. If w is a positive integer, then every graph with layered treewidth at most w
is conflict-free (8w — 1)-choosable.

It is known [13] that every (g, k)-planar graph has layered treewidth at most (4g+6)(k+1).
Hence Theorem 1.6 gives the following corollary.

Corollary 1.7. For any nonnegative integers g and k, every (g, k)-planar graph is conflict-
free ((32g + 48)(k + 1) — 1)-choosable.

We remark that Hickingbotham [24] independently announced a paper on arXiv when
the writing of the first version of this paper [35] was about to be completed. The main
result in [24] is essentially equivalent to (but actually slightly weaker than) Lemma 5.1 in
this paper that we will develop for proving Theorem 1.6, with essentially the same proof.
Hickingbotham [24] observed that combining his version of Lemma 5.1 with a known result
in the literature immediately implies that every graph class with bounded expansion has
bounded proper conflict-free chromatic number and hence implies Theorem 1.3. We should
address that our proof of Theorem 1.3 is a simple application of a machinery about clique-
sums, which is part of the main technical contribution of this paper and is used to prove our
results about odd minors (Theorem 1.9) that will be described later in this section. Theorem
1.9 applies to dense graphs, so it cannot be proved via Lemma 5.1 or Hickingbotham’s work
[24]. The proof of Theorem 1.3 via Lemma 5.1 or Hickingbotham’s work [24] is conceptu-
ally simpler than the one via clique-sums, but probably gives weaker quantitative bound.
Moreover, even though Hickingbotham’s observation [24] also leads to a O(w) bound for
Theorem 1.6, the coefficient for w in his bound is weaker than the one in our Theorem 1.6.
Minimizing this coefficient for w is of interest in this paper because a O(w) bound can be
easily proved via our Theorem 1.4 without resorting to other results in the literature in con-
trast to Hickingbotham’s proof. As our Lemma 5.1 is quantitatively stronger than the main
result in [24], our results in this paper with explicit bounds are quantitatively stronger than
all results in [24]. In addition, Theorems 1.4 and 1.5 are quantitatively better than Lemma
5.1 and are not covered by Lemma 5.1 or work in [24]. In Section 6, we will explain the
relationship between our Lemma 5.1 and Hickingbotham’s work [24] in more detail, and we
will extend Hickingbotham’s observation by combining Lemma 5.1 with more known results
in the literature to immediately give results that are stronger than Hickingbotham’s.

"Layered treewidth will be defined in Section 5. The author of the present paper (via private communica-
tion with Zi-Xia Song) observed that the result in [11] about graphs with bounded treewidth easily leads to
an O(w) upper bound for the proper odd chromatic number of graphs with layered treewidth at most w, and
hence leads to an O(k) upper bound for the proper odd chromatic number for k-planar graphs. Dujmovié,
Morin and Odak [14] later announced a proof for an upper bound O(k%) for k-planar graphs by using strong
products of graphs.



Now we address our second partial answer for Question 1.2. Recall that every graph @)
that is an (< 1)-subdivision of a graph H with large chromatic number has large proper
conflict-free chromatic number. It is not hard to show that either () has large chromatic
number, or () contains an induced subgraph @’ that is a 1-subdivision of a graph with large
chromatic number. (See Proposition 6.5 for a proof.) Note that @' is an induced bipartite
subgraph that has large proper conflict-free chromatic number. Our second partial answer
for Question 1.2 states that such an induced bipartite graph with large proper conflict-free
chromatic number is the only obstruction in odd minor-closed families.

Let G be a graph. An odd contraction is the operation that first takes a partition {A, B}
of V(@) with size two, and then for each connected component C' of G’, contracts C' into
a vertex, where G’ is the spanning subgraph of G whose edges are exactly the edges of
G between A and B. It is easy to show that applying an arbitrary odd contraction on a
bipartite graph leads to a bipartite graph. A graph H is an odd minor of another graph
G if H is isomorphic to a graph that can be obtained from a subgraph of G by repeatedly
applying odd contractions. So every odd minor of a bipartite graph is bipartite.

If H is an odd minor of GG, then H is a minor of GG; but the converse is not necessarily
true. The key feature is that unlike H-minor free graphs, which have bounded degeneracy,
odd H-minor free graphs can be dense. For example, the complete bipartite graph kK, ,, has
n? edges but does not contain K3 as an odd minor.

Odd minors were considered when generalizing Hadwiger’s conjecture. Gerards and Sey-
mour (see [29, p. 115]) conjectured that every graph with no odd K, i-minor is properly
t-colorable for every positive integer ¢. It is known [19] that for every graph H, if H is not
an odd minor of G, then the chromatic number of GG is upper bounded by a number only
depending on H.

We show that, for any odd minor-closed family, the aforementioned induced bipartite
subgraph with large proper conflict-free chromatic number is the only obstruction for having
small proper conflict-free chromatic number.

Theorem 1.8. For every positive integer h, there exists an integer ¢, such that for every
graph G with no odd Kjy-minor, if xpet(Q) < k for every induced bipartite subgraph Q of G,
then Xpet (G) < k + cn.

In other words, Theorem 1.8 implies that every graph with large proper conflict-free
chromatic number either contains a large complete graph as an odd minor, or contains an
induced bipartite subgraph with large proper conflict-free chormatic number. It can be
viewed as an analog of chi-boundedness result with respect to proper conflict-free chromatic
number.

In fact, Theorem 1.8 works for a more general setting. For example, if we want to show
G has small odd chromatic number instead of having small proper conflict-free chromatic
number, then we can show that asking every induced bipartite subgraph for having small
odd chromatic number suffices. We will state our result in a more general setting, called S-
achieved coloring, which is a common generalization of conflict-free coloring and odd coloring.

Let S be a set of positive integers. Let G' be a graph. An S-achieved coloring of G is a
coloring such that for every vertex v with Ng(v) # (), there exist s, € S and a color appearing
exactly s, times in Ng(v). For a positive integer t, we say that G is properly S-achieved
t-colorable if there exists a proper S-achieved t-coloring of G. Note that if 1 € S, then every
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graph H is properly S-achieved t-colorable for some t < |V(H)|; if 1 ¢ S, then every graph
that has a vertex whose neighborhood is a clique is not properly S-achieved t-colorable for
any integer t. So we are only interested in the case when 1 € S. Moreover, when S = {1}, the
proper S-achieved colorings are exactly the proper conflict-free colorings; when S consists of
the set of positive odd integers, the proper S-achieved colorings are exactly the proper odd
colorings.

Similarly, given a list-assignment L of GG, an S-achieved L-coloring of G is an L-coloring
such that for every vertex v with Ng(v) # (), there exist s, € S and a color appearing exactly
s, times in Ng(v). For a positive integer ¢, we say that G is S-achieved t-choosable if for
every t-list-assignment of GG, there exists a proper S-achieved L-coloring of G.

The following theorem is a generalization of Theorem 1.8.

Theorem 1.9. For every graph H, there exists an integer cy such that the following holds.
Let G be a graph such that H is not an odd minor of G. Let S be a set of positive integers
with 1 € S. Let k be a positive integer.

1. If every induced bipartite subgraph of G is properly S-achieved k-colorable, then G is
properly S-achieved (k + cp)-colorable.

2. If every induced bipartite subgraph of G is S-achieved k-choosable, then G is S-achieved
(k + ¢ )-choosable.

This paper is organized as follows. Results about minor-closed families (Theorems 1.4
and 1.5) are proved in Section 2. We develop machinery for conflict-free coloring of clique-
sums of graphs in Section 3 and use it to prove Theorems 1.3 and 1.9 in Section 4. In Section
5, we prove Theorem 1.6. Section 5 does not use anything developed in earlier sections and
can be read independently. Concluding remarks are stated in Section 6.

2 Minor-closed families

Let d be a positive real number and let ¢ be a positive integer. We say that a graph G is
(q,d)-degenerate if for every subgraph H of G with |V (H)| > ¢+ 1, H has a vertex of degree
at most d. We say a graph class F is (¢, d)-degenerate if every graph in F is (q, d)-degenerate.
Note that every d-degenerate graph class is (1, d)-degenerate.

We first prove Theorem 1.4, which is a corollary of the following theorem. The proof of
this theorem uses ideas from [11].

Theorem 2.1. Let d be a positive real number and let q be a positive integer. Let F be a
(q,d)-degenerate minor-closed family. Let G be a graph in F. Let L be a min{2|d| + 1, q}-
list-assignment of G. Let H be a subgraph of G. Then there exists a proper L-coloring ¢ of
G such that for every vertex v of G with Ng_pm)(v) # 0, there exists i in the image of ¢
such that ¢~ ({i}) N Ne—gm)(v)| = 1.

Proof. We shall prove this theorem by induction on |V(G)|. Let n = |[V(G)|. If n <
min{2|d| + 1,q}, then there exists an L-coloring of G' such that no two vertices have the
same color, so the theorem holds. In particular, the theorem holds when n = 1. So we may
assume that n > min{2|d| + 1, ¢} + 1 and the theorem holds when n is smaller.

