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ing concept, in which the same colored vertices of a graph induce a subgraph satisfying a
prescribed graph property. Secondly, the concept of variable degeneracy, which was intro-
duced by Borodin, Kostochka and Toft in 2000; this makes it possible to give a common

Dedicated to the memory of Landon Rabern generalization of the point partition number and the list chromatic number. Finally, the DP-

coloring concept as introduced by Dvorak and Postle in 2018, where a list assignment of a
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EZ?ecroall:;f:g“’loring of graphs tions of various classical coloring results, including the theorems of Brooks, of Gallai, and

of Erdds, Rubin and Taylor. Our main result is a DP-version of a theorem about partitions
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Brooks’ theorem of graph§ into a fixed number of induced subgraphs with bounded variable degeneracy due
Degeneracy to Borodin, Kostochka, and Toft.
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1. Introduction and main results

Our notation is standard. In particular, N denotes the set of positive integers and Ng = N U {0}. For integers k and ¢,
let [k, ¢]={x € Z | k < x < £}. The term graph refers to a finite undirected graph possibly with multiple edges but without
loops. For a graph G, V(G) and E(G) denote the vertex set and the edge set of G, respectively. The number of vertices of G
is called the order of G and is denoted by |G|. A graph G is called empty if |G| = 0; in this case we also write G = &. For a
vertex v of G, let E¢(v) denote the set of edges of G incident with v. Recall that every edge e of G is incident with exactly
two vertices of G which are called the ends of e. We call d¢(v) = |Eg(v)| the degree of v in G. Then A(G) = max, dg(v)
is the maximum degree of G, and §(G) = min, d¢(v) is the minimum degree of G, where we set A(9) =§(&) = 0. For
two different vertices u, v of G, let E¢g(u,v) = Egc(u) N Eg(v). If e € E¢(u, v), then we also say that e is an edge of G
joining u and v; and that u is a neighbor of v and vice versa. Furthermore, (¢ (u, v) = |Ec(u, v)| is the multiplicity of the
vertex pair u, v in G; and wu(G) = maxyxy (g (U, v) is the maximum multiplicity of G. The graph G is said to be simple if
1(G) < 1. As usual, we denote by Ng(v) the neighborhood of v in G, that is, the set of vertices u of G with E¢(u, v) # @.
A graph G is called k-degenerate if each subgraph H of G satisfies §(H) < k. For X,Y C V(G), we denote by E¢(X, Y) the
set of edges of G joining a vertex of X with a vertex of Y. Furthermore, G[X] is the subgraph of G induced by X, ie.,
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V(G[X]) = X and E(G[X]) = E¢(X, X). Define G — X =G[V(G) \ X], and, for v € V(G), define G —v=G —{v}. If G’ is a
subgraph of G, we write G’ C G, that is, V(G') € V(G), E(G’) € E(G), and each edge of G’ has the same ends in G’ as in G.
If G’ CG and G’ # G, then G’ is a proper subgraph of G. A vertex set I C V(G) is independent in G if G[I] has no edges.
A matching of a graph G is a set M of edges of G with no common ends; the matching M is called perfect if |[M| = ‘zﬂ or
equivalently, if every vertex of G is an end of exactly one edge of M. A separating vertex of a connected graph G is a vertex
v € V(G) such that G — v has at least two components. The separating vertices of a disconnected graph are defined to be
those of its components. We denote by S(G) the set of separating vertices of G. Furthermore, a block of G is a maximal
connected subgraph B of G such that S(B) = @. Note that each block of G is an induced subgraph of G. We denote by B(G)
the set of blocks of G. If B(G) = {G}, we also say that G is a block. We denote by K, the complete graph of order n > 0 and
by C, the cycle of order n > 3. A cycle is said to be even or odd depending on whether its order is even or odd. Clearly,
both K, with n>1 and C, with n > 3 are blocks and simple graphs. For a graph G, we denote by G° the underlying simple
graph of G, that is, G° is a simple graph with V(G°) =V (G) and E(G°) ={uv |u,v € V(G), uc(u, v) > 0}. Note that G and
G° have the same block structure, that is, for every X C V(G) we have G[X] € B(G) if and only if G°[X] € B(G°).

Given a graph G, a coloring of G with color set C is a mapping ¢ : V(G) — C. Then, the sets ¢~ 1(c) = {v € V(G) | p(v) =
c} with ¢ € C are called color classes of the coloring ¢. A list assignment of G with color set C is a mapping L: V(G) — 2€
that assigns to each vertex v € V(G) a set (list) L(v) € C of colors. A coloring ¢ of G is called an L-coloring if ¢(v) € L(v)
for all v € V(G). A cover of G is a pair (X, H) consisting of a map X and a graph H satisfying the following two conditions:

(C1) X :V(G) — 2V js a function that assigns to each vertex v € V(G) a vertex set X, = X(v) C V(H) such that the sets
Xy with v € V(G) are pairwise disjoint.

(C2) H is a graph with vertex set V(H) = Uvev(c) Xy such that each X, is an independent set of H, and, for any two
distinct vertices u, v € V(G), the set Ey(Xy, Xy) is the union of u¢(u, v) (possibly empty) matchings of H.

Let G be a graph and let (X, H) be a cover of G. Let uv € E(G°), let X C X, and Y C X,. Then define H(X,Y) = H[XUY];
note that H(X,Y) is a bipartite graph with parts X and Y, and A(H(Xy, Xy)) < uc(u,v) (by (C2)). If |X,| >k for all
v € V(G), we say that (X, H) is a k-cover of G. A transversal of (X, H) is a vertex set T C V(H) such that [TN X,|=1
for all ve V. A set T C V(H) is called partial transversal of (X, H) if [T N X,| <1 for all ve V(G). For Y C V(H), let
dom(Y :G)={ve V(G)| X, NY # &} be the domain of Y in G.

Colorings of graphs become a subject of interest only when some restrictions to the color classes are imposed. Let G
denote the class of all graphs. A graph property is a subclass of G that is closed with respect to isomorphisms. Let P be
a graph property. The property P is said to be non-trivial if P contains a non-empty graph, but not all graphs. We call P
monotone if P is closed under taking subgraphs; and we call P hereditary if P is closed under taking induced subgraphs.
If P is closed under taking (vertex) disjoint unions, then P is called additive. Clearly, every monotone graph property is
hereditary, but not conversely. An overview about hereditary graph properties is given in [7]. Some popular graph properties
that are non-trivial, monotone, and additive are the following:

O ={G e G| G isedgeless},

and

Dy ={G € G| G is k-degenerate}

with k € Ny. Note that Dy = O, D; is the class of forests, and O C Dy C Dy1 for all k € Np. If P is additive, then a graph
belongs to P if and only if each of its components belong to P. For a non-trivial and hereditary graph property P, let

CR(P)={GeG|G¢P, butG—vePforalveV(G)}

and define

d(P) = min{8(G) | G € CR(P)}.

Note that CR(Dy) contains all connected (k + 1)-regular graphs and d(Dy) =k + 1. In particular CR(O) = (K3), that is, each
graph in CR(O) is isomorphic to K3, and d(O) = 1. The statements of the following proposition are well known and easy to
prove (see e.g. [33, Proposition 1]).

Proposition 1. Let P be a non-trivial and hereditary graph property. Then the following statements hold:

(a) Ko, K1 €P.

(b) A graph G belongs to CR(P) if and only if each proper induced subgraph of G belongs to P, but G itself does not belong to P.
(c) G ¢ P ifand only if G contains an induced subgraph G’ with G’ € CR(P).

(d) CR(P) # @ and d(P) € Ny.

