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Abstract. An interesting generalization of list coloring is so called DP-coloring (named

after Dvořák and Postle). We study (i, j)-defective DP-colorings of simple graphs. Define

gDP (i, j, n) to be the minimum number of edges in an n-vertex DP-(i, j)-critical graph. We

prove sharp bounds on gDP (i, j, n) for i = 1, 2 and j ≥ 2i for infinitely many n.
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1. Introduction

A (d1, . . . , dk)-defective coloring (or simply (d1, . . . , dk)-coloring) of a graph G is a par-
tition of V (G) into sets V1, V2, . . . , Vk such that for every i ∈ [k], each vertex in Vi has
at most di neighbors in Vi. In particular, a (0, 0, . . . , 0)-defective coloring is the ordi-
nary proper k-coloring. Defective colorings have been studied in a number of papers, see
e.g. [1, 9, 12, 14, 16, 21, 23, 24, 28].

In this paper we consider colorings with 2 colors. If (i, j) ̸= (0, 0), then the problem to
decide whether a graph G has an (i, j)-coloring is NP-complete. In view of this, a direction
of study is to find how sparse can be graphs with no (i, j)-coloring for given i and j; see
e.g. [3, 4, 5, 6, 7, 8, 19, 20]. A natural measure of “sparsity” of a graph is the maximum

average degree, mad(G) = maxG′⊆G
2|E(G′)|
|V (G′)| . In such considerations, an important role plays

the notion of (i, j)-critical graphs, that is, the graphs that do not have (i, j)-coloring but
every proper subgraph of which has such a coloring. Let f(i, j, n) denote the minimum
number of edges in an (i, j)-critical n-vertex graph. Observe that for odd n ≥ 3 we have
f(0, 0, n) = n. Indeed, for odd n the n-cycle is not bipartite, but every n-vertex graph with
fewer than n edges has a vertex of degree at most 1 and thus cannot be (0, 0)-critical. The
reader can find interesting bounds on f(i, j, n) in the papers cited above.

A k-list for a graph G is a function L : V (G) → P(N) such that |L(v)| = k for every
v ∈ V (G). A d-defective L-coloring of G is a function φ : V (G) →

⋃
v∈V (G) L(v) such that

φ(v) ∈ L(v) for every v ∈ V (G) and every vertex has at most d neighbors of the same color.
If G has a d-defective L-coloring from every k-list assignment L, then G is called d-defective
k-choosable. These notions were introduced in [13, 26] and studied in [27, 30, 15, 16]. A
direction of study is showing that “sparse” graphs are d-defective k-choosable. The best
known bounds on maximum average degree that guarantee that a graph is d-defective 2-
choosable are due to Havet and Sereni [15]:
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Theorem A ([15]). For every d ≥ 0, if mad(G) < 4d+4
d+2

, then G is d-defective 2-choosable.

On the other hand, for every ϵ > 0, there is a graph Gϵ with mad(Gϵ) < 4+ ϵ− 2d+4
d2+2d+2

that
is not (d, d)-colorable.

Dvořák and Postle [11] introduced and studied so called DP-coloring which is more general
than list coloring. Bernshteyn, Kostochka and Pron [2] extended this notion to multigraphs.

Definition 1. Let G be a multigraph. A cover of G is a pair H = (L,H), consisting of
a graph H (called the cover graph of G) and a function L : V (G) → 2V (H), satisfying the
following requirements:

(1) the family of sets {L(u) : u ∈ V (G)} forms a partition of V (H);
(2) for every u ∈ V (G), the graph H[L(u)] is complete;
(3) if E(L(u), L(v)) ̸= ∅, then either u = v or uv ∈ E(G);
(4) if the multiplicity of an edge uv ∈ E(G) is k, then H[L(u), L(v)] is the union of at

most k matchings connecting L(u) with L(v).

A cover (L,H) of G is k-fold if |L(u)| = k for every u ∈ V (G).

Throughout this paper, we consider only 2-fold covers. And we call the vertices in the
cover graph by “nodes”, in order to distinguish them from the vertices in the original graph.

Definition 2. Let G be a multigraph and H = (L,H) be a cover of G. An H -map is an
injection φ : V (G) → V (H), such that φ(v) ∈ L(v) for every v ∈ V (G). The subgraph of H
induced by φ(V (G)) is called the φ-induced cover graph, denoted by Hφ.

Definition 3. Let H = (L,H) be a cover of G. For u ∈ V (G), let L(u) = {p(u), r(u)},
where p(u) and r(u) are called the poor and the rich nodes, respectively. Given i, j ≥ 0 and
i ≤ j, an H -map φ is an (i, j)-defective-H -coloring of G if the degree of every poor node
in Hφ is at most i, and the degree of every rich node in Hφ is at most j.

Definition 4. A multigraph G is (i, j)-defective-DP-colorable if for every 2-fold cover H =
(L,H) of G, there exists an (i, j)-defective-H -coloring. We say G is (i, j)-defective-DP-
critical, if G is not (i, j)-defective-DP-colorable, but every proper subgraph of G is.

For brevity, in the rest of the paper, we call an (i, j)-defective-H -coloring simply by an
(i, j,H )-coloring (or ‘H -coloring’, if i and j are clear from the context). Similarly, instead of
“(i, j)-defective-DP-colorable” and “(i, j)-defective-DP-critical” we will say “(i, j)-colorable”
and “(i, j)-critical”.

We say a 2-fold cover H = (L,H) of a simple graph G is full if for every edge uv ∈ E(G),
the matching in H corresponding to uv is perfect. To show that G is (i, j)-colorable, it
suffices to show that G admits an (i, j,H )-coloring for all full 2-fold cover H of G. Hence
below we consider only full covers.

Denote the minimum number of edges in an n-vertex (i, j)-critical multigraph by fDP (i, j, n),
and the minimum number of edges in an n-vertex (i, j)-critical simple graph by gDP (i, j, n).
By definition, fDP (i, j, n) ≤ gDP (i, j, n). Jing, Kostochka, Ma, Sittitrai and Xu [17] proved
lower bounds on fDP (i, j, n) that are exact for infinitely many n for every choice of i ≤ j.

Theorem B ([17]).
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(1) If i = 0 and j ≥ 1, then fDP (0, j, n) ≥ n+ j. This is sharp for every j ≥ 1 and every
n ≥ 2j + 2.

(2) If i ≥ 1 and j ≥ 2i+ 1, then fDP (i, j, n) ≥ (2i+1)n−(2i−j)
i+1

. This is sharp for each such
pair (i, j) for infinitely many n.

(3) If i ≥ 1 and i + 2 ≤ j ≤ 2i, then fDP (i, j, n) ≥ 2jn+2
j+1

. This is sharp for each such

pair (i, j) for infinitely many n.

(4) If i ≥ 1, then fDP (i, i+1, n) ≥ (2i2+4i+1)n+1
i2+3i+1

. This is sharp for each i ≥ 1 for infinitely
many n.

(5) If i ≥ 1, then fDP (i, i, n) ≥ (2i+2)n
i+2

. This is sharp for each i ≥ 1 for infinitely many
n.

The bound in Part (1) is also sharp for simple graphs.

For i > 0 we know little if the bounds of Theorem B are sharp on simple graphs. In fact,
we think that gDP (i, j, n) > fDP (i, j, n) for i > 0. It follows from [22] that gDP (1, 1, n) >
fDP (1, 1, n) and gDP (2, 2, n) > fDP (2, 2, n). Recently Jing, Kostochka, Ma and Xu [18]
showed that when i ≥ 3 and j ≥ 2i + 1, the exact lower bound for gDP (i, j, n) differs from
the bound of Theorem B(2) but only by 1.

Theorem C ([18]). Let i ≥ 3, j ≥ 2i+ 1 be positive integers, and let G be an (i, j)-critical
simple graph. Then

gDP (i, j, n) ≥
(2i+ 1)n+ j − i+ 1

i+ 1
.

This is sharp for each such pair (i, j) for infinitely many n.
The goal of this paper is to extend Theorem C to i = 1, 2 and j ≥ 2i, and to show that

our bound is exact for infinitely many n for each such pair (i, j).

2. Results

The main result of this paper is the following.

Theorem 2.1. Let i = 1, 2, j ≥ 2i be positive integers, and let G be an (i, j)-critical simple
graph. Then

gDP (i, j, n) ≥
(2i+ 1)n+ j − i+ 1

i+ 1
.

This is sharp for each such pair (i, j) for infinitely many n.

Comparing Theorem 2.1 with Theorem B(3) we see that not only gDP (1, 2, n) > fDP (1, 2, n)
and gDP (2, 4, n) > fDP (2, 4, n), but also the asymptotics when n→ ∞ are different.