8



Since F is (q, d)-degenerate and n > g+ 1, there exists a vertex v of G with degree at most
|d]. Note that L|ygy—qv is a min{2|d] + 1, ¢}-list-assignment of G —v. Let H; = H — v.
So H, is a subgraph of G —v. By the induction hypothesis, there exists a proper L|y()—{v}-
coloring ¢1 of G — v such that for every vertex u of G — v with Ng_v)—gm,)(uw) # 0, there
exists 4; in the image of ¢1 such that |¢7 " ({i1}) N Nig—v)—p@n)(w)| = 1. If v has no neighbor
in G — E(H), then Nog_pm)(u) = NG-v)—pm)(v) for every u € V(G) — {v}, so we can
further color v with any color in L(v) — {¢1(y) : y € Ng(v)} (which is a non-empty set) to
extend ¢; to be a proper L-coloring of GG satisfying the conclusion of this theorem. Hence
we may assume that v has at least one neighbor in G — E(H).

Let u be a neighbor of v in G—E(H). Let G5 be the graph obtained from G by contracting
the edge uv into a new vertex w and deleting resulting parallel edges. Let Hs be the graph
with V(Hy) = (V(H) — {u,v}) U{w} and F(Hy) = {e € E(H) : e is not incident with u or
v}U{wz € E(Gy) : 2z € V(G) —{u,v}uz € E(H)}U{wz € E(Gy) : z € Ng(v) — {u},uz &
E(G)}. Note that Hy is a subgraph of Go, and the edges of H, are exactly the edges of
H remaining in GGy and the new edges obtained by the contraction. Let Ly be the list-
assignment of Gy such that Ly(w) = Ly(u), and Ly(z) = L(z) for every z € V(Gy) — {w}.
Note that Lo is a min{2|d] + 1, ¢}-list-assignment of Gs.

Since F is a minor-closed family, Gy € F. Since |V (Gs)| < |[V(G)|, by the induction
hypothesis, there exists a proper Lo-coloring ¢o of G5 such that for every vertex y of G5 with
Ne,—p()(y) # 0, there exists 4, in the image of ¢, such that |¢5 " ({i,}) N Ngy—pm) (y)| = 1.
Let S = {¢a2(y) : y € Neg(v)} U{iy : y € Ne(v), Nay—pm)(y) # 0}. Note that |S]| <
2|Ng(v)| < 2|d| < |L(v)] = 1. So L(v) — S # 0. Then we define an L-coloring ¢ of G by
defining ¢(z) = ¢o(x) for every z € V(G) — {u, v}, defining ¢(u) = ¢o(w), and defining ¢(v)
to be an arbitrary element in L(v) — S. Clearly, ¢ is a proper L-coloring of G.

Note that for every y € V(G)—{u, v}, Ney—p#,)(y) = No—pwm)(y)—{v}; and Na,— g, (w)
= Ng-pm)(u) — {v}. For convenience, we treat w and u as the same vertex. Then for every
y € V(G) — {v} with Ne_gwm)(y) # 0, either Ng,— g, (y) # 0, or v is the unique neighbor
of y in G — E(H). For the former, |¢~({i,}) N Ne—rum ()] = |65 ({iy}) N Nay—ra,) (y)| = 1
since either y ¢ Ng(v) or ¢(v) # i, € S. For the latter o~ ({o(v)}) N No—pun (v)| =
|{v}| = 1. Hence, to prove this lemma, it suffices to show that there exists i in the image
of ¢ such that |¢~'({i}) N Ne—pm)(v)| = 1. Recall that u € Ng_p@(v). Since w is ad-
jacent in Gy to all vertices in Ng(v) — {u} and ¢5 is a proper Lo-coloring of Go, we know
|07 ({p(u)}) N No—pm)(v)] = [{u}| = 1. This proves the theorem. m

Now we show corollaries of Theorem 2.1. Note that the use of the special subgraph H in
Theorem 2.1 is to make the inductive argument work, and we only need the case E(H) =)
in our applications. The following corollary is a restatement of Theorem 1.4.

Corollary 2.2. Let d be a nonnegative integer. Let F be a d-degenerate minor-closed family.
Then every graph G in F is conflict-free (2d + 1)-choosable.

Proof. This corollary trivially holds when d = 0. So we may assume d > 1. Since F is
d-degenerate, F is (1, d)-degenerate. Let G be a graph in F. Let H be a subgraph of G with
no edge. So Ng(v) = Ng_gm)(v) for every v € V(G). For every (2d + 1)-list-assignment
L of G, since 2d + 1 > min{2d + 1,1}, by Theorem 2.1, there exists a proper conflict-free
L-coloring of G. =



The following corollary is a restatement of Theorem 1.5.

Corollary 2.3. Let X be a surface with Euler genus p. If p € {0,1}, then every graph
embeddable in X is conflict-free 11-choosable. If p > 2, then every graph embeddable in ¥ is
conflict-free BV T35 V723+48p-ch003able.

Proof. Let g be the function such that g(x) = 6 — @ for every positive integer x. Let
F be the class of graphs embeddable in ¥. By Euler’s formula, every n-vertex graph in F is
g(n)-degenerate.

If p € {0, 1}, then F is 5-degenerate, so every graph G in F is 11-conflict-free choosable
by Corollary 2.2. Hence we may assume p > 2.

Let k = 13tv/75+48p VZ?’H&’. If G is a subgraph of a graph in F on n vertices, for some integer
n with n > |k| + 1, then n > k, so g(n) = 6—1—% < 6+6p;12 < % Hence F is
(Lk], 551)-degenerate. Since k > min{2| 21| + 1, |k}, this corollary follows from Theorem

2.1 with H the null graph. =

3 S-achieved coloring and clique-sum

In this section we study conflict-free coloring for graphs with a given tree-decomposition.
It is preparation for proving Theorems 1.3 and 1.9.

We first define clique-sums of graphs. Let Gy, Gy be graphs. For each i € [2], let Q); be a
clique in G; with |@Q1] = |@2|. Let ¢ be a bijection from @1 to Q2. Then a (@1, Q2,t)-sum of
G1 and G5 is a graph obtained from a disjoint union of G; and G, by first for each z € @1,
identifying = and «(x) into a new vertex v,, and then deleting any number of edges whose
both ends are in {v, : € @)1}. Furthermore, if L; is a list-assignment of Gy, and L, is a
list-assignment of Gy such that Li(x) = Ly(u(x)) for every x € @y, then the list-assignment
of G obtained by a (Q1,Q2,t)-sum is the list-assignment L of G such that L(v) = Ly(v) if
v e V(Gy) —Qr, L(v) = Ly(v) if v € V(Ga) — Qa, and L(v,) = Li(z) = Lo(i(x)) for every
x € . For a nonnegative integer ¢, an (< t)-sum of G; and Gq is a (W7, Wa, £)-sum of
G and G for some clique W; in Gy, some clique Wy in Gy with |[W;| = |[Ws| < ¢, and a
bijection £ from Wi to W.

In order to handle clique-sums of graphs, we consider the following property stronger
than S-achieved colorability.

Let S be a set of positive integers. Let G be a graph. Let C be a collection of subsets
of V(G). We say that a subgraph H of G is C-compatible if for every edge of H, there
exists a member of C containing both ends of this edge. For a nonnegative integer ¢ and a
list-assignment L of G, we say that G is (S,C, L, t)-extendable if for every clique W of G
with size at most ¢, for every C-compatible subgraph H of G, for every proper L|y-coloring
ow of G[W], for every function f with domain W, and for every function g : W — {0,1},
there exists a proper L-coloring ¢ of GG such that

o ¢(v) = pw(v) for every v € W, and

e for every v € V(G),
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— if v € W and g(v) = 0, then there exists no vertex u € Ng(v) — W such that
¢(u) = f(v), and

— if either v ¢ W, or v € W and g(v) = 1, then either Ng_gmy(v) = 0, or there
exists i, such that [¢~({i,}) N No—pan (v)] € S.

Note that if G is (S, C, L, t)-extendable, then G has a proper S-achieved L-coloring, by taking
W = () and H the null graph.

Lemma 3.1. Let S be a set of positive integers. Let t be a nonnegative integer. Let G1 and
Go be graphs. For each i € (2], let Q; be a clique in G; with size t, and let C; be a collection
of subsets of V(G;) with Q; € C;. Let ¢ be a bijection from Q1 to Qo. For each i € {1,2},
let L; be a list-assignment of G; such that Li(x) = Lo(c(x)) for every x € Q1. Let G be a
(Q1,Q2,t)-sum of Gy and G, and let L be the list-assignment obtained by a (Q1, Qa, L)-sum.
If Gy is (S,Cq, Ly, ty)-extendable and Gy is (S, Cy, Lo, to)-extendable for some integers t1 >t
and ty > t, then G is (S,Cy U Cq, L, min{ty, ts})-extendable.