(e) If G ¢ P, but G — v € P for some vertex v of G, then dg(v) > d(P).
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Let P be a graph property, and let G be a graph. A P-coloring of G with color set C is a coloring ¢ of G with color
set C such that G[¢~!(c)] € P for all c € C. If L is a list assignment for G, then a (P, L)-coloring of G is an P-coloring
@ of G such that ¢(v) € L(v) for all v € V(G). The P-chromatic number of G, denoted by x (G : P), is the least integer
k for which G admits a P-coloring with a set of k colors. The PP-choice number of G, denoted by (G : P), is the least
integer k such that G has a (P, L)-coloring whenever L is a list assignment of G satisfying |L(v)| >k for all v € V(G). If
(X, H) is a cover of G, then a P-transversal of (X, H) is a transversal T of (X, H) such that H[T] € P. An O-transversal of
(X, H) is also referred to as an independent transversal of (X, H). A P-transversal of (X, H) is also called a (P, (X, H))-
coloring of G. Note that G admits a (P, (X, H))-coloring if and only if G has a coloring ¢ with color set V(H) such that
T={p()|veV(G)} is a P-transversal of (X, H). The P-DP-chromatic number of G, denoted by xpp(G : P), is the least
integer k such that G admits a (P, (X, H))-coloring whenever (X, H) is a k-cover of G. We also write x(G), x¢(G) and
xpp(G) for x(G:O), x¢(G:O) and xpp(G : O), and the corresponding terms are chromatic number, choice number, and
DP-chromatic number, respectively. The choice number was introduced, independently, by Vizing [40] and by Erd6s, Rubin,
and Taylor [15]. The DP-chromatic number was introduced by Dvordk and Postle [14]. From the definition it follows that
every graph G satisfies

X(G:P) < xe(G:P) < xop(G : P) (11)

provided that P is non-trivial, hereditary, and additive. The first inequality follows from the fact that a P-coloring of a
graph G with color set C may be considered as a (P, L)-coloring of G for the constant list assignment L = C. To see the
second inequality, suppose that xpp(G :P) =k and let L be a list assignment for G with |[L(v)| >k for all v € V(G). Define
(X, H) to be the cover of G such that X, = {v} x L(v) for all v € V(G) and, for two distinct vertices (u,c) and (v,c") of H,
we have
H /
(0, (v, ¢)) = { po.v) ;ﬁg;gg
We say that (X, H) is the cover associated with the list assignment L. It is easy to check that (X, H) is indeed a k-cover of
G, and (X, H) has a P-transversal if and only if G admits a (P, L)-coloring. This implies, in particular, that x,(G:P) <k.
Note that the additivity of P is only needed for the second inequality.
We call a graph property reliable if it is non-trivial, hereditary and additive. In what follows we shall focus mainly on
such properties. Suppose that P is a reliable graph property and G is an arbitrary graph. Then

G’ € G implies xpp(G": P) < xpp(G : P). (1.2)

This follows from the fact that a k-cover (X’, H’) of G’ can be extended to a k-cover (X, H) of G such that H’ is obtained
from H by deleting all sets X, with v € V(G) \ V(G’). Hence, if T is a P-transversal of (X, H), then T'"=TNV(H') is a
‘P-transversal of G/, since H'[T’] is an induced subgraph of H[T] and P is hereditary. Since P is additive, it then follows
from (1.2) that

xpp(G : P) = max{xpp(G': P) | G is a component of G}. (1.3)

Furthermore, we claim that deletion of any vertex or edge of G decreases the P-DP-chromatic number of G by at most
u(G). If e € E¢(u,v), then G — v is a subgraph of G — e. Hence it suffices to show that every vertex v of G satisfies

Xxpp(G : P) — u(G) < xpp(G — v : P) < xpp(G : P). (1.4)

The second inequality follows from (1.2). To see the first inequality define k = xpp(G — v : P) and let (X, H) be a (k+ u(G))-
cover of G. Let x € X, and let (X', H') be the cover of G’ such that X;, = X, \ Ny (x) for all u € V(G’) and H' =H — (X, U
Ny (x)). By (C2), (X’,H") is a k-cover of G’ and, therefore, (X', H) has a P-transversal T’. Then T =T’ U {x} is a P-
transversal of (X, H), since P is reliable and H[T] is the disjoint union of H'[T’] and K;y. Consequently, xpp(G : P) <
k+ w(G) = xpp(G — v : P) + w(G). This proves (1.4).

We say that G is (P, xpp)-critical if every proper induced subgraph G’ of G satisfies xpp(G’: P) < xpp(G : P). By (1.3)
it follows that every (P, xpp)-critical graph is empty or connected.

Proposition 2. Let P be a reliable graph property and let G be a graph. Then G has an induced subgraph G’ such that xpp(G’ : P) =
xpp(G : P) and G’ is (P, xpp)-critical.

Proof. Among all induced subgraphs G’ of G satisfying xpp(G’: P) = xpp(G : P) we choose one whose order is minimum.
Then G’ has the desired properties. W

The above proposition implies that many problems related to the P-DP-chromatic number of graphs can be reduced to
problems about (P, xpp)-critical graphs. The study of critical graphs with respect to the ordinary chromatic number was
initiated by Dirac in the 1950s (see e.g. [11] and [12]) and has attracted a lot of attention until today.
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Let G be a graph, and let (X, H) be a cover of G. Given a vertex v € V(G), a partial transversal T of (X, H) such
that dom(T : G) = V(G — v) and H[T] € P is said to be a (P, v)-transversal of (X, H). We call (X, H) a P-critical cover
of G if (X, H) has no P-transversal, but for every vertex v € V(G) there exists a (P, v)-transversal. Note that if G is a
(P, xpp)-critical graph with xpp(G : P) =k, then xpp(G —v:P) <k —1 for all v € V(G) and, therefore, G has a P-critical
(k — 1)-cover.

Note that if P is a reliable graph property, then any graph in CR(P) is connected. Furthermore, since K; € P (by
Proposition 1(a)), this implies that d(P) > 1 and O C P.

Proposition 3. Let P be a reliable graph property with d(P) =r, let G be graph, and let (X, H) be a P-critical cover of G. Then the
following statements hold:

(a) dg(v) =r|Xy| forall v e V(G).
(b) Let v be a vertex of G such that dg(v) =r|Xy|, and let T be a (P, v)-transversal of (X, H). Moreover, for x € Xy, let

Hy=H[T U {x}] and dx =dpy, (x).

Thendy=r forall x € X, and d¢(v) = erxv dy.

Proof. Let v be an arbitrary vertex of G. Since (X, H) is a P-critical cover of G, there is a (P, v)-transversal of (X, H). Let
T be an arbitrary (P, v)-transversal of (X, H). Since (X, H) has no P-transversal, Hy = H[T U {x}] ¢ P for all x € X,.. Then
Proposition 1(e) implies that dy =dp,(x) > d(P) =7 for all x € Xy. Since |T N Xy,| =1 for all u € V(G — v), we then obtain
from (C2) that

de() =Ec(V)= D |En =Y de>rIXyl.

xeXy xeXy

Then dg(v) =r|X,| implies that dy =r for all x € X,. Thus (a) and (b) are proved. W

Let P be a reliable graph property with d(P) =r, let G be a graph, and let (X, H) be a P-critical cover of G. Then define

V(G,X,H,P)={veV()|dec(v)=r|Xyl|}.

A vertex v € V(G) is said to be a low vertex if v € V(G, X, H, P), and a high vertex, otherwise. By the above proposition,
every high vertex v of G satisfies d¢(v) >r|X,|+ 1. Moreover, we call G[V (G, X, H, P)] the low vertex subgraph of G with
respect to (X, H, P).

