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Abstract

We study the classic Text-to-Pattern Hamming Distances problem: given a pattern P of length m
and a text T of length n, both over a polynomial-size alphabet, compute the Hamming distance between

P and T [i . . i+m− 1] for every shift i, under the standard Word-RAM model with Θ(logn)-bit words.

• We provide an O(n
√
m) time Las Vegas randomized algorithm for this problem, beating the

decades-old O(n
√
m logm) running time [Abrahamson, SICOMP 1987]. We also obtain a de-

terministic algorithm, with a slightly higher O(n
√
m(logm log logm)1/4) running time.

Our randomized algorithm extends to the k-bounded setting, with running time O
(
n + nk

√

m

)
,

removing all the extra logarithmic factors from earlier algorithms [Gawrychowski and Uznański,

ICALP 2018; Chan, Golan, Kociumaka, Kopelowitz and Porat, STOC 2020].

• For the (1+ε)-approximate version of Text-to-Pattern Hamming Distances, we give an Õ(ε−0.93n)

time Monte Carlo randomized algorithm (where Õ hides poly-logarithmic factors), beating the

previous Õ(ε−1n) running time [Kopelowitz and Porat, FOCS 2015; Kopelowitz and Porat, SOSA

2018].

Our approximation algorithm exploits a connection with 3SUM, and uses a combination of Fred-

man’s trick, equality matrix product, and random sampling; in particular, we obtain new results on

approximate counting versions of 3SUM and Exact Triangle, which may be of independent interest. Our

exact algorithms use a novel combination of hashing, bit-packed FFT, and recursion; in particular, we

obtain a faster algorithm for computing the sumset of two integer sets, in the regime when the universe

size is close to quadratic in the number of elements.

We also prove a fine-grained equivalence between the exact Text-to-Pattern Hamming Distances

problem and a range-restricted, counting version of 3SUM.
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1 Introduction

In this paper, we study one of the most basic problems about string matching, the classic Text-to-Pattern

Hamming Distances problem (also known as Sliding Window Hamming Distances, or String Matching with

Mismatches): given a pattern P of length m and a text T of length n over an alphabet of size σ, compute

the Hamming distance (i.e., the number of mismatches) between P and T [i . . i+m− 1] for every shift i.
Fischer and Paterson’s seminal work [FP74] gave an algorithm running in O(σn logm) time1 by reduc-

ing it to convolution or polynomial multiplication, which can be solved using the Fast Fourier Transform

(FFT); this is the fastest known algorithm for small σ. For arbitrary alphabet size, well-known work by

Abrahamson [Abr87] described an O(n
√
m polylog n) time algorithm for a family of generalized string

matching problems; for Text-to-Pattern Hamming Distances, the time bound is O(n
√
m logm). Abraham-

son’s algorithm was perhaps the first example of a string algorithm with “intermediate complexity” between

linear and quadratic (ignoring logs). A fine-grained reduction attributed to Indyk (see [Cli09]) shows that

no combinatorial algorithm for Text-to-Pattern Hamming Distances can run in O(nm1/2−δ) time for an ar-

bitrarily small constant δ > 0, under the combinatorial Boolean Matrix Multiplication Hypothesis.2 This

suggests that Abrahamson’s algorithm might be optimal up to sub-polynomial factors, at least for combina-

torial algorithms.

However, so far not even poly-logarithmic improvements of Abrahamson’s algorithm have been re-

ported. This is not due to a lack of interest. In fact, many algorithms are designed to shave logarithmic

factors for stringology problems (e.g. [CGK+20, MP80, Mye92, Ind98, CLZ03, BF08, BT09, Gra16]). In

this paper, we will tackle the following decades-old question:

Open Question 1. Can we improve Abrahamson’s O(n
√
m logm) time algorithm for Text-to-Pattern Ham-

ming Distances?

We remark that Fredriksson and Grabowski [FG13] designed a faster algorithm for Text-to-Pattern Ham-

ming Distances when the word size w is ω(log n) and m = O(n logm
w ). However, their algorithm is not faster

in the common Word-RAM model with w = Θ(log n), which is the model we consider here.

To obtain faster algorithms for the Text-to-Pattern Hamming Distances problem, researchers have con-

sidered two easier versions: the (1+ε)-approximate version and the k-bounded version. Next we summarize

previous results in these two settings.

(1 + ε)-approximation. The (1 + ε)-approximate version asks to approximate the Hamming distance

between P and T [i . . i+m− 1] for every shift i within a (1 + ε) factor of the true distance, for ε > 0.

In 1993, Karloff [Kar93] gave a randomized (Monte Carlo) algorithm running in O(ε−2n log n logm)
time with high success probability.3 Karloff also derandomized his algorithm at the cost of only an extra

logarithmic factor.

Karloff’s Õ(ε−2n) time algorithm remained the state-of-the-art for a long time (and unimproved except

in some special cases [AGW13]).4 This ε−2 dependency is due to the variance that results from random

projections, and it was thought to be inherent as suggested by the Ω(ε−2) lower bound for computing

1We consider the Word-RAM model with Θ(logn)-bit words throughout the paper.
2While the notion of “combinatorial” is not well-defined, the typical notion of a combinatorial algorithm is one that does not

use fast matrix multiplication. The combinatorial Boolean Matrix Multiplication hypothesis states that there is no combinatorial

algorithm that multiplies two n × n Boolean matrices in O(n3−ε) time, for any constant ε > 0, in the word-RAM model with

Θ(log n) bit words.
3With high probability (w.h.p.) means probability 1−O(n−c) for arbitrarily large constant c.
4We use Õ to hide poly-logarithmic factors in the input size.
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Hamming distance in the one-way communication model [Woo04, JKS08]. Hence, it came as a surprise

when Kopelowitz and Porat in STOC’15 [KP15] gave a faster algorithm in Õ(ε−1n) time, using techniques

from sparse recovery. This algorithm was subsequently simplified (and improved in terms of logarithmic

factors) by Kopelowitz and Porat [KP18], with a time bound of O(ε−1n log n logm) (with high success

probability). See Table 2. It is unclear whether this ε−1 dependency is best possible, and this leads to the

following tantalizing question:

Open Question 2. Can we improve Kopelowitz and Porat’s Õ(ε−1n) time algorithm for (1+ε)-approximate

Text-to-Pattern Hamming Distances?

Generally, there has been growing interest in understanding the ε-dependencies needed to solve funda-

mental problems in fine-grained complexity (e.g., partition [MWW19, BN21b, WC22] and knapsack [Cha18,

Jin19, BC22, DJM23, Mao23, CLMZ23]). Such ε-dependencies are especially important when one demands

very accurate answers (e.g., computing (1 + 1√
m
)-approximations).

More recently, Chan, Golan, Kociumaka, Kopelowitz and Porat in STOC’20 [CGK+20] partially an-

swered Open Question 2: when the pattern length m satisfies m ≥ ε−28, one can (1 + ε)-approximate

Text-to-Pattern Hamming Distances in Õ(n) time, without any ε−O(1) factors. The assumption may be re-

laxed to m ≥ ε−10 if the matrix multiplication exponent ω is equal to 2, and if the goal is to obtain better

than Õ(ε−1n) time instead of Õ(n), the assumption can be relaxed further by re-analyzing/modifying their

algorithm. However, inherently their approach is unable to beat ε−1n if ε−1 is large, for example, when ε−1

is m1/3 or
√
m. The ε−1 =

√
m case is particularly instructive: here, Õ(ε−1n) coincides with the Õ(n

√
m)

bound for the exact problem; for distances that are Θ(m), we are demanding O(
√
m) additive error, and

sampling-based approaches do not seem to offer any speedup (if we try to estimate distances by sampling

different positions of the pattern string, we would need a sample size of Ω(m), which is not any smaller than

the length of the original pattern string).

Chan et al. [CGK+20] also gave an O(ε−2n) time randomized algorithm (correct with high probability)

without any logarithmic factors, which is preferable when ε−1 is small. Both Open Question 1 and Open

Question 2 were explicitly asked during a talk on [CGK+20] given by Kociumaka.5

Other variations of (1 + ε)-approximation text-to-pattern matching problem have also been studied

in the literature, such as replacing Hamming distance by other ℓp norms [LP11, GU18, SU19, Uzn20a], or

restricting to algorithms that do not use FFT [CGK+20, Uzn20a]. See also the survey by Uznański [Uzn20b].

k-mismatch. Given a threshold k, the k-bounded (or k-mismatch) version of Text-to-Pattern Hamming

Distances asks to compute the Hamming distances only for locations with distances at most k, and output

∞ for other locations.

After a long line of works [LV86, LV89, GG86, SV96, CH02, ALP04, CFP+16, GU18, CGK+20] (see

Table 1), the current fastest algorithm by Chan, Golan, Kociumaka, Kopelowitz and Porat [CGK+20] is a

Monte Carlo randomized algorithm (correct with high probability) in O
(
n+min

(
nk√
m

√
logm, nk

2

m

))
time,

shaving off some logarithmic factors from the earlier deterministic algorithm by Gawrychowski and Uz-

nański [GU18] in O
(
n log2m log σ + nk

√
logn√
m

)
time. Gawrychowski and Uznański [GU18] also extended

Indyk’s fine-grained reduction (mentioned in the notes of Clifford [Cli09]) to show a tight conditional lower

bound for combinatorial algorithms solving the k-mismatch problem under the Boolean Matrix Multiplica-

tion Hypothesis.

5Talk video link: https://youtu.be/WEiQjjTBX-4?t=2820
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1.1 Our results

In this paper, we give new exact and approximation algorithms for Text-to-Pattern Hamming Distances,

answering both Open Question 1 and Open Question 2 in the affirmative.

Theorem 1.1 (Approximation algorithm with sublinear 1/ε dependence). The (1+ ε)-approximate Text-to-

Pattern Hamming Distances problem can be solved by a Monte Carlo randomized algorithm in Õ(ε−γn)
time, where γ = 8/(11 − ω) < 0.928.

Here, ω ∈ [2, 2.372) is the matrix multiplication exponent [DWZ22, VXXZ23]. Our result resolves

Open Question 2, showing that Õ(ε−1n) [KP15, KP18] is not the ultimate answer for this problem (and,

in particular, that it is possible to obtain polynomial improvements over Õ(n
√
m) in the critical case of

ε−1 =
√
m).

Theorem 1.2 (Exact algorithm without log factors). The Text-to-Pattern Hamming Distances problem can

be solved by a Las Vegas algorithm which terminates in O(n
√
m) time with high probability.

This result is the first speedup over Abrahamson’s algorithm [Abr87] for more than three decades. We

also give a new deterministic algorithm that runs faster than Abrahamson’s algorithm, but slower than The-

orem 1.2.

Theorem 1.3 (Deterministic exact algorithm). The Text-to-Pattern Hamming Distances problem can be

solved by a deterministic algorithm in O(n
√
m(logm log logm)1/4) time.

Our exact algorithms actually apply to the harder problem of computing |{j : P [j] ≤ T [i + j]}| for all

shifts i. (Note that the Text-to-Pattern Hamming Distances problem reduces to two instances of this problem,

one of which with an alphabet in reversed order.) This is also known as the Dominance Convolution problem

(see e.g., [AF91, LUW19]).

Theorem 1.4 (Exact algorithm for Text-to-Pattern Dominance Matching). The Text-to-Pattern Dominance

Matching problem can be solved by a Las Vegas algorithm which terminates in O(n
√
m) time with high

probability, or a deterministic algorithm which terminates in O(n
√
m(logm log logm)1/4) time.

[LUW19] also observed that this Text-to-Pattern Dominance Matching problem is equivalent to the

following “threshold” problem [AD11]: for a fixed δ, compute |{j : |P [j] − T [i+ j]| > δ}| for all shifts i.
Hence, this threshold problem can also be solved in the same time complexity as in Theorem 1.4.

Our technique also yields improvement to the k-mismatch problem.

Theorem 1.5 (k-mismatch algorithm without log factors). The k-bounded Text-to-Pattern Hamming Dis-

tances problem can be solved by a Monte Carlo algorithm in O
(
n + nk√

m

)
expected time which outputs

correct answers with high probability.

This speeds up the previous O
(
n + min

(
nk√
m

√
logm, nk

2

m

))
-time Monte Carlo algorithm (with high

success probability) time by Chan, Golan, Kociumaka, Kopelowitz and Porat [CGK+20], and cleans up all

the extra factors from the long line of previous works shown in Table 1 (note that n + nk2

m is never better

than n+ nk√
m

).

Finally, we consider the fine-grained complexity of Text-to-Pattern Hamming Distances. As mentioned

earlier, a reduction by Indyk (see [Cli09]) gives a tight conditional lower bound for combinatorial Text-to-

Pattern Hamming Distances algorithms under the Boolean Matrix Multiplication Hypothesis. Indyk’s re-

duction only gives an n ·mω/2−1−o(1) conditional lower bound for arbitrary (potentially non-combinatorial)

algorithms. This lower bound is only non-trivial if ω > 2.
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In the Appendix we observe6 that Indyk’s reduction can be easily extended to start from the Equal-

ity Product of matrices [Vas15], which is known to be equivalent to Dominance Product [VW09, Mat91,

LUW19, Vas15]). Equality Product and Dominance Product are among the so called “intermediate” matrix

products [LPW20] believed to require n2.5−o(1) time, even if ω = 2 (see also [LUW19]). The observation

gives a higher, nm1/4−o(1) time fine-grained lower bound for Text-to-Pattern Hamming Distances against

potentially non-combinatorial algorithms which holds even if ω = 2. Similarly, Gawrychowski and Uz-

nański’s reduction [GU18] from Matrix Multiplication to the k-mismatch problem can also be extended this

way, giving a higher n1−o(1)k
m3/4 fine-grained lower bound against potentially non-combinatorial algorithms

which holds even if ω = 2 and is only off by an m1/4 factor from the known combinatorial algorithms for

the problem.

Finally, we examine the relationship between Text-to-Pattern Hamming Distances and the well-studied

3SUM problem. It has long been asked (see e.g. [Uzn20b]) whether one can reduce 3SUM to Text-to-Pattern

Hamming Distances.

Recently, Chan, Vassilevska Williams and Xu [CVX23] showed that 3SUM is fine-grained equivalent

to the following counting version called #All-Nums-3SUM.

Problem 1 (#All-Nums-3SUM). Given three size N sets A,B,C of integers, for every c ∈ C , compute the

number of (a, b) ∈ A×B where a+ b = c.

We consider the following variant of #All-Nums-3SUM in which one of the input sets is assumed to

contain integers from a small range (3SUM where the numbers of one of the three sets are from a small

range was mentioned in [CL15]).

Problem 2. Given three size N sets A,B,C where C = [N ], for every c ∈ C , compute the number of

(a, b) ∈ A×B where a+ b = c.

We show that Text-to-Pattern Hamming Distances when n = O(m) is equivalent to Problem 2. This at

least partially addresses the relationship between Text-to-Pattern Hamming Distances and 3SUM, as Prob-

lem 2 can be viewed as a range-restricted version of 3SUM (as 3SUM is equivalent to #All-Nums-3SUM).

Theorem 1.6 (Equivalence with a variant of 3SUM). If Problem 2 has a f(N) time algorithm, then Text-to-

Pattern Hamming Distances with n = O(m) has an Õ(f(m)) time algorithm, and vice versa.