Since every non-(i, j)-colorable graph contains an (i, j)-critical subgraph, Theorem 2.1
yields the following.

Corollary 2.2. Let G be a simple graph. If i = 1, 2 and j ≥ 2i and for every subgraph H of

G, |E(H)| ≤ (2i+1)|V (H)|+j−i
i+1

, then G is (i, j)-colorable. This is sharp.

In the next section we introduce a more general framework to prove the lower bound
of Theorem 2.1. In Section 4 we prove some useful lemmas that apply to all pairs of i =
1, 2, j ≥ 2i. In Sections 5 and 6, we prove Theorem 2.1 for i = 1, j ≥ 2, and for i = 2, j ≥ 4,
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respectively. In the last section, we present constructions showing that our bounds are sharp
for each pair of i = 1, 2, j ≥ 2i for infinitely many n.

3. Notation and a more general framework

For induction purposes, it will be useful to prove a more general result. Instead of (i, j)-
colorings of a cover (L,H) of a graph G, we will consider (L,H)-maps φ with variable
restrictions on the degrees of the vertices in Hφ.

Definition 5. A capacity function on G is a map c : V (G) → {−1, 0, . . . , i}×{−1, 0, . . . , j}.
For u ∈ V (G), denote c(u) by (c1(u), c2(u)). We call such pair (G, c) a weighted pair.

Below, let (G, c) be a weighted pair, and H = (L,H) be a cover of G. For a subgraph
G′ of G, let HG′ = (LG′ , HG′) denote the subcover induced by G′, i.e.,

(1) LG′ = L|V (G′), where ‘f |S’ is the restriction of function f to subdomain S;
(2) V (HG′) = L(V (G′)) and LG′(v) = L(v) for every v ∈ V (G′);
(3) HG′ [L(u) ∪ L(v)] = H[L(u) ∪ L(v)] for every uv ∈ E(G′), and for x, y such that

xy /∈ E(G′), there is no edge between LG′(x) and LG′(y).
For a subset S of V (G), let HS = (LS, HS) denote the subcover induced by G[S]. If a

capacity function is the restriction of c to some S ⊆ V (G), we denote this capacity function
by c instead of c|S, for simplicity. Let NG(S), or N(S) when clear from the context, denote
the vertices in G − S having a neighbor in S. When S = {v} for some single vertex v, we
write N(v) instead of N({x}) for simplicity.

For two vertices/nodes x, y, we use x ∼ y to indicate that x is adjacent to y, and x ≁ y
to indicate that x is not adjacent to y.

Definition 6. A (c,H )-coloring of G is an H -map φ such that for each u ∈ V (G), the
degree of p(u) in Hφ is at most c1(u), and that of r(u) is at most c2(u). We call c1(u) the
capacity of p(u) and c2(u) the capacity of r(u). If the capacity of some v in V (H) is −1,
then v is not allowed in the image of any (c,H )-coloring of G. If for every cover H of G,
there is a (c,H )-coloring, we say that G is c-colorable.

If c(v) = (i, j) for all v ∈ V (G), then any (c,H )-coloring of G is an (i, j,H )-coloring in
the sense of Definition 3. So, Definition 6 is a refinement of Definition 3. Similarly, we say
that G is c-critical if G is not c-colorable, but every proper subgraph of G is. For every node
x in the cover graph, we slightly abuse the notation of c and denote the capacity of x by
c(x). When H is clear from the context, say it is equal to H or some induced subcover, we
drop the corresponding cover notation and say G has a c-coloring for some capacity function
c, for simplicity.

Definition 7. For a vertex u ∈ V (G), the (i, j, c)-potential of u is

ρc(u) := i− j + 1 + c1(u) + c2(u).

The (i, j, c)-potential of a subgraph G′ of G is

(1) ρG,c(G
′) :=

∑
u∈V (G′)

ρc(u)− (i+ 1)|E(G′)|.

For a subset S ⊆ V (G), the (i, j, c)-potential of S, ρG,c(S), is the (i, j, c)-potential of G[S].
The (i, j, c)-potential of (G, c) is defined by ρ(G, c) := ρG,c(G).
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When clear from context, we call the (i, j, c)-potential simply by potential.
If follows from the definition (see, e.g. Lemma 3.1 in [18]) that the potential function is

submodular: For all A,B ⊆ V (G),

(2) ρG,c(A) + ρG,c(B) = ρG,c(A ∪ B) + ρG,c(A ∩ B) + (i+ 1)|E(A \B,B \ A)|.

The main lower bound in this paper is the following.

Theorem 3.1. Let i = 1, 2, j ≥ 2i be positive integers, and (G, c) be a weighted pair such
that G is c-critical. Then ρ(G, c) ≤ i− j − 1.

To deduce the lower bound in Theorem 2.1, simply set c(v) = (i, j) for every v ∈ V (G).
We will prove the lower bound of Theorem 3.1 in the next three sections and present a
sharpness construction in Section 7.

4. Basic lemmas

Let 1 ≤ i ≤ 2 and j ≥ 2i. Suppose there exists a c-critical graph G with ρ(G, c) ≥ i− j.
Choose such (G, c) with |V (G)| + |E(G)| minimum. We say that G′ is smaller than G if
|V (G′)| + |E(G′)| < |V (G)| + |E(G)|. Let H = (L,H) be an arbitrary cover of G. In this
section we show some properties of smallest counterexamples (G, c).

Lemma 4.1. Let S be a proper subset of V (G). If ρG,c(S) ≤ i− j, then S = {x} for some
x ∈ V (G) with ρc(x) = i− j.

Proof. Suppose the lemma fails. Let S be a maximal proper subset of V (G) such that
ρG,c(S) ≤ i− j and |S| ≥ 2. If |N(v) ∩ S| ≥ 2 for some v ∈ V (G) \ S, then

ρG,c(S ∪ {v}) ≤ i− j + 2i+ 1− 2(i+ 1) = i− j − 1.

If S∪{v} ̸= V (G), this contradicts the maximality of S, otherwise this contradicts the choice
of G. Thus

(3) |N(v) ∩ S| ≤ 1 for every v ∈ V (G) \ S.

Since G is c-critical, G[S] admits an (c,HS)-coloring φ.
Construct G′ from G−S by adding a new vertex v∗ adjacent to every u ∈ V (G)−S that

was adjacent to a vertex in S. Define a capacity function c′ by letting c′(v∗) = (−1, 0) and
c′(u) = c(u) for u ∈ V (G′ − v∗).

By (3), G′ is simple. Suppose ρG′,c′(A) ≤ i−j−1 for some A ⊆ V (G′). Since G′−v∗ ⊆ G
and c′(u) = c(u) for u ∈ V (G′ − v∗), v∗ ∈ A, otherwise it contradicts the choice of G. Then
using (2) and ρG,c(S) ≤ i− j = ρG′,c′(v

∗),

ρG,c(S ∪ (A− v∗)) = ρG,c(S) + ρG,c(A− v∗)− (i+ 1)|EG(S,A− v∗)|

≤ ρG′,c′(v
∗) + ρG′,c′(A− v∗)− (i+ 1)|EG′(v∗, A− v∗)| = ρG′,c′(A) ≤ i− j − 1.

Again, this contradicts either the maximality of S or the choice of G. This yields

(4) ρ(G′, c′) ≥ i− j.

For every x ∈ S and y ∈ N(x) \ S, denote the neighbor of φ(x) in L(y) by yφ. Let
H ′ = (L′, H ′) be the cover of G′ defined as follows:

1) L′(v∗) = {p(v∗), r(v∗)}, and L′(u) = L(u) for every u ∈ V (G) \ S;
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2) yφ ∼ r(v∗) for every y ∈ N(S), and H ′[{u,w}] = H[{u,w}] for every u,w ∈ V (G′−v∗).
By (4) and the minimality of G, G′ has a (c′,H ′)-coloring ψ. Since c′(v∗) = (−1, 0),

(5) ψ(v∗) = r(v∗) and ψ(y) ̸= yφ for every y ∈ N(S).

Let θ be an H -map such that θ|S = φ and θ|V (G)\S = ψ|V (G′−v∗). By (5), θ is a (c,H )-
coloring of G, a contradiction. □

Lemma 4.1 implies that

(6) for every F ⊊ V (G) with |F | ≥ 2, ρG,c(F ) ≥ i− j + 1.

Claim 4.2. There is no edge xy ∈ E(H), such that c(x) = c(y) = −1.