Proof. Let G’ be the graph obtained from a disjoint union of GG; and Gy by, for each vertex
x € 1, identifying x and «(x) into a vertex v,. Let @ = {v, : € @1}. So @ is a clique in
G', and G is a graph obtained from G’ by deleting some edges whose both ends are in Q).
For convenience, we do not distinguish v,, x and ¢(x). That is, we treat v, = x = ¢(x). This
implies that Q = Q1 = Q> is a clique in all of G;, Gy and G'.

Let W be a clique of G with size at most min{ty,%s}. Let H be a (C; U Cy)-compatible
subgraph of G. Let ¢y be a proper L|y-coloring of G[W]. Let f be a function with domain
W. Let g : W — {0,1} be a function. To show that G is (S, L, min{t;, ¢, })-extendable, it
suffices to show that there exists a proper L-coloring ¢ of G such that the following hold.

(i) ¢(v) = ¢w(v) for every v € W.
(ii) For every v € V(G),

(ii-1) if v € W and g(v) = 0, then there exists no vertex u € Ng(v) — W such that
¢(u) = f(v), and

(ii-2) if either v ¢ W, or v € W and g(v) = 1, then either Ng_pgy(v) = 0, or there
exists i, such that [¢~!({i,}) N No_pan (v)] € S.

Since W is a clique of G C G, either W C V(G;) or W C V(G2). By symmetry, we
may assume W C V(G;). So W is a clique in both G and G;. Hence ¢y is a proper
L |w-coloring of G1[W]. Let Hy be the subgraph of Gy with V(H,) = V(H)NV(G;) and
E(H,) = {w € E(H) : u,v € V(G1)} U{zy : z,y € Q1,v,v, € E(G)}. Since Q1 € C,
H, is a C;-compatible subgraph of Gy, and Gy — E(H,) = (G — E(H))[V(Gy)]. Since G, is
(S,C1, Ly, t1)-extendable with ¢; > |W|, there exists a proper Lj-coloring ¢; of G such that
o1lw = ¢w and for every v € V(Gy),

e if v € W and g(v) = 0, then there exists no vertex u € Ng,(v) — W such that
¢1(u) = f(v), and

o if either v ¢ W, or v € W and g(v) = 1, then either Ng,_gu,)(v) = 0, or there exists
i, such that |¢7" ({i,}) N Ng,—pa) (v)| € S.

11



Let Hs be the subgraph of Gy with V(Hy) = V(H)NV(Gs) and E(Hs) = {uv € E(H) :
u,v € V(Ga)} U{u(x)(y) : z,y € Q2,00 & E(G)}. So Gy — E(Hy) = (G — E(H))[V(Gy)].
Since )y € Cy, Hy is Co-compatible. Note that QQ = Q1 = ()2 is a clique in both G; and G5
with size t < t9, and ¢1|g is a proper Lo-coloring of G3[Qs]. Define go : Q2 — {0,1} to be
the function and f> to be the function with domain )5 such that for every = € Qs,

o if z € QN W, and either Ng,_gu,)(x) = 0 or g(x) = 0, then go(z) = g(z) and
f2(x) = f(!lﬁ'),

o if 2 € Q2NW, Ng,—p(m,)(x) # 0 and g(x) = 1, then g»(z) = 0 and fo(z) = iy,
o if x € Q2 \ W and Ng,_pg(,)(x) = 0, then go(x) = 1 and fr(x) = 0, and
o if x € Q@ \ W and Ng,_pm,)(x) # 0, then go(x) = 0 and fo(x) = i,.

Since Gy is (59, Cy, Lo, to)-extendable, there exists a proper Lo-coloring ¢y of Gy such that
®2|Q, = ¢1lg, and for every v € V(Ga),

o if v € )y and go(v) = 0, then there exists no vertex u € Ng,(v) — Q2 such that
ng(u) = fg(U), and

o if either v € Q2, or v € Q2 and go(v) = 1, then either Ng,_pm,)(v) = 0, or there exists
Jv such that |¢2_1({jv}) N NG2—E(H2)(U)| €S.

Since ¢s|q, = ¢1]q,, the function ¢ with domain V' (G) with ¢|v(c,) = ¢1 and ¢|y(a,) = ¢2
is a proper L-coloring of G such that ¢y = ¢1|w = ¢w. So (i) holds.

Now we show that (ii) holds. We first prove (ii-1). Let a € W with g(a) = 0. By
the property of ¢y, there exists no vertex u € Ng,(a) — W such that ¢i(u) = f(a). If
a ¢ @, then Ng(a) — W = Ng, (a) — W, so there exists no vertex u € Ng(a) — W such that
od(u) = f(a). So we may assume a € QNW = QN W. Since g(a) = 0, we have ga(a) =0
and fy(a) = f(a). By the property of ¢o, there exists no vertex u € Ng,(a) — Q2 such that
¢2(u) = fo(a) = f(a). Since Ng(a) C Ng,(a)UNg,(a), there exists no vertex u € Ng(a)—W
such that ¢(u) = f(a). This proves (ii-1).

Now we prove (ii-2). Let b be a vertex of G such that either b € W, or b € W and
g(b) = 1. To prove (ii), it suffices to show that either Ng_ g (b) = 0, or there exists k, such
that [¢~'({ks}) N No_pm)(b)] € S. We may assume Ng_p)(b) # 0, for otherwise we are
done.

We first assume b € V(Gy) — V(G1). In particular, b ¢ Q). By the property of ¢,, either
Ne,—p(m,) () = 0, or jj exists and |¢5 " ({js}) N Nay—p(ms) (b)] € S. Since b € V(Gy) — V(Gy),
Ne,—g(#,)(b) = Na—p@)(b) # 0. So we are done by choosing ky = jp.

Hence we may assume b € V(Gy). Since either b ¢ W, or b € W and g(b) = 1, by
the property of ¢, we know that either Ng,_pmr,)(b) = 0, or i, exists and |¢7 ({is}) N
Ne,—p@m)(b)] € S. Since (G — E(H))[V(G1)] = Gy — E(H,), we are done if b € Q1. So we
may assume b € Q1 = Q2. Hence No_pm)(b) = Na,—g@,)(b) U Nay—pw,) (D).

If Noy— g (b) = 0, then go(b) = 1, so the property of ¢, implies that either Ne,_p(m,)(b) =
0, or ji, exists and |¢5 ' ({js}) N Na,—p(r) (b)| € S. In this case, Ng,— gy (b) = Nay—mm) (b)U
Ne,—r)(0) = Na—pan(b) # 0, so the latter holds, and [¢~'({jp}) N Ne_pm)(b)] =
63" (L)) ) Noy- s (8)] € S.
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So we may assume Ng,_p(m,)(b) # 0. Recall that either b ¢ W, or b € W and g(b) = 1.
Hence the property of ¢ 1mphes that i, exists and |¢7'({is}) N Na,—pan) ()| € S. If
bg W, then b € Q \ W and Ng,_pm,)(b) # 0, so g2(b) = 0 and fa(b) = 4; if b € W and
g(b) =1, then b € Q2 N W, Ng,—gu,)(b) # 0 and g(b) = 1, so g2(b) = 0 and fo(b) = is.
In either case, go(b) = 0 and f2(b) = 4. So the property of ¢ implies that |5 ' ({ip}) N
N, _st(5) — Qul < o3 () 1 Nou ) ~ Qul =0 Thrtore o (4}) 1 Vo- )]
o7 ({Zb})ﬂNal — () 0|+ 162 ({is}) N Ne, - pr) (0) = Q2| = 67 ({in}) N\ Nays my(b)] € 5.

This proves the lemma. m

A tree-decomposition of a graph G is a sequence (B, : x € V(T)) of subsets of V(G)
called bags that are indexed by the nodes of a tree T" such that

e for each vertex v of G, T[{z € V(T) : v € B, }| is a connected graph with at least one
vertex; and

e for each edge vw of G, there exists a node x of T" such that {v,w} C B,.

The width of a tree-decomposition is equal to the size of its largest bag, minus 1. The
treewidth of G is the minimum width of any tree-decomposition of G.

Let G be a graph. Let T = (B, : x € V(T)) be a tree-decomposition of G. The adhesion
of T is max,yecp(r) |B: N By|. Let € V(T'). Then the torso at x (with respect to T) is the
graph obtained from G[B,] by for each edge za’ € E(T), adding edges such that B, N B,/ is
a clique. The frame at x (with respect to T) is the collection {B, N B, : za’ € E(T)}. It is
simple to see that G is an (< £)-sum of the torsos of 7, where ¢ is the adhesion of 7, and
the cliques involved in the clique-sums are the members of the frames at the nodes for the
corresponding torsos. For a set of positive integers S and a list-assignment L of G, we say
that T is L-extendable if for every x € V(T'), R, is (5, Cy, L|v(r,), {)-extendable, where R,
is the torso at z, C, is the frame at x, and & is the adhesion of T .

Lemma 3.2. Let S be a set of positive integers. Let & be a nonnegative integer. Let G be a
graph. Let T be a tree-decomposition of G with adhesion at most £. Let L be a list-assignment
of G. If T is L-extendable, then G is (S, 0, L, )-extendable.