The next result, which is one of our main results in this paper, characterizes the block structure of the low vertex
subgraph of cover critical graphs. For covers associated with list assignments of simple graphs, this result was obtained in
1995 by Borowiecki, Drgas-Burchardt and Mihd6k [8, Theorem 3]. First we need some notation. If G is a graph and t € N,
then G’ =tG denotes the graph that results from G by replacing each of its edges with t parallel edges, that is, V(G’) = V (G)
and e (u, v) =tuc(u,v) for any two distinct vertices u, v of G. A graph G is called a brick if G =tK, with t,n e N, or
G =tC, with t,n € N and n > 3. The proof of the next result is given at the end of Section 2.

Theorem 4. Let P be a reliable graph property with d(P) =r, let G be a graph, and let (X, H) be a P-critical cover of G. If B is a
block of the low vertex subgraph G[V (G, X, H, P)] of G, then B is a brick, or B = tB’ with t € N such that either B’ € CR(P) and B’
is r-regular, or B € P and A(B’) <r.

In 1963, Gallai [16, Satz (E1)] characterized the low vertex subgraph of simple graphs being critical with respect to
the ordinary chromatic number. He proved that each block of such a low vertex subgraph is a complete graph or an odd
cycle, thereby extending Brooks’ famous theorem in [10]. That this also holds for list critical simple graphs was proved by
Thomassen [39], an extension to list critical simple hypergraphs was given by Kostochka and Stiebitz [22]. For simple graphs,
both results are special cases of Theorem 4 by putting P = O and by choosing covers associated either with constant list
assignments or with arbitrary list assignments.

Corollary 5. Let P be a reliable graph property with d(P) =r. Then the following statements hold:

(a) If G is a (P, xpp)-critical graph with xpp(G : P) =k + 1 and k > 0, then §(G) > rk. Moreover, if U = {v € V(G) | dg(v) =Tk},
then each block B of G[U] satisfies that B is a brick, or B = tB’ with t € N such that either B’ € CR(P) and B’ is r-regular, or
B' € Pand A(B") <r. ©
. X A
(b) Every graph G satisfies xpp(G : P) < == + 1.
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Proof. To prove (a), note that the assumptions imply that G has a P-critical k-cover, say (X, H) such that |X,| =k for
all v € V(G). Then d¢g(v) > r|Xy| =rk for all v € V(G) (by Proposition 3). Hence §(G) >rk and U = V (G, X, H, P) and,
therefore, the statements about the blocks in B(G[U]) are implied by Theorem 4. To prove (b), let G be an arbitrary graph
with xpp(G : P) =k + 1. Then there is a (P, xpp)-critical graph G’ with G’ € G and xpp(G’: P) =k + 1 (by Proposition 2).
Hence, A(G) > A(G’) > 8(G’) > rk (by (a)), which leads to xpp(G: P)=k+1<AG)/r+1. B

For the ordinary DP-chromatic number (i.e. for P = O), Corollary 5(a) was proved by Bernshteyn, Kostochka, and Pron
[3]; they indeed proved Theorem 4 for P = O. Since CR(O) = (K3) and d(P) =1, the only type of blocks that can occur in
this case are bricks. As noticed by Bernshteyn, Kostochka, and Pron [3], for t,n € N with n > 3, we have ypp(tCp) =2t +1
even in the case when n =0 (mod 2).

For a reliable graph property P and a graph G, we have xpp(G:P) =0 if and only if |G| =0; and xpp(G:P) =1 if
and only if G € P. Furthermore, G € CR(P) if and only if G is (P, xpp)-critical and xpp(G : P) = 2 (Proposition 1(b)). Next,
we want to establish a Brooks type result for the 7P-DP-chromatic number. The case P = O of the following result was
obtained by Bernshteyn, Kostochka, and Pron [3].

Theorem 6. Let P be a reliable graph property with d(P) =r, and let G be a connected simple graph. Then

Xxpp(G:P) < [ﬁ-‘ (1.5)

unless G = Kyy41 for some integer k > 0, or G is r-regular and G € CR(P), or P = O and G is a cycle.

Proof. Let G be a connected graph. If A(G) is not divisible by r, then (1.5) is an immediate consequence of Corollary 5(b)
and we are done. So assume that A(G) = kr for some integer k > 0. Then xpp(G : P) <k+1 (by Corollary 5(b)). In the case
that xpp(G : P) <k we are done, too. Hence it remains to consider the case that xpp(G:P) =k+ 1. Then G has an induced
subgraph G’ such that G’ is (P, xpp)-critical and xpp(G’: P) =k + 1 (by Proposition 2). Then §(G’) > rk (by Corollary 5(b))
and, since G is connected and A(G") < A(G) =rk, we obtain that G = G’ and so G is regular of degree rk. This implies that
the set of low vertices U = {v € V(G) | dg(v) =rk} satisfies U =V (G) = V(G) and so G = G'[U]. Since G is a simple graph,
it then follows from Theorem 4 that G is a complete graph, or G is a cycle, or G is r-regular and G € CR(P), or G € P and
A(G) <r. Since G is regular of degree kr, we conclude that G itself is a block, unless k = 1. If k =1, then G is r-regular
and xpp(G : P) =2, which implies that G ¢ P. Since G is (P, xpp)-critical, xpp(G — v :P) <1 for every v € V(G), and so
G — v € P for every v € V(G). Consequently, G € CR(P) and we are done. Now assume that k ## 1. Then G is a block and so
G is a complete graph or a cycle.

If Gis a Ky, then n — 1 =kr and we are done. It remains to consider the case that G is a cycle. Since G is kr-regular
and k # 1, this implies that k =2, r =1 and xpp(G : P) = 3. Since P is reliable, O C P. If K, € CR(P) then P =0O
(by Proposition 1(b)(c)) and we are done, too. Otherwise K, € P, and it is not difficult to show that xpp(G:P) <2, a
contradiction. Let (X, H) be an arbitrary cover of G such that |X,| =2 for all v € V(G). It suffices to show that there exists
a transversal T of (X, H) such that H[T] € P. If (X, H) has an independent transversal, this is obviously true. Otherwise, it
follows from [34, Theorem 2] that if e is an edge of H, then there exists a transversal T of (X, H) such that e is the only
edge of H[T] and so H[T] € P. This completes the proof. H

Note that the above theorem for P = O implies Brooks’ famous theorem [10] from 1941 saying that any connected
simple graph G satisfies x (G) < A(G) unless G is a complete graph or an odd cycle (use (1.1) and the trivial fact that any
even cycle has x =2).

The next result is an extension of a well known result about degree choosable graphs due to Erdds, Rubin, and Taylor
[15], it was independently proved by Oleg Borodin in his thesis (Problems of coloring and of covering the vertex set of a
graph by induced subgraphs, Novosibirsk 1979). For P = O, the next result was obtained by Bernshteyn, Kostochka, and
Pron [3]. Note that K> is the only graph in CR(O) and K is the only block belonging to O.

Theorem 7. Let P be a reliable graph property with d(P) =r, let G be a connected graph, and let (X, H) be a cover of G such that
r|Xy| >dg(v) forallv e V(G). If G is not (P, (X, H))-colorable, then each block B of G is a brick, or B =tB’ with t € N such that
either B’ € CR(P) and B’ is r-regular, or B’ € P and A(B") <r.

Proof. By assumption, (X, H) has no P-transversals. Then there is a vertex set U C V(G) such that the cover (X', H') of
G'=G—U with H' = H—J,cy Xu and X' = X|y v is P-critical. By Proposition 3, we have d¢' (u) > r|X; | =r|Xy| > dg(u)
for all u € V(G’). Since G is connected, this implies that G = G’ and so (X, H) is a P-critical cover of G. Moreover it follows
that r|X,| = dg(v), from which we obtain that V(G, X, H, P) = V(G), that is, G is its own low vertex subgraph. Then
Theorem 4 implies the required properties for the blocks of G. W

5



A.V. Kostochka, T. Schweser and M. Stiebitz Discrete Mathematics 346 (2023) 113186

.@ G =20,

° — —e G = 2Cy
° ! I — (X, H)
e X
— (%, i)

Fig. 1. A G-saturated cover (X, H) of G and its 2-inflation (X, H).