Proof. Suppose uv ∈ E(G), L(u) = {u1, u2}, L(v) = {v1, v2}, and in H, u1 ∼ v1, u2 ∼ v2 in
H, c(u1) = c(v1) = −1. Then by

i− j ≤ ρ(G, c) ≤ ρG,c({u, v}) = c(u2) + c(v2)− 1− 1 + 2(i− j + 1)− (i+ 1),

we get c(u2)+ c(v2) ≥ j+1, which implies c(u2), c(v2) ≥ 1, since c(x) ≤ j for all x ∈ V (H).
Let c′ differ from c only in that c′(u2) = c(u2)−1, c′(v2) = c(v2)−1. Then ρc′(G−uv) ≥ i−j.
Suppose not, let S ⊂ V (G− uv) be a set with ρG−uv,c′(S) ≤ i− j − 1. Then S ∩ {u, v} ̸= ∅.
If u, v ∈ S, then ρG,c(S) = ρG−uv,c′(S)+2− (i+1) ≤ i− j−1, contradiction. If u ∈ S, v /∈ S,
then ρG,c(S) = ρG−uv,c′(S) + 1 ≤ i − j. By Lemma 4.1, S = {u}, contradicts the fact that
c(u2) ≥ 1. Hence, by symmetry, we may assume that ϕ is a c′-coloring of G − uv. Then ϕ
is also a c-coloring on G, a contradiction. □

The argument in Claim 4.2 implies that

(7)
For each uv ∈ E(G), with ρc(u), ρc(v) ≥ i − j + 1, if c′ differs from c only in that
for some x ∈ L(u), y ∈ L(v), c′(x) = c(x) − 1, c′(y) = c(y) − 1, then G − uv has a
c′-coloring.

Claim 4.3. |V (G)| ≥ 3.

Proof. If G has only one vertex, then for G to be c-critical, the single vertex has to have
capacity (−1,−1), which implies that ρc(G) = i− j − 1, a contradiction.

Now suppose V (G) = {u, v} and G = K2. Say L(u) = {u1, u2}, L(v) = {v1, v2}, and
u1 ∼ v1, u2 ∼ v2 in H. If c(uk) and c(v3−k) are both non-negative for either k = 1 or 2, then
we can color G by letting φ(u) = uk, φ(v) = v3−k. Thus we may assume c(u2) = c(v2) = −1.
But this contradicts Claim 4.2. □

Lemma 4.4. For every u ∈ V (G), c1(u), c2(u) ≥ 0 and d(u) ≥ 2.

Proof. Suppose there is a vertex u ∈ V (G) with L(u) = {u1, u2}, where c(u1) = −1. Then
c(u2) ≥ 0. Choose such u with the smallest c(u2). Let v ∈ N(u), L(v) = {v1, v2} and
u1v1, u2v2 ∈ E(H). By Claim 4.2, c(v1) ≥ 0. If c(v2) = −1, then let ϕ be a c-coloring on
G − uv. Since c(u1) = c(v2) = −1, ϕ(u) = u2, ϕ(v) = v1. Then ϕ is a c-coloring on G, a
contradiction.

Now suppose c(u2) ≥ 1. Then by (7), G− uv has a c′-coloring ϕ, where c′(x) = c(x)− 1
for x ∈ {u2, v2}. Then ϕ is a c-coloring on G, a contradiction.

Thus we may assume c(u2) = 0. If d(v) = 1, then we find a c-coloring φ of G − v since
G is critical, and then let φ(v) = v1.
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So we may assume d(v) ≥ 2. For a neighbor w ̸= u of v, denote L(w) = {w1, w2} so
that w1v1, w2v2 ∈ E(H). If c(w1) = −1 for all w ∈ N(v), then we can easily extend a
c-coloring φ of G − v to G by letting φ(v) = v1. Thus we may assume some neighbor
w∗ of v has c(w∗

1) ≥ 0. Form (G′, c′), such that G′ = G − vw∗, c′ differs from c by only
c′(x1) = c(x1)− 1 for x ∈ {v, w∗}.

If G′ has a c′-coloring φ, then by definition, φ(u) = u2, and since c(u2) = 0, ϕ(v) = v1.
Then ϕ is a c-coloring on G, a contradiction. Otherwise, by (7), ρc(w) = i − j. Then
ρG,c({u, v, w}) = ρc(u)+ρc(v)+ρc(w)−2(i+1) ≤ 2(i−j)+2i+1−2(i+1) = i−j−1+(i−j) <
i− j − 1, a contradiction to the choice of G.

This proves the first half of the statement. Now if some u has degree 1, since c1(u), c2(u) ≥ 0,
we can extend any coloring of G− u to u greedily, a contradiction. □

Lemmas 4.1 and 4.4 imply that

(8) for every ∅ ̸= F ⊊ V (G), ρG,c(F ) ≥ i− j + 1.

Corollary 4.5. Let ∅ ̸= S ⊂ V (G). Then for all A,B ⊂ V (G) \ S with ρ(A) = ρ(B) =
i− j + 1,

ρ(A ∪ B) = ρ(A ∩B) = i− j + 1.

Proof. By submodularity, ρ(A)+ρ(B) ≥ ρ(A∪B)+ρ(A∩B). Also none of A,B,A∪B,A∩B
is equal to V (G). So the claim follows from (8). □

A helpful notion in this and next sections is the notion of B(S): For S ⊂ V (G), denote
by B(S) the union of all the subsets in V (G) \ S with potential equal to i − j + 1. When
S consists of only a single vertex v, we write B(v) instead of B({v}) for simplicity. By
Corollary 4.5, we have the following.

Corollary 4.6. For every nonempty S ⊊ V (G), if B(S) ̸= ∅, then ρG,c(B(S)) = i− j + 1.

Claim 1. Let xy ∈ E(G), L(x) = {x1, x2}, L(y) = {y1, y2}, x1 ∼ y1, x2 ∼ y2. For h = 1, 2,
graph G− xy has a c-coloring ψh such that ψh(x) = xh.

Indeed, let G′ = G − xy and let c′ differ from c only in that c′(x3−h) = c(x3−h) − 1
and c′(y3−h) = c(h3−h) − 1. By (8), if A ⊆ V (G) and |A ∩ {x, y}| ≤ 1, then ρG′,c′(A) ≥
ρG,c(A)−1 ≥ 2−j. On the other hand if {x, y} ⊆ A, then ρG′,c′(A) ≥ ρG,c(A)−2+(i+1) ≥
ρG,c(A) ≥ 2− j. So, by the minimality of G, G′ has a c′-coloring ψh.

If ψh(x) = x3−h, then by the definition of c′, ψh is a c-coloring of G regardless of the value
of ψh(y), a contradiction. Thus, ψh(x) = xh, as claimed. ▷◁

We say a vertex v ∈ V (G) is a (d; c1, c2)-vertex if d(v) = d, c1(v) = c1, and c2(v) = c2.
We call a (2; i, j)-vertex a surplus vertex. All non-surplus vertices will be called ordinary.
Let V0 = V0(G, c) denote the set of surplus vertices in (G, c).

Observation 4.7. Surplus vertices in (G, c) cannot be adjacent.

Proof. Suppose v1, v2 ∈ V0(G) and v1v2 ∈ E(G). Let v′j be the neighbor of vj distinct from
v3−j. Since G is c-critical, G − v1 − v2 has a c-coloring φ. Extend φ to v1, v2 by choosing
φ(vj) ̸= φ(v′j) for j = 1, 2. Then φ is a c-coloring on G, a contradiction. □
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To show that (G, c) does not exist, we use discharging. It is done in two steps. At the
beginning, the charge of each vertex v is ρc(v) and the charge of each edge is −(i + 1), so
by (1), (6) and Lemma 4.4, the total sum of all charges is ρ(G, c). On Step 1, each edge
gives to each its end charge −(i + 1)/2 and is left with charge 0. Note that each surplus
vertex after Step 1 has charge 2i + 1 − 2 i+1

2
= i. On Step 2, each u ∈ V0 gives i/2 to each

of its two neighbors and is left with charge 0. The resulting charge, ch, can be nonzero only
on vertices in V (G) − V0, and the total charge over all vertices and edges does not change.
Thus,

(9)
∑

v∈V (G)−V0

ch(v) =
∑

v∈V (G)

ch(v) = ρ(G, c).

For an ordinary vertex v, if d1(v) denotes the number of ordinary neighbors of v and d2(v)
denotes the number of surplus neighbors of v, then

(10) ch(v) = ρc(v)−
i+ 1

2
d1(v)−

1

2
d2(v) = c1(v)+ c2(v)+ i− j+1− i+ 1

2
d1(v)−

1

2
d2(v).

The following lemma is the crucial final step of our proofs.

Lemma 4.8. For i ≥ 1, j ≥ 2i, if ch(v) ≤ 0 for all v ∈ V (G), then G is c-colorable.