Proof. Let ti,ts,...,tjy(r) be a breadth-first-search ordering of V(7"). For every 1 < i <
\V(T)|, let R; be the torso at ¢; and C; the frame at ¢;. Let GT be the graph obtained from

G by adding edges such that every member of ULZ(IT)‘ C; is a clique. Since T is L-extendable,
each R; is (S,C;, L]y (r,), §)-extendable. By induction on ¢, Lemma 3.1 implies that for every

i, G+[U;:1V(Ri)] is (S, U;zl Ci,L|U§-_:1V(Ri),f)—extendable. So GT is (S, UW(T‘C,,L,S)-
extendable. Let H be the graph with V(H) = V(G) and E(H) = E(G") — E(G). Then
Hisa U‘j‘i(lT” C;-compatible subgraph of G*, and G* — E(H) = G. Hence G is (S,0, L, §)-
extendable. m

Let G be a graph and L a list-assignment of GG. For a set Z, we say that a list-assignment
L' of G is (L, Z)-removed if for every v € V(G), L'(v) C L(v) and L(v) — L'(v) C Z.

Lemma 3.3. Let S be a set of positive integers with 1 € S. Let G be a graph. Let C be a
collection of subsets of V(G). Let & be a nonnegative integer. Let L be a list-assignment of
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G. If G — E(H) has a proper S-achieved Ly -coloring for every C-compatible subgraph H of
G and every list-assignment Ly of G that is (L, Z)-removed for some set Z with |Z| < 2¢,
then G is (S,C, L, §)-extendable.

Proof. Let W be a clique of size at most £&. Let H be a C-compatible subgraph of G. Let ¢y,
be a proper L|y-coloring of G[W]. Let f be a function with domain W. Let g : W — {0, 1}
be a function. To prove this lemma, if suffices to show that there exists a proper L-coloring
of G satisfying the conditions in the definition of being (S, C, L, )-extendable.

Let G' = G — E(H). Let Z = {¢ow(w), f(w) : w € W}. So |Z| < 2. For every
v e V(G), let L'(v) = L(v) — Z. So L' is an (L, Z)-removed list-assignment of G’. Since
H is C-compatible, G' = G — F(H) has a proper S-achieved L'-coloring ¢'. Let ¢ be the
L-coloring of G such that ¢|w = ¢w and @|yq)—-w = ¢'|v(e)-w. By the definition of L', the
image of ¢y and the image of ¢’ are disjoint, so ¢ is a proper L-coloring with ¢|w = ¢ .

Let v € V(G). If v € W, then f(v) € Z, so there exists no vertex u € Ng(v) — W
such that ¢(u) = f(v). Since ¢’ is a proper S-achieved L'-coloring of G' = G — E(H),
either Ne_pm)(v) = Ner(v) = 0, or there exists i, such that 1o ({i,}) N Ne_pm)(v)| €
S. So if either v € W and g(v) = 0, or Ng_pm)(v) = 0, then v satisfies the condition
mentioned in the definition of being (5,C, L, )-extendable. Hence we may assume that
Ne_p@y(v) # 0 and either v ¢ W, or v € W and g(v) = 1. So i, exists. Since Z is
disjoint from the image of ¢, i, is not in the image of ¢y . Hence if Ng_gmy(v) N W =0,
then [¢~1({i,}) N No— g (v)| = |¢' ({in}) N Na—p@n(v)] € S, so we are done. So we may
assume that there exists u € Ng_pg)(v) N W. Since ¢y is a proper L|y-coloring of the
subgraph induced by the clique W, and ¢(u) = ¢w(u) is not in the image of ¢’, we know
|07 ({p(w)}) N No—p@)(v)] = [{u}| =1 € S. This proves the lemma. m

A design is a pair (G,C), where G is a graph and C is a collection of subsets of V(G).
The rank of a design (G, C) is maxcec |C|. We say that two designs (G, C) and (G, Cy) are
isomorphic if there exist an isomorphism ¢ from G; to G5 and a bijection 7 from C; to Cy
such that for every Y € Cy, n(Y) = {u(y) : y € Y}.

Let D be a set of designs. Let T be a tree-decomposition of a graph G. We say that T
is over D if for every x € V(T'), (R,,C,) is isomorphic to a member of D, where R, is the
torso at x and C, is the frame at x.

Lemma 3.4. Let S be a set of positive integers with 1 € S. Let D be a set of designs. Let
G be a graph. Let t and & be nonnegative integers. Let T be a tree-decomposition of G over
D with adhesion at most &. If for every member (Q,C) of D, Q — E(H) is S-achieved t-
choosable (and properly S-achieved t-colorable, respectively) for every C-compatible subgraph
H of Q, then G is S-achieved (t + 2£)-choosable (and properly S-achieved (t + 2£)-colorable,
respectively).

Proof. For each (Q,C) € D, since ) — F(H) is S-achieved t-choosable (and properly S-
achieved t-colorable, respectively) for every C-compatible subgraph H of @, by Lemma 3.3,
Q is (S,C, L, &)-extendable for every (t + 2¢)-list-assignment L of ) (and for the (¢ + 2¢)-
list-assignment L of @ with L(v) = {1,2,...,t + 2¢} for v € V(Q), respectively).

Let L be a (t+2¢)-list-assignment of G (and the list-assignment L with L(v) = {1,2,...,t+
2¢} for every v € V(G), respectively). Let D' = {(R,,C,) : = € V(T)}, where R, is the
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torso at x and C, is the frame at x. Then 7 is a tree-decomposition of G over D’ with
adhesion at most § such that for every (Q,C) € D', Q is (S,C, L|y(qg), &)-extendable. Hence
T is L-extendable. So G is (5,0, L, §)-extendable by Lemma 3.2. Hence G has a proper
S-achieved L-coloring. This proves the lemma. m

Lemma 3.5. Let S be a set of positive integers with 1 € S. Let G be a graph. Let t and &
be nonnegative integers. Let T be a tree-decomposition of G with adhesion at most £. If for

every torso R with respect to T, every subgraph of R is S-achieved t-choosable, then G is
S-achieved (t + 2£)-choosable.

Proof. Let D = {(R,,C,) : x € V(T)}, where R, is the torso at z and C, is the frame at .
Then this lemma follows from Lemma 3.4. =

4 Topological minors and odd minors

We will prove Theorems 1.3 and 1.9 by using the machinery developed in the previous
section. We first prove some simple lemmas.

Lemma 4.1. Let S be a set of integers with 1 € S. Let G be a graph. Let k and c be
nonnegative integers. Let Y be a subset of V(G) with |Y| < k. If G — X is S-achieved
c-choosable (and properly S-achieved c-colorable, respectively) for every set X with X DY
and | X| < 2|Y|, then G is S-achieved (¢ + 2k)-choosable (and properly S-achieved (¢ + 2k)-
colorable, respectively).

Proof. Let L be a (c+ 2k)-list-assignment of G' (and the (¢ + 2k)-list-assignment of G with
L(v) = {1,2,...,c + 2k} for every v € V(G), respectively). We shall define a proper S-
achieved L-coloring of G. Without loss of generality, we may assume that G has no isolated
vertices.

For every y € Y, since G has no isolated vertices, there exists a neighbor f(y) of y in G.
Let X ={y, f(y) :y € Y}. So |X| < 2|Y| < 2k. Hence there exists a proper L|x-coloring
¢x of G[X] such that all vertices in X use different colors. Since 1 € S, ¢x is a proper
S-achieved coloring of G[X].

Let Z = {¢x(z) : v € X}. So |Z] = |X| < 2k. For every v € V(G) — X, let
L'(v) = L(v)—Z. Let G' = G—X. Note that for every v € V(G’), |L'(v)| > |L(v)|—|Z| > c.
Since | X| < 2]Y| and X DY, G’ has a proper S-achieved L'-coloring ¢’ by assumption. Let
¢ be the L-coloring of G such that ¢|x = ¢x and ¢|y(q)—x = ¢'. Since the image of ¢x is
Z, which is disjoint from the image of ¢’, ¢ is a proper L-coloring of G.

Since G[X]| has no isolated vertices, for every v € X, there exists i, € Z such that
|7 ({in}) N Ne(v)| = [¢7'({iv}) " Ngix)(v)| =1 € S. Let v € V(G) — X. If v is adjacent in
G to some vertex x in X, then [¢7'({¢(z)}) N Ng(v)| = |[{z}| =1 € S. If v is not adjacent in
G to any vertex in X, then since G has no isolated vertex, v is not an isolated vertex in G’,
so there exists 7, & Z such that |¢p~({i,}) N Ng(v)| = |¢/ ' ({i,}) N N (v)| € S. Therefore,
¢ is a proper S-achieved L-coloring. This proves the lemma. =

Lemma 4.2. Let d > 1 be a real number. If G is a graph that has at most d vertices with
degree at least d, then G is conflict-free (4d — 1)-choosable.
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Proof. Let Y be the set of vertices in G with degree at least d. So |Y| < d. For every set
X with X DY, G — X has maximum degree at most d — 1, so by [12, Proposition 3], G — X
is conflict-free (2d — 1)-choosable.® Then this lemma follows from Lemma 4.1. =

Now we are ready to prove Theorem 1.3. The following is a restatement.