Bringmann and Nakos [BN20] designed a reduction from Text-to-Pattern Hamming Distances to a prob-

lem called Interval-Restricted Convolution, which is more general than Problem 2, and their reduction also

works from Text-to-Pattern Hamming Distances to Problem 2. We show that the reduction is also possible

in the other direction from Problem 2 to Text-to-Pattern Hamming Distances, establishing the equivalence.

1.2 Technical overview

Both our approximation and exact algorithms for Text-to-Pattern Hamming Distances use interesting new

techniques, on which we now briefly elaborate.

Approximation algorithm. Our new approximation algorithm for Theorem 1.1 uses an approach that is

markedly different from all previous approximation algorithms. The algorithms by Karloff [Kar93] and

Kopelowitz and Porat [KP18] used random projection to reduce the alphabet size; afterwards, the problem

6The authors thank Amir Abboud and Arturs Backurs for discussions around this observation in 2015–2016.
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reference run time

Fischer and Paterson [FP74] O(σn logm)

Abrahamson [Abr87] O(n
√
m logm)

new O(n
√
m)

Landau and Vishkin [LV86, LV89] / Galil and Giancarlo [GG86] O(nk)

Sahinalp and Vishkin [SV96] O(n + nkO(1)

m )

Cole and Hariharan [CH02] O(n + nk4

m )

Amir, Lewenstein and Porat [ALP04] O(min{n
√
k log k, n log k + nk3 log k

m })
Clifford, Fontaine, Porat, Sach, and Starikovskaya [CFP+16] O(n logO(1) m+ nk2 log k

m )

Gawrychowski and Uznański [GU18] O(n log2 m log σ + nk
√

logn
√

m
)

Chan, Golan, Kociumaka, Kopelowitz and Porat [CGK+20] O(n +min{nk
√

logm
√

m
, nk2

m })
new O(n + nk

√

m
)

Table 1: Exact algorithms for the text-to-pattern Hamming distance problem (randomization allowed).

reference run time techniques

Karloff [Kar93] Õ(ε−2n) random projection

Indyk [Ind98] Õ(ε−3n) random sampling

Kopelowitz and Porat [KP15] Õ(ε−1n) projection with sparse recovery

Kopelowitz and Porat [KP18] Õ(ε−1n) random projection

Chan, Golan, Kociumaka, Kopelowitz and Porat [CGK+20] Õ(n) for m≫ ε−28 random sampling + rect. matrix mult.

new Õ(ε−0.93n) #3SUM techniques with matrix mult.

Table 2: Approximation algorithms for the text-to-pattern Hamming distance problem, focusing on ε-

dependencies and ignoring logarithmic factors (randomization allowed).

can be solved by FFT. Karloff’s algorithm required O(ε−2) projections, whereas Kopelowitz and Porat’s

algorithm required a reduced alphabet size of O(ε−1). On the other hand, the algorithms by Indyk [Ind98]

and Chan et al. [CGK+20] used random sampling to examine selected positions of the pattern and text

strings. An application of the Chernoff bound leads to O(ε−2) factors in the running time, which are too big

for the critical case ε−1 =
√
m.

In contrast, our new algorithm follows an approach that is actually closer to the known exact algorithms.

We view the problem as a certain colored counting variant of 3SUM (where colors correspond to characters

in the alphabet), which can be decomposed into multiple instances of an uncolored counting 3SUM problem

(one per character in the alphabet).

Recently, Chan, Vassilevska Williams and Xu [CVX23] gave reductions from counting versions of basic

problems in fine-grained complexity, including 3SUM and Exact-Triangle (finding triangles with weight

exactly zero in a dense weighted graph), to their original versions. They obtained their results using a simple

combination of “Fredman’s trick”7 and Equality Product. We show that their ideas, originally developed for

proving fine-grained equivalences and conditional lower bounds, can be adapted to design faster algorithms

7The (trivial) observation that a + b ≤ a
′ + b

′ is equivalent to a − a
′
≤ b

′
− b, which is the key insight behind Fredman’s

seminal paper on all-pairs shortest paths (APSP) [Fre76], and used in many subsequent works on APSP and 3SUM (e.g., [Tak98,

Cha10, Wil18, GP18, Cha20]).
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for approximate counting versions of 3SUM and Exact-Triangle.

More specifically, Fredman’s trick and Equality Product allow us to compute counts in the case when

counts are large (i.e., when the number of “witnesses” is large) [CVX23]. Chan, Vassilevska Williams and

Xu then used oracles to handle the case when counts are small (since they were designing reductions, not

algorithms), but we observe that the small-count case is actually easier in the context of approximation: we

can use random sampling with smaller sample sizes, since the variance is lower.

To summarize, our new algorithm is technically interesting for multiple reasons:

1. It further illustrates the power of the “Fredman’s trick meets Equality Product” technique from [CVX23],

in the context of approximation algorithms. These ideas might spawn further applications.

2. It demonstrates that fine-grained reductions (originally developed for proving conditional lower bounds)

can help in the design of algorithms. In particular, our algorithm makes essential use of the known

chain of reductions from Convolution-3SUM to Exact-Triangle [VW09], and from 3SUM to Convolution-

3SUM [CH20b].

3. Its use of matrix multiplication is non-trivial and interesting. It is open whether fast matrix mul-

tiplication helps for the exact Text-to-Pattern Hamming Distances problem, but our new algorithm

demonstrates that it helps for the approximate problem. Chan et al.’s previous algorithm [CGK+20]

also used rectangular matrix multiplication to speed up certain steps, but our algorithm here relies on

matrix multiplication (via Equality Product) in a more essential way.

Exact algorithms. Our exact algorithm for Theorem 1.2 also works by decomposing into multiple 3SUM-

like subproblems (one per character of the alphabet). More precisely, a subproblem corresponds to com-

puting a sumset X + Y (where we also want the counts/multiplicities per element) for two given sets of n
integers in [U ]; equivalently, this corresponds to computing the convolution of two sparse binary vectors in

[U ] with n nonzero entries. The critical case in our application turns out to be when U is below and close

to n2; this is when the standard O(U logU)-time algorithm by FFT does not outperform the brute-force

O(n2)-time algorithm. We present a new lemma showing that the sumset/convolution can be computed in

O(U log(n2/U)) expected time, which outperforms both FFT and brute-force, and is good enough to shave

off all the extra logarithmic factors and yield the O(n
√
m) bound for the exact Text-to-Pattern Hamming

Distances problem.

A number of algorithms have already been developed for sparse convolution [CH02, CL15, BFN22].

The current fastest algorithm by Bringmann et al. [BFN22] is complicated, and does not address our question

of speeding up O(U logU) in the regime of U close to n2. Our new algorithm shares some ideas from these

previous algorithms, but is arguably simpler, and more accessible, than the one of [BFN22]. It only requires

Dietzfelbinger’s standard family of almost linear hash functions [Die96] (though we need to establish some

new properties). Hashing is used to iteratively shrink the “support” (the subset of elements whose counts

are not known yet), but the key twist is an extra use of recursion to identify candidates for “light” elements

(elements with small counts). A bit-packed version of FFT is used to compute counts with a small modulus.

By further incorporating some ideas from [CL15], we obtain a derandomization (Theorem 1.3), albeit

with an extra factor of about log1/4 m.

It is straightforward to combine our new lemma with existing algorithms [GU18, CGK+20] to obtain our

result on the k-mismatch problem (Theorem 1.5) and the Dominance Convolution problem (Theorem 1.4).

6



2 Preliminaries

A string S of length |S| = s is a sequence of characters S[1]S[2] . . . S[s] over an alphabet Σ. We assume

the alphabet has size |Σ| = σ ≤ nO(1), and identify Σ with the set of integers in [σ]. For 1 ≤ i ≤ j ≤ s, we

denote the substring S[i]S[i + 1] . . . S[j] of S by S[i . . j].
We use [n] to denote {0, 1, . . . , n − 1}.

Definition 2.1. Given two length-n sequences 〈a0, . . . , an−1〉 and 〈b0, . . . , bn−1〉, their convolution c = a⋆b
is a length 2n − 1 sequence, where ci =

∑i
j=0 aibj−i (assume that out-of-range array entries are set to 0).

It is well-known that we can compute the convolution between two integer sequences in O(n log n) time

using FFT. If one instead only needs to compute the entries of c modulo some given prime p, then a slightly

faster running time is possible, in the word-RAM model with O(log n) bit words:

Lemma 2.2. Given a prime p ≤ nO(1) and two length-n sequences a, b with entries in Fp, we can deter-

ministically compute a ⋆ b in O(n log p) time.

Indyk [Ind98] claimed a proof of Lemma 2.2 for the case of p = 2, but his proof was incomplete. For

the p = 2 case, his argument can be completed via a more recent work [LAHC16], but it does not extend to

larger p. In Appendix B we point out the issue in Indyk’s argument (and mention subsequent works affected

by this issue), and then include a complete proof of Lemma 2.2 for general p that fixes this issue.

We use M(n1, n2, n3) to denote the time for computing the product between an n1 × n2 matrix and an

n2 × n3 matrix. We use the following algorithm for computing the equality product between two matrices,

which follows from known techniques [Mat91, Yus09] (see also [CVX23]).

Lemma 2.3. Given an n1 × n2 matrix A and an n2 × n3 matrix B, their equality product

C[i, j] := |{k ∈ [n2] : A[i, k] = B[k, j]}|

can be computed in time

Meq(n1, n2, n3) = O

(
min

1≤r≤n2

(n1n2n3

r
+M(n1, rn2, n3)

))
.

For example, in the case of square matrices, the above implies Meq(n, n, n) = O(minr(n
3/r+M(n, rn,

n))) ≤ O(minr(n
3/r + rnω)) = O(n(3+ω)/2).

3 Approximate Text-to-Pattern Hamming Distances

In this section, we begin by solving approximate counting variants of several core problems in fine-grained

complexity—namely, Exact Triangle, Convolution-3SUM, and 3SUM. All this will then lead to an algo-

rithm for approximate Text-to-Pattern Hamming Distances.

3.1 Approximate Counting All-Edges Exact Triangle

In recent work [CVX23], Chan, Vassilevska Williams and Xu proved fine-grained equivalences between

several central fine-grained problems and their counting versions. Let us take the All-Edges Exact Triangles

(AE-Exact-Triangle) problem for an example. In this problem, when given a weighted tripartite graph,

7



and for each edge, we need to decide whether this edge is in a triangle whose edge weights sum up to

0. In the counting version of AE-Exact-Triangle, we need to count the number of zero-weight triangles

each edge is in. Equivalently, given 3 matrices A, B, and C , we need to count the number of ks such that

A[i, k] + B[k, j] = −C[i, j], for each i, j. Prior to [CVX23], via the technique in [VW18], it was known

that AE-Exact-Triangle is equivalent to its counting version where all the per-edge counts are small. The

key observation in [CVX23] is that, when the per-edge counts are big, we can efficiently compute the counts

exactly, using Fredman’s trick [Fre76] in combination with Equality Product.

The following lemma adapts this approach to an approximate counting setting with additive error. The

main new idea is that when counts are small, we can use random sampling at a lower rate to estimate such

counts, since the variance is lower. In fact, even in the case when counts are big, we can also use sampling

at different rates to approximate the Equality Products a little more quickly.

Let us briefly discuss the lemma statement below. First, in the approximate setting of AE-Exact-Triangle,

it turns out that the third matrix C is unnecessary: one can design a truly subcubic time algorithm that solves

the problem for all C at the same time. Intuitively, the reason is that when additive error is allowed, small

counts in principle may be approximated by zeros, and zero values need not be output explicitly. Thus, it

suffices to estimate the count values COUNT[i, j, z] := |{k ∈ [n2] : A[i, k] + B[k, j] = z}| for the “heavy

hitters” z with sufficiently large counts, but the number of such z is sublinear per (i, j).
Second, the lemma statement below bounds the variance of the estimators, instead of the additive error

(which is bounded by the square root of the variance with good probability); this will be important, as we will

later need to sum several estimators (if they are independent or uncorrelated, we can sum their variances).

Third, the lemma involves multiple parameters, and on first reading, it may be helpful to focus, through-

out this section, on the simplest setting with t = 1 and ∆ = 1 (where one can ignore the condition about

uncorrelation), which is already sufficient to address the critical case of the Hamming Distances problem

when ε−1 =
√
m and distances are Θ(m) (where we want O(

√
m) additive error).

Lemma 3.1. Given an n1 × n2 integer matrix A and an n2 × n3 integer matrix B, where all values of A
are divisible by positive integer ∆ ≤ n3, define

COUNT[i, j, z] := |{k ∈ [n2] : A[i, k] +B[k, j] = z}|.

Given parameter 1 ≤ t ≤ n2, there is a randomized algorithm that computes estimates f [i, j, z] over all

i ∈ [n1], j ∈ [n3], and z, such that the expectation of f [i, j, z] is equal to COUNT[i, j, z], and the variance of

f [i, j, z] is O(tn2). (Zero entries of f need not be output explicitly.) Furthermore, f [i, j, z] and f [i′, j′, z′]
are uncorrelated if (i, j) 6= (i′, j′) and z 6≡ z′ (mod ∆). The running time is

Õ

(
min

1≤s≤n2/t

(n1n2n3

st
+ s∆M(n1, n2/t, n3/∆)

))
.

Proof. Define the witness set W [i, j, z] = {k ∈ [n2] : A[i, k] +B[k, j] = z}.

• Few-witnesses case. Independently for each (i, j), pick a random subset Rij ⊆ [n2] where each

element in [n2] is put in R with probability ρ∗ := 1/(st). Define f∗[i, j, z] = (1/ρ∗) · |{k ∈ Rij :
A[i, k]+B[k, j] = z}|. We can generate all nonzero values f∗[i, j, z] by looping through each i ∈ [n1],
j ∈ [n3], and k ∈ Rij , in total time Õ(n1n3 · ρ∗n2). (It is essential that we are not required to output

zero values, since otherwise we would not be able to obtain o(n1n2n3) time.) Then E[f∗[i, j, z]] =
COUNT[i, j, z], and Var[f∗[i, j, z]] = (1/ρ2∗) · COUNT[i, j, z] · (ρ∗ − ρ2∗) ≤ st · COUNT[i, j, z], which

is good when COUNT[i, j, z] is small. As we pick Rij independently for each (i, j), the estimates

f∗[i, j, z] and f∗[i
′, j′, z′] are independent if (i, j) 6= (i′, j′).
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• Many-witnesses case. For ℓ = 0, . . . , log s (w.l.o.g., we assume s to be a power of 2), do the

following:

Pick a random subset H(ℓ) ⊆ [n2] of size c2ℓ log(n1n2n3) for a sufficiently large constant c. Then

H(ℓ) hits W [i, j, z] w.h.p. for each i, j, z with COUNT[i, j, z] ≥ n2/2
ℓ.

For each k0 ∈ H(ℓ) and ξ ∈ [∆], pick a random subset R(ℓ,k0,ξ) ⊆ [n2] where each element in [n2] is

put in R(ℓ,k0,ξ) with probability ρℓ := 1/(2ℓt). For each k0 ∈ H(ℓ) and ξ ∈ [∆], compute the equality

product C(k0,ℓ)[i, j] = |{k ∈ R(ℓ,k0,ξ) : A[i, k] − A[i, k0] = B[k0, j] − B[k, j]}| for i ∈ [n1] and

j ∈ [n3] with B[k0, j] mod ∆ = ξ. This takes total time Õ(2ℓ∆Meq(n1, ρℓn2, n3/∆)), by splitting

each set {j ∈ [n3] : B[k0, j] mod ∆ = ξ} into subsets of size O(n3/∆).