Proof. Suppose ch(v) ≤ 0 for all v ∈ V (G). Construct Gh and Hh from G and H as follows:
Forming Gh: for each surplus vertex v, say N(v) = {u,w}, we replace v with an edge

connecting u and w. We call such edge a half edge. And if L(x) = {x1, x2} for x ∈ {u, v, w}
so that u1v1, w1v1 ∈ E(H), then for the cover graph Hh we delete L(v) from H and add
edges u1w2, u2w1. Note that Gh and Hh are not necessarily simple graphs.

Since ρ(G, c) =
∑

v∈V (Gh)
ch(v) ≥ i− j by assumption and all charges are nonpositive,

(11) ch(v) ≥ i− j for every vertex v, and equality may hold for at most one vertex.

Let φ be a HGh
-map (does not need to be a coloring). Define

d∗φ(v) = |{uv : uv not a half edge, φ(u) ∼ φ(v)}| + 1
2
|{uv : uv is a half edge, φ(u) ∼ φ(v)}|,

S(φ) :=
∑

v∈V (G) c(φ(v))−
1
2

∑
v∈V (G) d

∗
φ(v).

Let S := max{S(φ) : φ is a HGh
-map}, and ψ a HGh

-map with S(ψ) = S.
Suppose c(ψ(u)) < d∗ψ(u) for some u ∈ V (Gh). Let ψu differ from ψ only on u. By the

choice of ψ, S(ψu) ≤ S(ψ). Hence

0 ≥ S(ψu)− S(ψ) = c(ψu(u))− d∗ψu
(u)− (c(ψ(u))− d∗ψ(u)).

So, c(ψu(u))− d∗ψu
(u) ≤ c(ψ(u))− d∗ψ(u), and

2(c(ψ(u))− d∗ψ(u)) ≥ c(ψ(u))− d∗ψ(u)+ c(ψu(u))− d∗ψu
(u) = c1(u)+ c2(u)− d1(u)−

d2(u)

2

= ch(u)− i+ j − 1 +
i− 1

2
d1(u) ≥ i− j − i+ j − 1 +

i− 1

2
d1(u) ≥ −1.

Also since 2(c(ψ(u)) − d∗ψ(u)) is an integer, we must have ch(u) = i − j and c(ψ(u)) −
d∗ψ(u) = c(ψu(u))− d∗ψu

(u) = −1/2. And by (11), there is at most one such u.
We say an edge xy ∈ E(Gh) is ψ-conflicting if ψ(x) ∼ ψ(y). Let G′ be the spanning

subgraph of Gh where E(G′) consists of only the ψ-conflicting half edges in G under ψ.
8



Since c(ψ(u))−d∗ψ(u) = −1/2, dG′(u) > 0 and is an odd number. Let C be the component
in G′ containing u. Then there is another vertex v ∈ C with dG′(v) odd. And since u is the
unique vertex with c(ψ(u)) < d∗ψ(u), c(ψ(v))− d∗ψ(v) ≥ 1/2. Let P be a uv-path in G′. Let
G′′ = G′ − E(P ). Add a vertex v∗ to G′′ and add an edge between v∗ and every odd-degree
vertex in G′′. Then we can decompose E(G′′) into cycles. Let τ be an Eulerian orientation
on these cycles. Extend τ to E(P ) so that P is a directed path from v to u.

We extend ψ from Gh to G as follows. For a surplus vertex x, if it does not correspond
to a ψ-conflicting edge in Gh, color x so that φ(x) is adjacent to neither of its neighbors; if
x corresponds to a ψ-conflicting vertex, then we color x so that ψ(x) is not adjacent to the
head of the corresponding half edge w.r.t. τ . Then ψ is a c-coloring of G, a contradiction.

If c(ψ(x)) − d∗ψ(x) ≥ 0 for every x ∈ V (Gh), then we extend ψ to G as above, just take
G′′ = G′ in the above construction. □

In the following two sections, we will prove that for each i = 1, 2, j ≥ 2i, ch(v) ≤ 0
for every v ∈ V (G) (assume for each pair of (i, j) with i = 1, 2, j ≥ 2i, (G, c) denotes the
minimal counterexample). Then together with Lemma 4.8, we will get a contradiction to
the choice of G.

5. The case of i = 1 and j ≥ 2

In this section, the potential of a vertex with capacity (c1, c2) is c1 + c2 + 2− j, and the
potential of an edge is −2. Our G has potential at least 1− j. And by (8), the potential of
each proper nonempty subset of V (G) is at least 2− j. To show that G has no vertices with
positive charge, we first prove four claims on potentials of vertices with small degree.

Claim 5.1. If u ∈ V (G) is a degree 2 vertex, then ρc(u) ̸= 2.

Proof. Suppose NG(u) = {v, w} and ρ(u) = 2. By symmetry, we may assume c(u2) ≥ c(u1).
For x ∈ {u, v, w} let L(x) = {x1, x2} be such that y1u1, y2u2 ∈ E(H) for y ∈ N(u).

Case 1. c(u1) = 0, c(u2) = j. Form (G′, c′), such that G′ = G − u and c′ differs from c in
G′ by only c′(x2) = c(x2)− 1 for x ∈ N(u). If there is A ⊂ V (G′) with ρG′,c′(A) ≤ −j, then
by (8), v, w ∈ A. But then ρG,c(A ∪ {u}) = ρG′,c′(A) + 2 + 2− 2 · 2 ≤ −j, a contradiction.

Case 2. c(u1) = 1, c(u2) = j − 1. For each x ∈ N(u), form (G′, cx) so that G′ = G− u, cx
differs from c by only cx(xi) = c(xi)− 1 for i = 1, 2, x ∈ N(u). If there is some Sx ⊂ V (G′)
such that ρG′,cx(Sx) ≤ −j, then x ∈ Sx. If N(u) ⊂ Sx, then ρG,c(Sx∪{u}) = ρG′,cx(Sx)+2+
2−2 ·2 ≤ −j, a contradiction. Thus Sv∩N(u) = {v}, Sw∩N(u) = {w}, and ρG,c(Sx) ≤ 2−j
for x ∈ N(u). By submodularity and (8), ρG,c(Sv ∪Sw) ≤ ρG,c(Sv)+ ρG,c(Sw) ≤ 2− j. Then
ρG,c(Sv ∪ Sw ∪ {u}) ≤ 2− j + 2− 2 · 2 = −j, a contradiction. □

Claim 5.2. Let u ∈ V (G) be a degree three vertex. If u has at least one surplus neighbor,
then ρc(u) ≤ 1.

Proof. Suppose N(u) = {x, y, v}, N(v) = {u, v′}, v is a surplus vertex and ρc(u) ≥ 2. For
w ∈ N(v)∪N(u), let L(w) = {w1, w2} so that w1z1, w2z2 ∈ E(H) whenever w ∼ z in G. By
symmetry, assume c(u1) ≤ c(u2).

Case 1. c(u2) ≥ 2. Form (G′, c′) as follows: G′ = G − u − v and c′ differs from c
only by c′(z2) = c(z2) − 1 for z ∈ {x, y}. If some S ⊂ V (G′) has ρG′,c′(S) ≤ −j, then
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x, y ∈ S. But then ρG,c(S ∪ {u}) = ρG′,c′(S) + 2 + ρc(u) − 2 · 2 ≤ 1 − j if v′ /∈ S, and
ρG,c(S ∪ {u, v}) ≤ ρG′,c′(S) + 2 + 3 · 2− 2 · 4 ≤ −j if v′ ∈ S. Neither case is possible by (8).
Thus G′ has a c′-coloring φ. Extend φ to G: first let φ(v) ≁ φ(v′), and then let φ(u) = u2,
unless all three neighbors of u2 are colored by φ, in which case let φ(u) = u1.
Case 2. c(u2) = 1. Then j = 2, c(u1) = 1 and ρc(u) = 2. Still, let G′ = G−u−v. Define c′′
so that c′′ differs from c′ by only c′′(v′1) = c′(v′1)− 1. If some S ⊂ V (G′) has ρG′,c′′(S) ≤ −j,
then |S ∩ {x, y, v′}| ≥ 2. If {x, y, v′} ⊂ S, then ρG,c(S ∪ {u, v}) = ρG′,c′′(S) + 3 + ρc(u) +
ρc(v) − 4 · 2 ≤ −j, a contradiction. If S ∩ {x, y, v′} = {x, v′}, then ρG,c(S ∪ {u, v}) =
ρG′,c′′(S) + 2 + ρc(u) + ρc(v) − 3 · 2 ≤ 1 − j, contradicting (8). The remaining possibilities
S ∩ {x, y, v′} = {y, v′} and S ∩ {x, y, v′} = {x, y} are very similar.

