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Abstract

We present the first optimal randomized algorithm for constructing the order-k Voronoi diagram

of n points in two dimensions. The expected running time is O(n log n + nk), which improves the

previous, two-decades-old result of Ramos (SoCG’99) by a 2O(log∗ k) factor. To obtain our result, we

(i) use a recent decision-tree technique of Chan and Zheng (SODA’22) in combination with Ramos’s

cutting construction, to reduce the problem to verifying an order-k Voronoi diagram, and (ii) solve the

verification problem by a new divide-and-conquer algorithm using planar-graph separators.

We also describe a deterministic algorithm for constructing the k-level of n lines in two dimensions

in O(n log n+nk1/3) time, and constructing the k-level of n planes in three dimensions in O(n log n+
nk3/2) time. These time bounds (ignoring the n log n term) match the current best upper bounds on

the combinatorial complexity of the k-level. Previously, the same time bound in two dimensions was

obtained by Chan (1999) but with randomization.

1 Introduction

Given a set P of n points in R
2, the order-k Voronoi diagram is defined as the planar subdivision where

two points q, q′ ∈ R
2 belong to the same region iff q and q′ have the same set of k nearest neighbors in

P (each region of this subdivision is a convex polygon). The problem of designing efficient algorithms to

construct the order-k Voronoi diagram has a long history [6, 25, 31, 48, 50], and appeared in Ian Shamos’s

original PhD thesis [53] that marked the beginning of computational geometry (e.g., see unsolved problem

5 on page 206 in the thesis). Surprisingly, the time complexity for this basic problem has still not been

fully resolved, even though optimal algorithms have long been known (from the 70s, 80s, and 90s) for most

of the other textbook problems in two-dimensional computational geometry, including the convex hull, the

standard (order-1) Voronoi diagram, line segment intersection, polygon triangulation, etc. [25, 50].

Table 1 shows how extensively the problem has been studied in the past. Shamos and Hoey (FOCS’75) [54]

were the first to define the order-k Voronoi diagram. Lee [39] gave the first algorithm, and also proved

that the combinatorial complexity of the diagram (i.e., the total number of vertices, edges, and regions) in

R
2 is Θ(nk) for all k ≤ n/2. Agarwal, de Berg, Matoušek, and Schwarzkopf (SoCG’94) [1] gave the

first randomized algorithm that is within logarithmic factors from optimal: the expected running time is

O(n log3 n + nk log n). Subsequently, Chan [13] improved it to O(n log n + nk log k); more generally,
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authors run time

Lee ’82 [39] O(nk2 log n) det.∗

Edelsbrunner, O’Rourke, and Seidel (FOCS’83) [32] O(n3) det.∗

Edelsbrunner ’86 [30] O(nk
√
n log n) det.

Chazelle and Edelsbrunner (SoCG’85) [21] O(n2 + nk log2 n) det.

Clarkson (STOC’86) [23] O(n1+εk) rand.

Aggarwal, Guibas, Saxe, and Shor (STOC’87) [3] O(n log n+ nk2) det.∗

Aurenhammer and Schwarzkopf (SoCG’91) [7] O(nk log2 n+ nk2) rand. inc.

Mulmuley ’91 [47] O(n log n+ nk2) rand.∗

Boissonnat, Devillers, and Teillaud ’93 [10] O(n log n+ nk3) rand. inc.∗

Agarwal, de Berg, Matoušek, and Schwarzkopf (SoCG’94) [1] O(n log3 n+ nk log n) rand. inc.

Agarwal and Matoušek ’95 [2] O(n1+εk) det.

Chan (FOCS’98) [13] O(n log n+ nk log k) rand.

Ramos (SoCG’99) [51] O(n log n+ nk2O(log∗ k)) rand.

Chan and Tsakalidis (SoCG’15) [18] O(n log n+ nk log k) det.

new O(n log n+ nk) rand.

Table 1: History of algorithms for the order-k Voronoi diagram in R
2 (k ≤ n/2). Note: “det.” is short for

deterministic, “rand.” for randomized, and “rand. inc.” for randomized incremental, and ∗ indicates that the

algorithm computes all diagrams of order 1 to k. (This table is adapted from [13].)

by using shallow cuttings, he showed that any T (n)-time algorithm can be converted to an O(n log n +
(n/k)T (k))-time algorithm, and so it suffices to focus on time bounds as a function of n alone (Agar-

wal et al.’s algorithm achieved T (n) = O(n2 log n)). Finally, Ramos (SoCG’99) [51] modified Agarwal

et al.’s randomized incremental algorithm and incorporated recursion (i.e., divide-and-conquer) to obtain

an improved bound T (n) = O(n22O(log∗ n)), where log∗ n is the (slow-growing) iterated logarithm func-

tion; by combining with Chan’s reduction, the expected running time in terms of n and k then became

O(n log n+nk2O(log∗ k)). Ramos’s result has not been further improved since, and has remained the record

for over two decades.