Consider i, j, z such that W [i, j, z] is hit by H(ℓ), i.e., z = A[i, k0] + B[k0, j] for some k0 ∈ H(ℓ).

Let k0 be the smallest such index. Define fℓ[i, j, z] = (1/ρℓ) · C(k0,ℓ)[i, j]. Then E[fℓ[i, j, z] |
H(ℓ)] = |{k ∈ [n2] : A[i, k] − A[i, k0] = B[k0, j] − B[k, j]}| = |{k ∈ [n2] : A[i, k] + B[k, j] =
A[i, k0] +B[k0, j] = z}| = COUNT[i, j, z] by Fredman’s trick. And Var[fℓ[i, j, z] | H(ℓ)] = (1/ρ2ℓ ) ·
COUNT[i, j, z] · (ρℓ − ρ2ℓ) ≤ 2ℓt · COUNT[i, j, z].

Note that fℓ[i, j, z] (conditioned on a fixed H(ℓ)) depends on R(ℓ,k0,ξ) for ξ = B[k0, j] mod ∆ =
z mod ∆. Thus, if z 6≡ z′ (mod ∆), then fℓ[i, j, z] and fℓ[i

′, j′, z′] are independent conditioned on

any fixed H(ℓ).

Finally, define f [i, j, z] to be fℓ[i, j, z] for the smallest index ℓ ∈ [log s] such that W [i, j, z] is hit by

H(ℓ), or f∗[i, j, z] if ℓ does not exist. Then E[f [i, j, z] | {H(ℓ)}ℓ] = COUNT[i, j, z] for any fixed {H(ℓ)}ℓ,
which implies E[f [i, j, z]] = COUNT[i, j, z].

If COUNT[i, j, z] ∈ [n2/2
p+1, n2/2

p) for p ∈ [log s], then ℓ ≤ p + 1 w.h.p. Also, Var[f [i, j, z] | ℓ ≤
p + 1] ≤ 2p+1t · COUNT[i, j, z] and Var[f [i, j, z] is polynomially bounded regardless the value of ℓ, we

have that Var[f [i, j, z]] ≤ O(2p+1t · COUNT[i, j, z]) ≤ O(tn2). Similarly, if COUNT[i, j, z] < n2/s, then

Var[f [i, j, z]] ≤ st · COUNT[i, j, z] ≤ O(tn2). Note that for (i, j) 6= (i′, j′) and z 6≡ z′ (mod ∆), f [i, j, z]
and f [i′, j′, z′] are independent conditioned on a fixed choice of {H(ℓ)}ℓ. Therefore, E[f [i, j, z]f [i′, j′, z′] |
{H(ℓ)}ℓ] = E[f [i, j, z] | {H(ℓ)}ℓ] · E[f [i′, j′, z′] | {H(ℓ)}ℓ] = COUNT[i, j, z] · COUNT[i′, j′, z′]. Summing

over all possible {H(ℓ)}ℓ gives E[f [i, j, z]f [i′, j′, z′]] = COUNT[i, j, z] · COUNT[i′, j′, z′] = E[f [i, j, z]] ·
E[f [i′, j′, z′]], so f [i, j, z] and f [i′, j′, z′] are uncorrelated.

The total time is

Õ

(
n1n2n3

st
+

log s∑

ℓ=0

2ℓ∆Meq(n1, n2/(2
ℓt), n3/∆)

)

≤ Õ

(
n1n2n3

st
+

log s∑

ℓ=0

2ℓ∆
(n1n2n3

2ℓts∆
+M(n1, sn2/(2

ℓt), n3/∆)
))

by Lemma 2.3 with r := s

≤ Õ

(
n1n2n3

st
+

log s∑

ℓ=0

2ℓ∆ · (s/2ℓ) ·M(n1, n2/t, n3/∆)

)
.

3.2 Approximate Counting All-Numbers Convolution-3SUM

Next, we apply Lemma 3.1 to Convolution-3SUM, by modifying the known reduction [VW09] from Convolution-

3SUM to Exact-Triangle. In the counting version of the All-Numbers Convolution-3SUM problem, we are
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given 3 sequences 〈a0, . . . , an−1〉, 〈b0, . . . , bn−1〉, and 〈c0, . . . , cn−1〉, and want to count the number of k’s

such that ak+ bh−k = −ch, for each h. In the approximate counting version below, again the third sequence

is unnecessary. Note that the time bound below is truly subquadratic (Õ(n(5+ω)/4)) for the case t = ∆ = 1.

Lemma 3.2. Given integer sequences 〈a0, . . . , an−1〉 and 〈b0, . . . , bn−1〉 where all ak’s are divisible by

positive integer ∆ ≤ n, define

COUNT[h, z] := |{k ∈ [h] : ak + bh−k = z}|.

Given parameter 1 ≤ t ≤ n, there is a randomized algorithm that computes estimates f [h, z] for all h ∈ [n]
and z, such that the expectation of f [h, z] is equal to COUNT[h, z], and the variance of f [h, z] is O(tn).
(Zero entries of f need not be output explicitly.) Furthermore, f [h, z] and f [h′, z′] are uncorrelated if h 6= h′

and z 6≡ z′ (mod ∆). The running time is

Õ
(
n(5+ω)/4/t(1+ω)/4 + n(5+ω)/4∆(3−ω)/4/t+ n

)
.

Proof. Let d be an integer parameter between 1 and n. For simplicity, we assume n/d to be an integer,

which can be achieved by padding∞ entries to the arrays. We will estimate COUNT
(ℓ)[id + j, z] := |{k ∈

[d] : a(i−ℓ)d+k + bℓd+j−k = z}| for each i ∈ [n/d], j ∈ [d], and ℓ ∈ [n/d]. (Assume that out-of-range array

entries are set to∞.)

Define an (n/d) × d matrix A and a d × d matrix B(ℓ) for each ℓ ∈ [n/d]: for each i ∈ [n/d] and

k, j ∈ [d], let A[i, k] = aid+k and B(ℓ)[k, j] = bℓd+j−k. (Normally, it would be better to combine into one

d × n matrix B and use rectangular matrix multiplication, but we need multiple independent subproblems

here.) Apply Lemma 3.1 to estimate COUNT
(ℓ)[id + j, z] = |{k ∈ [d] : A[i − ℓ, k] + B(ℓ)[k, j] = z}|, for

all ℓ ∈ [n/d], in total time

Õ

(
n

d
·
(
(n/d) · d · d

st
+ s∆M(n/d, d/t, d/∆)

))

=





Õ
(
n2

st + s∆
√
n/tM(

√
n/t,

√
n/t,
√
tn/∆)

)
if t ≥ ∆ by setting d :=

√
tn

Õ
(
n2

st + s∆
√
n/∆M(

√
n/∆,

√
∆n/t,

√
n/∆)

)
if t < ∆ by setting d :=

√
∆n

≤





Õ
(
n2

st + s∆
√
n/t · (t/∆) · (

√
n/t)ω

)
= Õ

(
n2

st +
sn(ω+1)/2

t(ω−1)/2

)
if t ≥ ∆

Õ
(
n2

st + s∆
√
n/∆ · (∆/t) · (

√
n/∆)ω

)
= Õ

(
n2

st +
sn(ω+1)/2∆(3−ω)/2

t

)
if t < ∆

=

{
Õ
(
n(5+ω)/4/t(1+ω)/4

)
if t ≥ ∆ by setting s := (n/t)(3−ω)/4

Õ
(
n(5+ω)/4∆(3−ω)/4/t

)
if t < ∆ by setting s := (n/∆)(3−ω)/4.

We can now estimate COUNT[h, z] =
∑

ℓ∈[n/d] COUNT
(ℓ)[h, z]. The variance of each such estimate is

O((n/d) · td) = O(tn), due to independence of the n/d applications of Lemma 3.1.

3.3 Approximate Counting All-Numbers 3SUM

Next, we solve an analogous approximate counting version of 3SUM, by modify a known reduction from

3SUM to Convolution-3SUM by Chan and He [CH20b] (which preserves counts, unlike earlier reduc-

tions [Păt10, KPP16]). In the counting version of the All-Numbers 3SUM problem, we are given 3 sets

A, B, and C , we want to count the number of (a, b) ∈ A×B such that a+b = −c, for each c ∈ C . Without

the third set C , this amounts to computing counts/multiplicities of the elements of the sumset A+B.
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Lemma 3.3. Given sets A and B of n integers, where all elements of A are divisible by ∆ ≤ n, define

COUNT[z] := |{(a, b) ∈ A×B : a+ b = z}|.

Given parameter 1 ≤ t ≤ n, there is a randomized algorithm that computes estimates f [z] for all z, such

that the expectation of f [z] is equal to COUNT[z], and the variance of f [z] is Õ(tn). (Zero entries of f need

not be output explicitly.) Furthermore, f [z] and f [z′] are uncorrelated if z 6≡ z′ (mod ∆). The expected

running time is

Õ
(
n(5+ω)/4/t(1+ω)/4 + n(5+ω)/4∆(3−ω)/4/t+ n

)
.

Proof. In one of the randomized reductions from 3SUM to Convolution-3SUM in [CH20b], one classifies

all numbers as bad or good based on the choice of a hash function (it takes expected O(n) time to do this

preprocessing). Furthermore, the 3SUM instance between all the good elements can be reduced to O(1)
instances of Convolution-3SUM of size n, and if the size of the i-th set for i ∈ [3] in the 3SUM instance is
n
ki

, then the number of bad elements in it is at most n
2k2i

. The same idea also works in our setting.

Say we have two sets of size n
k1

and n
k2

respectively, and say it takes T ( n
k1
, n
k2
) time to solve such an

instance. After we apply [CH20b]’s hash function in O(n) expected time, the number of bad elements in

the two sets becomes at most n
2k21

and n
2k22

respectively. For the good elements, we can apply Lemma 3.2.

We then recursively solve the same problem between all bad elements in the first set, and all elements in the

second set, which takes T ( n
2k21

, n
k2
) time. Finally, we solve the same problem between all good elements in

the first set and all bad elements in the second set, which takes T ( n
k1
, n
2k22

). Clearly, summing up the results

gives the correct expectation.

The running time can be written as the following recurrence:

T

(
n

k1
,
n

k2

)
≤ T

(
n

2k21
,
n

k2

)
+ T

(
n

k1
,

n

2k22

)
+ Õ

(
n(5+ω)/4/t(1+ω)/4 + n(5+ω)/4∆(3−ω)/4/t+ n

)
.

The recursion tree has depth O(log log n), so it has size 2O(log logn) = logO(1) n. Therefore, the overall

running time is

Õ
(
n(5+ω)/4/t(1+ω)/4 + n(5+ω)/4∆(3−ω)/4/t+ n

)
.

Say the variance bound for two sets of size n
k1

and n
k2

is V
(

n
k1
, n
k2

)
, then we have the following recur-

rence (conditioned on any fixed hash function):

V

(
n

k1
,
n

k2

)
≤ V

(
n

2k21
,
n

k2

)
+ V

(
n

k1
,
n

2k22

)
+O (tn) ,

which can be similarly upper bounded by Õ(tn).

3.4 Approximate Counting Colored All-Numbers 3SUM

To solve the Text-to-Pattern Hamming Distances problem, we will actually need a colored version of count-

ing 3SUM. This colored problem can be solved simply by independently invoking Lemma 3.3 for each

color class. Note that the time bound below is sub-n3/2 for the case t = ∆ = 1 and U = n.
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Lemma 3.4. Given sets A and B of n colored integers in [U ], where all elements of A are divisible by

∆ ≤ n, define

COUNT[z] := |{(a, b) ∈ A×B : a+ b = z, color(a) = color(b)}|.
Given parameter 1 ≤ t ≤ n, there is a randomized algorithm that computes estimates f [z] for all z, such

that the expectation of f [z] is equal to COUNT[z], and the variance of f [z] is Õ(tn). Furthermore, f [z] and

f [z′] are uncorrelated if z 6≡ z′ (mod ∆). The expected running time is

Õ
(
n(U/t)(1+ω)/(5+ω) + nU (1+ω)/(5+ω)∆(3−ω)/(5+ω)/t4/(5+ω) + U

)
.

Proof. Let Ac (resp. Bc) be the subset of all elements of A (resp. B) of color c. Let nc = |Ac| + |Bc|.
Estimate COUNTc[z] := |{(a, b) ∈ Ac × Bc : a + b = z}| by Lemma 3.3 if nc ≤ x, or compute it exactly

by FFT in Õ(U) time if nc > x. The number of calls to FFT is O(n/x). The total time is

Õ


nU

x
+
∑

nc≤x

(
n(5+ω)/4
c /t(1+ω)/4 + n(5+ω)/4

c ∆(3−ω)/4/t+ nc

)
+ U




= Õ

(
nU

x
+ nx(1+ω)/4/t(1+ω)/4 + nx(1+ω)/4∆(3−ω)/4/t+ U

)

= Õ
(
n(U/t)(1+ω)/(5+ω) + nU (1+ω)/(5+ω)∆(3−ω)/(5+ω)/t4/(5+ω) + U

)

by setting x := min{U4/(5+ω)t(1+ω)/(5+ω), (Ut)4/(5+ω)/∆(3−ω)/(5+ω)}.
We can estimate COUNT[z] =

∑
c COUNTc[z], with variance Õ(

∑
c tnc) = Õ(tn) due to independence

of the different applications of Lemma 3.3.

The above lemma is sufficient to solve the approximate Text-to-Pattern Hamming Distances problem for

distances that are Θ(m) (where we want additive error O(εm)), but to deal with more generally distances

that are Θ(k) (with additive error O(εk)), we need to solve a generalization of the counting colored 3SUM

problem where the input consists of O(k) intervals (i.e., contiguous blocks of integers):

Lemma 3.5. Given sets A and B of at most n colored integers in [n], define

COUNT[z] = |{(a, b) ∈ A×B : a+ b = z, color(a) = color(b)}|.

Suppose that A and B can be decomposed as unions of O(k) disjoint intervals, where each interval is

monochromatic. There is a randomized algorithm that computes estimates for COUNT[z] for all z, with

additive error Õ(εk) w.h.p. The running time is

Õ
(
ε−1+βn1−βkβ + ε−1−βn1+β/k2β + n

)
, where β := (3− ω)/(5 + ω).