Thus G′ has a c′′-coloring ψ. Extend ψ to G: if ψ(x) = x1, ψ(y) = y1, let ψ(u) = u2 and
ψ(v) ≁ ψ(v′), then ψ is a c-coloring on G. The case when ψ(x) = x2, ψ(y) = y2 is similar.
Then ψ(x) = x1, ψ(y) = y2 or ψ(x) = x2, ψ(y) = y1. Let ψ(u) = u2 and ψ(v) = v1. Then ψ
is a c-coloring of G, a contradiction. □

Claim 5.3. A (4; 1, j)-vertex cannot have three surplus neighbors.

Proof. Suppose the claim fails for some (4; 1, j)-vertex u. Let N(u) = {x, y, z, v} where
x, y, z are surplus vertices and x′, y′, z′ are their other neighbors. Note that v may also be
a surplus vertex. Suppose c(u1) = 1, c(u2) = j For w ∈ N(u), denote L(w) = {w1, w2}
so that u1w1, u2w2 ∈ E(H), and for w ∈ N(u) − v, denote L(w′) = {w′

1, w
′
2} so that

w1w
′
1, w2w

′
2 ∈ E(H).

Case 1. v /∈ B(u). Form (G′, c′) so that G′ = G− {u, x, y, z} and c′ differs from c by only
c′(vk) = c(vk)− 1 for k = 1, 2. Since v /∈ B(u), ρG′,c′(S) ≥ 2− j for each S ⊆ V (G′) by (8);
thus by the minimality of G, G′ has a c′-coloring φ. We extend φ to G as follows. First, for
w ∈ {x, y, z} we let φ(w) ≁ φ(w′). Second, if the color of at most one vertex in {v, x, y, z}
conflicts with u1, then we let φ(u) = u1, else the color of at most two vertices in {v, x, y, z}
conflicts with u2, and we let φ(u) = u2.

Case 2. {v, x′, y′, z′} ⊆ B(u). By Corollary 4.6, the following contradicts the choice of G:

ρG,c(B(u) ∪ {u, x, y, z}) ≤ ρG,c(B(u)) + 4 · 3− 7 · 2 ≤ (2− j)− 2 = −j.
Case 3. v ∈ B(u) and there is w ∈ {x, u, z} such that w′ /∈ B(u), say x′ /∈ B(u). Then
x′ ̸= v. Form (G′, c′′): let c′′ differ from c only by c′′(v2) = c(v2)− 1 and c′′(x′1) = c(x′1)− 1.
Since x′ /∈ B(u), ρG′,c′′(S) ≥ 2 − j for each S ⊆ V (G′) by (8), and so G′ has a c′′-coloring
ψ. We extend ψ to G as follows. First, for w ∈ {y, z} we let ψ(w) ≁ ψ(w′). If at most
two w ∈ {v, y, z} are colored with w2, then we let ψ(x) = x1 and ψ(u) = u2, else we let
ψ(x) ≁ ψ(x′) and ψ(u) = u1. □

Claim 5.4. A (5; 1, j)-vertex cannot have five surplus neighbors.

Proof. Suppose u is a (5; 1, j)-vertex with all its five neighbors being surplus vertices. For
every v ∈ N(u), let v′ be the neighbor of v distinct from u. Let T = N(u) ∪ {u} and
T ′ = {v′ : v ∈ N(u)}. Consider the graph G′ = G−T . If T ′ ⊆ B(T ), then ρG,c(B(T )∪T ) ≤
ρG,c(B(T )) + 6 · 3 − 10 · 2 ≤ 2 − j − 2, a contradiction. Thus, there is x ∈ N(u) such that
x′ /∈ B(T ). Denote L(x′) = {x′1, x′2}.

Define c′ so that c′ differs from c by only c′(x′k) = c(x′k)−1 for k = 1, 2. Since x′ /∈ B(T ),
ρG′,c′(S) ≥ 2 − j for each S ⊆ V (G′) by (8); thus G′ has a c′-coloring φ. For every
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w ∈ N(u) \ {x}, extend φ to w so that φ(w) ≁ φ(w′). If r(u) has at most two colored
neighbors in N(u) − x, then we let φ(u) = r(u), else p(u) has at most 4 − 3 = 1 colored
neighbor in N(u) − x, and we let φ(u) = p(u). In both cases, we let φ(x) ≁ φ(u). By
construction, we get a c-coloring of G. □

Now we are ready to prove the main lemma of this section.

Lemma 5.5. For every vertex v ∈ V (G), ch(v) ≤ 0.

Proof. Let v ∈ V (G) and dG(v) = d. By Lemma 4.4, d ≥ 2.
If d = 2, then by Claim 5.1, either v is a surplus vertex and has ch(v) = 0 by definition,

or ρ(v) ≤ 1 and ch(v) ≤ 1− 2 · (1/2) = 0.
If d = 3, then by Claim 5.2, either v has no surplus neighbors and so ch(v) ≤ 3− 3 = 0,

or ρ(v) ≤ 1 and ch(v) ≤ 1− 3 · (1/2) = −1/2.
If d = 4, then by Claim 5.3, either v has at most two surplus neighbors and so ch(v) ≤

3− 2− 2 · (1/2) = 0, or ρ(v) ≤ 2 and ch(v) ≤ 2− 4 · (1/2) = 0.
If d = 5, then by Claim 5.4, either v has at most four surplus neighbors and so ch(v) ≤

3− 1− 4 · (1/2) = 0, or ρ(v) ≤ 2 and ch(v) ≤ 2− 5 · (1/2) = −1/2.
If d ≥ 6, then ch(v) ≤ 3− 6 · (1/2) = 0. □

Now Lemma 4.8 together with Lemma 5.5 imply the part i = 1 of Theorem 3.1.

6. The case of i = 2 and j ≥ 4.

In this section, the potential of a vertex with capacity (c1, c2) is c1 + c2 + 3− j, and the
potential of an edge is −(i + 1) = −3. Our G has potential at least 2 − j. And by (8), the
potential of each proper nonempty subset of V (G) is at least 3− j.

Lemma 6.1. Suppose there is a partition of V (G) into nonempty sets F, S and R such that
each vertex in S is a surplus vertex with one neighbor in F and one neighbor in R, and there
is no edge connecting F with R. Then ρG,c(F ) > 0.

Proof. Suppose ρG,c(F ) ≤ 0. For every vertex x ∈ S, denote by xF (respectively, xR) the
neighbor of x in F (respectively, in R). We say that α ∈ L(xR) is conflicting with β ∈ L(xF )
if their neighbors in L(x) are distinct.

Since G is c-critical, G[F ] has a c-coloring φ. We obtain a new capacity function c′ on
R from c as follows. For every x ∈ S, decrease the capacity of the node in L(xR) conflicting
with φ(xF ) by 1. If a vertex y ∈ R is adjacent to s vertices in S, then such decrease for
nodes in L(y) will happen s times. If G[R] has a c′-coloring φ′, then we extend φ to each
x ∈ S by φ(x) ≁ φ(xF ), and now φ ∪ φ′ will be a c-coloring of G by the choice of c′. Thus
G[R] has no c′-coloring.

By the minimality of G, there is some R′ ⊂ R with ρG,c′(R
′) ≤ 1− j. Let S ′ ⊂ S be the

set of surplus vertices connecting R′ with F in G. Since ρG,c(F ) ≤ 0,

ρG,c(F ∪R′ ∪ S ′) = ρG,c(F ) + ρG,c(R
′)− |S ′| ≤ 0 + (1− j + |S ′|)− |S ′| ≤ 1− j,

a contradiction. □

A set A ⊂ V (G) in (G, c) is trivial if A = V (G) or V (G) − A is a surplus vertex, and
nontrivial otherwise.
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Lemma 6.2. For any nontrivial F ⊂ V (G), ρG,c(F ) ≥ 4 − j, or F is a single vertex with
potential 3− j.

Proof. Suppose there is a nontrivial F ⊂ V (G) with ρG,c(F ) ≤ 3 − j and |F | > 1. Choose
a maximum such F . If some vertex w ∈ V (G) − F has at least two neighbors in F , then
consider F ′ = F +w. Since ρG,c(F

′) ≤ ρG,c(F )+ ρG,c(w)− 3d(w) < ρG,c(F ), the maximality
of F implies that F ′ is trivial, which means F ′ = V (G) or F ′ = V (G) − z for some surplus
vertex z. If F ′ = V (G), then since F is nontrivial, ρG,c(V (G)) ≤ ρG,c(F ) − 2 ≤ 1 − j, a
contradiction. If F ′ = V (G)−z for some surplus vertex z, then ρG,c(F

′) ≤ ρG,c(F )−1 ≤ 2−j,
contradicting (8). Thus every vertex in V (G) \ F has at most one neighbor in F . So, if all
vertices in the set S = N(F )−F were surplus vertices, then the set R = V (G)\(F ∪N(F )) is
nonempty, because S is independent. Thus, the sets F, S and R would contradict Lemma 6.1.
Therefore, NG(F )− F has an ordinary vertex, say y.