2. DP-Coloring and variable degeneracy

For proving Theorem 4, we shall establish a result (Theorem 8) that combines DP-coloring with variable degeneracy. Let
H be a graph and let f be a vertex function of H, i.e. f:V(H) — Ng. Then sp(f) ={x€ V(H) | f(x) > 0} is the support
of f in H, and sp°(f) ={x € V(H) | f(x) =0} is the complementary support of f in H. For a set X C V(H), define

FX) =Y f®.

xeX

A subgraph H of H is called strictly f- degenerate if each non-empty subgraph H' of H contains a vertex x such that
dy (%) < f(x). Note that if a subgraph H of H is a strictly f-degenerate, then V(H) C sp(f). The concept of variable
degeneracy seems to have been first studied by Borodin, Kostochka, and Toft [6]. DP-colorings with variable degeneracy for
simple graphs were introduced by Sittitrai and Nakprasit [36] although they use a slightly different approach.

In this section we study the following coloring problem. A configuration is a tuple € = (G, X, H, f) such that G is a
graph, (X, H) is a cover of G, and f is a vertex function of H. Given a configuration € = (G, X, H, f), we want to decide
whether (X, H) has a transversal T such that H[T] is strictly f-degenerate. In general, this decision problem is NP-complete.
However, if we add a certain degree condition it might become a polynomial problem.

Let € = (G, X, H, f) be a configuration. We call ¢ degree-feasible if for each vertex v of G we have

FX =) fx) =de(v).

xeXy

Furthermore, we say that € is colorable if (X, H) has a transversal T such that H[T] is strictly f-degenerate, otherwise € is
said to be uncolorable. If we want to decide whether € is colorable, or not, we always assume that |X, | =r for all v € V(G)
with r > 1, for otherwise we may add virtual vertices x and put f(x) = 0. In what follows, we shall use this assumption in
order to simplify our description. Our aim is to characterize degree feasible uncolorable configurations.

First, we need some more notation. Let G be a non-empty graph, and let (X, H) be a cover of G. For every edge uv
of G° H(Xy, Xy) is a bipartite graph with parts X; and X, and A(H(Xy, X)) < ucg(u, v) (by (C2)). We say that (X, H) is
G-saturated if for every edge uv of G°, the bipartite graph H(Xy, Xy) is regular of degree ¢ (u, v), see Fig. 1. If the cover
(X, H) is G-saturated and G is connected, then there is an integer r € N such that |X,| =r for all v € V(G); in this case
we say that (X, H) is an r-uniform cover of G. Let U C V(H) be an arbitrary set. For v € V(G), we define X, (U) =X, NU.
Let G’ = G[dom(U : G)], let H' = H[U], and let X' : V(G’) — 2V be the map with X| = X, (U) for all v € V(G'). Then
(X', H’) is a cover of G’ and we write (X', H) = (X, H)/U, we call this cover a subcover of (X, H) restricted to U. If
dom(U : G) = V(G), then (X', H') is a cover of G, in this case we say that (X', H’) is a full subcover of (X, H) restricted to
U.If (X', H") = (X, H)/U is a full subcover of (X, H) restricted to U and (X', H') is G-saturated, then Eg(U, V(H)\U) =9
(by (C1) and (C2)).

Let G be a non-empty graph, let (X, H) be a cover of G, and let s € N be an integer such that uy(x, y) =0 (mod s) for
every pair (x, y) of distinct vertices of H. We now construct a new cover (X, H) of G as follows:

e For every vertex x of H let Uy be a set of s new vertices, and let X, = Uxer Uy for all v € V(G); note that |X,| = s|Xy|.
e For every pair x, y of distinct vertices of H, let I:Ix,y = H[UxU Uy] be a copy of the bipartite graph mKjs s with parts Uy
and Uy where m = up(x, y)/s. Let H denote the union of all these graphs I:Ix,y.

6
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It is easy to show that (X, H) is a cover of G; we call this cover s-inflation of (X, H) (see Fig. 1). By an inflation of (X, H)
we mean an s-inflation of (X, H) with s € N, which only exists if H =sH’. Clearly, if (X, H) is G-saturated, so is each of its
inflations.

Given a graph G, we define two special types of covers of G. A cover (X, H) of G is called a G-cover if X, = {x,} for all
veV(G) and uy Xy, xy) = uc(u, v) for every edge uv of G°. Note that H is a copy of G with x, — v as isomorphism, and
so dy(xy) =dg(v) for all v € V(G). Furthermore, (X, H) is G-saturated. A cover (X, H) of G is called a double G-cover if
G=tC, withn>3 and t e N for a cycle C, = (v1,V2,...,vn, V1), Xy; (i €[1,n]) is a set of two vertices, say X;, X4, and
MHX;, xj) =t if i — j=1(mod 2n) else wy(x;,x;) =0. Clearly, (X, H) is G-saturated. Note that the cover (X, H) shown on
the right side of Fig. 1 is a double G-cover for G =2Cy4.

Next we recursively define the family of constructible configurations. A uniform configuration (G, X, H, f) is called con-
structible if one of the following five conditions hold:

(K1) (G, X, H, f) is an M-configuration, that is, G is a block and there exists a set U C V(H) such that (X, H)/U is an
inflation of a G-cover, and, for v € V(G) and x € X,, we have f(x) =dg(v)/|X,(U)| if xe€ U else f(x) =0. The set U
is called layer of (X, H).

Remark 1. Note that the cover (X, H)/U is a full subcover of (X, H) that is G-saturated, and, for v € V(G), we have
fXy) = f(Xy(U)) =dc(v). Hence any M-configuration is degree feasible.

(K2) (G, X, H, f) is a K-configuration, that is, G =tK; with t,n € N and there are integers ni,ny,...,np € N with p >1
such that ny +nz +...+np =n—1. Moreover, there are p disjoint subsets Uy, Uz, ..., Up of V(H) such that (X, H)/U;
is an inflation of a G-cover for i € [1, p], and, for v € V(H) and x € X,, we have f(x) = (tn;)/|X,(U;)| if x € U; for
ie[1, p] else f(x) =0. The set U; is said to be a layer of (G, X, H, f) of type n; (i € [1, p]).

Remark 2. Note that the cover (X, H)/U; is G-saturated for i € [1, p], and, for v € V(G), we have f(X,(U;))=tn; and
so f(Xy) =t(n—1) =d¢g(v). Hence any K-configuration is degree feasible. Furthermore, a K-configuration with p =1
is also an M-configuration.

(K3) (G, X, H, f) is an odd C-configuration, that is, G =tC, with t,n € N and n > 3 odd. Moreover, there are two disjoint
subsets Uq, Uy of V(H) such that (X, H)/U; is an inflation of a G-cover for i € {1,2}, and, for v € V(G) and x € X,,
we have f(x) =t/|X,(U;)| if xe U; for i € {1, 2} else f(x)=0.

Remark 3. Note that the cover (X, H)/U; is G-saturated for i € {1, 2}, and, for v € V(G), we have f(X,(U;)) =t and so
f(Xy) =2t =d¢(v). Hence any odd C-configuration is degree feasible. Furthermore, if n =3 then (G, X, H, f) is also a
K-configuration.

(K4) (G, X, H, f) is an even C-configuration, that is, G =tC, with t,n € N and n > 4 even. Moreover, there is a subset U
of H such that (X, H)/U is an inflation of a double G-cover, and, for v € V(G) and x € X,, we have f(x) =2t/|X,(U)|
if xe U else f(x)=0.

Remark 4. Note that the cover (X, H)/U is G-saturated, and, for v € V(G), we have f(X,)= f(X,(U)) =2t =dg(v).
Hence any even C-configuration is degree feasible.