New result. The main result of the present paper is a new randomized algorithm that runs in O(n log n+
nk) expected time. This result is tight for all k ≤ n/2, since an Ω(n log n) lower bound holds in any

comparison-based model, and an Ω(nk) lower bound trivially holds because the output size is Θ(nk), as

mentioned (and not just in the worst case, but always). The same result (like many of the previous results)

applies also to the farthest-point order-k Voronoi diagram; we thus obtain optimal bounds for k > n/2 as

well by replacing k with n − k, since the nearest-point order-k Voronoi diagram is the same as the order-

(n−k) farthest-point Voronoi diagram. Although some may regard an improvement of a 2O(log∗ k) factor as

small, the result is important for providing the first optimal solution to a fundamental problem in classical

computational geometry.

Technical challenges and overview. The techniques we use to obtain the result are also theoretically

quite interesting, in our opinion. The starting point is Chan and Zheng’s work in SODA’22 [19], which

described a decision-tree-based paradigm yielding an O(n4/3)-time algorithm for Hopcroft’s problem in

R
2, improving a previous algorithm by Matoušek [42] running in n4/32O(log∗ n) time. It was observed that

an efficient algebraic decision tree with O(n4/3) height can be automatically converted to an algorithm with
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the same time bound: basically, existing geometric divide-and-conquer techniques (cuttings) allow us to

reduce Hopcroft’s problem to subproblems of very small size, like log log n or log log log n, and for such

a small input size, we can afford to build the decision tree explicitly as preprocessing. To obtain better

decision tree upper bounds, Chan and Zheng formulated a “Basic Search Lemma”, which (very loosely

speaking) states that searching among r options actually can be done with constant amortized cost (instead

of O(r) or O(log r)) in the algebraic decision tree model, in certain scenarios when r is small and we face

multiple such search subproblems that “originate” from a common input set. Put another way, for algebraic

decision trees, we can support a mild form of nondeterminism—we basically have the ability to guess which

of the r options is the answer, so long as we can efficiently verify our guess. The lemma may also be viewed

as a generalization of a known technique by Fredman [36] from the 70s on the decision-tree complexity of

certain sorting problems. Chan and Zheng applied the lemma to shave logarithmic factors from the cost of

point location subproblems (geometric analog of binary searches), and thereby improve the decision tree

complexity of previous algorithms.

It is natural to try to apply the same paradigm to order-k Voronoi diagrams, to eliminate the similar-

looking 2O(log∗ n) factor from Ramos’s previous n22O(log∗ n) time bound [51]. However, the order-k Voronoi

diagram problem is very different from Hopcroft’s. Still, the problem can similarly be self-reduced to

subproblems of very small size, due to Ramos’s divide-and-conquer scheme, and thus an O(n2) decision

tree bound would also translate to an O(n2) time bound.

But how do we design an O(n2)-height decision tree for order-k Voronoi diagrams? The Basic Search

Lemma doesn’t seem to help speed up Agarwal, de Berg, Matoušek, and Schwarzkopf’s algorithm with

T (n) = O(n2 log n), since the log n factor there did not arise from point location or binary search (but

was due to technical reasons inherent to their probabilistic analysis). And it doesn’t seem to help shave all

the logarithmic factors from Chazelle and Edelsbrunner’s earlier algorithm [21] with T (n) = O(n2 log2 n)
either: the log2 n factor there came up the use of Overmars and van Leeuwen’s dynamic data structure

for planar convex hulls [49], and the Basic Search Lemma could probably remove one log, but not both

(we could alternatively save one log factor by using Brodal and Jacob’s far-more-complicated, dynamic

2D convex hull structure [11], but it is even less clear how the Basic Search Lemma could eliminate the

remaining log there).

In our new solution, we will take the Search Lemma to the extreme: rather than guessing from among a

small number of options, we will guess the entire order-k Voronoi diagram! Although the number of possible

diagrams is exponential, if we first make the problem size very small by another application of Ramos’s

divide-and-conquer, then the number would still be acceptable. This way, Chan and Zheng’s paradigm

allows us to reduce the original problem to the verification problem: given a point set and a diagram, decide

whether it is the correct order-k Voronoi diagram. The existence of such a reduction to verification which

doesn’t increase the time bound is somewhat surprising.1

There have been some past works on verification or certification algorithms in the computational geom-

etry literature [27, 43, 45] (prompted by more practical concerns from algorithm engineering), and simple

algorithms have been designed for basic verification problems such as verifying convex polytopes, triangula-

tions, and the standard (order-1) Voronoi diagram. However, verifying an order-k Voronoi diagram appears

more difficult. We describe a new algorithm that verifies the order-k Voronoi diagram in O(n2) time without

extra logarithmic factors. Our algorithm interestingly uses a divide-and-conquer based on planar graph sepa-

rators. For classical problems in computational geometry related to convex hulls and Voronoi diagrams, it is