Let x be the neighbor of y in F . We can change the names of the colors so that

(12) L(x) = {x1, x2}, L(y) = {y1, y2}, c(y2) ≥ c(y1), x1 ∼ y1 and x2 ∼ y2.

Claim 2. Every neighbor of y outside of F is a surplus vertex.

Indeed, suppose z is an ordinary neighbor of y outside of F , say L(z) = {z1, z2}, where
y1 ∼ z1. Since G is c-critical, G[F ] has a c-coloring φ; say φ(x) = x1. Construct G′, c′, H ′

from G, c, H as follows:
Replace F by a single vertex v, where L(v) = {v1, v2} and c′(v1) = 0, c′(v2) = −1.

For every vertex u ∈ NG(F ) − F , denote L(u) = {u1, u2} so that the neighbor of u1 in
H is colored by φ. In G′, add an edge between v and each vertex in NG(F ). In H ′, let
v1u1, v2u2 ∈ E(H ′). Remove edge yz from E(G′), also remove edges between L(y) and
L(z) in H ′. Let c′(y2) = c(y2) − 1, c′(z2) = c(z2) − 1, and let G′, c′, H ′ agree with G, c,H
everywhere else.

If G′ has a c′-coloring ψ, then ψ(v) = v1 and ψ(u) = u2 for all u ∈ NG(F ) − F . Let θ
be an H-map such that θ = φ on F and θ = ψ on V (G) \ F . Then θ is a c-coloring on G,
a contradiction. Thus G′ has no c′-coloring. Since G′ is a smaller graph than G, there is
S ⊂ V (G′) with ρG′,c′(S) ≤ 1− j. Since ρG′,c′(v) = 2− j ≤ −1, we may assume v ∈ S. Let
S ′ = (S−v)∪F ⊂ V (G). If y, z /∈ S, then ρG,c(S

′) ≤ ρG′,c′(S)+1 ≤ 2−j, a contradiction to
(8). If exactly one of y, z is in S, then ρG,c(S

′) ≤ ρG′,c′(S)+1+1 ≤ 3− j, and S ′ ⊃ F . Since
one of y, z is not in S ′, this means that S ′ is a larger than F nontrivial set with potential at
most 3−j, a contradiction. Thus {v, y, z} ⊆ S, and ρG,c(S

′) ≤ ρG′,c′(S)+1+1+1−3 ≤ 1−j,
a contradiction again. ▷◁

Let u1, . . . , ud ∈ N(y) be the surplus neighbors of y outside of F , and u′1, . . . , u
′
d be their

other neighbors, where u′is are not necessarily distinct.

Claim 3. d > c(y2).

Indeed, suppose d ≤ c(y2). By Claim 1, there is a c-coloring φ of G− y with φ(x) = x1.
We recolor each uh so that it has no conflict with u′h, and then color y with y2. This would
give a c-coloring on G, a contradiction. ▷◁

Claim 4. ρc(y) = 5, and hence c(y) = (2, j).
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If ρc(y) ≤ 3, then ρG,c(F + y) ≤ 3− j − 3 + 3 = 3− j, a contradiction to the maximality
of |F |. Suppose ρc(y) = 4. By Claim 1, there is a c-coloring φ of G[F ] with φ(x) = x1.

Since ρc(y) = 4, c(y2) ≥ j − 1 ≥ 3. Construct G′′, c′′ as follows: Let G′′ = G − F + v −
y−u1− · · ·−ud, where v is the same as in the proof of Claim 2. Let c′′ differ from c only in
that for each 1 ≤ h ≤ d− c(y2), the capacity of u′h decreases by 1. This means that if some
u′h1 , . . . , u

′
hs

coincide, then the capacity of the corresponding vertex decreases by s.
Suppose some S ⊂ V (G′′) has ρG′′,c′′(S) ≤ 1 − j. Let S be a maximal one with this

property. Then v ∈ S. Let a be the number of indices 1 ≤ h ≤ d− c(y2) such that u′hs in S
and b be the number of indices d− c(y2) + 1 ≤ h ≤ d such that u′hs in S. Denote by S ′ the
set obtained from S−v+F +y by adding the surplus vertices in N(y) connecting S−v with
y in G. Then ρG,c(S

′) ≤ 1− j + a− a− b+ ρc(y)− 3 + 1 = ρc(y)− b− 1− j. If ρc(y) = 4,
then ρG,c(S

′) ≤ 3 − j. By the maximality of |F |, S ′ is trivial. But then b = c(y2) ≥ 3,
ρG,c(S

′) ≤ −j, a contradiction.
Thus by the minimality of G, graph G′′ has a c′′-coloring ψ. By the definition of v,

ψ(v) = v1. We extend ψ to y and ui’s, so that ψ(y) = y2, and y2 has at most c(y2) neighbors
in ψ(u1), . . . , ψ(ud). Then ψ ∪ φ is a c-coloring on G, a contradiction. ▷◁

Now we prove the lemma.
By Claim 4, c(y2) = j. By Claim 1, there is a c-coloring φ of G[F ] with φ(x) = x1.
We construct G′′, c′′ as in Claim 4. Let N ′

1 ⊂ N ′ be the (multi)set of secondary neighbors
whose capacity decreased, and let N ′

2 = N ′ \ N ′
1. By Claim 3, d > j. So, (as a multiset)

|N ′
1| = d− j, |N ′

2| = j.
Note that |N ′ ∩ F | ≤ 1, since otherwise ρG,c(F + y) ≤ 3 − j + 5 − 3 − 2 = 3 − j, which

contradicts the choice of F .
As in the proof of Claim 4, there is some S ⊂ V (G′′) with ρG′′,c′′(S) ≤ 1 − j. Define

S ′, a, b as in Claim 4. Then ρG,c(S
′) ≤ 1 − j + a − a − b + ρc(y) − 3 + 1 = 4 − j − b. If

b > 0, then ρG,c(S
′) ≤ 4− j− b ≤ 3− j. So by the maximality of |F |, S ′ is trivial, and hence

b = c(y2) = j ≥ 4, implying ρG,c(S
′) ≤ 4− j − b ≤ −j a contradiction. Thus b = 0, that is,

S ′ ∩N ′
2 = ∅, and ρG,c(S ′) ≤ 4− j.

By choosing different N ′
2 ⊂ N ′, we can form different corresponding S ′. Let S denote the

family of all S ′ ⊂ V (G) satisfying: (i) ρG,c(S
′) ≤ 4 − j; (ii) S ′ ⊇ F ∪ {y}; (iii) S ′ misses at

least j vertices in N and the neighbors of these vertices distinct from y. By construction,
the S ′’s obtained above are in S.

Let A ∈ S contain fewest neighbors of y. If A∩N = ∅, then ρG,c(A− y) ≤ 4− j−5+3 =
2− j, a contradiction. Thus we may assume uk, u

′
k /∈ A for k ∈ [j], and ul, u

′
l ∈ A for some

l > j. By choosing N ′
2 = {u′1, u′2, . . . , u′j−1, u

′
l}, we can find a set B that is also in S, where

uk, u
′
k /∈ B for k ∈ [j − 1] and also ul, u

′
l /∈ B.

Then uk, u
′
k /∈ A∪B for k ∈ [j − 1], hence A∪B is nontrivial. By the maximality of |F |,

ρc(A ∪ B) ≥ 4 − j. By submodularity, ρ(A ∩ B) ≤ ρ(A ∪ B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B) ≤
2(4− j) ≤ 4− j. Thus A ∩ B is also a member of S. However, ul /∈ A ∩ B, a contradiction
to the choice of A. □

Lemma 6.3. Suppose ∅ ̸= F ⊊ V (G) is a nontrivial set, and ρG,c(F ) ≤ 4 − j. Then F is
obtained from V (G) by deleting two surplus vertices.
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Proof. Let F be a counterexample to the lemma maximum in size. By Lemma 6.1, F has an
ordinary neighbor y. Let x be the neighbor of y in F , where L(x) = {x1, x2}, L(y) = {y1, y2},
and x1 ∼ y1, x2 ∼ y2. Fix a c-coloring φ of G[F ] with φ(x) = x1.

We construct G′, H ′ and c′ as follows. Replace F in G by a single vertex v, where
L(v) = {v1, v2}. For every vertex u ∈ NG(F ) − F − y, denote L(u) = {u1, u2} so that
the neighbor of u1 in H is colored by φ. In G′, add an edge between v and each vertex in
NG(F ) − y. In H ′, let v1u1, v2u2 ∈ E(H ′). Let c′(v1) = 0, c′(v2) = −1, c′(y1) = c(y1) − 1,
and let c′ coincide with c for all other nodes of H ′.