Proof. We may assume that each interval has length at most n/k, by breaking the intervals; the number

of intervals remains O(k). Furthermore, we may assume that each interval is a dyadic interval, since each

interval can be decomposed into a union of O(log n) dyadic intervals; the number of intervals remains Õ(k).
We may assume that each interval of A has the same length L and each interval of B has the same length

ℓ, where L and ℓ are powers of 2 at most n/k, since we can try all pairs (L, ℓ) and solve O(log2(n/k))
instances; the time and additive error bounds increase only by polylogarithmic factors.
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W.l.o.g., say ℓ ≤ L ≤ n/k. Let A′ (resp. B′) denote the colored set of the Õ(k) left endpoints of the

intervals in A (resp. B). Estimate COUNT
′[z] = {(a, b) ∈ A′ × B′ : a + b = z, color(a) = color(b)} by

Lemma 3.4, with variance Õ(tk). Note that since endpoints in A′ and B′ are multiples of ℓ, the universe

size can be shrunk to U := n/ℓ, and after rescaling, all elements of A′ are divisible by ∆ := L/ℓ ≤ n/(kℓ).
Let w(i) := |{(i1, i2) ∈ [L] × [ℓ] : i1 + i2 = i}|, i.e., w(i) = min{i + 1, ℓ, L + ℓ − i − 1} (for

i ∈ [L + ℓ − 1]). Then COUNT[z] =
∑L+ℓ−2

i=0 w(i)COUNT
′[z − i]. From the estimates for COUNT

′[·], we

can compute estimates for COUNT[·] by doing an FFT in Õ(n) time (or by a more direct way, since w(·)
is just a piecewise-linear function with 3 pieces). Note that w(j) ≤ ℓ and there are O(L/ℓ) nonzero terms

COUNT
′[z − i] in the sum; furthermore, after splitting the sum into two halves, in each half, no two z − i

values are equal mod L. Thus, we can estimate the sum of each half, with variance O((L/ℓ) · ℓ2 · tk), due

to pairwise uncorrelation. Then we can estimate COUNT[z] by summing up the two halves, which still has

variance O((L/ℓ) · ℓ2 · tk), as Var[X +Y ] ≤ 2(Var[X]+Var[Y ]) for any random variables X and Y . This

variance bound is O((εk)2) by setting t := ε2k/(Lℓ) ≥ ε2k2/(nℓ). The running time is

Õ

(
k

(
n/ℓ

ε2k2/(nℓ)

)(1+ω)/(5+ω)

+
k(n/ℓ)(1+ω)/(5+ω)(n/(kℓ))(3−ω)/(5+ω)

(ε2k2/(nℓ))4/(5+ω)
+ n

)

≤ Õ
(
ε−2(1+ω)/(5+ω)n2(1+ω)/(5+ω)k(3−ω)/(5+ω) + ε−8/(5+ω)n8/(5+ω)/k2(3−ω)/(5+ω) + n

)
.

Since the estimate for COUNT[z] has variance Õ(tk) = Õ((εk)2), the estimate has additive error Õ(εk)
with probability at least 0.9, say, by Chebyshev’s inequality. We can repeat Θ(log n) times and take the

median, which achieves additive error Õ(εk) w.h.p. by the Chernoff bound.

3.5 Applying to Text-to-Pattern Hamming Distances

Finally, we connect the Text-to-Pattern Hamming Distances to colored counting 3SUM. The connection is

not difficult to see: For each a ∈ [n], put a in the set A with color T [a], and for each b ∈ [m], put b in the set

B with color P [b], where T and P are the given text and pattern strings. The number of matches between

P and T [i . . i + m − 1] is precisely |{(a, b) ∈ A × B : a − b = i, color(a) = color(b)}|. So, we can

apply Lemma 3.4 (with U = n, after negating B) to approximate the number of matches, and thus also the

number of mismatches, with variance/additive error dependent on n.

However, we want additive error O(εk) for distances bounded by k. To this end, we apply a technique

from known exact algorithms: Gawrychowski and Uznański [GU18] reduced k-bounded Text-to-Pattern

Hamming Distances to O(n/m) instance of the same problem for text and pattern strings of length O(m)
that have run-length encodings bounded by O(k)—in other words, the text and pattern strings are concate-

nations of O(k) blocks of identical characters (runs). The reduction takes near-linear time, and preserves

additive approximation. When mapped to the above colored sets A and B, these blocks become monochro-

matic intervals. So, we can apply Lemma 3.5 to approximate the number of matches with additive error

O(εk), and thus the number of mismatches with additive error O(εk), and immediately obtain:

Theorem 3.6. The approximate k-bounded Text-to-Pattern Hamming Distances problem additive error

O(εk) can be solved by a Monte Carlo algorithm in time

Õ
( n

m
·
(
ε−1+βm1−βkβ + ε−1−βm1+β/k2β +m

))
, where β := (3− ω)/(5 + ω).

Theorem 3.6 implies Theorem 1.1, which we recall below:
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Theorem 1.1 (Approximation algorithm with sublinear 1/ε dependence). The (1+ ε)-approximate Text-to-

Pattern Hamming Distances problem can be solved by a Monte Carlo randomized algorithm in Õ(ε−γn)
time, where γ = 8/(11 − ω) < 0.928.

Proof. For all shifts with Hamming distance k ≤ ε−γ√m, we can use a known exact algorithm running

in Õ( n
m · (m + k

√
m)) ≤ Õ(ε−γn) time [GU18, CGK+20]. Otherwise, the bound in Theorem 3.6 is at

most Õ( n
m · (ε−1+βm+ ε−1−β+2βγm)). We thus obtain an upper bound of Õ(ε−γn) in all cases, by setting

γ := (1 + β)/(1 + 2β) = 8/(11 − ω) < 0.928. We run the entire algorithm for every k that is a power

of 2.

Remark 3.7. With more tedious calculations, the exponent 0.928 can likely be improved by using known

bounds on rectangular matrix multiplication, but the improvement would be tiny. If ω = 2, the above bound

is Õ(ε−8/9n). Note that in the critical case when k = Θ(m) and ε−1 =
√
m (which we have mentioned

earlier), the bound in Theorem 3.6 is actually a little better: Õ(nm(1−β)/2), which is Õ(nm3/7) if ω = 2.

4 Randomized Exact Text-to-Pattern Hamming Distances

In this and the next section, we turn to exact algorithms for Text-to-Pattern Hamming Distances.

4.1 X + Y Lemma

The key ingredient of our new algorithm is the following lemma on computing the sumset X + Y , along

with the multiplicities of its elements, for sets X and Y of n elements in a bounded integer universe (this is

equivalent to computing convolutions of sparse binary vectors).

Lemma 4.1. Given two (multi)sets X and Y of n elements in [U/2] with 2U < n2, we can compute

COUNT[z] := |{(x, y) ∈ X × Y : x + y = z}| for every z ∈ [U ] by a Las Vegas algorithm in

O(U log(n2/U)) expected time.

Note that Lemma 4.1 improves over the standard O(U logU) bound by FFT, when n2 is not too large

compared to U . Observe that the average count over all z ∈ [U ] is at most n2/U , which is small in the

regime of interest here. It is tempting to simply apply a bit-packed version of FFT (Lemma 2.2), but the

challenge here is that there can be a mixture of elements with small and (possibly very) large counts in the

sumset, and we don’t know which elements have small or large counts in advance.

Our algorithm needs the almost-linear hash family by Dietzfelbinger [Die96], which was also used by

Baran, Demaine, and Pǎtraşcu [BDP08] in their 3SUM algorithm. The following statement was proved

in [BDP08].

Lemma 4.2 (Almost-linear hash family [BDP08]). Let L ≤ U be powers of two. There is a family of hash

functions f : [U ]→ [L] with the following properties:

(i) For all x, y ∈ [U ], f(x) + f(y)− f(x+ y) ∈ ∆f for some fixed set ∆f of O(1) size.

(ii) For any fixed x, y, z with x+ y 6= z, Prf [f(x) + f(y)− f(z) ∈ ∆f ] ≤ O(1/L).

(iii) Sampling and evaluating f take O(1) time.
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Although the above hash family has been used successfully for various problems related to convolutions,

new technical issues arise when applying them to counting problems: even though we know that h(x) +
h(y)−h(x+y) lies in a set of O(1) size for a hash function h, the precise value is still unpredictable. (If one

uses another popular almost linear hash family, h(x) = x mod p for random primes p, then this issue goes

away, but collision probabilities increase by a logU factor, which we cannot afford to lose here.) Below,

we prove new additional properties about (one version of) Dietzfelbinger’s hash family, stating that for most

“good” pairs (x, y), the value of h(x) + h(y) − h(x + y) can be determined precisely by looking at some

short labels τh(x) and τh(y) of x and y.

Lemma 4.3 (Almost-linear hash family with somewhat predictable errors). Let q ≤ V ≤ U be powers of

two. There is a family of hash functions h : [U ]→ [V ] with the following properties:

(i) For any fixed z, z′ with z 6= z′, Prh[h(z) = h(z′)] ≤ O(1/V ).

(ii) There is a fixed set ∆h of O(1) size, and mappings τh : [U ] → [qO(1)] and φh : [q
O(1)] × [qO(1)] →

∆h∪{undefined} such that for all x, y, h(x)+h(y)−h(x+y) = φh(τh(x), τh(y)) if φh(τh(x), τh(y))
is defined. Call (x, y) good if φh(τh(x), τh(y)) is defined, and bad otherwise.

(iii) For any fixed x, y ∈ [U/2], Prh[(x, y) is bad] ≤ O(1/q).

(iv) Sampling and evaluating h take O(1) time. The mappings τh, φh can also be computed in O(1) time.

Proof. For a nonnegative integer a, let bin(a)i denote the i-th binary bit of a (for example, bin(a)0 =
a mod 2). For i ≥ j ≥ 0, let bin(a)i:j denote the concatenation bin(a)i ◦ bin(a)i−1 ◦ · · · ◦ bin(a)j . Let

low(a) denote the smallest i such that bin(a)i = 1; define low(0) = +∞.

Let U = 2w, V = 2ℓ, and q = 2k. We define the hash family as follows, similar to [Die96, BDP08]:

Pick a random odd r ∈ [2w+ℓ]. For x ∈ [2w], define h(x) as the following ℓ-bit integer,

h(x) = bin(r · x)w+ℓ−1:w.

Observe that, when low(x) = j, we have bin(r · x)j = 1, bin(r · x)j′ = 0 for all j′ < j, and

bin(r · x)w+ℓ−1:j+1 is a uniform random bit string.

We first prove Item (i). Given 0 ≤ z′ < z < 2w, note that h(z) = h(z′) implies (r · z − r · z′) ≡ v
(mod 2w+ℓ) for some integer v with |v| < 2w, which then implies bin(r · (z − z′))w+ℓ−1:w is either the

all-0 or all-1 ℓ-bit string. Since low(z−z′) ≤ w−1, we know bin(r · (z−z′))w+ℓ−1:w is a uniform random

ℓ-bit string. Thus, h(z) = h(z′) happens with probability at most 2/2ℓ = O(1/V ).
Now we prove Item (ii). First note that the error h(x+ y)− h(x)− h(y) ∈ {0, 1,−2ℓ,−2ℓ +1}, where

the +1 term appears if and only if adding r · x and r · y generates a carry to the w-th bit, and the −2ℓ term

appears if and only if this addition generates a carry to the (w+ ℓ)-th bit. In order to predict these two carry

bits, we can define τh as the following pair of k-bit strings,

τh(x) = (bin(r · x)w−1:w−k, bin(r · x)w+ℓ−1:w+ℓ−k).

Observe that adding r · x and r · y generates a carry to the w-th bit if and only if

bin(r · x)w−1:0 + bin(r · y)w−1:0 ≥ 2w.

By looking at the sums of their prefixes bin(r · x)w−1:w−k and bin(r · y)w−1:w−k (which are the first

component in τh(x) and τh(y)), we can unambiguously tell whether this inequality holds, except in the case
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where this sum bin(r ·x)w−1:w−k+bin(r ·y)w−1:w−k happens to equal the all-1 k-bit string. In this case we

let φh(τh(x), τh(y)) be undefined. Similarly, we use the second component of τh(x) and τh(y) to predict

the carry to the w + ℓ-th bit, and let φh(τh(x), τh(y)) be undefined if this fails. This proves Item (ii).

Now we bound the probability that bin(r · x)w−1:w−k + bin(r · y)w−1:w−k equals the all-1 k-bit string.

Note that this event implies bin(r · (x + y))w−1:w−k is either the all-1 or all-0 string. We analyze each of

these two cases, as follows:

• The all-1 case may happen only if low(r · (x + y)) = low(x + y) ≤ w − k. In this case, bin(r ·
(x+ y))w−1:w−k+1 is a uniformly random (k− 1)-bit string, so the probability that it equals the all-1
string is at most 1/2k−1 = O(1/q).

• Since we know low(r · (x + y)) = low(x + y) ≤ w − 1 from the assumption that x, y ∈ [U/2], we

know that the all-0 case may happen only if low(r · (x+ y)) = low(x+ y) ≤ w− k− 1. In this case,

bin(r · (x+ y))w−1:w−k is a uniformly random k-bit string, so the probability that it equals the all-0
string is at most 1/2k = O(1/q).

Hence, we know the probability that bin(r · x)w−1:w−k + bin(r · y)w−1:w−k equals the all-1 k-bit string is

at most O(1/q).
The probability that bin(r · x)w+ℓ−1:w+ℓ−k + bin(r · y)w+ℓ−1:w+ℓ−k equals the all-1 string can be

similarly bounded by O(1/q). Then Item (iii) is proved by a union bound.

Now we prove Lemma 4.1 by a new algorithm that uses a clever combination of hashing, bit-packed

FFT, and recursion. We use hashing to reduce the number of live elements (elements whose counts are not

yet known), but interestingly, we also use hashing and an extra recursive call to identify candidates for light

elements (elements whose counts are small). Fortunately, since the number of live elements decreases at a

super-exponential rate, the extra recursive calls do not blow up the final time bound, as we will see.

Proof. Our algorithm uses recursion. It recursively solves the following “partial version” of the original

problem: There are M live elements z ∈ [U ] for which we are required to compute COUNT[z]. For the

remaining U −M non-live elements z ∈ [U ], the correct values of COUNT[z] are already known and given

to us. Let T (n,M,U) be the expected time complexity of the problem of computing COUNT[z] for all the

M live elements z ∈ [U ]. The original problem corresponds to the case where all elements are live and

M = U ; so we want to bound T (n,U,U).

Step 1: classify elements as light or heavy. Let L, s be parameters. Choose a random function f : [U ]→
[L] from a family of almost-linear hash functions from Lemma 4.2. Let COUNTf [z] := |{(x, y) ∈ X × Y :
f(x) + f(y) − f(z) ∈ ∆f}|. Call z light if COUNTf [z] < 2sn2/L, and heavy otherwise. By Item (i) of

Lemma 4.2, if z is light, then COUNT[z] ≤ COUNTf [z] < 2sn2/L.

To determine which elements are light or heavy, we recursively solve the problem for the (multi)sets

f(X) and f(Y ), in T (n,O(L), O(L)) time, and obtain cf [k] := |{(x, y) ∈ X ×Y : f(x)+ f(y) = k}| for

all k. Then we can obtain COUNTf [z] =
∑

δ∈∆f
cf [f(z) + δ].

We now bound the number of heavy live elements in two cases:

(i) First, since
∑

z COUNT[z] = |X||Y | = n2, the number of elements z with COUNT[z] ≥ sn2/L is at

most L/s.

(ii) Now we fix a live element z with COUNT[z] < sn2/L. Note that COUNTf [z] − COUNT[z] is the

number of (x, y) ∈ X × Y with x+ y 6= z and f(x) + f(y)− f(z) ∈ ∆f , which has expectation at
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most O(n2/L) by Item (ii) of Lemma 4.2. By Markov’s inequality, the probability that this number

exceeds sn2/L is O(1/s). Thus, the probability that z is heavy is O(1/s).