(K5) There are two disjoint constructible configurations, say (G!, X', H, f1) and (G2, X2, H?, f2), such that G is obtained
from the disjoint graphs G' and G2 by identifying a vertex v! € V(G') and a vertex vZ € V(G2) to a new vertex v*,
H is obtained from the disjoint graphs H! and H? by choosing a bijection 7 from X,1 to X2 and identifying each
vertex x € Xy, with 7 (x) to a vertex x*, and f is defined as

1) if y e V(H')\ X1,

2 if y € V(H?)\ X2,

f1(x) + f2(w (x)) ify is obtained from the identification of x € X1
with 7w (x) € X 2.

fy) =

In this case, we say that (G, X, H, f) is obtained from (G!, X!, H!, f1) and (G2, X2, H?, f?) by merging v! and v to
v*,

By a C-configuration we mean either an odd or an even C-configuration. The next result characterizes uncolorable degree
feasible configurations whose underlying graph is connected.
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Theorem 8. Let G be a connected graph, let (X, H) be a cover of G, and let f : V(H) — Ny be a function. Then, (G, X, H, f) is an
uncolorable degree-feasible configuration if and only if (G, X, H, f) is constructible.

For the class of simple graphs, Theorem 8, formulated in a slightly different terminology, was obtained by F. Lu, Q. Wang
and T. Wang, see [28]. For covers (X, H) associated with constant list assignments of G, Theorem 8 is a reformulation of a
result that was obtained in 2000 by Borodin, Kostochka, and Toft [6, Theorem 8] for simple graphs and extended in 2021
by Schweser and Stiebitz [35, Theorem 2] to graphs and hypergraphs. The proof of Theorem 8 resembles the proofs given
in [6] and [35]; the proof is done via a sequence of five propositions and one theorem.

Recall that for a graph G, we denote by B(G) the set of blocks of G. Furthermore, for v € V(G), let B,(G) = {B €
B(G) | v € V(B)}. Note that two blocks of G have at most one vertex in common; and a vertex v belongs to S(G) if and
only if v belongs to more than one block of G. The blocks of G form a tree-like structure, and a block B of G is called an
end-block of G if |S(G) NV (B)| =1. Any connected graph G is either block or has at least two end-blocks.

Next, we want to describe the block structure of a constructible configuration. First, we need some notation. Let G be
a connected graph, let (X, H) be a cover of G, and let B be a non-empty induced subgraph of G. Then we denote by X5
the restriction of the map X to V(B), and by H® we denote the subgraph of H induced by the vertex set U = UVE‘,(B) Xy.
Clearly, (X, HB) is a cover of B, and (X8, H8) = (X, H)/U. In particular, X8 = X, for every vertex v of B, and HE(Xy, X,) =
H(Xy, Xy) for every edge uv of B°. The proof of the following proposition can be easily done by induction on the number
of blocks of the graph G. The after next proposition is an immediate consequence; note that an edge of G belongs to exactly
one block of G.

Proposition 9. Let € = (G, X, H, f) be a constructible configuration. Then for every B € B(G), there is a unique function f&, such
that ¢8 = (B, X8, HB, fB) is an M-, K- or C-configuration, and, for v € V(G) and x € X,, we have

fo= > ffw

BeB,(G)

In what follows, we call f& the B-part of the function f.

Proposition 10. Let ¢ = (G, X, H, f) be a constructible configuration, let B € B(G), let fB be the B-part of f, and let ¢ =
(B, XB, HB, fB). Suppose that there is a pair u, v of distinct vertices of B such that H(X,, X,) has only one component. Then ¢B
is an M-configuration, and if u, v are distinct vertices of B with juy(u, v) =m > 0, then H(Xy, Xy) isatKs s withm = ts fors,t € N.

The next proposition proves the “if’-direction of Theorem 8.

Proposition 11. Let (G, X, H, f) be a constructible configuration. Then the following statements hold:

(a) f(Xy)=dg(v) forallv e V(G).
(b) (G, X, H, f) is uncolorable.

Proof. Statement (a) holds if G is a block (see Remarks 1 - 4); for arbitrary connected graphs G it then easily follows from
Proposition 9. The proof of (b) is by reductio ad absurdum. Then we may choose a configuration € = (G, X, H, f) such that

(1) ¢ is constructible,
(2) € is colorable, i.e., there is a transversal T of (X, H) such that H[T] is strictly f-degenerate, and
(3) |G| is minimum subject to (1) and (2).

Note that if f(x) =0 for some vertex x € V(H), then H[{x}] is not strictly f-degenerate and, hence, x cannot be contained
in any strictly f-degenerate subgraph of H.

First, assume that (G, X, H, f) is an M-configuration. Then G is a block and there exists a set U C V(H) such that
(X, H)/U is an s-inflation of a G-cover of G. Let v € V(G) and x € X,.. Then s = |X,(U)|, and f(x) =dg(v)/s if xe€ U else
f(x)=0. Consequently, T €U and dyri(x) =dg(v)/s= f(x) if x€ T, a contradiction.

Next assume that (G, X, H, f) is a K-configuration. Then G =tK;, with t,n € N and there are integers ny,nz,...,np e N
with p > 1 such that ny +ny + ... +np =n — 1. Moreover, there are p disjoint subsets Uy, Ua,...,U, of V(H) such
that (X, H)/U; is an inflation of a G-cover for i € [1, p], and for v € V(H) and x € X, we have f(x) = (tn;)/|Xy(U;)| if
xeU; forie[1,p]else f(x) =0. Then T is a subset of Uy UU U---UUp. Since |T|=n, there is an i € [1, p], such that
m=|TNU;| >n;+ 1. If (X, H)/U; is an s-inflation of G, then s =|X,(U;)| for all v e V(G) and H' = H[T NU;] is a (t/s)Kn
implying that d},; (x) = (t/s)(m — 1) > (t/s)n; = f(x) for every x € V(H'), a contradiction. If (G, X, H, f) is a C-configuration,
we may argue similarly to get a contradiction.

To complete the proof, it remains to consider the case that € = (G, X, H, f) is obtained from two constructible config-
urations ¢! = (G, X!, H!, f1) and €% = (G?, X?, H?, ) by merging v! € V(G!) and v? € V(G?) to a new vertex v*. To

8
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simplify the proof, we assume that v! = vZ = v* and X},* = Xa* (i.e., m =1id). Since |G| was chosen minimal with respect
to (1) and (2), we conclude that ¢’ is uncolorable for i € {1, 2}. By (2), (X, H) has a transversal T such that H[T] is strictly
f-degenerate. Let T! =T N V(H') (i € {1,2}) and let x,« be the unique vertex from X, N T. Then T' N T2 = {x,+}, and
Fxys) = f1(xy+) + f2(xy+) and f(x) = fi(x) for all x € T! \ {xv+} (i € {1, 2}). Since ¢! is uncolorable, the subgraph H[T!] is
not strictly fi-degenerate implying that there is a subgraph Hi of H[T such that dﬁi (%) > fi(x) forall x € V(I-}f) (ie{1,2}).
If x,» does not belong to I-}", then Hi is a subgraph of H[T] — x,+ and so Hi is strictly fi-degenerate as H[T] is strictly
f-degenerate, which is impossible. Hence x,+ belongs to Hi (for i € {1,2}). Then H = H'UH? is a subgraph of H[T]. Let x
be an arbitrary vertex of H. If x # x,+, then x belongs to Hi — xy+ for some i € {1, 2}, and so d(x) = d]_;i(x) > fix) = f(x).
Furthermore, we have

dg(xve) =d g () +d 5, ) = F1000) + F2000e) = ).

Hence, H C H[T] is not strictly f-degenerate and so H[T] is not strictly f-degenerate, as well, a contradiction. M

As a consequence of the above proposition, it only remains to show that each uncolorable degree-feasible configuration
is constructible. To this end, we apply the following reduction method.