If G′ has a c′-coloring ψ, then ψ(v) = v1 and φ ∪ ψ is a c-coloring of G, a contradiction.
Thus G′ has no c′-coloring, and by the minimality of G, there is a set S ⊂ V (G′) with
ρG′c′(S) ≤ 1− j.

Let S be such set maximal in size. Then v ∈ S. If y /∈ S, then ρG,c((S−v)∪F ) ≤ 1−j+2 =
3 − j. Since y /∈ (S − v) ∪ F , this contradicts Lemma 6.2. If y ∈ S, ρG,c((S − v) ∪ F ) ≤
1− j + 2 + 1− 3 = 1− j, a contradiction again. □

Corollary 6.4. Suppose all neighbors of a vertex w ∈ V (G) are surplus vertices. If r ≥ 3
and w is an (m; 2, r)-vertex, then m ≥ 8 and if r ≥ 4 and w is an (m; 2, r)-vertex, then
m ≥ 10.

Proof. Suppose first that r ≥ 3 and w is an (m; 2, r)-vertex where m ≤ 4 + r. Denote
N = N(w) = {u1, . . . , um}, and for 1 ≤ h ≤ m, let u′h be the neighbor of uh distinct from
w. Let N ′ = {u′1, . . . , u′m}.

Let c′ differ from c only in that c′(u′1) = c(u′1) − (1, 1). Then by Lemma 6.3 and the
minimality of G, G− w −N has a c′-coloring φ. We extend φ to G: let φ(uk) ≁ φ(u′k) for
each 2 ≤ k ≤ m. Since m− 1 < (2+1)+ (r+1), there is a node α(w) ∈ L(w), such that the
number of its already colored neighbors is at most its capacity. Color w by α(w). Extend φ
to u1 so that φ(u1) ≁ α(w). Then φ is a c-coloring on G, a contradiction.

The only case not covered by the argument above is that r = 4 and m = 9. Let S ⊂
V (G−w−N), and NS ⊂ N be the set of surplus vertices connecting S and w. Suppose there
are h, h′ ∈ [9], such that every S ⊂ V (G − w − N) containing u′h and u′h′ has potential at
least two. Let c′ differ from c only in that each node β ∈ L(u′h)∪L(u′h′) has c′(β) = c(β)−1.
By the choice of h, h′, G−w−N has a c′-coloring φ. We extend φ to N \ {uh, uh′}, so that
φ(uk) ≁ φ(u′k) for each k ∈ [9] \ {h, h′}. Then there is a node α(w) ∈ L(w), such that the
number of its already colored neighbors is at most its capacity. Color w by α(w). Extend φ
to uh, uh′ , so that φ(uh), φ(uh′) ≁ α(w). Then φ is a c-coloring on G, a contradiction.
Thus we may assume that for each pair of h, h′ ∈ [9], there is some S ⊂ V (G − w − N)
containing uh, uh′ with potential at most one. Let F be the family of all subsets of V (G−w−
N) whose potential is at most one. Take any M ∈ F , and let NM denote the set of surplus
vertices connecting M and w. If |NM | = 9, then ρG,c(M +w+NM) ≤ ρG,c(M)+5−9 ≤ −3,
a contradiction. If |NM | ≥ 6, then ρG,c(M +w+NM) ≤ ρG,c(M)+5−6 ≤ 0, a contradiction
to Lemma 6.3, since N ′ \ (M + w + NM) ̸= ∅. Let M ∈ F with |NM | maximum. We may
assume u′1 ∈M,u2 /∈M . Then there is some M ′ ∈ F containing u′1, u

′
2. By submodularity,

(13) ρG,c(M ∩M ′) + ρG,c(M ∪M ′) ≤ ρG,c(M) + ρG,c(M
′) ≤ 1 + 1 = 2

By Lemma 6.3, ρG,c(M ∩M ′) ≥ 1, so by (13), ρG,c(M ∪M ′) ≤ 1. But then |NM∪M ′ | > |NM |,
a contradiction to the choice of M . □
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Lemma 6.5. ch(v) ≤ 0 for all v ∈ V (G).

Proof. Suppose ch(v) > 0 for some v ∈ V (G). Then we have

(14) ch(v) = c1 + c2 + 3− j − 3

2
d1 −

1

2
d2 ≥

1

2
.

Let N1 denote the set of ordinary neighbors of v and N2 the set of surplus neighbors of v.
For u ∈ N2, let g(u) denote the neighbor of u distinct from v. Let N ′

2 = {g(u) : u ∈ N2}.
For u ∈ N1, a node uα ∈ L(u) is conflicting with vβ ∈ L(v) if uα ∼ vβ in H. For u ∈ N2,

a node g(u)α ∈ L(u) is u-conflicting with vβ ∈ L(v) if the neighbors of g(u)α and vβ in L(u)
are distinct.

Vertices x, y ∈ N2 with g(x) = g(y) = u ∈ N ′
2 are parallel, if the x-conflicting node in

L(u) is also y-conflicting. Otherwise, we call (x, y) a twisted pair.
We aim to construct an auxiliary graph and either find a c-coloring of this graph such

that v is colored by r(v) and extend this coloring to a c-coloring of G, or find a low-potential
set in the new graph, which leads to a contradiction to the choice of (G, c).

Construct G′, c′, H ′ from G, c, H as follows:
Step 0: Initialize G′ = G, c′ = c, H ′ = H.
Step 1: For each u ∈ N1, let uα ∈ L(u) be conflicting with r(v). Remove edge uv from

G′, remove edges between L(u) and L(v) from H ′, and decrease the capacity of uα by one
in c′.

Step 2: For each u′ ∈ N ′
2, if there are u1, u2 ∈ N2 connecting u

′ and v that form a twisted
pair, then remove u1, u2 from G′, and remove L(u1), L(u2) from H ′. Repeat this step until
there are no such u′, u1, u2.

Step 3: For each u′ ∈ N ′
2, if there are u1, u2 ∈ N2 connecting u

′ and v that form a parallel
pair, then let u′α ∈ L(u′) be u1-conflicting with r(v). Remove u1, u2 from G′, and remove
L(u1), L(u2) from H ′. Decrease the capacity of u′α by one in c′. Repeat this step until there
are no such u′, u1, u2.

At this point, each vertex in N ′
2 has at most one common neighbor with v. Denote the

set consisting of vertices in N ′
2 having now exactly one neighbor in N2 by N ′′

2 .
Step 4.1: If |N ′′

2 | is odd, then take any u′0 ∈ N ′′
2 , let u0 be the surplus vertex connecting

u′0 and v. Delete u0 from G′, and delete L(u0) from H ′.
Step 4.2: Now we may assume that |N ′′

2 | is even. Take w′, u′ ∈ N ′′
2 , let w

′
α ∈ L(w′) and

u′α ∈ L(u′) be conflicting with r(v). Delete the surplus neighbors u,w of v adjacent to w′, u′

from G′, and delete their lists from H ′. Add a surplus vertex z to G′ adjacent to w′ and
u′. And in H ′, let L(z) = {z1, z2}, such that z1 ∼ w′

α, z2 ∼ u′α. Repeat the above until
N2 is empty. Denote the set consisting of all newly added surplus vertices z by N3. Then

|N3| ≤ ⌊ |N ′
2|
2
⌋.

Step 5: At this point, v is an isolated vertex in G′. Delete v from G′, and delete L(v)
from H ′. The resulting G′, H ′ and c′ are final.

Suppose G′ has a (c′, H ′)-coloring ϕ. We now extend ϕ to the deleted vertices of G
following the steps of constructing H ′ in the reversed order.

Step 5−: Let ϕ(v) = r(v). Then ϕ(v) has at most |N1| neighbors in Hϕ and each u ∈ N1

gets at most one extra conflicting neighbor.
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Step 4.2−: For each z ∈ N3 and its neighbors w′, u′ ∈ N ′′
2 , let w, u be the surplus vertices

in G connecting v with w′ and u′, respectively at the beginning of Step 4.2. We will delete
z and assign colors to w and u as follows. If ϕ(z) ∼ ϕ(u′), then we choose ϕ(u) ≁ r(v) and
ϕ(w) ≁ ϕ(w′). In this way, the degrees of ϕ(u′) and ϕ(w′) in Hϕ do not increase, and the
degree of r(v) increases by at most 1. If ϕ(z) ≁ ϕ(u′) but ϕ(z) ∼ ϕ(w′), then we switch
the roles of u and w. If ϕ(z) ≁ ϕ(u′) and ϕ(z) ≁ ϕ(w′), then by Step 4.2, either ϕ(u′) is
not u-conflicting with r(v), or ϕ(w′) is not w-conflicting with r(v). Then after we choose
ϕ(u) ≁ ϕ(u′) and ϕ(w) ≁ ϕ(w′), again the degree of r(v) in Hϕ increases only by 1 and the
degrees of ϕ(u′) and ϕ(w′) in Hϕ do not increase.