Summing up Case (i) and Case (ii) (over all M live elements), the expected number of heavy live elements

is O(L/s + M/s). By Markov’s inequality, we can guarantee that this bound holds after O(1) expected

number of trials.

Step 2: classify elements as isolated or non-isolated. Let t and q be parameters. Independently choose

another random function h : [U ] → [tM ] from a family of modified almost-linear hash functions from

Lemma 4.3 (with parameter q). Let COUNTlive[z] := |{z′ live : z′ 6= z, h(z′) = h(z)}|. Call a live element

z isolated if COUNTlive[z] = 0, and non-isolated otherwise.

For a fixed live element z, the expectation of COUNTlive[z] is O(M · 1/(tM)) = O(1/t) by Item (i)

of Lemma 4.3. By Markov’s inequality, the probability that z is non-isolated is O(1/t). So, the expected

number of non-isolated live elements is O(M/t). By Markov’s inequality, we can guarantee that this bound

holds after O(1) expected number of trials.

Step 3: compute counts for isolated light elements. Define

c[k] :=
∑

z: h(z)=k

COUNT[z]

= |{(x, y) ∈ X × Y : h(x+ y) = k}|.

To compute c[k], we decompose it into c[k] = cbad[k] + cgood[k] and compute separately, where cbad[k] :=
|{(x, y) ∈ X × Y bad : h(x + y) = k}| and cgood[k] := |{(x, y) ∈ X × Y good : h(x + y) = k}| (see

the definition of good and bad in Lemma 4.3). Let X(α) := {x ∈ X : τh(x) = α} and Y (β) := {y ∈ Y :
τh(y) = β}. We preprocess sets X(α) for all α ∈ [qO(1)] (and sets Y (β) for all β ∈ [qO(1)]) in O(n+ qO(1))
time. Then,

• We can compute cbad[k] for all k ∈ [tM ] by examining each α, β ∈ [qO(1)] such that φh(α, β) is

undefined, and enumerating all (x, y) ∈ X(α) × Y (β), and incrementing the counter for h(x + y).
Since each pair (x, y) ∈ X × Y is bad with O(1/q) probability by Item (iii) of Lemma 4.3, the

expected total time is O(qO(1) + n2/q).

• Fix a prime p ∈ [2sn2/L, 4sn2/L].8 We can compute cgood[k] mod p for all k ∈ [tM ], by examining

each α, β ∈ [qO(1)] such that φh(α, β) is defined, and computing c
(α,β)
good [k] := |{(x, y) ∈ X(α) ×

Y (β) : h(x) + h(y) = k + φh(α, β)}| mod p, which reduces to a convolution problem for the

multisets h(X(α)) and h(Y (β)) in [tM ], done modulo p. By Lemma 2.2, each convolution takes

O(tM log(sn2/L)) time. The total time over all α, β is O(qO(1)tM log(sn2/L)).

Now, we know c[k] mod p for all k ∈ [tM ] by summing up cbad[k] and cgood[k] mod p.

For each isolated live element z, we can compute COUNT[z] mod p by taking c[h(z)] and subtracting

COUNT[z′] for all z′ with z′ 6= z and h(z′) = h(z). Since z is isolated, all such elements z′ are not live and

thus their COUNT[z′] values are known. The expected number of such elements z′ is O(U/(tM)), by Item (i)

of Lemma 4.3. Hence, the total expected time over all isolated live elements z is O(M ·U/(tM)) = O(U/t).
If z is light, COUNT[z] is the same as COUNT[z] mod p. Thus, we have computed COUNT[z] for all

isolated light live elements z.

8The primes used by this recursive algorithm can be generated and fixed at the very beginning, in poly log(n) Las Vegas time.
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Step 4: compute counts for non-isolated elements and heavy elements. The remaining live elements

are non-isolated or heavy. We have already shown that there are O(L/s+M/s+M/t) such elements. We

recursively solve the problem for these elements in T (n,O(L/s +M/s+M/t), U) time.

Analysis. We obtain the following recurrence:

T (n,M,U) ≤ O(1)T (n,O(L), O(L)) + T (n,O(L/s +M/s+M/t), U)

+O
(
qO(1)tM log(sn2/L) + n2/q + U/t

)
.

Let M = U/r. Set L = U/r3/2, s = t =
√
r, and q = rε for a sufficiently small constant ε > 0. Recall

n2 > 2U . Then the recurrence simplifies to

T (n,U/r, U) ≤ O(1)T (n,O(U/r3/2), U) +O
(
(U/r1/2−O(ε)) log(n2/U) + n2/rε

)
,

where we absorbed the r dependence in log(sn2/L) = log(r2n2/U) into the rO(ε) factor. Expanding the

recurrence gives

T (n,U/r, U) ≤ O

( ∞∑

i=0

O(1)i
(
(U/r(3/2)

i(1/2−O(ε))) log(n2/U) + n2/r(3/2)
iε
))

= O
(
(U/r1/2−O(ε)) log(n2/U) + n2/rε

)
. (1)

Now we explain an alternative, simpler algorithm, to be used in the first level of recursion: Instead of run-

ning Steps 2–3, we just directly compute the counts for the light live elements by packed FFT (Lemma 2.2)

over the universe U modulo a p ∈ [2sn2/L, 4sn2/L], and recurse on the remaining heavy elements. The

recurrence is

T (n,M,U) ≤ O(1)T (n,O(L), O(L)) + T (n,O(L/s +M/s), U) +O(U log(sn2/L)).

Set M = U , L = U/r1, and s = r1. Then

T (n,U,U) ≤ O(1)T (n,O(U/r1), U) +O(U log(r21n
2/U))

≤ O((U/r
1/2−O(ε)
1 ) log(n2/U) + n2/rε1 + U log(r21n

2/U)) by (1).

Finally, setting r1 = (n2/U)1/ε yields T (n,U,U) = O(U log(n2/U)).

4.2 Text-to-Pattern Hamming Distances

Our exact algorithm for the Text-to-Pattern Hamming Distances problem (Theorem 1.2) now easily follows

from Lemma 4.1.

Theorem 1.2 (Exact algorithm without log factors). The Text-to-Pattern Hamming Distances problem can

be solved by a Las Vegas algorithm which terminates in O(n
√
m) time with high probability.

Proof. For each character c ∈ Σ, let Ac = {a ∈ [n] : T [a] = c} and Bc = {b ∈ [m] : P [b] = c}, and

nc = |Ac| + |Bc|. Note that
∑

c nc = O(n). The number of matches between P and T [i . . i + m − 1]
is precisely

∑
c |{(a, b) ∈ Ac × Bc : a − b = i}|. So, the problem reduces to solving an instance of the

problem from Lemma 4.1 (after negating Bc) with nc elements and universe size n, for each character c.

18



If nc ≤
√
2n, we can solve the problem by brute-force in O(n2

c) time. It is straightforward to bound the

total running time of this case by O(n3/2).
For nc >

√
2n, we apply Lemma 4.1. Consider any ℓ = 1, . . . , ⌈log(

√
n/2)⌉, and consider nc that is

between 2ℓ−1
√
2n and 2ℓ

√
2n. The number of such c is O(

√
n

2ℓ
). Moreover, each time we call Lemma 4.1,

if its running time exceeds twice its expectation, we rerun Lemma 4.1. By a standard application of the

Chernoff bound, the total number of reruns is O(max{
√
n

2ℓ
, log n}) w.h.p. Therefore, w.h.p., the running

time contributed by these nc is

O

(
max

{√
n

2ℓ
, log n

}
· n · log((2ℓ

√
2n)2/n)

)
= O

(
ℓ

2ℓ
· n3/2 + ℓn log n

)
.

Summing up over all ℓ = 1, . . . , ⌈log(
√

n/2)⌉ gives the O(n3/2) running time.

Finally, by breaking the problem into O(n/m) instances of size O(m), the time bound becomes O((n/m)·
m3/2).

4.3 k-Mismatch

Our technique also improves the previous algorithm for the k-mismatch problem. In fact, we only need

to replace the use of FFT in [CGK+20]’s O
(
n + min

(
nk√
m

√
logm, nk

2

m

))
-time algorithm with our new

Lemma 4.1.

Theorem 1.5 (k-mismatch algorithm without log factors). The k-bounded Text-to-Pattern Hamming Dis-

tances problem can be solved by a Monte Carlo algorithm in O
(
n + nk√

m

)
expected time which outputs

correct answers with high probability.

Proof Sketch. The bottleneck of [CGK+20]’s algorithm lies in the following task: given 2t sparse sequences

f1, . . . , ft, g1, . . . , gt whose supports are all in [n], and the total size of their supports is O(k), compute (a

sparse representation of) fi ⋆ gi for every i. Additionally, all nonzero entries of fi and gi are either 0 or 1.

The running time for this task in [CGK+20, Lemma 7.8] is O(kmin(k,
√
n log n)). It suffices to improve it

to provide an O(kmin(k,
√
n)).

Let ni denote the sum of the support size of fi and gi. Note that
∑

i ni = O(k). We can either compute

fi ⋆ gi using brute-force or using Lemma 4.1. Therefore the running time can be written as

O




∑

i: ni≤
√
2n

n2
i +

∑

i: ni>
√
2n

n log(n2
i /n)


 = O(kmin(k,

√
n)).

4.4 Text-to-Pattern Dominance Matching

In the Text-to-Pattern Dominance Matching problem, we want to compute |{i : P [i] ≤ T [i + k]}| for all

k. For convenience in the following we solve the variant |{i : P [i] < T [i + k]}| (which is without loss of

generality).

We prove the first part of Theorem 1.4.

Theorem 4.4. The Text-to-Pattern Dominance Matching problem can be solved by a Las Vegas algorithm

which terminates in O(n
√
m) time with high probability.
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Proof. Let us sort all the n + m ≤ 2n characters (we treat the same character on different locations as

different) of the text and the pattern together. For every dyadic interval I on this sorted array (without loss

of generality, we assume the length of this array is a power of 2), let L be the set of indices of the characters

in the pattern in the left half of the dyadic interval, and let R be the set of indices of the characters in the

text in the right half of the dyadic interval. It suffices to count the contribution of (i, j) ∈ L × R, i.e., the

number of (i, j) ∈ L × R with P [i] < T [j] and i + k = j for every k whose count is nonzero. Because

we sorted the characters, we already have P [i] ≤ T [j] for every (i, j) ∈ L × R. If {P [i] : i ∈ L} and

{T [j] : j ∈ R} share some character c (there can be at most one), let Lc := {i ∈ L : P [i] = c} and

Rc := {j ∈ R : T [j] = c}. Now it suffices to count the contributions from (L \Lc)×R and Lc× (R \Rc),
each of which can be handled with convolution. Let the dyadic interval I be of length 2ℓ+1. If 2ℓ ≤

√
2n,

we use brute-force to compute the convolution; otherwise, we use Lemma 4.1. Summing over all dyadic

intervals give the following running time:

O




∑

0≤ℓ≤log(
√
2n)

n

2ℓ
· (2ℓ)2 +

∑

log(
√
2n)<ℓ≤logn

n

2ℓ
· n log((2ℓ)2/n)


 = O(n

√
n).

Breaking the problem into O(n/m) instances of size O(m) gives the O(n
√
m) running time. As in the

proof of Theorem 1.3, this can be made to hold w.h.p. by applying the Chernoff bound.

5 Deterministic Exact Text-to-Pattern Hamming Distances

For our deterministic exact algorithm, we switch to a simpler approach to hashing, namely, taking a number

mod mi for some choice of mi (instead of using Dietzfelbinger’s hash family). We use the following known

lemma by Chan and Lewenstein [CL15]:

Lemma 5.1 ([CL15]). Given a set T ⊆ [U ] of size n, there exists an n·2O(
√
logn log logU) ·poly log(t, U) time

deterministic algorithm that constructs r = 2O(
√
logn log logU) integers m1, . . . ,mr = n ·2Θ(

√
logn log logU) ·

poly log(t, U), where for every x ∈ T , there exists i ∈ [r] such that no other y ∈ T has y ≡ x (mod mi).

Note that we slightly adapted the results in [CL15] in that the integers m1, . . . ,mr now also have a

lower bound. This is without loss of generality because if some integer is too small, we can multiply it with

an appropriate factor.

One particular application of Lemma 5.1 in [CL15] is a t · 2O(
√
logn log logU) · poly log(t, U) time de-

terministic algorithm for the sparse nonnegative convolution problem, in which we are given two sparse

nonnegative sequences A,B, and we need to compute (a sparse representation of) their convolution A ⋆ B,

with the additional assumption that a small size-t superset of the support of the output sequence is given.

Bringmann and Nakos [BN21a] removed this assumption via recursion. We first closely follow the ap-

proaches in [CL15] and [BN21a] to solve a problem similar to sparse nonnegative convolution.

Lemma 5.2. Given three integer sequences A,B,C of length U , with the promise that (A ⋆ B −C)[i] ≥ 0
for every i, we can compute A ⋆ B in

O(U) + t · 2O(
√
log t log logU) · poly log(t, U)

deterministic time, where t = max{||A||0, ||B||0, ||A ⋆ B − C||0}.
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Proof. Without loss of generality, assume U is a power of 2. If U = 1, then the problem can be trivially

solved in O(1) time. In the following, we assume U ≥ 2.

Let U ′ = U/2. For every i ∈ [U ′], let A′[i] := A[i] +A[i+ U ′]. We similarly prepare B′ and C ′. Then

we recursively compute A′ ⋆ B′.

Given A′ ⋆B′, we can compute A′ ⋆B′−C ′ in O(U) time. Let S be the support of A′ ⋆B′−C ′. Notice

that (A′ ⋆B′−C ′)[i] = (A⋆B−C)[i]+(A⋆B−C)[i+U ′]+(A⋆B−C)[i+2U ′]+(A⋆B−C)[i+3U ′].
Therefore, by setting T :=

⋃
s∈S{s, s+U ′, s+2U ′, s+3U ′}, T is guaranteed to be a superset of the support

of A ⋆ B − C . Furthermore, |T | = O(||A ⋆ B − C||0) = O(t).
Next, we apply Lemma 5.1 on T and U and find r = 2O(

√
log t log logU) integers m1, . . . ,mr = t ·

2Θ(
√
log t log logU) · poly log(t, U). For each k ∈ [r], we prepare two arrays Ak and Bk, which are defined as

Ak[i] :=
∑

j≡i mod mk
A[j] and Bk[i] :=

∑
j≡i mod mk

B[j]. Then we compute the following array Dk via

FFT in Õ(mk) time:

Dk[i] :=
∑

j≡i mod mk

(A ⋆ B)[j] = (Ak ⋆ Bk)[i] + (Ak ⋆ Bk)[i+mk].

Furthermore, for each x ∈ T , we find the integer mk such that for any other y ∈ T , y 6≡ x (mod mk). The

above takes t · 2O(
√
log t log logU) · poly log(t, U) time.

Next, for each x ∈ T and the corresponding mk, we compute the following value

E[x] := Dk[x mod mk]−
∑

j≡x (mod mk)

C[j],

which equals

∑

j≡x (mod mk)

(A ⋆ B)[j] −
∑

j≡x (mod mk)

C[j] =
∑

j≡x (mod mk)

(A ⋆ B −C)[j].