Proposition 12 (Reduction). Let € = (G, X, H, f) be a configuration, let v € V(G) \ S(G) and x, € X, such that f(x,) > 0. Moreover,
let ¢ = (G', X', H', ') be the tuple with G’ =G — v, (X', H') = (X¢', HS"), and

f'G0 =max{0, f(x) — pwu(x, xy)}
forall x € V(H’). Then, ¢ is a configuration and the following statements hold:

(a) If € is degree-feasible, then so is ¢'.
(b) If € is uncolorable, then so is €.

In the following, we write €' = €/ (v, Xy).

Proof. That ¢’ is a configuration is evident, note that H' = H — X,,. For the proof of (a) assume that € is degree-feasible.
Let u be an arbitrary vertex of G’. Then we have

do(u) —dg(W) = o (U, v) = ) Hu (X, xv),
xeXy

where the last inequality follows from the fact that both sets X, and X, are independent and Epy(Xy, Xy) is a union of
¢ (u, v) matchings (by (C2)). Then we conclude that

DI =Y (F® = pux) =de) — > pu(x. xy) = do ().

xeXy xXeXy xeXy
Hence ¢’ is degree-feasible and (a) is proved. For the proof of (b) assume that ¢ is colorable. Then there is a transversal
T’ of (X', H') such that H'[T'] is strictly f’'-degenerate. Clearly, T = T’ U {x,} is a transversal of (X, H). Let H be a non-
empty subgraph of H[T]. We claim that there is a vertex x in H such that dy(x) < f(x). If x, is the only vertex of H,
then f(xy) >0=d(xy) and we are done. Otherwise, H contains a vertex x # xy such that dyr(x) < f'(x) since H'[T’] is
strictly f’-degenerate. Then f’(x) = f(x) — (g (x,xy) and so

di (%) <dum() 4+ e, %) < f'X) + pu &, xy) = f(x).
This proves that H[T] is strictly f-degenerate. Consequently, ¢ is colorable and (b) is proved. B

By using the reduction method, we obtain the following useful properties of uncolorable degree-feasible configurations.

Proposition 13. Let G be a connected graph and let (G, X, H, f) be an uncolorable degree-feasible configuration. Then, the following
statements hold:

(a) f(Xy) =dg(u) forallu e V(G).

(b) If ve V(G) \ S(G) and x, € X, with f(x,) > O, then, for every u € V(G — v), we have f(y) > un(y,xy) forall y € X,, and
e, V) =3y ex, KHY, Xv).

(c) If |G| = 2 and if u is an arbitrary vertex of G, then there is a partial transversal T of (X, H) such that dom(T : H) = V(G — u)
and H[T] is strictly f-degenerate, and, for every such transversal T and every vertex x € Xy, we have f(x) = duirupg ().

9
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Proof. The proof of (a) is by induction on the order of G. If |G| =1 then sp°(f) = V(H) and the statement is obvious.
Suppose |G| > 2 and let u € V(G) be an arbitrary vertex. Since G is connected, there is a non-separating vertex v # u in
G and, since f(X,)>dg(v) > 1, there is at least one vertex x, € X, with f(x,) > 0. By Proposition 12, (G, X', H’, f) =
(G, X, H, f)/(v,xy) is an uncolorable degree-feasible configuration, where G’ = G — v and X}, = X, for all vertices w of G'.
By applying the induction hypothesis, we obtain

f'Xw) = (X)) =dg ).

Since G’ =G — v, we have

de(u) —dgr(u) = g, v) = Y fu(y, %),
YeXy

where the last inequality follows from (C2). Furthermore, f'(y) > f(y) — un(y, xy) for all y € X;,. Consequently, we obtain
that

dg@) =Y f'M= Y FW—muy.x)) =dc@) — Y pu(y.x) = de (),

yeXy yeXy yeXy

which implies that 3~y f(y) =dcW), f'(y) = f(¥) — uu(y,xy) >0 for all y € Xy and puc(u, v) =3 ,cx, HH (Y, Xy). This
proves (a) and (b).

For the proof of (c), assume that |G| > 2 and u € V(G). Let G’ =G —u, let X’ be the restriction of X to V(G’), and let
H' = H — Xy. Then (G, X', H’, f) is a degree-feasible configuration. Furthermore, each component of G’ contains a vertex
v € N¢(u) and we then obtain from (a) that

fXy)=dg(v) > dg (v).

Then it follows from (a) applied to each component of G’ that (X’, H') has a transversal T such that H'[T] is strictly
f-degenerate. Then T is a partial transversal of (X, H) such that dom(T : H) = V(G’) and H[T] = H'[T] is strictly f-
degenerate. Now let T be such a partial transversal. Since (G, X, H, f) is uncolorable, for each x € X,,, H[T U {x}] contains
a non-empty subgraph Hy such that f(y) <dp,(y) for all y € V(Hy). Clearly, Hy contains x and so f(x) <dp,(X) <
duiTuxg (%). For a vertex y € T, let v =v, be the unique vertex of G’ such that y € X,. Using (a) and (C2), we then
obtain that

de) =Y f@® =Y duropn® =Y > pn.y)

xeXy xeXy xeXy yeT
=Y > unxy) =Y pcwvy) = Y pe.v) =de().
yeT xeXy yeT veV(G')

This obviously implies that f(x) = dujTux(x) for all x € X;,. This proves (c). W

Let € = (G, X, H, f) be a configuration. Then we call G the fundamental graph of ¢, (X, H) the cover of ¢, and f the
function of ¢. The next theorem proves the “only if’-direction of Theorem 8.

Theorem 14. If € is an uncolorable degree-feasible configuration whose fundamental graph is connected, then € is constructible.

Proof. The proof is by reductio ad absurdum. Let € = (G, X, H, f) be a minimal counter-example, that is, G is a connected
graph such that

(A) € is an uncolorable degree-feasible configuration,
(B) € is not constructible, and
(C) |G| is minimum subject to (A) and (B).

By Proposition 13(a) we have

f(Xy) =dg(v) forallv e V(G). (2.1)

Clearly, |G| > 2, as for |G| =1 we have V(G) = {v} and f(x) =0 for all x € X, implying that (G, X, H, f) is an M-
configuration and hence constructible, a contradiction to (B). We reach a contradiction via a sequence of twelve claims.

Claim 1. G is a block.

10
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Proof. Otherwise, G is the union of two connected graphs G' and G2 such that V(G') NV (G?) = {v*} and |G| < |G| for
ie{1,2}. Forie{l,2}, let (X', H)) = (X%, H®') which is a cover of G'. We now define a vertex function f! of H' as follows.
By Proposition 13(c), (X, H) has a partial transversal T such that dom(T : G) = V(G — v*) and H[T] is strictly f-degenerate.
Let T1 =T NV(HY) and let T, = T NV (H?). Then H[T] is the disjoint union of H[T;] and H[T,]; note that H[T;] = H'[T;].
Then, using Proposition 13(c), we obtain that

F &) =durupx %) = damupn ) + dHm,upg ()

for all x € Xy+, and we set fi(x) = duit;upg (%) for i e (1,2} and x € Xy+. For a vertex v of Gl — v*, let fi(x) = f(x) for all
x € Xy. Clearly, ¢! = (G!, X!, H!, f1) is a configuration for i € {1, 2}.