Theorem 4.3. For every graph H, there exists a real number cg such that every graph that
does not contain a subdivision of H is conflict-free cg-choosable.

Proof. Let H be a graph. By [20, Theorem 4.1], there exists a positive integer ¢; (only
depending on H) such that every graph that does not contain a subdivision of H has a tree-
decomposition T = (B, : z € V(T')) with adhesion at most ¢; such that for every x € V(T),
the torso at x either contains at most ¢; vertices with degree at least ¢; or does not contain
K., as a minor. By [37], there exists a real number ¢y (only depending on ¢; and hence
only depending on H) such that every graph with no K. -minor is cy-degenerate. Define
CH = 601 + 202 —1.

Let F7 be the class of graphs that have at most ¢; vertices with degree at least ¢;. Let
F2 be the class of K. -minor free graphs. Let F = F; U F2. Note that every subgraph of a
graph in F is in F. By Lemma 4.2, every graph in F; is conflict-free (4¢; — 1)-choosable. By
Corollary 2.2, every graph in F» is conflict-free (2co+1)-choosable. Hence every graph in F is
{1}-achieved max{4c; —1, 2co+1}-choosable and hence {1}-achieved (4¢;+2c¢y—1)-choosable.

Let G be a graph that does not contain a subdivision of H. Then G has a tree-
decomposition with adhesion at most ¢; such that for every torso R, every subgraph of R is
in F and hence is {1}-achieved (4c¢; + 2¢2 — 1)-choosable. By Lemma 3.5, G is {1}-achieved
(6¢1 + 2¢o — 1)-choosable. Therefore, G is conflict-free cy-choosable. =

Now we prove results for odd minors. We need the following structure theorem for
odd minors (Theorem 4.4). This theorem is a simple combination of known results in the
literature. It is likely folklore but seems not formally written in the literature. So we provide
a proof here for completeness.

A torso of a design (G,C) is the graph obtained from G by adding edges such that for
every added edge, some member of C contains the both ends of this edge.

Theorem 4.4. For every graph H, there exist positive integers r,& such that if H is not an
odd minor of a graph G, then G has a tree-decomposition T = (B, : © € V(T)) for some
tree T' such that for every x € V(T), either K, is not a minor of the torso at x, or there
exists Z C V(R,) with |Z| < & such that R, — Z is an induced bipartite subgraph of G and
|M — Z| < 1 for every member M of the frame at x, where R, is the torso at x.

Proof. This proof involves many notions that will be not used in the rest of the paper,
so we do not include their formal definition here. Among those notions, “Kj-expansion” is
defined in [19] and all other undefined notions are the ones defined in [43].

8Proposition 3 in [12] is stated for coloring instead of list-coloring. But it is easy to see that the simple
proof of [12, Proposition 3] works for list-coloring. Or one can also avoid any known result in the literature
here by just proving a weaker form of this lemma by increasing the number 4d — 1 stated in the statement
of this lemma to d? + 2. This weaker form is still strong enough to prove Theorem 1.3, and it immediately
follows from the trivial fact that (G — X)? is ((d — 1)? + 1)-choosable.
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Let h = |V(H)|. By [19, Theorem 13] (taking ¢ = h), for every graph G’ with no odd
Kj,-minor, there exists a positive integer ¢ (only depending on h) with ¢t > 12h such that if
G’ contains a K;-expansion 7, then there exist X C V(G’) with | X| < 8h and an induced
bipartite subgraph U of G’ — X such that U intersects all the nodes of n disjoint from X,
and every component of G' — (V(U) U X) is adjacent in G’ to at most one vertex in U. By
[43, 3.1] (taking L = K;), there exist positive integers 0, and ¢, (only depending on ¢ and
hence only depending on h) such that for every graph G’ and every tangle in G’ of order at
least 6y not controlling a K;-minor of G’, there exists a location £ in G’ contained in the
tangle such that every torso of the design of £ is K;,-minor free.”

Let Dy be the set of designs with D; = {(Q,C) : every torso of (Q,C) is K;,-minor-free}.
Let Dy be the set of designs with Dy = {(Q,C) : there exists Z C V(Q) with |Z| < 8h such
that Q — Z is bipartite and |M — Z| < 1 for every M € C}. Let D = Dy U Ds.

Let 8 = 6y + 8h. Now we prove that D is f-pervasive in G. Let G’ be a subgraph of G.
Let T’ be a tangle in G’ of order at least 6. If T’ does not control a K;-minor of G', then by
the second paragraph of the proof, there exists a location £; of G’ contained in 7’ such that
every torso of the design of £; is K;,-minor free, so the design of £, is in D;. So we may
assume that 77 controls a K;-minor of G', and we let a be the corresponding Kj-expansion.
Since G’ is a subgraph of G, G’ has no odd Kj-minor. So by the second paragraph of the
proof, there exist X C V(G’) with |X| < 8h and an induced bipartite subgraph U of G' — X
such that U intersects all nodes of « disjoint from X, and every component of G'—(V (U)UX)
is adjacent in G’ to at most one vertex in U. Hence there exists a location Lo of G’ contained
in 7' such that the design of L, is (G'[V(U) U X],C), where C is a collection of subsets of
V(G") such that for every member M of C, X C M and |M — X| < 1. (We remark that £,
is contained in 7" since t > 12h > | X|.) Note that G'[V(U) U X| — X = U is bipartite. So
the design of L4 is in Dy. Hence D is O-pervasive in G.

Let D = {(Q,C) : [V(Q)| < 46 — 3} be a set of designs. For each i € {1,2}, let D} be
the set of designs such that Df = {(Q,C) : there exist (Q',C') € D; and Z C V(Q) with
|Z] < 30 —2 such that Q' = Q — Z and for every M € C with M & Z, MNV(Q') € C'}. By
[43, 2.1], G has a tree-decomposition (B, : x € V(T')) for some tree T" such that for every
z e V(T), (R,,C.) € DjUD;UD;, where R, is the torso at x and C, is the frame at .

Let r = max{to + 30 — 2,40 — 2} and £ = 8h + 30 — 2. So r and & only depend on h.

Let x € V(T'). Let R, be the torso at x and C, be the frame at z. Recall that (R,,C,) €
DiuDyUD;. If (R,,C.) € D§UD;, then R, is K,-minor free. If (R,,C,) € Dj, then there
exists Z C V(R,) with |Z| < & such that R, — Z is bipartite and |M — Z| < 1 for every
M € C; note that in this case, since |M — Z| < 1 for every M € C, R, — Z is an induced
subgraph of G. This proves the theorem. m

9More precisely, the location £ consists of the separations (A, B) of G’, where B = G — (V(S) — Q)) and
V(A) = V(S) U Z, for each society (S, ) with |Q| < 3 in the segregation of G’ — Z stated in [43, 3.1], and
consists of, for each society (S, €) with || > 3 in the segregation of G’ — Z stated in [43, 3.1], the separations
(A1, B U(G' = V(A1)))s .oy (An, BL U (G' — V(Ay))), where (Ay, B1), ..., (An, By) are the separations of S
mentioned in [43, 3.2]. The property that the segregation is central implies that the location £ is contained
in the tangle. As shown in the proof of [43, 1.3], the torso of the design of £ can be made into an outgrowth
by < rg ro-rings of a graph that can be drawn in a surface in which K; cannot be drawn by deleting at most
ro vertices, for some integer ro only depending on ¢ (and hence only depending on k). And it is well-known
that such a graph is Ky -minor-free, for some integer ¢y only depending on r (and hence only depending on
t.
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Now we are ready to prove Theorem 1.9. The following is a restatement.

Theorem 4.5. For every graph H, there exists a positive integer cy such that the following
holds. Let S be a set of positive integers with 1 € S. Let G be a graph such that H is not an
odd minor of G.

1. If every induced bipartite subgraph of G is S-achieved k-choosable, then G is S-achieved
(k + cm)-choosable.

2. If every induced bipartite subgraph of G is properly S-achieved k-colorable, then G 1is
properly S-achieved (k + cp)-colorable.

Proof. Let H be a graph. Let rg,&y be the integers r,& mentioned in Theorem 4.4,
respectively. By [37], there exists an integer dy such that every graph with no K, -minor is
dy-degenerate. Define cy = 2dg + 2§y + 2max{ry — 1,&y + 1}.