1For example, one could compare with the well known technique of parametric search [44], which reduces an optimization

problem to its corresponding decision problem, but involves searching for just one real value; here, we are searching for an entire

order-k Voronoi diagram!.
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far more common to see divide-and-conquer based on cuttings, simplicial partitions, or Clarkson–Shor-style

random sampling [22, 24, 48]; in contrast, divide-and-conquer algorithms based on planar graph separators

for such classical geometric problems are relatively rarer (but see [4, 17, 18, 26, 52] for some examples). We

do not know how to apply separators to directly construct the order-k Voronoi diagram, but we are successful

in using them to verify a given diagram.

Admittedly, the usage of Chan and Zheng’s decision-tree paradigm is not likely to lead to practical

algorithms, but from the theoretical perspective, the entire solution is not long nor complicated. We will

keep the description mostly self-contained (without assuming knowledge of Chan and Zheng’s framework

nor referring to the aforementioned Basic Search Lemma), assuming only Ramos’s divide-and-conquer,

planar separators, and some dynamic geometric data structures as black boxes.

More results. By a standard lifting transformation, the construction of the order-k Voronoi diagram of

n points in R
2 is well known to be reducible to the construction of the k-level of n planes in R

3 that are

tangent to the paraboloid z = −x2 − y2 [25, 33]. Our algorithm (like many of the previous algorithms) can

more generally compute the k-level of any set of n planes in R
3 that are in convex position, i.e., planes that

all participate in the lower envelope.

For n arbitrary planes (not necessarily in convex position) in R
3, determining the worst-case size of the

k-level is a well-known open problem in combinatorial geometry: the current best upper bound is O(nk3/2)
by Sharir, Smorodinsky, and Tardos [55]. In Section 5, we describe a deterministic algorithm that constructs

the k-level of n arbitrary planes in R
3 in O(n log n+ nk3/2) time, which is thus the best worst-case bound

attainable under current knowledge on the combinatorial complexity of the k-level. The best previous result

has running time O(n log n + f log4 k) [2, 16], where f is the output size; although our new result is not

output-sensitive, it avoids the four logarithmic factors.

When specialized to computing the k-levels of n lines in R
2, we also obtain a new deterministic al-

gorithm that runs in O(n log n + nk1/3) time. The current best upper bound on the combinatorial com-

plexity is O(nk1/3) by Dey [28]. Previously, Chan [12] gave a randomized algorithm achieving the same

O(n log n + nk1/3) time bound (which improved Agarwal, de Berg, Matoušek, and Schwarzkopf’s ear-

lier O(n log2 n + nk1/3 log2/3 n) randomized algorithm [1]), but derandomization of his algorithm seems

difficult or impossible.

Our new deterministic k-level algorithms are obtained from a different approach, not relying on decision

trees but instead using a more traditional geometric divide-and-conquer based on hierarchical cuttings [20].

Applications. As higher-order Voronoi diagrams and k-levels are fundamental structures in computational

geometry, our new results have a number of applications. We briefly mention two specific examples:

• Given a set P of n points in the plane and a number k, and we want to find a subset Q ⊂ P of k
points minimizing the variance 1

k

∑

q,q′∈Q ∥q − q′∥2. Aggarwal et al. [5] showed that this problem

can be reduced to the construction of the order-k Voronoi diagram, and so can now be solved in

O(n log n+ nk) expected time.

• Given d point sets P1, . . . , Pd of total size n in R
d, a ham-sandwich cut is a hyperplane that has

⌊|Pi|/2⌋ points of Pi on either side. Lo, Matoušek, and Steiger [40] gave an algorithm to construct a

ham-sandwich cut in R
d, by using an algorithm for constructing k-levels of hyperplanes in R

d−1 as

a subroutine. Consequently, our new results imply a deterministic O(n4/3)-time algorithm for ham-

sandwich cuts in R
3, and a randomized O(n5/2)-time algorithm for ham-sandwich cuts in R

4. (For

other applications of k-level construction, see also [29, 37].)
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2 Preliminaries

Let P be a set of n points in R
d. The nearest-point (resp. farthest-point) order-k Voronoi diagram of P is

a partition of the plane into regions, where two points are in the same region iff they have the same set of k
closest (resp. farthest) points in P .

Let H be a set of n hyperplanes in R
d. The level of a point q refers to the number of hyperplanes of H

strictly below q. The k-level of H consists of all faces of the arrangement of H that have level exactly k.