Step 4.1−: If |N ′′
2 | is odd, then we let ϕ(u0) ≁ ϕ(u′0). So the degree of r(v) in Hϕ increases

by at most 1 and the degree of ϕ(u′0) does not change.
Step 3−: For every u′ ∈ N ′

2 and for each parallel pair u1, u2 ∈ N2 connecting u′ and v
deleted on Step 3, we let ϕ(u1) ≁ ϕ(u′) and ϕ(u2) ≁ ϕ(r(v)). So, the degree of r(v) in Hϕ

increases by at most 1 and the degree of ϕ(u′) increases by at most 1.
Step 2−: For every u′ ∈ N ′

2 and and for each twisted pair u1, u2 ∈ N2 connecting u′ and
v deleted on Step 2, we let ϕ(u1) ≁ ϕ(u′) and ϕ(u2) ≁ ϕ(u′). Then the degree of ϕ(u′) does
not increase and since u1, u2 is a twisted pair, the degree of r(v) in Hϕ increases by at most
1.

Now by construction, the degree in Hϕ of every uα apart from possibly r(v) is at most its
capacity. Let c1 = c1(v), c2 = c2(v), d1 = |N1|, d2 = |N2|. By construction, r(v) has at most
|N1|+ ⌈|N2|/2⌉ = d1 + ⌈d2/2⌉ colored neighbors. Thus, if

(15) c2 = c(r(v)) ≥ d1 + ⌈d2/2⌉,

then ϕ is a c-coloring of G. By (14) and j ≥ 4,

d1 +
1

2
d2 ≤

3

2
d1 +

1

2
d2 ≤ c1 + c2 +

5

2
− j ≤ c2 +

1

2
.

This implies that if d2 is even, or d1 is positive, or c1 ≤ 1, or j ≥ 5, then (15) holds. So,
assume that d2 is odd, d1 = 0, c1 = 2 and j = 4. This means c(v) = (2, c2), d(v) = 2c2 + 1,
c2 ≤ j = 4 and all neighbors of v are surplus vertices. If c1+ c2+1 = c2+3 ≥ d(v) = 2c2+1,
then we can extend any c-coloring of G − v to v greedily. The only remaining cases are
c2 = 3, d(v) = d2 = 7 and c2 = 4, d(v) = d2 = 9. By Corollary 6.4, such v does not exist.
Thus ϕ is a c-coloring of G, a contradiction.

Therefore, we may assume that G′ is not c′-colorable. By the minimality of G, there is
an S ⊂ V (G′) with ρG′,c′(S) ≤ 1− j. Let S be such a set of minimum potential and modulo
this maximal in size.

Let S1 = S ∩ N1, s2 =
∑

w∈S∩N ′
2
(c(w) − c′(w)), S3 = S ∩ N3, and S ′ = S − S3. Then

S ′ ⊂ V (G) and v /∈ S ′. So by Lemma 6.3, ρG,c(S
′) ≥ 5− j.

Recall that while constructing c′, if we decreased the capacity of a vertex, then either this
vertex is in N1 (in Step 1) or has two common neighbors with v (in Step 3). It follows that

(16) 5− j ≤ ρG,c(S
′) = ρG′,c′(S) + |S3|+ |S1|+ s2 ≤ 1− j + |S3|+ |S1|+ s2.

Let N4 ⊂ N2 be the set of surplus vertices in G connecting v and S ∩ N ′
2, and V ′ :=

(S ′ ∪ {v} ∪N4). Recall that if S contains a z ∈ N3, then it also contains both its neighbors
16



u′, w′, each of which has a common neighbor with v in G (that belongs to N4) and is adjacent
to only one vertex in N3 in G′. Also, while constructing c′, every time when we decreased
the capacity of a vertex u′ ∈ N ′

2 in Step 3, we have deleted two its common neighbors with
v, and these vertices are now in N4. It follows that |N4| ≥ 2|S3|+ 2s2. By this and (16),

(17) ρG,c(V
′) = ρG,c(S

′) + ρc(v)− 3|S1| − |N4| ≤ ρG′,c′(S) + ρc(v)− 2|S1| −
⌈
|N4|
2

⌉
≤ 1− j + ρc(v)− 2|S1| −

⌈
|N4|
2

⌉
.

Since S is maximal in size, we may assume that if V ′ ̸= V (G), then there is some ordinary
vertex in V (G) \ V ′, otherwise we can just include the surplus vertices outside of S into S
to make its size larger. Thus by Lemma 6.3,

(18) ρG,c(V
′) ≥ 5− j when V ′ ̸= V (G).

So, if V ′ ̸= V (G), then (17) and (18) together yield

4 + 2|S1|+
⌈
|N4|
2

⌉
≤ ρc(v) ≤ 5.

This implies S1 = ∅ and |N4| ≤ 2. But then ρG,c(S
′) ≤ ρG′,c′(S) + 1 ≤ 2− j, a contradiction

to (16). Therefore, V ′ = V (G), which means S1 = N1 and N4 = N2.
Since (16) yields 4 ≤ |S3|+ |S1|+ s2, we infer from |N4| ≥ 2|S3|+ 2s2 that

(19) |N1|+
⌊
|N2|
2

⌋
≥ |S3|+ |S1|+ s2 ≥ 4.

Then, since ρG,c(V
′) ≥ 2− j, (17) gives

2− j ≤ 1− j + ρc(v)− 2|N1| −
⌈
|N2|
2

⌉
≤ 1− j + ρc(v)− |N1| − 4.

For this to happen, we need ρc(v) = 5, N1 = ∅ and |N2| be even. Now, (19) yields |N2| ≥ 8
and (14) yields |N2| ≤ 9. Since |N2| is even, we have |N2| = 8. By Corollary 6.4, G has no
such vertices. □

Now Lemma 4.8 together with Lemma 6.5 complete the proof of Theorem 3.1.

7. A construction

A construction in [18] shows that the bounds in Theorem 2.1 are sharp for each pair (i, j)
satisfying the theorem for infinitely many n. For the convenience of the reader, we repeat
this construction below, but do not present the proof of its properties. The interested readers
may find it in Section 5 of [18].

Fix i ∈ {1, 2} and j ≥ 2i.

Definition 8. Given a vertex v in a graph G, a flag at v is a subgraph F of G with i + 3
vertices v, x, u1, . . . , ui+1, such that dG(x) = i+2, vx ∈ E(F ), and u1, . . . , ui+1 are 2-vertices
adjacent to both v and x. We call v the base vertex, x the top vertex, and u1, . . . , ui+1 the
middle vertices of the flag F .

17



. . .

v

x

u1 u2 ui+1

Figure 1. A flag at base vertex v.

We call a vertex being the base of k flags a k-base vertex. A graph with a k-base vertex v
(and all the flags based at v) contains exactly 1+ k(i+2) vertices and k(1+ 2(i+1)) edges.

We now define our critical graph Gm for given positive integer m: when m = 1, let v be an
(i+j+2)-base vertex; whenm ≥ 2, let v1, . . . , vm be a path, where v1 is an (i+1)-base vertex,
vm is an (i+ j + 1)-base vertex, and vk is an i-base vertex for all k = 2, . . . ,m− 1. One can
easily check that |V (Gm)| = (i+2)(mi+j+2)+m and |E(Gm)| = (2i+3)(mi+j+2)+m−1,
thus

|E(Gm)| =
(2i+ 1)|V (Gm)|+ j − i+ 1

i+ 1
.

For the cover graph Hm of Gm, we need the following definition:

Definition 9. A flag with base vertex v, top vertex x, and middle vertices u1, . . . , ui+1 is
called parallel, if p(u) ∼ p(w), r(u) ∼ r(w) for each edge uw in the flag; the flag is called
twisted if p(v) ∼ r(x), p(x) ∼ r(v), p(x) ∼ p(uk), r(x) ∼ r(uk), and p(v) ∼ r(uk), p(uk) ∼
r(v) for each k ∈ [i+ 1].

To construct a cover graph Hm that does not admit an (i, j)-coloring, we let all i+1 flags
at v1 and all i flags at vk for k = 2, . . . ,m− 1 be twisted. Among the i+ j + 1 flags at vm,
let i + 1 of them be twisted and the remaining j be parallel. For edge vkvk+1 on the path,
let p(vk) ∼ r(vk+1), r(vk) ∼ p(vk+1) for each k = 1, . . . ,m− 1.
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