Let S and G be as stated in the theorem. Let D; be the set of designs with D; = {(Q,C) :
@ is K, ,-minor free and C is the set of all cliques of @}. Let D; be the set of designs with
Dy = {(Q,C) : there exists Z C V(Q) with |Z] < &y such that Q) — Z is isomorphic to an
induced bipartite subgraph of G, and for every M € C, |M — Z| < 1}. By Theorem 4.4, G
has a tree-decomposition 7 over D; U Dy. Note that the rank of D; is at most ry — 1 and
the rank of Dy is at most £y + 1. So the adhesion of T is at most max{rgy — 1,z + 1}. For
every (Q,C) € Dy and for every C-compatible subgraph H of Q, Q — E(H) is K,,-minor
free, so Q@ — E(H) is S-achieved (2dg + 1)-choosable by Corollary 2.2. For every (Q,C) € Ds
and for every C-compatible subgraph H of @, there exists Z C V(Q) with |Z| < &y such
that (QQ — E(H)) — Z is isomorphic to an induced subgraph of G, so for every set X with
X D Z,(Q — E(H)) — X is isomorphic to an induced subgraph of G, and hence by the
assumption of the theorem, (Q — E(H)) — X is S-achieved k-choosable (and properly S-
achieved k-colorable, respectively), and hence ) — E(H) is S-achieved (k + 2£)-choosable
(and properly S-achieved (k + 2y )-colorable, respectively) by Lemma 4.1. Therefore, by
Lemma 3.4, G is S-achieved (max{2dy+1, k+ 2y} +2max{ry —1, &y +1})-choosable (and
properly S-achieved (max{2dy+1, k+2&y} +2max{ry —1, &y +1})-colorable, respectively).
Note that k + cg > max{2dg + 1,k + 2§y} + 2max{ry — 1,{y + 1}. =

5 Vertex ordering

In this section we prove Theorem 1.6. We need the following lemma.

Lemma 5.1. Let n be a positive integer. Let G be a graph on n vertices. For every i € [n],
let S; be a subset of V(G). Let vy,vs,...,v, be an ordering of V(G) such that for every
i € [n], Nglvi) N {ve: € [i]} CS; CH{op: ¥l € [i]}. Let wy and wy be positive integers. If
|S;| < wy and |Uje[n]7viesj S; N {wve : £ € [i]}| < wq for every i € [n], then G is conflict-free
(w1 + we — 1)-choosable.

Proof. Let L be a (w; + wy — 1)-list-assignment of G. For every ¢ € [n], let G; = G[{v; :
J € [i]}], and let S} = S;. Note that |SF N V(G;)| < wq for every ¢ € [n] by

j€ln],v;eS; ~I
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assumption. We shall prove that for every i € [n], there exists a proper conflict-free L|y (q,)-
coloring ¢; of GG; such that for every j € [n], all vertices in S; NV (G;) receive different colors
in ¢;. Note that this statement implies the lemma since G,, = G.

We shall prove the claim by induction on i. Since w;+ws—1 > 1, it obviously holds when
i = 1. So we may assume that ¢ > 2 and there exists a proper conflict-free L|y(g,_,)-coloring
¢i—1 of G_1 such that for every j € [n], all vertices in S; NV (G;_1) receive different colors
in ¢;_1.

Since ¢;_; is a proper conflict-free L|y(¢, ,)-coloring of G;_, for every j € [i — 1], either
Ne,_, (v;) = 0, or there exists c¢; such that |¢; ", ({c;}) N Ng,_, (vj)| = 1. Let Z = {¢i_1(v) :
(S S;k ﬁV(Gi_l)} U {Cj 1] € [’L — 1],’Uj S SiaNGi,l(rUj> # (Z)} So |Z| < ‘Sz* QV(GZ) — {UZ}| +
|S; —{vi}| < (we—1)+ (wy—1) since v; € S; C Sf. Since L is a (w; +wq — 1)-list-assignment
of G, we can extend ¢;_; to a proper L|y (q,)-coloring ¢; of G; by further coloring v; by using
an element in L(v;) — Z. We shall prove that ¢; is a desired coloring.

Suppose to the contrary that ¢; is not a conflict-free coloring of G;. So there exists
v € V(G;) such that Ng,(v) # 0 and no color in the image of ¢; appears exactly once in
Ng, (v). Since ¢;_ is conflict-free, v; € Ng,[v]. Hence v € Ng,[v;] C S;. If v # v;, then either
v; is the unique neighbor of v in Gj, or some color ¢, in Z appears exactly once in Ng, , (v).
For the former, ¢;(v;) is a color appearing exactly once in Ng,(v), a contradiction; for the
latter, since ¢;(v;) & Z, ¢, is a color in the image of ¢; appearing exactly once in Ng, (v), a
contradiction. So v = v;. By assumption, Ng,(v) = Ng(v))N{ve : £ € [i—1]} C S;NV(Gi-1).
So all vertices in Ng,(v) receive different colors in ¢;_; and hence in ¢;. Since Ng,(v) # 0,
some color in the image of ¢; appears exactly once in Ng,(v), a contradiction.

So ¢; is a proper conflict-free L|y(¢,)-coloring of G;. To prove this lemma, it suffices to
show that for every j € [n], all vertices in S; N V(G;) receive different colors in ¢;. Suppose
to the contrary that there exists j € [n] such that at least two vertices in S; NV (G;) receive
the same color in ¢;. Since all vertices in S; N V(G;_1) receive different colors in ¢;_1,
we know that v; € S; and there exists u € S; N V(G;) \ {v;} = S; NV (G;—1) such that
oi(vi) = ¢i(u) = ¢pi—1(u). Since v; € S;, S; C SF. Since u € S; NV (Giz1) C SFNV(Gizy),
¢i(v;) = ¢i—1(u) € Z, a contradiction. This proves the lemma. m

A layering of a graph G is an ordered partition (V; : i € N) of V(G) such that, for each
edge vw of G, there exists an integer i such that {v,w} C V;UV;,1. The layered treewidth of
a graph G is miny ymax{|V N B|:V € V, B € T}, where the minimum is over all layerings
VY of G and all tree-decompositions 7 of G.

Now we are ready to prove Theorem 1.6. The following is a restatement.

Theorem 5.2. Let w be a positive integer. If G is a graph with layered treewidth at most
w, then G is conflict-free (8w — 1)-choosable.

Proof. Since G has layered treewidth at most w, there exist a layering V = (V; : i € N)
of G and a tree-decomposition 7 = (B, : ¢ € V(T')) of G such that |V N B| < w for every
VeVand BeT.

Let 7 be a node of T'. We treat T" as a rooted tree rooted at r. Let xy, s, ..., 2y (1) be
a breadth-first-search ordering of V(7) with z; = r. For any two distinct nodes a,b of T,
define a <7 b if @ = ; and b = x; for some i < j. Note that <7 is a total order on V(7).
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For every v € V(G), let x, be the node x of T" with v € B, closest to r, and let ¢, be the
integer such that v € V;,. Let n = |V(G)|. Let f be a bijection from V(G) to [n]. For any
two vertices u, v of G, define u <X v if either

® T, <1 I, Or
e v, =x,and {, </{,, or
e v, =1, and {, =/, and f(u) < f(v).

Then < is a total order on V(G).
For every i € [n],

e let v; be the i-th smallest vertex in V(G) with respect to =,

o let S; = B,,, N (Uzv . Vi) {w; 1 j € [i]}, and

0y, +2
oletYi:B%iﬂ(U_’Z_g Vi) {w; g € i}

By the choice of V and T, we know |S;| < 3w and |Y;| < bw. Let i € [n]. Clearly,
S; C {Ug e [Z]}

Suppose to the contrary that there exists u € Ng[v;] N {ve : £ € [i]} \ S;. Since V is a
layering of G, u € UZ” i . V;. Since u € {v, : € € [i]}, either x, <1 ,,, or z, = x,, and
¢, < {,,. For the former since T is a tree-decomposition, u € B,, by the definition of z,,,
so u € 5;, a contradiction; for the latter, u € B,, = val_, so u € S;, a contradiction.

Hence Ng[vi]N{wve: 0 € [i]} CS; CH{v: L € [il}.

Suppose to the contrary that there exists 2 € U;ep ,es, 55 N {ve : € € [iJ} \ Vi. So there

exists j € [n] such that z € S; and v; € S;. Since v; € §; C va , Ty, is a descendant of x,,

(including z,,) by the definition of x,,. Since v; € S; N Vi, C U,: ;1 Vi NV, , we have

|6, — ] < 1. Since z € S cuf;“jl__lvk, 0.~ £, < 1,50 |6, — L, < 2. Since z € {v,: £ €

i}, z. = x,,. Since z € S; C B, o and z,, is a descendant of x,,, we know that z. =7 x,,

implies z € B,, . Hence z € B, NVy, N{v,: L € [i]} C By, ﬂUi” Z2_2 Vin{ve : £ € [i]} =Y,

a contradiction.
So | Ujepon es; i N{ve : £ € [i]}| < |Y;| < bw. Therefore, G is conflict-free (3w + 5w —1)-
choosable by Lemma 5.1, =m

We remark that our proof for Theorem 5.2 and its preparation Lemma 5.1 was inspired
by the proof of a result in [14] about strong products of graphs.