By a standard lifting transformation, computing the nearest-point (resp. farthest-point) order-k Voronoi

diagram of a set of n points in R
2 is equivalent to computing the k-level of a set of n planes in R

3 tangent

to the paraboloid z = −x2 − y2 (resp. z = x2 + y2); e.g., see [25, 33]. Thus, in this paper, we will focus on

computing the k-level for n planes in R
3 tangent to the paraboloid, or more generally, for n planes that are

in convex (resp. concave) position, i.e., for n planes that all bound the lower (resp. upper) envelope.

It is known that the k-level of n planes in convex position in R
3 has combinatorial complexity O(nk) [24,

39]. The xy-projection of the k-level of n planes in R
3 form a planar graph. Thus, the k-level may

be represented by a standard representation scheme for planar subdivisions (e.g., doubly connected edge

lists) [25, 50], with O(nk) pointers or O(nk log n) bits of space; each vertex of the k-level may be repre-

sented as a triple of pointers to its defining planes.

The following reduction by Chan [13] shows that for k-level algorithms, it suffices to obtain good time

bounds in terms of n alone (i.e., it suffices to focus on the hardest case when k = Θ(n)):

Lemma 2.1 ([13]). If there is a T (n)-time algorithm for computing the k-level of n planes in general,

convex, or concave position in R
3, then there is an O(n log n + (n/k)T (k))-time algorithm for computing

the k-level of n planes in general, convex, or concave position respectively in R
3.

Roughly, the above reduction follows from the use of shallow cuttings [41]: for any set of n planes in

R
3, there exist a collection of O(n/k) simplices covering all points of level at most k, such that each sim-

plex intersects at most n/k planes, and each simplex is unbounded from below. To construct the k-level, we

simply construct the k-level inside each simplex ∆ of the cutting for the O(n/k) planes intersecting ∆. Effi-

cient algorithms are known for finding a shallow cutting, taking O(n log n) expected time [51] or O(n log n)
deterministic time [18].

In the next two sections, we will describe an O(n2)-time algorithm for the k-level of n planes in convex

position in R
3 (the concave case can be addressed by negating the z coordinates). By the above reduction,

an O(n log n+ nk)-time algorithm would then follow.

Our solution will consist of two parts: in Section 3 we reduce the problem of constructing the k-level

to the problem of verifying the k-level, using nontrivial ideas based on decision trees, and in Section 4 we

present an O(n2)-time algorithm for the verification problem, using separators.

3 Reduction to the Verification Problem

In this section, we will present a reduction from the k-level problem to the problem of verifying the k-

level. To accomplish this, we build on ideas from Chan and Zheng’s previous technique [19] for Hopcroft’s

problem using decision trees, although these ideas will be streamlined and redescribed in a self-contained

way.

We begin with the following lemma, implicitly obtained by Ramos [51], which gives a self-reduction of

the k-level problem to smaller instances of logarithmic size:
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Lemma 3.1 ([51]). Computing the k-level of a set H of n planes in convex position in R
3 self-reduces to

O(n2/ log2 n) instances of the problem for subsets of H of O(log n) size, after spending O(n2) expected

time (using randomization).

Roughly, the lemma follows by constructing a cutting into O(n2/ log2 n) simplices covering the k-

level such that each simplex intersects O(log n) planes: Ramos [51] obtained his construction by running a

variant of Agarwal et al.’s randomized incremental algorithm [1], but preemptively stopping the algorithm

after O(n/ log n) iterations to keep the expected running time bounded by O(n2). Ramos then applied the

lemma recursively to obtain his O(n22O(log∗ n))-time randomized divide-and-conquer algorithm.

We first apply the lemma to reduce the problem to designing algorithms in the decision tree setting. In

the decision tree model, an algorithm may perform certain tests on the input.2 All other operations that do

not depend on the input have zero cost. Different executions of the algorithm lead to different paths in the

decision tree, where each node in the tree corresponds to a test. The cost of the algorithm is the maximum

total running time of the tests (or maximum total expected running time if the tests are done by randomized

algorithms) over all paths of the tree.

Lemma 3.2. If there is an algorithm with O(n2) cost in the decision tree model for computing the k-level

of n planes in convex position in R
3, and the tree can be constructed in (say) doubly exponential time, then

there is a randomized algorithm for computing the k-level of n planes in convex position in R
3 in O(n2)

expected time.

Proof. By applying Lemma 3.1 three times, we can reduce the problem to O(n2/b2) subproblems of size b,
with b = O(log log log n), in O(n2) expected time. When the problem size b is this small, we can construct

one decision tree for all problems of size b in time sublinear in n. Afterwards, each subproblem can be

solved by following a path in that decision tree in O(b2) time. The total time bound is O(n2/b2) ·O(b2) =
O(n2).

We now present our reduction of the k-level problem to the verification problem. The input to the verifi-

cation problem is the given set of n planes, and a candidate k-level, which as mentioned can be represented

using O(n2) pointers or O(n2 log n) bits of space.