Since there is no other y ∈ T such that y ≡ x mod mk, and T is a superset of the support of A ⋆ B − C ,

∑

j≡x (mod mk)

(A ⋆ B − C)[j] = (A ⋆ B − C)[x].

For any x 6∈ T , we can simply set E[x] to be 0. The time for computing E[x] for each x ∈ T is O( U
mk

) =

O( U
t·2Θ(

√
log t log logU)·poly log(t,U)

) = O(Ut ), so the overall running time for computing E is O(Ut · |T |) =

O(U).
Overall, E = A ⋆ B − C , and we can compute A ⋆ B by adding E and C in O(U) time.

The recursion adds an log(U) factor to the t·2O(
√
log t log logU) ·poly log(t, U) part of the running time. It

only adds a constant factor to the O(U) part of the running time, as U is halved at each recursion level.

Lemma 5.3. Given two (multi)sets X and Y of n elements in [U/2] with 2U < n2, we can compute

COUNT[z] := |{(x, y) ∈ X × Y : x + y = z}| for every z ∈ [U ] by a deterministic algorithm in

O(U log(n2/U) + U
√
log n log logU) time.

Proof. First, if n2

U = nΩ(1), then directly applying FFT already achieves the claimed running time. Now we

assume n2

U = no(1).

Let p be a prime whose range is to be determined later. First, we use Lemma 2.2 to compute COUNT[z] mod
p for every z ∈ [U ] in O(U log p) time.
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Then we apply Lemma 5.2, using X for A, Y for B and COUNT[z] mod p for C . Clearly, ||A ⋆ B −
C||0 ≤ n2

p , so the overall running time for computing A ⋆ B (which gives COUNT[z]) is O(U) + t ·
2O(

√
log t log logU) · poly log(t, U) for t = max{n, n2

p }. Also, as 2U < n2, we can simplify the running

time to O
(
U + t · 2c

√
log t log logU)

)
for some constant c.

Finally, picking p from Θ
(
n2

U · 2c
√
logn log logU

)
(it only takes no(1) time to find such a prime as n2

U =

no(1)) gives the desired running time.

Theorem 1.3 (Deterministic exact algorithm). The Text-to-Pattern Hamming Distances problem can be

solved by a deterministic algorithm in O(n
√
m(logm log logm)1/4) time.

Proof. Let nc be the number of occurrences of character c in the text and pattern. Note that
∑

c nc = O(n).
As we know, the problem reduces to solving an instance of the problem from Lemma 5.3 with nc elements

and universe size n, for each character c.
For character c with nc ≤ n1/2(log n log log n)1/4, we use the brute-force O(n2

c) time algorithm.

For character c with nc > n1/2(log n log log n)1/4, we use the algorithm from Lemma 5.3 which runs

in O(n log(n2
c/n) + n

√
log nc log log n) time. The overall running time is O(n3/2(log n log log n)1/4).

Finally, by breaking the problem into O(n/m) instances of size O(m), the time bound becomes O((n/m)·
m3/2(logm log logm)1/4).

The deterministic algorithm for Text-to-Pattern Dominance Matching also easily follows from Lemma 5.2.

Its proof is identical to the proof of Theorem 4.4, except that we replace Lemma 4.1 with Lemma 5.2 and

update the running time analysis properly.

Theorem 5.4. The Text-to-Pattern Dominance Matching problem can be solved by a deterministic algorithm

in O(n
√
m(logm log logm)1/4) time.

Remark 5.5. It would be natural to build Lemma 5.2 on Bringmann, Fischer and Nakos’s more efficient

algorithm [BFN22] for sparse nonnegative convolution that runs in Õ(t) time, in order to further improve

our deterministic algorithm for exact Text-to-Pattern Hamming Distances. The difficulty in this approach

is that, to implement [BFN22]’s idea, we have to view C as a degree U polynomial and evaluate it on t
carefully chosen points. It is unclear how to do this evaluation in o(U logU) time (O(U logU) is the naive

bound for Lemma 5.3 via FFT).

6 Equivalence with a Variant of 3SUM

In this section, we prove Theorem 1.6, which we recall below:

Theorem 1.6 (Equivalence with a variant of 3SUM). If Problem 2 has a f(N) time algorithm, then Text-to-

Pattern Hamming Distances with n = O(m) has an Õ(f(m)) time algorithm, and vice versa.

Proof. The forward direction is implied by the proof of [BN20, Theorem 2.17]. For completeness, we

include this simple proof. Suppose we have an algorithm A for Problem 2 in T (N) time and we are given

a Text-to-Pattern Hamming Distances instance with text T and pattern P where n = O(m). For every

i ∈ [m], we add a number −2nP [i] − i to a set A. For every i ∈ [n], we add a number 2nT [i] + i to B.

Finally, let C = [n]. Then we run algorithm A on sets A,B,C . It suffices to show that for every i ∈ C , the

number of (a, b) ∈ A × B with a + b = i is exactly the number of j where P [j] = T [i + j] (if this is the
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case, then the Hamming distance between P and T [i . . i+m− 1] is m minus the count of 3SUM solutions

for i ∈ C). In order for some number −2nP [j]− j ∈ A and some number 2nT [k] + k ∈ B to sum up to i,
we must have P [j] = T [k] and −j + k = i. Therefore, the number of such pairs is exactly the number of j
where P [j] = T [i+ j].

We next show the previously unknown backward direction. Suppose we have a T (n)-time algorithm B
for Text-to-Pattern Hamming Distances with n = O(m) and we are given an instance of Problem 2. First,

we can negate all numbers in A, so that the task becomes finding the number of (a, b) ∈ A × B where

−a + b = c for every c ∈ [N ]. Then we partition the sets A,B in the following way: for any integer g,

let Ag := {a ∈ A : gN ≤ a < (g + 1)N} and similarly let Bg := {b ∈ B : gN ≤ b < (g + 1)N} (we

do not need to create Ag or Bg that is empty). In order for −a+ b ∈ [N ], we only need to match numbers

in Ag with numbers in Bg−1, Bg, Bg+1. In the following, we only consider matching numbers in Ag with

numbers in Bg, and the other two cases can be handled similarly.

For every g where A′
g and B′

g are nonempty, we sample a uniformly random shift sg ∈ [N ]. Let

A′
g := {a − gN + sg : a ∈ Ag} and let B′

g := {b − gN + sg : b ∈ Bg} (this random shifts idea appeared

in [LPW20]). Now the problem becomes, for every c ∈ [N ], find the number of g, a ∈ A′
g, b ∈ B′

g where

−a + b = c. Note that all numbers in A′
g and B′

g are in [2N ]. For each i ∈ [2N ], the expected number of

times it appears in A′
g and B′

g over all g is at most 1
N

∑
i(|Ag| + |Bg|) = O(1), so by the Chernoff bound,

the number of times it appears in A′
g and B′

g is O(logN) w.h.p. For every (x, y) ∈ {1, . . . , O(logN)}2,

we create a Text-to-Pattern Hamming Distances instance as follows. Let the pattern Px be of length 2N ,

initially consisting of unique characters at each position. Then for every i, if A′
g is the x-th set (among all

A′
g’s) that contains i, we set Px[i] to be g. Similarly, let the text Ty be of length 3N , initially consisting of

unique characters at each position. Then for every i, if B′
g is the y-th set (among all B′

g’s) that contains i,

we set Ty[i] to be g. Then we call algorithm B on each of these O(log2N) instances. For each shift i ∈ [N ],
2N minus the Hamming distance equals the number of j where Px[j] = Ty[i + j], i.e., it is the number of

g, a ∈ A′
g, b ∈ B′

g where −a + b = i, A′
g is the x-th set (among all A′

g’s) that contains a, B′
g is the y-th

set (among all B′
g’s) that contains b. Summing over all (x, y) gives exactly the quantity we seek for each

i ∈ [N ]. The overall running time of this algorithm is O(T (N) log2N).

7 Open Problems

We conclude with a few open questions:

• For (1 + ε)-approximating Text-to-Pattern Hamming distances, what is the best possible dependence

on 1/ε? Are there deterministic algorithms faster than Karloff’s Õ(ε−2n) algorithm [Kar93]?

• Is there a o(n
√
m)-time randomized algorithm for exact Text-to-Pattern Hamming Distances in the

word-RAM model? Is there an O(n
√
m)-time deterministic algorithm?

• Do our algorithms generalize to Text-to-Pattern ℓp Distances?

References

[Abr87] Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.

doi:10.1137/0216067. 1, 3, 5

23



[AD11] Mikhail J. Atallah and Timothy W. Duket. Pattern matching in the Ham-

ming distance with thresholds. Inf. Process. Lett., 111(14):674–677, 2011.

doi:10.1016/j.ipl.2011.04.004. 3

[AF91] Amihood Amir and Martin Farach. Efficient matching of nonrectangular shapes. Ann. Math.

Artif. Intell., 4:211–224, 1991. doi:10.1007/BF01531057. 3

[AGW13] Mikhail J. Atallah, Elena Grigorescu, and Yi Wu. A lower-variance randomized al-

gorithm for approximate string matching. Inf. Process. Lett., 113(18):690–692, 2013.

doi:10.1016/j.ipl.2013.06.005. 1

[ALP04] Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for

string matching with k mismatches. J. Algorithms, 50(2):257–275, 2004.

doi:10.1016/S0196-6774(03)00097-X. 2, 5

[BC22] Karl Bringmann and Alejandro Cassis. Faster knapsack algorithms via bounded

monotone min-plus-convolution. In Proc. 49th International Colloquium on Au-

tomata, Languages, and Programming (ICALP), volume 229, pages 31:1–31:21, 2022.

doi:10.4230/LIPIcs.ICALP.2022.31. 2

[BCKL23] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic curve fast Fourier

transform (ECFFT) part I: Low-degree extension in time O(n log n) over all finite fields.

In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 700–737, 2023.

doi:10.1137/1.9781611977554.ch30. 31

[BDP08] Ilya Baran, Erik D. Demaine, and Mihai Patrascu. Subquadratic algorithms for 3SUM. Algo-

rithmica, 50(4):584–596, 2008. doi:10.1007/s00453-007-9036-3. 14, 15

[BF08] Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. Theor.

Comput. Sci., 409(3):486–496, 2008. doi:10.1016/j.tcs.2008.08.042. 1

[BFN21] Karl Bringmann, Nick Fischer, and Vasileios Nakos. Sparse nonnegative convolution is equiva-

lent to dense nonnegative convolution. In Proc. 53rd Annual ACM SIGACT Symposium on The-

ory of Computing (STOC), pages 1711–1724, 2021. doi:10.1145/3406325.3451090.

31

[BFN22] Karl Bringmann, Nick Fischer, and Vasileios Nakos. Deterministic and Las Vegas algorithms

for sparse nonnegative convolution. In Proc. 2022 ACM-SIAM Symposium on Discrete Algo-

rithms (SODA), pages 3069–3090, 2022. doi:10.1137/1.9781611977073.119. 6,

22

[BN20] Karl Bringmann and Vasileios Nakos. Top-k-convolution and the quest for near-linear output-

sensitive subset sum. In Proc. 52nd Annual ACM SIGACT Symposium on Theory of Computing

(STOC), pages 982–995, 2020. doi:10.1145/3357713.3384308. 4, 22

[BN21a] Karl Bringmann and Vasileios Nakos. Fast n-fold boolean convolution via ad-

ditive combinatorics. In Proc. 48th International Colloquium on Automata,

Languages, and Programming (ICALP), volume 198, pages 41:1–41:17, 2021.

doi:10.4230/LIPIcs.ICALP.2021.41. 20

24



[BN21b] Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating subset

sum and partition. In Proc. 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 1797–1815, 2021. doi:10.1137/1.9781611976465.108. 2

[BT09] Philip Bille and Mikkel Thorup. Faster regular expression matching. In Proc. 36th Inter-

national Colloquium on Automata, Languages, and Programming (ICALP), pages 171–182,

2009. doi:10.1007/978-3-642-02927-1\_16. 1

[CFP+16] Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya. The

k-mismatch problem revisited. In Proc. 27th Annual ACM-SIAM Symposium on Discrete Al-

gorithms (SODA), pages 2039–2052, 2016. doi:10.1137/1.9781611974331.ch142.

2, 5

[CGK+20] Timothy M. Chan, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. Approxi-

mating text-to-pattern Hamming distances. In Proc. 52nd Annual ACM SIGACT Symposium on

Theory of Computing (STOC), pages 643–656, 2020. doi:10.1145/3357713.3384266.

1, 2, 3, 5, 6, 14, 19

[CH02] Richard Cole and Ramesh Hariharan. Approximate string matching: A simpler faster algo-

rithm. SIAM J. Comput., 31(6):1761–1782, 2002. doi:10.1137/S0097539700370527.

2, 5, 6

[CH20a] Timothy M. Chan and Qizheng He. On the change-making problem. In Proc.

3rd SIAM Symposium on Simplicity in Algorithms (SOSA), pages 38–42, 2020.

doi:10.1137/1.9781611976014.7. 31

[CH20b] Timothy M. Chan and Qizheng He. Reducing 3SUM to convolution-3SUM.

In Proc. 3rd Symposium on Simplicity in Algorithms (SOSA), pages 1–7, 2020.

doi:10.1137/1.9781611976014.1. 6, 10, 11

[Cha10] Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J.

Comput., 39(5):2075–2089, 2010. doi:10.1137/08071990X. 5

[Cha18] Timothy M. Chan. Approximation schemes for 0-1 knapsack. In Proc. 1st

Symposium on Simplicity in Algorithms (SOSA), volume 61, pages 5:1–5:12, 2018.

doi:10.4230/OASIcs.SOSA.2018.5. 2

[Cha20] Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median,+)-convolution,

and some geometric 3SUM-hard problems. ACM Trans. Algorithms, 16(1):7:1–7:23, 2020.

doi:https://doi.org/10.1145/3363541. 5

[CL15] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combinatorics.

In Proc. 47th Annual ACM Symposium on Theory of Computing (STOC), pages 31–40, 2015.

doi:10.1145/2746539.2746568. 4, 6, 20

[Cli09] Raphaël Clifford. Matrix multiplication and pattern matching under Hamming norm, 2009.

URL:https://web.archive.org/web/20160818144748/http://www.cs.bris.ac.uk/Re

1, 2, 3

25



[CLMZ23] Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. A nearly quadratic-

time FPTAS for knapsack. CoRR, abs/2308.07821, 2023. arXiv:2308.07821,

doi:10.48550/arXiv.2308.07821. 2

[CLZ03] Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. A subquadratic sequence

alignment algorithm for unrestricted scoring matrices. SIAM J. Comput., 32(6):1654–1673,

2003. doi:10.1137/S0097539702402007. 1

[CS98] David E. Cardoze and Leonard J. Schulman. Pattern matching for spatial point sets. In Proc.

39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 156–165,

1998. doi:10.1109/SFCS.1998.743439. 31

[CVX23] Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Fredman’s trick meets

dominance product: Fine-grained complexity of unweighted APSP, 3SUM counting, and more.