One special case of graphs that have bounded layered treewidth is a strong product of
a graph with bounded treewidth and a path. For two graphs A and B, the strong product
AKX B of A and B is the graph with vertex-set V' (A) x V(B) and that contains an edge with
endpoints (z1,y;) and (x9,1y9) if and only if

o 1173 € E(A) and y; = yy;

e 11 =xy and yyys € E(B); or
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o 11175 € E(A) and yyy2 € E(B).

It is simple to show that if A has treewidth at most w and B is a path, then A X B has
layered treewidth at most w + 1. On the other hand, for every positive integer w, there
exists a graph with layered treewidth 1 that cannot be written as a strong product of a
graph with treewidth at most w and a path [5]. Lemma 5.1 can be used for graphs that are
strong products of a bounded treewidth graph and a graph of bounded maximum degree by
using a proof similar to the one of Theorem 5.2. The following theorem implies an analogous
result in [14] stating that the same number of colors are enough for proper odd coloring of
the same graph.

Theorem 5.3. Let w and d be nonnegative integers. Let H be a graph with treewidth at
most w. Let QQ be a graph with mazimum degree at most d. Then H X Q) is conflict-free
((w+ 1)(d* + d + 2) — 1)-choosable.

Proof. Let (B, : x € V(T)) be a tree-decomposition of H with width w. Treat T" as a rooted
tree with the root r. Define <7 to be a breadth-first-search ordering of V(7T') starting at 7.
For every h € V(H), let zj, be the node = of T' with h € B, closest to . Let <¢ be a total
ordering of V(Q). Let f be a bijection from V(H) to [n|. For any (hi,q1), (ha,q2) € V(G),
we define (hy,q1) < (ha, q2) if and only if either x;, <7 zp,, or xp, = zp, and ¢ <g ¢o, or
Tp, = xp, and ¢ = g2 and f(hy) < f(ha). Then < is a total ordering of V(G).

Let n = |V(G)|. For every i € [n],

e let v; be the i-th smallest vertex of V(G) with respect to <,
e let h; be the vertex of H and ¢; be the vertex of ) such that v; = (h;, ¢;),
o let S; = (B, x Nolgi]) N{ve: € €[i]}, and

o let Y; = (B,, x{g € V(Q): the distance in Q between ¢ and g; is at most 2}) N {v :
¢ e i}

Then |S;| < (w+1)(d+1) and |V;| < (w+1)(1+d+d(d—1)) = (w+1)(d*+1). An argument
similar as the proof of Theorem 5.2 shows that Ng[v;] N {v,: € € [i]} € S; C {v,: £ € [i]}
and | Uy ves; S5 N {ve o € € [i]}] < [Yi] < (w+ 1)(d* + 1). Therefore, G is conflict-free
((w+1)(d?> +d + 2) — 1)-choosable by Lemma 5.1. =

6 Concluding remarks

When the writing of the first version of this paper [35] was about to be completed,
Hickingbotham [24] announced a paper on arXiv. The main result in [24] states that every
graph G is properly conflict-free (2s,—1)-colorable, where s, is the 2-strong coloring number!®
of G. This result is essentially equivalent to (actually, slightly weaker than) Lemma 5.1 of

10The k-strong coloring number of a graph G is the minimum ¢ such that there exists an ordering
V1,02, ..., Uy (@) of V(G) such that for every 1 < i < |[V(G)|, there are at most ¢ indices j € [i — 1]
satisfying that there exists a path in G from v; to v; with at most k edges such that all internal vertices
have indices greater than .
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this paper (which is identical to its first version [35, Lemma 5.1]), with essentially the same
proof, as taking S; in Lemma 5.1 to be the union of {v;} and its left-neighborhood implies
that every graph G is conflict-free (s;+ ss —1)-choosable, where s; is a number that is always
at most so and equals the 1-strong coloring number of G for many natural graph classes,
such as topological minor-closed classes. Lemma 5.1 (and [35, Lemma 5.1]) was proved by
the author of this paper before he knew [24]. But he did not notice that it is equivalent
to the formulation about strong coloring numbers until he saw [24]. Hickingbotham [24]
observed that combining the known result of Zhu [49] about strong coloring numbers and his
formulation of our Lemma 5.1 immediately implies that every class with bounded expansion
has bounded proper conflict-free chromatic number.

Corollary 6.1 ([24]). For every function f : Z — Z, there exists an integer c¢; such that if
F is a graph class such that for every graph H in F and for every nonnegative integer r,

every r-shallow minor'* of H has average degree at most f(r), then xpet(G) < ¢; for every
graph G in F.

Since our Lemma 5.1 works for proper conflict-free list-coloring, by combing it with the
same result of Zhu [49], we obtain that every graph in the class F stated in Corollary 6.1 is
actually conflict-free cs-choosable. Note that every graph with no subdivision of H for any
fixed graph H lies in such a class F. So we obtain a proof of Theorem 1.3 different from
the one stated in Section 4. Note that the upper bounds for the number of colors in both
proofs rely on implicit constants stated in results in the literature. After a very quick and
rough inspection for those implicit constants, the proof using clique-sums in Section 4 seems
giving a better upper bound, even though the proof that uses Lemma 5.1 is conceptually
simpler. We keep both proofs because the proof in Section 4 is a just simple application of
our machinery for clique-sums, which leads to our result about odd minors (Theorem 1.9).
Note that Theorem 1.9 does not follow from the list-coloring version of Corollary 6.1 (and
even Corollary 6.2 below), because odd minor-free graphs can be very dense and Theorem
1.9 also involves induced subgraphs.

In fact, we can strengthen Corollary 6.1 by combining Lemma 5.1 with more results in
the literature.

Corollary 6.2. For every positive integer k, there exists an integer ¢ such that if G is a
graph that is not conflict-free c-choosable, then G contains a subgraph that is a 1-subdivision
of a graph with average at least k and contains a subgraph that is a 3-subdivision of a graph
with chromatic number k.

Proof. Let k be a positive integer. By [41, Lemma 4.5], for every integer z, there exists
an integer g(x) > x such that every graph with average degree at least g(x) contains a
1-subdivision of a graph with chromatic number z. Moreover, every (< 1)-subdivision of a
graph with average degree at least g(g(k)+ 1)+ g(k) either contains a subgraph with average
degree at least g(g(k)+ 1) or contains a 1-subdivision of a graph with average degree at least
g(k); the former implies that it contains a subgraph that is a 1-subdivision of a graph that
is minimal non-properly g(k)-colorable and hence has average degree at least g(k); so either

LA graph H' is an r-shallow minor of H if H' is isomorphic to a graph that can be obtained from a
subgraph of H by contracting disjoint subgraphs with radius at most 7.
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case implies that it contains a 1-subdivision of a graph with average degree at least g(k) > k
and hence contains a 3-subdivision of a graph with chromatic number k. By [41, p. 72], there
exists an integer c¢; such that every graph with Vy,, > ¢; contains an (< 1)-subdivision of a
graph with average degree at least g(g(k)+1)+g(k). (We will not define V;, because we do
not need the formal definition in this proof.) By [49, Corollary 3.5], there exists an integer ¢y
such that every graph with 2-strong coloring number at least c; has Vi, > ¢;. By Lemma
5.1, there exists an integer ¢ such that every graph that is not conflict-free c-choosable has
2-strong coloring number at least cy. This proves the corollary. =

Corollary 6.2 strengthens Corollary 6.1 not only to list-coloring but also to wider graph
classes. Corollary 6.2 is motivated by a potential coarse characterization of the graphs with
large conflict-free choice number or x.f in terms of the subgraph relation. Recall that graphs
with large chromatic number and 1-subdivision of graphs with large chromatic number are
typical examples of graphs with large xper (and hence with large conflict-free choice number).
Also, every graph with large chromatic number contains a subgraph with large average degree
and hence contains a 1-subdivision of a graph with large chromatic number by [41, Lemma
4.5]. So it is reasonable to ask whether 1-subdivision of graphs with large chromatic number
are the only obstructions for having small conflict-free choice number or xp.f.

Question 6.3. Does there exist a function f such that for every integer k, every graph that
is not conflict-free f(k)-choosable contains a subgraph that is a 1-subdivision of a graph with
chromatic number at least k¥

Note that Corollary 6.2 is evidence for a potential positive answer of Question 6.3.

Even though Question 6.3 looks strong, it does not imply our result for odd minors
(Theorem 1.9) since Theorem 1.9 addresses induced subgraphs. So it is reasonable to consider
the following variant of Question 6.3.

Question 6.4. Does there exist a function f such that for every integer k, every graph that
is not conflict-free f(k)-choosable (and not properly conflict-free f(k)-colorable, respectively)
either has choice number at least k (and chromatic number at least k, respectively) or contains
an induced subgraph that is a 1-subdivision of a graph with choice number (and chromatic
number, respectively) at least k?

A positive answer of Question 6.4 would imply the case S = {1} of Theorem 1.9. To
prove a positive answer of the coloring version of Question 6.4, it suffices to prove that every
graph that is not properly conflict-free f(k)-colorable contains an induced subgraph that is
an (< 1)-subdivision of a graph with chromatic number at least k because of the following
proposition.