Theorem 3.3. If there is an algorithm for verifying the k-level of n planes in convex position in R
3 in O(n2)

time, then there is a randomized algorithm for computing the k-level of n planes in convex position in R
3 in

O(n2) expected time.

Proof. Let (H, k) denote an instance of the problem of computing the k-level for a set H of planes in

convex position in R
3. By Lemma 3.2, it suffices to describe an algorithm with O(n2) cost in the decision

tree model on an instance (H, k) where |H| = n.

As each plane can be specified by three reals, we can view an input H as a point xH in R
3n. Consider a

comparison that tests if the point h1 ∩ h2 ∩ h3 is above the plane h for four given planes h1, h2, h3, h ∈ H .

Let γh1,h2,h3,h be the set of all inputs for which this test is true; this is a semialgebraic set in R
3n of constant

degree. Let Γ denote the set of all these O(n4) semialgebraic sets.

We first build the entire arrangement A(Γ) of Γ in R
3n (this step does not involve looking at the actual

input H and so has zero cost in the decision tree model). By the Milnor–Thom Theorem [46, 56], A(Γ)
has at most |Γ|O(n) = nO(n) cells. Throughout our algorithm, we will perform operations that decrease the

number of potential cells of A(Γ) that xH can be—we call these the active cells.

2In algebraic decision trees, the tests are evaluations of algebraic predicates over the input real numbers, but here we may use

any test function with binary outcomes.
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By another twofold application of Lemma 3.1, we reduce the problem to smaller instances (Hi, ki) for

i = 1, . . . , O(n2/b2) where each |Hi| ≤ b for b = O(log log n).
Suppose that we have already solved the subproblems (Hj , kj) for j = 1, . . . i − 1. To solve the next

subproblem (Hi, ki), we do the following:

1. Scan through the active cells and generate an answer for (Hi, ki) for each active cell. (This step does

not involve looking at the actual input and has zero cost in the decision tree model. Note that inputs

lying in the same cell of A(Γ) have the same ki-level of Hi, since the level is determined by the

outcomes of comparisons of the type above.)

2. Pick an answer that is most popular among the answers from step 1.

3. Run the verification algorithm for this answer. This test has O(b2) cost by assumption.

4. If the verification algorithm returns true, we have a correct answer for (Hi, ki).

5. Otherwise, we compute an answer for (Hi, ki) by any polynomial-time algorithm with bO(1) cost.

An answer to each subproblem is represented as O(b2) words or O(b2 log b) bits. So, there are at most

B := 2O(b2 log b) many possible answers. (Note that in step 1, there may be multiple valid answers per cell,

since the representation of a level need not be unique; we may pick an arbitrary valid answer per cell.)

If our guess in step 2 is correct, then we would have spent O(b2) time verifying our guess in each

iteration. The total cost for this part is O(b2) ·O(n2/b2) = O(n2).
On the other hand, if our guess is wrong, then we know that the cells of A(Γ) that have answer equal

to this guess do not contain xH and can be marked inactive, and so we would have reduced the number

of active cells of A(Γ) by at least a factor of B−1
B . Thus, step 5 is done at most O(logB/(B−1) |A(Γ)|) =

O(B log |A(Γ)|) = O(2O(b2 log b)n log n) times in total over all iterations. The total cost for this part is thus

O(2O(b2 log b)n log n) · bO(1) ≤ n1+o(1), for b = O(log log n).
So the total cost is O(n2). To construct the decision tree, we try all 2O(n2) possible execution paths;

at each node of the decision tree, step 1 naively takes nO(n) time. The time needed to construct the O(n)-

dimensional arrangement A(Γ) initially is 2n
O(1)

[8, 9]. Thus, the total construction time is at most 2n
O(1)

+
2O(n2)nO(n), which is indeed sub-doubly-exponential.

4 Verification Algorithm

By Theorem 3.3, it remains to describe an O(n2)-time algorithm for verifying the k-level of n planes in

convex position in R
3. Simple algorithms have already been known for various basic verification problems,

such as verifying standard (order-1) Voronoi diagrams, convexity of polytopes, and planarity of subdivisions

[27, 45]: for such problems, it suffices to mainly check for certain “local” conditions. However, verification

of the k-level appears more challenging, where local tests are insufficient. We will present a divide-and-

conquer algorithm using planar separators.

To simplify our exposition, we define three auxiliary, almost vertical planes sufficiently far enough so

that all vertices in the arrangement of H are bounded in all non-vertical directions by these three planes. For

each of the three auxiliary planes, we create n copies of the plane that are slightly perturbed and parallel to

one another. Let Hb be these 3n planes, and let H ′ = H ∪Hb. These planes will be useful to ensure that the

intersection of the k-level with any plane of H is bounded (a property that we will need later in the proof

of Observation 4.1). Initially, we can compute the 2D arrangement of H within each of the three auxiliary
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(a) the region of a node is the union of the regions of its children, the regions of the children are interior-

disjoint, and the region at the root covers all triangular faces in G;

(b) each region is connected and has O(1) holes;

(c) the complexity of a child’s region is at most a constant fraction of the complexity of the parent’s region;

(d) for any value t, the number of regions of complexity Θ(t) is O(N/t), and the total complexity of their

boundaries and their children’s boundaries is O(N/
√
t).