In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC), pages

419–432. ACM, 2023. doi:10.1145/3564246.3585237. 4, 5, 6, 7, 8, 30

[Die96] Martin Dietzfelbinger. Universal hashing and k-wise independent random variables

via integer arithmetic without primes. In Proc. 13th Annual Symposium on The-

oretical Aspects of Computer Science (STACS), volume 1046, pages 569–580, 1996.

doi:10.1007/3-540-60922-9\_46. 6, 14, 15

[DJM23] Mingyang Deng, Ce Jin, and Xiao Mao. Approximating knapsack and partition via dense

subset sums. In Proc. 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

2961–2979, 2023. doi:10.1137/1.9781611977554.ch113. 2

[DWZ22] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric

hashing. CoRR, abs/2210.10173, 2022. To appear in FOCS 2023. arXiv:2210.10173,

doi:10.48550/arXiv.2210.10173. 3

[FG13] Kimmo Fredriksson and Szymon Grabowski. Exploiting word-level parallelism for fast con-

volutions and their applications in approximate string matching. Eur. J. Comb., 34(1):38–51,

2013. doi:10.1016/j.ejc.2012.07.013. 1

[FP74] Michael J. Fischer and Michael S. Paterson. String matching and other products. In Complexity

of Computation, RM Karp (editor), SIAM-AMS Proceedings, volume 7, pages 113–125, 1974.

1, 5

[Fre76] Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J.

Comput., 5(1):83–89, 1976. doi:10.1137/0205006. 5, 8

[Für14] Martin Fürer. How fast can we multiply large integers on an actual computer? In Proc. 11th

Latin American Symposium on Theoretical Informatics (LATIN), volume 8392, pages 660–670.

Springer, 2014. doi:10.1007/978-3-642-54423-1\_57. 32

[GG86] Zvi Galil and Raffaele Giancarlo. Improved string matching with k mismatches. SIGACT

News, 17(4):52–54, 1986. doi:10.1145/8307.8309. 2, 5

[GP18] Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM,

65(4):22:1–22:25, 2018. doi:10.1145/3185378. 5

26



[Gra16] Szymon Grabowski. New tabulation and sparse dynamic programming based tech-

niques for sequence similarity problems. Discret. Appl. Math., 212:96–103, 2016.

doi:10.1016/j.dam.2015.10.040. 1

[GS17] Omer Gold and Micha Sharir. Dominance product and high-dimensional closest pair under L∞.

In Proc. 28th International Symposium on Algorithms and Computation (ISAAC), volume 92,

pages 39:1–39:12, 2017. doi:10.4230/LIPIcs.ISAAC.2017.39. 30

[GU18] Paweł Gawrychowski and Przemysław Uznański. Towards unified approximate pattern
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A Slight Extension to Indyk’s Reduction

In this appendix, we observe a simple extension to Indyk’s reduction from BMM to Text-to-Pattern Ham-

ming Distances, so that instead of BMM we start from the following Equality Product problem: Given two

N ×N integer matrices A and B, compute the N ×N matrix C where C[i, j] = |{k | A[i, k] = B[k, j]}|.
Equality Product has been studied in several papers [Mat91, LUW19, Vas15, CVX23, GS17, LPW20].

The fastest known algorithm [Yus09] for it runs in O(N2.659) time using rectangular matrix multiplication

[LU18, VXXZ23]. This running time would be O(N2.5) if ω = 2.

Equality Product is among the so called “intermediate” matrix products which seem to require N2.5−o(1)

time (in the word-RAM model of computation with O(logN) bit words), even if ω = 2 (see [LPW20,

LUW19]).

Here we reduce Equality Product to Text-to-Pattern Hamming Distances, following Indyk’s reduction

closely.

Given N ×N matrices A and B, we create a text T and a pattern P , both of length Θ(N2) as follows.

First let us define our alphabet Σ. For every i, j ∈ [N ], interpret (j,A[i, j]) as a new letter in Σ.

Similarly, for every j, k ∈ [N ], add letters (j,B[j, k]) to Σ. So far, Σ is a subset of [n]× Z. Also let $ be a

new letter that does not appear in Σ so far, adding it to Σ.

Encode each row Ai of A as a string f(i) = (0, A[i, 0]) ⊙ (1, A[i, 1]) ⊙ . . . ⊙ (N − 1, A[i,N − 1]),
where ⊙ means concatenation. Let the text be

T = $N
2 ⊙ f(0)⊙ $⊙ f(1)⊙ $⊙ . . .⊙ $⊙ f(N − 1)⊙ $N

2
.

Similarly, encode each column Bk of B as a string g(k) = (0, B[0, k]) ⊙ (1, B[1, k]) ⊙ . . . ⊙ (N −
1, B[N − 1, k]). Let the pattern be

P = g(0) ⊙ g(1) ⊙ . . . g(N − 1).

Note that the Hamming distance between f(i) and g(k) is exactly the number of j for which A[i, j] 6=
B[j, k], so that N−the Hamming distance of f(i) and g(k) is exactly the number of j for which A[i, j] =
B[j, k].

Similarly to Indyk’s reduction, the $ symbols in T ensure that if we align P with T so that f(i) is

exactly aligned with g(k), then there are no other symbols of Σ that can be equal and aligned except those in

f(i) and g(k), and so the Hamming distance between T and P for the corresponding shift equals |P |−the

number of j for which A[i, j] = B[j, k].
The lengths n and m of T and P are both Θ(N2). Thus, any algorithm that runs in O(nm1/4−ε) time

for ε > 0 for Text-to-Pattern Hamming Distances would result in an O(N2 ·N2/4−2ε) = O(N2.5−2ε) time

algorithm for Equality Product.

The lower bound for Text-to-Pattern Hamming Distances would be higher if we assumed that the cur-

rent best known algorithms for Equality Product are optimal. In particular, if Equality Product requires

N2.5+δ−o(1) time for some δ > 0, then the lower bound for Text-to-Pattern Hamming Distances becomes

nm1/4+δ/2−o(1).

Extension to Gawrychowski and Uznański’s reduction for k-mismatch. We remark that the same mod-

ification can be performed on the reduction by Gawrychowski and Uznański [GU18] for the k-mismatch

problem, to give a conditional lower bound for k-mismatch of ((kn/
√
m) · (1/m1/4))1−o(1) which would

hold even if ω = 2. Recall that the fastest algorithm runs in O(n+ kn/
√
m) time.
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Gawrychowski and Uznański presented a reduction from Boolean Matrix Multiplication of an M ′ ×N
matrix by an N ×M matrix (for M ′ ≥ M ≥ N ), to the k-mismatch problem for a text of length n and a

pattern of length m where m = M2, n = M ′M and k = MN .

Using our simple modification we immediately obtain a reduction from the Equality Product of an

M ′ × N matrix by an N ×M matrix to the k-mismatch problem for a text of length n and a pattern of

length m where m = M2, n = M ′M and k = MN .

The fastest algorithm for this rectangular Equality Product when M ≤ N2 runs in O(M ′N
√
M) time

if ω = 2.

Suppose that k-mismatch has an algorithm running in time O((kn/m3/4)1−ε) time for some ε > 0.

Then Equality Product of an M ′ ×N matrix by an N ×M matrix can be solved asymptotically in time

(
(MN) · (M ′M)

(M2)3/4

)1−ε

=
(
M ′N

√
M
)1−ε

,

thus beating the best known running time for rectangular Equality Product in this setting, even if ω = 2.

B Polynomial Multiplication over Fp in word RAM

In this section, we prove Lemma 2.2, which we recall below:

Lemma 2.2. Given a prime p ≤ nO(1) and two length-n sequences a, b with entries in Fp, we can deter-

ministically compute a ⋆ b in O(n log p) time.

Indyk’s original approach. Indyk [Ind98] claimed a proof of Lemma 2.2 (originally described in the

p = 2 case) as follows: in the word RAM model with Θ(log n)-bit word length, we can pack ℓ = Θ( lognlog p )
numbers in Fp to a single word, represented in Fp2ℓ−1 , which reduces the length of the arrays to O(n/ℓ).
Then we essentially need to multiply two degree-O(n/ℓ) polynomials over Fp2ℓ−1 . Indyk [Ind98] assumed

that this multiplication could be done in O((n/ℓ) log(n/ℓ)) time (where each field operation in Fp2ℓ−1 takes

constant time), which would imply the desired O(n log p) time bound. Today, it is known how to per-

form this multiplication for p = 2 in O((n/ℓ) log(n/ℓ)) time [LAHC16], but for general p, the current best

algorithm for multiplying two degree-m polynomials over a finite field uses O(m logm·2O(log∗ m)) field op-

erations [HvdHL17] (for finite fields with primitive roots of large smooth order, the textbook Cooley-Tukey

FFT has a faster O(m logm) run time, but for general finite fields it is a major open question to remove this

2O(log∗ m) factor; see e.g., discussion in [BCKL23]), so Indyk’s original proof (combined with the state-of-

the-art [HvdHL17] result directly as a black box) only implies an algorithm with slower O(n log p·2O(log∗ n))
time.

Remark B.1. We briefly discuss other papers that relied on Indyk’s algorithm and are hence affected by this

issue (but can be saved either by [LAHC16] or using our new proof of Lemma 2.2). [CS98] studied pattern

matching for point sets and gave a randomized O(n log n) time algorithm. [CH20a] studied the coin change

problem and gave a randomized O(t log t) time decision algorithm. [BFN21] gave a randomized O(k log k)
time non-negative sparse convolution algorithm. These results [CS98, CH20a, BFN21] only use the case

p = 2, so they can already be fixed by [LAHC16].

In the rest of the section, we describe a more involved word RAM algorithm that saves this additional

2O(log∗ n) factor, proving Lemma 2.2. It builds on the recursive algorithm of [HvdHL17] and additionally

uses bit tricks and table look-ups (in a similar spirit to the O(n)-time integer multiplication algorithm in the
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word RAM model by [Für14]). This algorithm does not solve the aforementioned major question left open

by [HvdHL17], since it runs on the word RAM model.

First, multiplying two length-n polynomials over Fp can be reduced to multiplying two O(n log(pn))-
bit integers via a standard Kronecker substitution (see [HvdHL17, Section 2.6]). The latter task can be done

in O(n log(pn)) time in word RAM [Für14] using FFT with bit packing. If p ≥ n0.01, then the running time

is O(n log(pn)) = O(n log p) as desired. Hence, in the rest of the section we assume p ≤ n0.01.

At a high level, our algorithm uses the techniques from [HvdHL17]’s Fp-polynomial multiplication

algorithm with O(n log n · 8log∗ n · log p) bit complexity in the Turing Machine model. Their algorithm has

roughly log∗ n levels of recursion, where each level exponentially decreases the length of the DFT. Here we

adapt their algorithm to the word RAM model: we only need two levels of recursion to decrease the length

of the DFT to sub-logarithmic, and then we look up the DFT results from preprocessed tables. We also need

to use some bit tricks to speed up the DFT implementation.

Number-theoretic lemmas. We call a positive integer y-smooth if all of its prime divisors are less than or

equal to y. We quote the following two theorems from [HvdHL17].

Lemma B.2 ([HvdHL17, Theorem 4.1]). There exist computable absolute constants c3 > c2 > 0 and

n0 ∈ N with the following properties. Let p be a prime, and let n ≥ n0. Then there exists an integer λ in

the interval

(log n)c2 log log logn < λ < (log n)c3 log log logn,

and a (λ + 1)-smooth integer M ≥ n, such that M | pλ − 1. Moreover, given p and n, we may compute λ
and the prime factorization of M in time O((log n)log logn).

Lemma B.3 ([HvdHL17, Theorem 4.6]). Let p, n, λ,M be as in Lemma B.2. Let R and S be positive

integers such that λ < S < R < M . Then there exist (λ + 1)-smooth integers m1, . . . ,md with the

following properties:

1. N := m1 · · ·md divides M (and hence divides pλ − 1).

2. R ≤ N ≤ (λ+ 1)R.

3. S ≤ mi ≤ S3 for all i.

Given λ, S,R, and the prime factorization of M , we may compute such m1, . . . ,md (and their factoriza-

tions) in time Õ(λ3).

We will use the following corollary which combines the two lemmas above.

Corollary B.4. Let p be a prime, and let n ≥ n0 (where n0 is an absolute constant). Then there exist

integers n′ ∈ [n, 2n], L ∈ (log n)Θ(log log logn), and m1, . . . ,md (all computable in no(1) time), such that:

• N := m1 · · ·md divides pL − 1,

• n′ = NL, and

•
√
L/2 ≤ mi ≤ L3.
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Proof. Apply Lemma B.2 with p, n and obtain λ,M . Then apply Lemma B.3 with S = λ + 1 and R =
⌊n/(λ+ 1)2⌋ to obtain N := m1 · · ·md.

Let n′ be the smallest n′ ≥ n such that n′ is a multiple of Nλ. Since Nλ ≤ (λ + 1)R · λ ≤ (n/(λ +
1)) · λ < n, we have n′ ≤ 2n. Define L := n′/N . Since Nλ | n′, we must have λ | L, and hence

N | pλ − 1 | pL − 1.

From R ≤ N ≤ (λ + 1)R (where R = ⌊n/(λ + 1)2⌋) we have n/N ∈ [λ + 1, 2(λ + 1)2], and hence

L = n′/N ∈ [n/N, 2n/N ] ⊆ [λ+ 1, 4(λ + 1)2] ⊆ (log n)Θ(log log logn).

From S ≤ mi ≤ S3, S = λ+ 1, and L ∈ [λ+ 1, 4(λ + 1)2], we have
√
L/2 ≤ mi ≤ L3.

The running time for applying the two lemmas is O((log n)log logn) + Õ(λ3) ≤ O((log n)log logn) ≤
no(1).

Now we describe the parameters in the two levels of our algorithm for multiplying two degree-n poly-

nomials over Fp. We will invoke Corollary B.4 twice with two different n’s (and always the same p).

First level parameters. Let n′ = N1L1 be returned by Corollary B.4 when plugging in n. Here n′ ∈
[n, 2n], L1 ∈ (log n)Θ(log log logn), and N1 | pL1 − 1.

We will consider the sub-problem of multiplying two degree-L1 polynomials over Fp. At this point, we

first address the easy case where p ≥ L
Ω(1)
1 , which can be solved without the second-level recursion: we

simply do a Kronecker substitution to reduce this sub-problem to polynomial multiplication with integer

coefficients.

Lemma B.5 (Second level (degenerate case)). Suppose p > L1. Then multiplying two degree-L1 polynomi-

als over Fp can be done in O((L1 logL1) · log plogn) time.

Proof. In this case, we may use standard Kronecker substitution to pack the coefficients into large integers

(see [HvdHL17, Section 2.6]). More specifically, we can pack b coefficients in Fp into an integer of magni-

tude O(p2L1)
b = pO(b) as p > L1. To fit each integer in a word, we can set pO(b) = nO(1), so b can be as

large as O( log nlog p ). Then the problem reduces to multiplying two degree-L1
b polynomials with integer coeffi-

cients (each fitting into one word), which can be done using FFT in O(L1
b log(L1

b )) = O((L1 logL1) · log plogn)
time as desired.

In the following, we need to prove Lemma B.5 in the hard case where p ≤ L1, via a second level of

recursion.

Second level parameters. Assume p ≤ L
O(1)
1 . Let L′

1 = N2L2 be returned by Corollary B.4 when

plugging in L1 in place of n. Here L′
1 ∈ [L1, 2L1] and L2 ∈ (logL1)

Θ(log log logL1) ⊆ (log log n)Θ(log(4) n).