Proposition 6.5. Let k be an integer. Let H be a graph with x(H) > (k— 1> +1. If G
is an (< 1)-subdivision of H, then there exists an induced subgraph G’ of G such that either
X(G") >k, or G' is a 1-subdivision of a graph H' with x(H') > k.

Proof. Let H; be the spanning subgraph of H such that the edges of H; are exactly the
edges of H that are not subdivided in G. Let Hy = H — E(H;). Since H; is a subgraph
of G, we may assume x(H;) < k — 1, for otherwise x(G) > k and we are done. Hence
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V(H) can be partitioned into k — 1 parts Vi, Vs, ..., Vi_1 such that for every i € [k — 1], some
induced subgraph of G is a 1-subdivision of H[V;]. Since x(H) < S-¥! x(H[V;]), there exists
i* € [k — 1] such that x(H|[Vi<]) > [x(H)/(k —1)] > k. This proves the proposition. m

Acknowledgement: The author thanks Vida Dujmovi¢, Pat Morin, and Saeed Odak for
some discussion about odd colorings and this paper. The author also thanks anonymous
reviewers for helpful comments, especially one of them pointed out that complete bipartite
graphs provide a negative answer of an earlier version of Question 6.4.

References

1]

[6]

[7]

8]
[9]

[10]

[11]

[12]

K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino and A. Sassano,
Models and solution techniques for frequency assignment problems, 40R 1 (2003), 261—
317.

Z. Abel, V. Alvarez, E. D. Demaine, S. P. Fekete, A. Gour, A. Hesterberg, P. Keldenich
and C. Scheffer, Conflict-free coloring of graphs, SIAM J. Discrete Math. 32 (2018),
2675-2702.

L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete
Math. 108 (1992), 231-252.

M. Bonamy, T. Perrett and L. Postle, Colouring graphs with sparse neighbourhoods:
Bounds and applications, J. Combin. Theory Ser. B 155 (2022), 278-317.

P. Bose, V. Dujmovi¢, M. Javarsineh, P. Morin and D. R. Wood, Separating layered
treewidth and row treewidth, Discrete Math. Theor. Comput. Sci. 24 (2022), Paper No.
18, 10 pp.

H. Bruhn and F. Joos, A stronger bound for the strong chromatic index, Combin. Probab.
Comput. 27 (2018), 21-43.

Y. Caro, M. Petrusevski and R. Skrekovski, Remarks on proper conflict-free colorings
of graphs, Discrete Math. 346 (2023), Paper No. 113221.

P. Cheilaris, Conflict-free coloring, PhD thesis, City University of New York, (2009).

M. Chudnovsky, B. Reed and P. Seymour, The edge-density for Ko minors, J. Combin.
Theory Ser. B 101 (2011), 18-46.

D. W. Cranston, Strong edge-coloring of graphs with mazimum degree 4 using 22 colors,
Discrete Math. 306 (2006), 2772-2778.

D. W. Cranston, M. Lafferty and Z.-X. Song, A note on odd colorings of 1-planar graphs,
Discrete Appl. Math. 330 (2023), 112-117.

D. W. Cranston and C.-H. Liu, Proper conflict-free coloring of graphs with large maxi-
mum degree, arXiv:2211.02818.

24



[13]

[14]

[15]

[19]

[20]

[21]

V. Dujmovi¢, D. Eppstein and D. R. Wood, Structure of graphs with locally restricted
crossings, STAM J. Discrete Math. 31 (2017), 805-824.

V. Dujmovi¢, P. Morin and S. Odak, Odd colourings of graph products,
arXiv:2202.12882.

P. Erdés and J. Nesettil, Problems, in: Irregularities of partitions, Edited by G. Halasz
and V. T. Sés. Algorithms and Combinatorics 8. Springer-Verlag, Berlin, (1989), 162
163.

G. Even, Z. Lotker, D. Ron and S. Smorodinsky, Conflict-free colorings of simple geo-
metric regions with applications to frequency assignment in cellular networks, STAM J.
Comput. 33 (2003), 94-136.

[. Fabrici, B. Luzar, S. Rindosova and R. Sotak, Proper conflict-free and unique-

maximum colorings of planar graphs with respect to neighborhoods, Discrete Appl. Math.
324 (2023), 80-92.

R. J. Faudree, A. Gyarfas, R. H. Schelp and Z. Tuza, Induced matchings in bipartite
graphs, Discrete Math. 78 (1989), 83-87.

J. Geelen, B. Gerards, B. Reed, P. Seymour and A. Vetta, On the odd-minor variant of
Hadwiger’s conjecture, J. Combin. Theory Ser. B 99 (2009), 20-29.

M. Grohe and D. Marx, Structure theorem and isomorphism test for graphs with excluded
topological subgraphs, SIAM J. Comput. 44 (2015), 114-159.

S. G. Hartke, S. Jahanbekam and B. Thomas, The chromatic number of the square of
subcubic planar graphs, arXiv:1604.06504.

K. Hendrey and D. R. Wood, The extremal function for Petersen minors, J. Combin.
Theory Ser. B 131 (2018), 220-253.

K. Hendrey, S. Norin and D. R. Wood, FExtremal functions for sparse minors, Adv.
Comb. (2022), Paper No. 5, 43 pp.

R. Hickingbotham, Odd colourings, conflict-free colourings and strong colouring num-
bers, arXiv:2203.10402.

P. Hordk, The strong chromatic index of graphs with mazximum degree four, Contempo-
rary Methods in Graph Theory, (1990), 399-403.

P. Horak, H. Qing and W. T. Trotter, Induced matchings in cubic graphs, J. Graph
Theory 17 (1993), 151-160.

M. Huang, M. Santana and G. Yu, Strong chromatic index of graphs with mazimum
degree four, Electron. J. Combin. 25 (2018), Paper No. 3.31, 24 pp.

E. Hurley, R. de Joannis de Verclos and R. J. Kang, An improved procedure for colouring
graphs of bounded local density, Adv. Comb. (2022), Paper No. 7, 33pp.

25



[29] T. Jensen and B. Toft, Graph Colouring Problems, Wiley, Chichester, UK (1995).
[30] L. F. Jorgensen, Contractions to Kg, J. Graph Theory 18 (1994), 431-448.

[31] A. V. Kostochka and N. Prince, On K, ;-minors in graphs with given average degree,
Discrete Math. 308 (2008), 4435-4445.

[32] A. V. Kostochka and N. Prince, Dense graphs have Ks; minors, Discrete Math. 310
(2010), 2637-2654.

[33] A. V. Kostochka and N. Prince, On K, ;-minors in graphs with given average degree,
II., Discrete Math. 312 (2012), 3517-3522.

[34] D. Kithn and D. Osthus, Forcing unbalanced complete bipartite minors, European J.
Combin. 26 (2005), 75-81.

[35] C.-H. Liu, Proper conflict-free list-coloring, subdivisions, and layered treewidth,
arXiv:2203.12248v1.

[36] C.-H. Liu and G. Yu, Linear colorings of subcubic graphs, Furopean J. Combin. 34
(2013), 1040-1050.

[37] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math.
Ann. 174 (1967), 265-268.

[38] W. Mader, Homomorphiesdtze fir graphen, Math. Ann. 178 (1968), 154-168.

[39] J. S. Myers and A. Thomason, The extremal function for noncomplete minors, Combi-
natorica 25 (2005), 725-753.

[40] M. Molloy and B. Reed, A bound on the strong chromatic index of a graph, J. Combin.
Theory Ser. B 69 (1997), 103-109.

[41] J. Nesettil and P. Ossona de Mendez, Sparsity. Graphs, structures, and algorithms.
Algorithms and Combinatorics, 28. Springer, Heidelberg, 2012.

[42] J. Pach and G. Tardos, Conflict-free colourings of graphs and hypergraphs, Combin.
Probab. Comput. 18 (2009), 819-834.

[43] N. Robertson and P. D. Seymour, Graph Minors. XVI. Ezcluding a non-planar graph,
J. Combin. Theory Ser. B 89 (2003), 43-76.

[44] Z.-X. Song and R. Thomas, The extremal function for Ko minors, J. Combin. Theory
Ser. B 96 (2006), 240-252.

[45] A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B
81 (2001), 318 338.

[46] A. Thomason and M. Wales, On the extremal function for graph minors, J. Graph
Theory (2022).

26



[47] C. Thomassen, The square of a planar cubic graph is 7-colorable, J. Combin. Theory
Ser. B 128 (2018), 192-218.

[48] G. Wegner, Graphs with given diameter and a coloring problem, preprint, University of
Dortmund, (1977).

[49] X. Zhu, Colouring graphs with bounded generalized colouring number, Discrete Math.
309 (2009), 5562-5568.

27



	Introduction
	Our results

	Minor-closed families
	S-achieved coloring and clique-sum
	Topological minors and odd minors
	Vertex ordering
	Concluding remarks