At each node ν of the tree, we store the boundary ∂Rν of the region Rν (and, for each boundary edge, a flag

to indicate which side is “inside”).

Another tool we need is a data structure for 3D dynamic convex hulls, or in the dual, 3D dynamic

lower/upper envelopes of planes. The current best result by Chan [14, 16] stated below achieved O(log4 n)
amortized update time (although we can actually afford to use a weaker O(nε) update time bound [2], or

anything that is o(n1/2−ε)):

Lemma 4.3 (Ray shooting in 3D dynamic lower envelopes [14]). There exists a data structure that han-

dles insertions and deletions of up to n planes in R
3 in O(log4 n) amortized time, and given a query ray

originating from inside the lower envelope, finds the point on the envelope hit by the ray in O(log2 n) time.

Now we are ready to present our verification algorithm.

Theorem 4.4. The k-level of a set H of n planes in convex position in R
3 can be verified in O(n2) time.

Proof. Recall that the given candidate k-level of H can be extended to a candidate k-level of H ′, which we

denote by X . Recall that X is stored using a standard representation scheme for planar subdivisions for its

xy-projection. As a first step, we check that it is indeed a valid planar subdivision, i.e., the embedding does

not have crossings. We can just use a known verification algorithm by Mehlhorn et al. [45] or Devillers et

al. [27] for this task, which takes time linear in the size of the subdivision (i.e., O(n2)). We assume that we

have precomputed a point ph on h that lies on the k-level of H ′, for every h ∈ Hν , by Observation 4.1 in

O(n2) total time.

Let GX be a triangulation of the embedded planar graph formed by the xy-projection of X . The graph

GX has N = O(n2) size. In O(N) time, we compute the decomposition tree T for GX by Lemma 4.2.

We will describe a recursive algorithm to verify that X is the k-level of H ′ by using the decomposition

tree T . The input to the recursive algorithm is a node ν of T , a subset Hν ⊆ H , and a number kν , where we

are promised that the k-level of H ′ coincides with the kν-level of Hν ∪Hb inside5 the region Rν . We want

to verify that the portion of X inside the region Rν coincides with the k-level of H ′. (Initially, at the root ν,

we take Hν = H and kν = k.)

Verifying the separator boundaries. Let {νj}O(1)
j=1 be the children of ν. We first verify that the boundary

edges of each child region Rνj , when lifted back to R
3, are indeed on the k-level of H ′, i.e., the kν-level of

Hν ∪Hb. By property (b) in Lemma 4.2, the boundary of Rνj has O(1) components. Take one component

γ. We pick an arbitrary vertex vs of γ and compute its level in Hν ∪ Hb by iterating through all planes

in Hν in O(|Hν |) time. If its level is not kν , we reject. Otherwise, we follow a known approach used in

previous output-sensitive k-level algorithms [34, 30, 2]: We construct a dynamic ray shooting data structure

5“Inside” here (and elsewhere in this proof) technically refers to the xy-projection.
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for the upper (resp. lower) envelope of the planes in Hν below (resp. above) vs in time O(|Hν | log4 |Hν |)
using Lemma 4.3. To verify a neighboring vertex vg of vs, we issue ray shooting queries along the edge

connecting vs and vg to the sets of planes above and below vs. This enables us to find the neighbor vertex of

vs on the kν-level. We verify if the neighbor vertex found is vg, and if so we update the sets of planes to be

those above and below vs. This includes the deletion of a plane and the insertion of a new plane. We reject

if we detect that any vertex of γ is not on the kν-level. By Lemma 4.3, each operation takes O(log4 |Hν |)
amortized time (note that dynamic ray shooting for the planes in Hb can be trivially done in O(1) time

without data structures). So the entire process can be done in time O((|Hν |+ |∂Rνj |) log4 |Hν |).

Recursing in the child regions. Fix a child νj . We next verify that X is the k-level of H ′ inside the child

region Rνj by recursion. To do so, we need to define Hνj and kνj . To this end, we classify each plane

h ∈ Hν as follows: Call h a boundary plane if it defines a boundary edge of Rνj . Call h an interior plane

if it is not a boundary plane and the point ph is inside Rνj . Call h an exterior plane if it is not a boundary

plane and the point ph is outside Rνj . To determine which points ph are inside Rνj , we can answer |Hν |
planar point location queries [25, 50] in the region Rνj in total time O((|Hν |+ |∂Rνj |) log |∂Rνj |).