First, we claim that ¢! is uncolorable for i € {1, 2}. For otherwise, by symmetry, we may assume that ¢! is colorable.
Then, there is a transversal T! of (X!, H') such that H'[T] is strictly f'-degenerate. Clearly, T = T!' U T, is a transversal
of (X, H), and we claim that H[T] is strictly f-degenerate. Otherwise, there is a subgraph H of H[T] with dg(x) > f(x) for
all x e V(H). Since H[T5] is strictly f-degenerate, H contains vertices of T'. Since H[T'] is strictly f!-degenerate, there is
avertex y € V(H)NT! such that dg_r,(¥) < Fl(y). If y ¢ Xy+, then

F) <dpn =dy_r,(») < f1) = F),

which is impossible. If y € Xy+, then f2(y) = duir,u(yy(¥) and we obtain that

F) <dg =dp_r, M +dar,on® < F{O+ PO =),

which is impossible, too. Hence, H[T] is strictly f-degenerate and so € is colorable, a contradiction to (A). This shows that
¢! is uncolorable for i € {1, 2}, as claimed.

Next, we claim that ¢! is degree-feasible for i € {1, 2}. By (2.1) and the definition of fi, we obtain that fi(X,) = f(X,) =
dg(v) =dgi(v) forall ve V(G' — v*). Moreover, we have

de(v*) = f(Xy+) = F1(Xvs) + f2(Xy#) =d1 (v¥) +dga (v¥). (2.2)

Since ¢! is uncolorable, it follows from Proposition 13(a) that fi(Xy,+) < dgi(v¥) for i € {1,2}. By (2.2), this implies that
Fi(Xy) = dgi(v¥) for i € {1, 2}. Consequently, ¢! is degree-feasible for i € {1, 2.

Since € = (G, X, H, f) is a minimal counter-example and |G!| < |G| for i € {1, 2}, we conclude that ¢! = (G, X!, H, f1) is
a constructible configuration, and so € is obtained from the constructible configurations ¢! and ¢? by merging two vertices
to v*. Hence, € is a constructible configuration, a contradiction to (B). O

Claim 2. Let v € V (G) and let x, € X, such that f(x,) > 0. Then the configuration ¢’ = &/ (v, xy) is constructible. If f’ is the function
of &, then for every vertex u of G — v, we have

@ ffW=f@) —uny,xy)=0forall y € X, and
(b) pe(,v) =3 yex, KHY, Xv).

Proof. From (A) and Proposition 12 it follows that ¢’ = €/(v, x,) is an uncolorable degree-feasible configuration. Since G is
a block (by Claim 1), G — v is connected. By (B) and (C), this implies that ¢ is a constructible configuration. Furthermore,
we have f(y) > gy (y,xy) (by Proposition 13(b)) and f’(y) = max{0, f(y) — iy (¥, %)}, which yields (a). Statement (b) also
follows from Proposition 13(b). O

Let uv be an edge of G°, let X C X;, and Y C X,. We call (X,Y) a complete uv-pair of type (t,s) if H(X,Y) is a tKs
and py(u, v) =ts. Note that if (X, Y) is a complete uv-pair of type (t,s) and U= XUY, then G’ = G[{u, v}] is a (ts)K3,
and (X, H)/U is an s-inflation of a G’-cover of G’. Let

CP(G) ={uv € E(G°) | (Xy, Xy) is a complete uv-pair}

Let U = sp(f) be the support of f, and let f* be the restriction of f to U. Then it follows from Claim 2 that the cover
(X', H') = (X, H)/U is G-saturated. Furthermore, (G, H’, X', f*) is an uncolorable degree-feasible configuration which is not
constructible. Hence (G, X’, H’, f*) is also a smallest counterexample and we may assume that U = V (H). As an immediate
consequence of Claim 2, we then obtain the following result.

Claim 3. For the configuration € = (G, X, H, f) the following statements hold:

(a) For every edge uv of G°, the graph H(Xy, Xy) is a bipartite graph with parts X, and X, that is regular of degree ¢ (u, v).
(b) If v e V(G) and x € Xy, then &/ (v, X) is a constructible configuration.

11
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Since G is connected, it follows from Claim 3(a) that € is r-uniform for an integer r > 1. If r =1, then X, = {x,} for all
veV(G) and puy(xy,xy) = uc(u, v) for every pair u, v of distinct vertices of G implying that (X, H) is a G-cover of G and
f(xy)=dg(v) for all ve V(H). Hence € is an M-configuration. This contradiction to (B) shows that r > 2.

Let v be an arbitrary vertex of G, and let x be an arbitrary vertex of X,. Then define ¢, = €/(v,x). By Claim 3, €,
is a constructible configuration and we denote by fy the function of €. Note that G’ = G — v is a connected graph and
¢y = (G, XC HY, fx). Since € is constructible, we can use the block decomposition of &, described in Proposition 9. If
B € B(G'), then we denote by fXB the B-part of the function fy. One important consequence of Proposition 9 and Claim 2(a)
is the following:

FE() = fe(y) = f(y) — L (y, x) whenever y € X, and u € V(B) \ S(G'). (2.3)

Claim 4. Let v € V(G) be an arbitrary vertex, let G’ = G — v, let B € B(G'), and let u, u’ be two distinct vertices of V(B) \ S(G'). If
u e Ng(v)andu’ ¢ N¢(v), thenuv € CP(G).

Proof. Suppose that (X, X,) is not a complete pair. Let m = u¢(u, v). By Claim 3(a), H(Xy, Xy) is an m-regular bipar-
tite graph with parts X, and X,. Consequently, there is a vertex y € X, and two distinct vertices x1,x2 € X, such that
WH (X1, Y) # p(x2, y). For i € {1,2}, let fi = f5. Then ¢% = (B, X8, HB, f;) is an M-, or K-, or C-configuration (i € {1,2}).
Since u’ ¢ Ny(v), we have fi(z) = fo(z) = f(z) > 0 for all ze X, (by (2.3)). Consequently, sp(f;) = V(H®) for i € {1,2}.
Since wuy(x1,y) # uu(x2,y), we have f1(y) # f2(y) (by (2.3)). First assume that @fl is an M-configuration. Then QEZ is
an M-configuration, too (by Proposition 10), implying that f;(y) =dg(u)/r = f2(y), a contradiction. Otherwise, Qf] is a
K-configuration with at least two layers, or a C-configuration where the underlying cycle has at least four vertices. This also
leads to f1(y) = f2(y), a contradiction. This completes the proof. O

Claim 5. We have CP(G) # E(G°).

Proof. Suppose that CP(G) = E(G°). Then (X, H) is an r-inflation of a G-cover of G. Our aim is to show that € is an M-
configuration, a contradiction to (B). To this end, it suffices to show that f(y) =d¢g(u)/r whenever y € X, and u € V(G).
So let u € V(G). Since |G| > 2, there is a vertex v € Ng(u) and a vertex x € X,. Then vu € CP(G), and so H(Xy, X,) is a
tKrr with tr = ug(u, v), which leads to f(y) = fx(y) +t for all y € X,. Note that G’ =G — v is a connected graph and €y
is constructible. If u is the only vertex of G’, then fy(y) =0 for all y € X,,, which leads to f(y) =t =d¢(u)/r as claimed.
It remains to consider the case that |G’| > 2. Let B € B(G’) be an arbitrary block. Then |B| > 2 and hence there is an edge
ww’ € E(B?). Since ww’ € CP(G), we obtain that H8(Xy,, Xy) = H(Xw, Xy) is @ 'Ky, with t'r = g (w, w'). Hence ¢5 is
an M-configuration (Proposition 10), and, therefore, fXB (2) =dp(z)/r whenever z € X, and w € V(B). Using Proposition 9
for ¢, for every vertex y € X, obtain that

dg ()
-

= Y Bw=r Y dw=

BeBu(G') BeBy(G)

which implies that f(y) = fx(y) +t = 1(d; () + nc(u, v)) = 1dg(u). This completes the proof. O

Assume that G has only two vertices, say u and v. For any vertex x € Xy, the configuration & is constructible and so
fx(y) =0 for all y € X, which implies that f(y) = fx(y¥) + uu(y,x) = uu(y,x) for y € X,. By symmetry, we also obtain
for any vertex y € X, that uy(y,x) = f(x) > 0 for all x € X,. Furthermore, f(X,) = f(Xy) =d¢(u) =dg(v). This implies
that H(Xy, Xy) is a tK;, and f(x) =t for all x € V(H). Hence € is an M-configuration. This contradiction to (B) shows that
|G| = 3.