In the following we will work over the finite field FpL2 . Note that we can find a representation of FpL2

by finding an irreducible monic polynomial of degree L2, which can be done in Õ(L4
2p

1/2) ≤ Õ(L4
2L

1/2
1 ) =

no(1) time deterministically [Sho88]. Since N2 | pL2 − 1 by Corollary B.4, we can find a primitive N2-th

root of unity ωN2 in FpL2 in time Õ(L9
2p) = no(1) [HvdHL17, Lemma 3.3]. Note that for any factor m

of N2, ωm := ω
N2/m
N2

∈ FpL2 is a primitive m-th root of unity, and recall the DFT of an length-m array

(a0, . . . , am−1) ∈ (FpL2 )
m is the array (â0, . . . , âm−1) ∈ (FpL2 )

m where âk :=
∑m−1

j=0 aj · ωjk
m .

Let N2 = m′
1 · · ·m′

d′ as in Corollary B.4, where m′
i ∈ L

Θ(1)
2 ⊆ (log log n)Θ(log(4) n). Since we assumed

p ≤ L
O(1)
1 , we have m′

iL2 log p ≤ L
O(1)
2 L2 logL1 ≤ (log log n)O(log(4)(n)) < 0.1 log n. We also know
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N2 = Θ(L1/L2)≫ log n. Hence, by greedily grouping the factors m′
i, we can get a factorization

N2 = m1m2 · · ·md where mi <
0.1 logn
L2 log p

< mimj for all i, j ∈ [d] (i 6= j). (2)

For each i ∈ [d], define ti = ⌊ 0.1 logn
miL2 log p

⌋ ≥ 1. In the following, we will pack ti instances of degree-mi

DFTs over FpL2 in a machine word.

Lemma B.6. For each i ∈ [d], after n0.2+o(1) time pre-processing, computing ti instances of degree-mi

DFTs over FpL2 can be done in O(1) time (assuming a compactly represented input and output).

Similarly, this also holds for the task of multiplying degree-mi polynomials.

Proof. The number of such ti instances of degree-mi polynomials over FpL2 is ((pL2)mi)ti ≤ n0.1 by the

definition of ti, so we can preprocess a look-up table in n0.1+o(1) time, which later allows us to look up

the DFT answers in O(1) time in word RAM with Θ(log n)-bit words (assuming the inputs and outputs are

packed into O(1) words). A similar argument applies to the task of computing ti instances of degree-mi

polynomial multiplication, which takes preprocessing time n0.2+o(1).

Now we describe our second-level algorithm.

Lemma B.7 (Second level). After n0.2+o(1) time pre-processing, multiplying two degree-L1 polynomials

over Fp can be done in O((L1 logL1) · log plogn) time.

Proof. Assume p ≤ L
O(1)
1 ; otherwise use Lemma B.5 instead. Recall L′

1 ∈ [L1, 2L1] and L2 = L′
1/N2 =

Θ(L1/N2). Hence, we first reduce the task of multiplying two degree-L1 polynomials over Fp to O(1)
instances of multiplications of two degree-⌊(N2 − 1)/2⌋ polynomials over FpL2 . In more details, this is

achieved by packing contiguous ⌊L2/2⌋ coefficients from Fp into an element in FpL2 (where we divided by

two so that the products will not overflow modulo the irreducible monic polynomial of degree L2). This

way, the problem becomes the multiplication of two polynomials over FpL2 of degree L1/⌊L2/2⌋ = O(N2),
which can be easily reduced to O(1) instances of multiplications of two degree-⌊(N2 − 1)/2⌋ polynomials

over FpL2 .

In the following, we describe how to perform this multiplication, whose product should be a polynomial

over FpL2 of degree at most N2 − 1.

Recall N2 has a smooth factorization N2 =
∏d

i=1 mi given by Eq. (2), and recall that we computed a

primitive N2-th root of unity ωN2 ∈ FpL2 . Hence we can use the standard Cooley-Tukey FFT algorithm of

length N2 to do the multiplication (see e.g., [HvdHL17, Section 2.3]). In the following, we first recall the

DFT procedure, and later describe the implementation details in word RAM.

The DFT algorithm. Given input array (a0, . . . , aN2−1) ∈ (FpL2 )
N2 , we initialize the working array

A := (arev(0), . . . , arev(N2−1)) where rev(·) is a permutation defined as follows (analogous to the bit-

reversal permutation used in the radix-2 version): if x =
∑d

i=1 xi ·m1m2 · · ·mi−1 (where 0 ≤ xi < mi),

then rev(x) :=
∑d

i=1 xi·mi+1 . . . md−1md. Then we perform d rounds of computation on the working array

A, where in the i-th round (1 ≤ i ≤ d) we perform the following operations (denote Mi = m1m2 · · ·mi):

1. For each 0 ≤ k < N2/Mi and 0 ≤ j < Mi−1, let l = kMi + j, and for all 0 ≤ s < mi, multiply the

“twiddle factors”:

A[l + sMi−1]← A[l + sMi−1] · ωsj
Mi

.

In total there are N2 scalar multiplications over FpL2 in this round.
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2. For each 0 ≤ k < N2/Mi and 0 ≤ j < Mi−1, let l = kMi + j, and perform a length-mi in-place

DFT:

(A[l], A[l+Mi−1], , . . . , A[l+(mi−1)Mi−1])← DFT (A[l], A[l+Mi−1], , . . . , A[l+(mi−1)Mi−1]).

In total there are N2/mi instances of length-mi DFT over FpL2 in this round.

One can verify that after d rounds, the working array A becomes the correct DFT result, i.e., A[k] =∑N2−1
j=0 aj · ωjk

N2
.

Implementation of DFT. To implement the DFT algorithm described above, we always use a compact

representation of the working array A ∈ (FpL2 )
N2 into O(N2L2 log p

logn ) words, and we need to use bit paral-

lelism to speed up these operations.

• Item 1 (multiplying the “twiddle factors”):

In constant time, we multiply the twiddle factors to Θ( logn
L2 log p

) contiguous elements (represented in

O(1) words) in the working array A using table look-up (similar to Lemma B.6 with mi set to 1).

(Note that logn
L2 log p

≤ N2.) In order to do this table look-up, we also need to prepare a compact

representation of the Θ( logn
L2 log p

) twiddle factors applied to the working array. Note that these twiddle

factors are fixed in the algorithm and do not depend on the input, so we can pre-compute the compact

representations of them in poly(N2 · L2 log p) ≤ no(1) time.

The total time for Item 1 over all d rounds (ignoring preprocessing) is O(d · (N2 · L2 log p)/ log n).

• Item 2 (length-mi DFTs):

In the i-th round, we need to apply length-mi DFTs on the working array, and we want to speed them

up by using Lemma B.6 to perform ti DFTs in a batch in constant time. To do this, we need to first

collect the array elements A[l], A[l + Mi−1], . . . , A[l + (mi − 1)Mi−1] participating in each DFT

into a contiguous range of memory in compact representation. (Note that we only need to do this

when i ≥ 2; for i = 1, since Mi−1 = 1, these elements are already in a contiguous range.) More

specifically, we need to permute array A into A′ so that

A′[kMi+jmi+s] = A[kMi+j+sMi−1] for all 0 ≤ k < N2/Mi, 0 ≤ j < Mi−1, 0 ≤ s < mi. (3)

In other words, if we view the length-N2 working array A as N2/Mi chunks each representing an mi×
Mi−1 matrix in row-major order, then A′ is obtained by transposing these matrices into column-major

order. After permuting A into A′, we can perform the required DFTs on A′ with time complexity

linear in the number of words using the look-up tables from Lemma B.6, and then we permutate them

back by running the transposition step in reverse. Note that the running time for performing DFTs on

A′ is dominated by the transposition steps.

Transposing an mi×Mi−1 matrix can be done by a divide-and-conquer algorithm (similar to [Tho02,

Lemma 9]) with recursion depth log(mi): we start with mi length-Mi−1 lists each corresponding

to a leaf of the recursion tree, and at each internal node of the recursion tree we interleave the

lists returned by its two child nodes. Here, using word operations (which can be replaced by ta-

ble look-ups after preprocessing), interleaving two lists can be done with time complexity linear in

the number of words in their compact representations. Hence, transposing an mi×Mi−1 matrix (with

entries from FpL2 ) via divide-and-conquer takes total time
∑logmi

q=0 2q · (O( (mi/2
q)Mi−1L2 log p

logn ) +
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O(1)) ≤ O((logmi)miMi−1L2
log p
logn + mi), and transposing N2/Mi such matrices in total takes

O((logmi)N2L2
log p
logn + N2/Mi−1) time. For i ≥ 3, we have Mi−1 ≥ m1m2 > 0.1 logn

L2 log p
from

Eq. (2), and the second term N2/Mi−1 in the time complexity is dominated, so the run time becomes

O((logmi)N2L2
log p
logn). For the remaining case i = 2, the same run time can be achieved by slightly

modifying the divide-and-conquer matrix transposition algorithm: when the total bit length of the lists

in the current recursion subtree is below 0.1 log n, we simply look up the transposition result from a

preprocessed table instead of recursing.

To summarize, the total time for Item 2 for all d rounds is

O

(
d∑

i=1

log(mi) ·N2L2
log p

log n

)

= O(logN2) ·N2L2
log p

log n
(by Eq. (2))

= O(logN2) · L1
log p

log n
(by L2 = L′

1/N2 and L′
1 = Θ(L1))

= O

(
L1 logL1 ·

log p

log n

)
.

Finally, note that the initialization step (applying the rev(·) permutation to the input array) can be done

in a similar fashion to the transposition steps described in Item 2, with the same total time complexity

O
(
L1 logL1 · log plogn

)
.

Note that the total time of Item 1 is dominated by Item 2, so the total time complexity of the algorithm

is O
(
L1 logL1 · log plogn

)
. The total pre-processing time of calling Lemma B.6 d times is O(n0.2+o(1) · d) =

n0.2+o(1), and the pre-processing time for other look-up tables used by the algorithm can also be bounded

similarly by n0.2+o(1).

The proof of Lemma B.7 described above can also prove the following slightly stronger statement:

Corollary B.8. Let L̃1 ∈ [L0.2
1 , L10

1 ] be a power of two. After n0.2+o(1) time pre-processing, multiplying

two degree-L̃1 polynomials over Fp can be done in O((L̃1 log L̃1) · log plogn) time.

Proof. The only bounds on L1 that we used in proving Lemma B.7 are L1 ∈ (log n)Θ(log log logn) and

p ≤ L
O(1)
1 , which also hold for L̃1. Hence we can simply repeat the proof of Lemma B.7 with L̃1 in place

of L1.

Finally we describe the first level of our algorithm, proving Lemma 2.2.

Proof of Lemma 2.2. Recall p ≤ n0.01, L1 = n′/N1 and n = Θ(n′). By the same reasoning as in the proof

of Lemma B.7, we can reduce the task of multiplying two degree-n polynomials over Fp to O(1) instances

of polynomial multiplication over FpL1 whose product has degree at most N1 − 1. Note that we can find

a representation of FpL1 by finding an irreducible monic polynomial of degree L1, which can be done in

Õ(L4
1p

1/2) = n0.005+o(1) time deterministically [Sho88]. Since we have shown earlier that N1 | pL1 − 1,

we can find a primitive N1-th root of unity ωN1 ∈ FpL1 in Õ(L9
1p) = no(1) · n0.01 time [HvdHL17, Lemma

3.3]. Let N1 =
∏d

i=1 mi as in Corollary B.4, where
√
L1/2 ≤ mi ≤ L3

1.
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To do this multiplication, we run Cooley-Tukey FFT using this smooth N1-th root. Similar as the proof

of Lemma B.7, it involves d rounds of computation on a (compactly represented) working array of N1

elements from FpL1 , where the i-th round involves the following operations.

1. N1 scalar multiplications over FpL1 : multiply the “twiddle factors” to each of the N1 elements in the

array.

The cost for preparing all possible twiddle factors {ωj
N1
}j∈[N1] is N1 scalar multiplications over FpL1 ,

which can be absorbed into the cost of this step. (In contrast to the proof of Lemma B.7, here we do

not need to prepare the compact representations of multiple twiddle factors packed into one word,

since here each twiddle factor already occupies more than one word.)

2. N1/mi instances of length-mi DFT over FpL1 .

Let TD,L1(ℓ) denote the cost of computing the DFT of a length-ℓ polynomial over FpL1 , and let TM,L1

denote the cost of scalar multiplication over FpL1 . Then the total time complexity for FFT is (up to constant

factors)
d∑

i=1

(
N1 · TM,L1 +

N1

mi
TD,L1(mi)

)
.

Now we analyze the two terms separately.

• To analyze TM,L1 , note that a scalar multiplication over FpL1 can be done by computing the prod-

uct of two degree-L1 polynomials over Fp, and then mapping it back to FpL1 by reducing modulo a

degree-L1 monic irreducible polynomial over Fp. By Lemma B.7, multiplying two degree-L1 polyno-

mials over Fp can be done in O((L1 logL1)
log p
log n) time. Using Newton’s iteration (see e.g., [vzGG13,

Section 9]), degree-L1 polynomial division with remainder can be reduced to O(logL1) instances

of polynomial multiplication with degrees L1,
L1
2 , L1

4 , L1
8 , . . . respectively. For multiplication with

degree ≥ L0.2
1 , we invoke Corollary B.8. For smaller degree, we use brute-force quadratic-time mul-

tiplication. The total time for degree-L1 polynomial division is thus (up to a constant factor)

log2 L1∑

j=0.2 log2 L1

(2j log 2j) log plogn +

0.2 log2 L1∑

j=0

(2j)2 ≤ O(L1 logL1) · log plogn +O(L0.4
1 ) = O(L1 logL1) · log plogn .

Hence, TM,L1 = O((L1 logL1)
log p
log n).

• To analyze TD,L1(mi), we use Bluestein’s chirp transform (see [HvdHL17, Section 2.5]) to reduce

the task of computing a length-mi DFT over FpL1 to multiplying two degree-mi polynomials over

FpL1 . This can further be reduced to multiplying degree-2miL1 polynomials over Fp via Kronecker

substitution (see [HvdHL17, Section 2.6]), which can be solved using Corollary B.8 (recall mi ≤ L3
1)

in time O(miL1 · log(miL1) · log p
logn). Afterwards, we divide mi degree-2L1 polynomials over Fp

by the degree-L1 irreducible monic polynomial over Fp, to map the elements back to FpL1 , in total

time O(miL1 · log(L1) · log p/ log n) (similar to the previous paragraph). Hence, TD,L1(mi) ≤
O(miL1 log(L1) · log plogn)
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Hence, the total time becomes (up to constant factors)

d∑

i=1

(
N1 · TM,L1 +

N1

mi
TD,L1(mi)

)

≤
d∑

i=1

(
N1(L1 logL1)

log p

log n
+

N1

mi
miL1 log(L1) ·

log p

log n

)

≤ O
(
dN1(L1 logL1)

log p

log n

)

≤ O
(
d · n logL1 ·

log p

log n

)
.

Recall that Corollary B.4 gave the factorization N1 =
∏d

i=1mi with mi ∈ L
Θ(1)
1 , so d logL1 = Θ(logN1) =

Θ(log n), and the final run time becomes O(n log p) as desired.
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