By Observation 4.1, the intersection of any plane h ∈ Hν with the k-level of H ′ is a cycle and is thus

connected. Hence, exterior planes cannot participate in the k-level of H ′ inside Rνj (as we have already

verified the boundary edges of Rνj ). We let Hνj contain all the boundary planes and interior planes. We

let kνj be kν minus the number of exterior planes that are below an arbitrary point of Rνj . (Note that an

exterior plane that is below an arbitrary point of Rνj will be below all points of Rνj .) Then we know that

the k-level of H ′ coincides with the kνj -level of Hνj inside Rνj . We can now recursively solve the problem

for the child νj with Hνj and kνj .

Running time analysis. Let nνj be the number of interior planes as defined above for the node νj . We

know that the number of boundary planes for the node νj is O(|∂Rνj |). Thus, |Hν | ≤ nν +O(|∂Rν |) at all

nodes ν. Let bν = |∂Rν |+
∑

j |∂Rνj |. The cost at each node ν is bounded by O((nν + bν) log
4(nν + bν)).

Let Ti be the nodes of T whose regions have size between ri and ri+1 for a constant r > 1. By property

(d) of Lemma 4.2, |Ti| = O(N/ri) and
∑

ν∈Ti bν = O(N/ri/2). Furthermore, we know that
∑

ν∈Ti nν ≤ n
(by disjointness of the regions in Ti, since a node and its parent can’t both in Ti by property (c) if we pick

r > 1 sufficiently small). Trivially, bν ≤ O(|Rν |) = O(ri) for all ν ∈ Ti. The total cost over all nodes in Ti
is thus bounded by

∑

ν∈Ti

(nν + bν) log
4(nν + bν) ≤ O



n log4N +
∑

ν∈Ti

bν log
4 bν +

∑

ν∈Ti

bν log
4 nν





≤ O

(

n log4N +
N

ri/2
log4(ri) +

N

ri/2
log4

(

∑

ν∈Ti bνnν

N/ri/2

))

≤ O

(

n log4N +
i4N

ri/2
+

N

ri/2
log4

rin

N/ri/2

)

≤ O

(

n log4N +
i4N

ri/2

)

,

where the second inequality follows from Jensen’s inequality, and the last inequality follows from N =
Ω(n).
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The total running time is bounded by summing over all i:

logr N
∑

i=0

O

(

n log4N +
i4N

ri/2

)

= O(n log5N +N) = O(n2),

since N = O(n2).

Combining Theorem 4.4 with Theorem 3.3 and Lemma 2.1, we conclude:

Theorem 4.5. The k-level of a set of n planes in convex position in R
3 can be computed in O(n log n+nk)

expected time. The same holds for the order-k Voronoi diagram of a set of n points in R
2.

5 Deterministic k-Level Algorithm

In this section, we describe a different approach to obtain deterministic algorithm for constructing the k-level

for an arbitrary set of lines in R
2 or planes in R

3 (not necessarily in convex position).

Dey [28] and Sharir, Smorodinsky, and Tardos [55] proved that the combinatorial complexity of the k-

level is upper-bounded by O(nk1/3) in R
2 and O(nk3/2) in R

3 (the current best lower bound is n2Ω(
√
log k)

in R
2 and nk2Ω(

√
log k) in R

3, by Tóth [57]). We will need a generalization of these upper bounds for

multiple consecutive levels, which are known and follow from the same techniques (see [28] in R
2 and [15]

in R
3):

Lemma 5.1. Given n lines in R
2 and numbers k and j, the total combinatorial complexity of levels k −

j, . . . , k + j is upper-bounded by O(n4/3j2/3).
Given n planes in R

3 and numbers k and j, the total combinatorial complexity of levels k− j, . . . , k+ j
is upper-bounded by O(n5/2j1/2).

The main tool we will use is a deterministic construction of cuttings that is sensitive to the number of

vertices, due to Chazelle [20]:

Lemma 5.2 (Cutting lemma [20]). Let H be a set of n hyperplanes in R
d and let ∆ be a simplex. Given r,

we can cut ∆ into O(X∆(r/n)
d + rd−1) interior-disjoint subsimplices, each intersecting at most n/r hy-

perplanes of H , where X∆ denotes the number of vertices of the arrangement of H that lie inside ∆. The

cutting can be constructed in O(n) deterministic time if r is a constant.

A hierarchy of cuttings can then be efficiently generated by applying the above lemma recursively, as

shown by Chazelle [20]; such hierarchical cuttings have led to many applications in range searching (e.g.,

[19, 42]). Here, we observe that this approach can lead to an efficient k-level algorithm, just by a small

variant where we recurse only in subsimplices relevant to the k-level. The resulting algorithm is simple to

describe and analyze. (It is a little surprising that this simple variant was overlooked in previous works on

k-level algorithms.)

The algorithm. Given a set H of at most n hyperplanes in R
d, a number k, and a simplex ∆, we compute

the k-level of H inside ∆ as follows (omitting trivial base cases):

1. Apply Lemma 5.2 to cut ∆ into subsimplices for a fixed constant r.

2. For each subsimplex ξ:

11



(a) Let Hξ be the subset of at most n/r hyperplanes of H intersecting ξ.

(b) Let cξ be the number of hyperplanes of H completely below ξ.

(c) If cξ ∈ [k − n/r, k], then recursively compute the (k − cξ)-level of Hξ inside ξ. (If cξ > k or

cξ < k − n/r, then the level is empty inside ξ.)

3. Combine the levels from all the subsimplices together.

Steps 2(a) and 2(b) can be done naively in O(n) time since r is a constant. Note that in step 2(c), if

cξ ∈ [k − n/r, k], all points in ξ have level in [cξ, cξ + n/r] ⊆ [k − n/r, k + n/r] with respect to H .

The cost of Step 3 is at most O(nd−1) (since the number of edges intersecting the (d− 1)-dimensional

boundary of ξ is at most O((n/r)d−1)).

Running time analysis. Let N and K denote the global value of n and k at the root of recursion. At

the i-th level of recursion, each subproblem has at most N/ri hyperplanes. Let Ci be the collection of all

simplices from the i-th level of recursion. We know that the simplices Ci are disjoint and are contained in

levels [K − N/ri,K + N/ri] (with respect to the global input set). By Lemma 5.1, the total number of

vertices in levels [K − N/ri,K + N/ri] is bounded by O(Nα(N/ri)d−α), where α = 4/3 if d = 2, and

α = 5/2 if d = 3. Thus,

|Ci+1| = O





∑

∆∈Ci

(

X∆

(

r

N/ri

)d

+ rd−1

)





≤ O

(

Nα(N/ri)d−α ·
(

r

N/ri

)d
)

+ O(rd−1)|Ci|

= O(riα+O(1)) +O(rd−1)|Ci|.

Because α is strictly larger than d − 1, the recurrence solves to |Ci| = O(riα), for a sufficiently large

constant r.

The total running time is

O





logr N
∑

i=0

|Ci| · (N/ri)d−1



 ≤ O





logr N
∑

i=0

Nd−1ri(α−(d−1))



 = O(Nα).

We have thus obtained a deterministic algorithm running in O(N4/3) time for d = 2, and O(N5/2) time

for d = 3. By the reduction in Lemma 2.1 (which holds in both R
2 and R

3 and is deterministic [18]), we

conclude:

Theorem 5.3. Given n lines in R
2 and a number k, there is a deterministic algorithm that constructs the

k-level in O(n log n+ nk1/3) time.

Given n planes in R
3 and a number k, there is a deterministic algorithm that constructs the k-level in

O(n log n+ nk3/2) time.
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6 Final Remarks

It is instructive to note why the hierarchical cutting approach in Section 5 does not work as well for the case

of order-k Voronoi diagrams in R
2 or k-levels of planes in convex position in R

3. The reason is that the

combinatorial complexity of the k-level here is quadratic, and so α = d− 1 = 2, which causes extra factors

in the analysis.

In our optimal randomized algorithm for order-k Voronoi diagrams in Sections 3–4, the only place

randomization is used is Ramos’s divide-and-conquer (Lemma 3.1). Our verification algorithm in Section 4

is deterministic.

In our reduction to the verification problem (Theorem 3.3), it actually suffices to bound the cost of

the verification algorithm in the decision tree model (not actual running time), and we may even allow

nondeterminism in the verification algorithm, even though we don’t need to. In other words, the certificate

may contain more information besides the answer (the k-level) itself, so long as we can efficiently verify the

certificate. (With nondeterminism, some steps in the verification algorithm could be simplified; for example,

we can avoid invoking a known algorithm to construct the planar-separator decomposition tree, by guessing

all the separators, i.e., including them as part of the certificate; and point location also becomes easier with

nondeterminism.)

The idea of reducing to verification, certification, or designing nondeterministic algorithms seems gen-

eral and potentially applicable to other problems, although we don’t have any other concrete applications at

the moment. Possible candidates include Hopcroft’s problem and affine degeneracy testing (given n points

in R
d, decide whether there exist d+1 points lying on a common hyperplane): we could get faster algorithms

for either problem if there exist efficient comparison-based algorithms to certify no answers for Hopcroft’s

problem in o(n4/3) time or affine degeneracy testing in o(nd) time (which we currently don’t have).

Note that the approach is applicable only for problems with superlinear complexity (due to an extra

overhead cost of n1+o(1) in the proof of Theorem 3.3). For example, we can’t apply it to the minimum

spanning tree (MST) problem despite the existence of linear-time MST verification algorithms.
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