Claim 6. We have CP(G) = @.

Proof. Suppose that CP(G) # @. By Claim 5, there is an edge e = uw € E(G°) \ CP(G). Since G is a block, there is a cycle
in G° containing the edge e and an edge belonging to CP(G). Let C be a shortest such cycle. Then C is an induced cycle
of G°. First assume that there is a vertex v € V(G) \ V(C). Then €, is an constructible configuration where x € X,. Clearly,
there is a block B of G — v containing V (C). Then B° contains uv and an edge of CP(G), which implies, by Proposition 10,
that uv € CP(G), a contradiction. It remains to consider the case that G° = C. Then there are three vertices v, w, w’ such
that vw € E(C) \ CP(G) and ww’ € E(C) N CP(G). Then B = G[{w, w'}] is a block of G’ =G — v. Let x € X,, be an arbitrary
vertex. Clearly, €3 is an M-configuration. Since ww’ € CP(G), we have sp(f£) = X,y U Xy, which implies that f2(y) =t
for all y € X,,. Since w ¢ S(G’), we obtain, for y € Xy, that fy(y) = f8(y) =t and f(y) =t + un(y,x) (by (2.3)). Since
x was chosen arbitrarily in X, and H(Xy, Xy) is a regular bipartite graph, we obtain that H(Xy, Xy) is a t'K; . Hence
vw € CP(G), a contradiction. O
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Combining Claim 6 and Claim 4, we obtain the following result.

Claim 7. Let v € V (G) be an arbitrary vertex, let G’ = G — v, let B € B(G’), and let u, u’ be two distinct vertices of V (B) \ S(G’). Then,
either {u,u’} € Ng(v) or {u,u’'} N Ng(v) = @.

Claim 8. The simple graph G° is a cycle or a complete graph.

Proof. Suppose that G° is not a complete graph. Since G is a block and |G| > 3, we have 2 < §(G°) <|G°| —2 =G| — 2. Let
v € V(G) be a vertex of minimum degree in G°. If B=G — v is a block, then B contains a vertex u € Ng(v) and a vertex
u’ ¢ Ng(v), contradicting Claim 7. So G’ = G — v is not a block and there are at least two end-blocks of G’. Let B be an
arbitrary end-block of G’. By the choice of v, we obtain that |B| > §(G°). Since B is an end-block of G’, there is exactly
one vertex u € V(B) N S(G’). Since G is a block, v has in G a neighbor belonging to B — u. By Claim 7 this implies that
V(B —u) € Ng(v). Since G has at least two end-blocks, this leads to §(G°) > 2(8(G°) — 1) and hence to §(G°) = 2. Then
|B| =2 and the vertex w € V(B — u) has degree §(G°) in G°. Furthermore G’ = G — v has exactly two end-blocks. If we
repeat this argument with w, we obtain that G° is a cycle. O

Let uw be an arbitrary edge of G° and let m = pg(u, w). Then m > 0 and the bipartite graph H (X, Xw) is regular
of degree m (Claim 3(a)). A component of H(Xy, Xy) is called a uw-part of H. For a subgraph H’' of H(Xy, Xy), let
Xy(H)Y=X,NV(H") and Xyw(H") =Xy NV (H). If H is a component of H(Xy, Xw) and (X, (H'), Xy (H")) is a complete
uw-pair, then H' is a tKs s with m =ts; in this case we say that H’ is a full uv-part of H of type (t, s). Note that if H; and
H; are full uw-parts of H, then V(H1) =V (H3) or V(Hy) N V(H,) = &, and in the later case Ey(V(Hy), V(H3)) = @. By
(C2) it follows that if H’ is a subgraph of H(Xy, Xy ), then H is a full uw-part if and only if (X, (H’), X\ (H’)) is a complete
uw-pair.

Claim 9. If uw is an edge of G°, then H(Xy, Xy,) is the disjoint union of p full uw-parts with p > 2.

Proof. Let uw be an arbitrary edge of G°. Since |G| > 3, there is a vertex v € Ng(u) \ {w}. Then G’ =G — v is connected
and there is a block B € B(G’) containing u and w. Since G° is a cycle or a complete graph (by Claim 8), it follows that
u ¢ S(G). Let x € X, be an arbitrary vertex. Then € is a constructible configuration. Since CP(G) = @, it then follows from
Proposition 10 that H(Xy, Xw) = HE(Xy, Xw) has at least two components. Since uw was chosen arbitrarily, the same holds
for the bipartite graph H(X,, X,). Now let y be an arbitrary vertex of X,. Then for x we can choose a vertex in X, that is
no neighbor of y in H. By (2.3), this implies that f£(y) = f(y) > 0. Then y belongs to a full uw-part of H, since €& is an
M-, or K-, or C-configuration, y € sp(f£), and H(Xy, Xw) = H3(Xy, Xw). This proves the claim. O

Claim 10. Let vu and uw be two distinct edges of G°, let (X, Y) be a complete vu-pair, and (Z, W) be a complete uw-pair. Suppose
that Y N Z # @. Then Y = Z and, moreover, the following statements hold:

(a) If G° is a complete graph of order n > 4, then (X, W) is a complete vw-pair.
(b) If G° is a cycle, then there are exactly two complete vu pairs.

Proof. First assume that G° is a complete graph of order n > 4. Then there is a vertex y € Y N Z and a vertex v’ € V(G) \
{u, v, w}. By Claim 9, there is a vertex x € X,/ such that uy(x, y) = 0. Then we have fy(y) = f(y) > 0 (by Claim 2(a)). Since
G° is a complete graph, €, is an M-configuration or a K-configuration and y belongs to a layer U of ¢,. Then X, Y, W, and
Z are all contained in U, which implies that Y = Z and (X, W) is a complete vw-pair. So we are done.

Now assume that G° is a cycle. Then G° — v is a path, B = G[{u, w}] is an end-block of G’ =G — v and u ¢ S(G'). Let
x € Xy be an arbitrary vertex, and let Uy = sp(f£) and US = sp°(fP). Then ¢B = (B, X8, HE, ) is an M-configuration
implying that H[U,] is a full uw-part of H. By Claim 9, Uy # &. For x,x" € X, we have Uy = Uy or UyN Uy = @. Now let
X' ={xe Xy | H[Uy] = H(Z, W)}. By (2.3), we obtain that for y € X, and x € X, we have

B =K =f) —unxy)

Suppose that H(Z, W) is a tKss. Let Z' = X, \ Z. If x € X', then Z’ C sp®(f) which yields that py(x, y) = f(y) > 0 for all
y € Z'. Consequently, Z' € Ny (x) for all x € X’. Now let x € X, be a vertex such that there is an y € Z with uy(x, y) =0.
Then fyx(y) = f(y) > 0 which implies that Z C sp(fx) and so x € X’. Consequently, Z C Ny (x) for all x € X, \ X'. From
Claim 9 it then follows that (X’, Z’) and (X, \ X', Z) are the only complete vu-pairs. Consequently, Y = Z and (b) holds. O

In what follows, by an inflation of G we mean an inflation of a G-cover of G. Recall that an inflation of G is an s-inflation
of G for some s € N.

Claim 11. G° is a complete graph of order n > 4.
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Proof. Suppose this is false. Then, by Claim 8, G° is a cycle C and n = |C| > 3. Let v be an arbitrary vertex of C, let
u and w be the two neighbors of v in C, and let u’ be the neighbor of u in C different from v. Then it follows
from Claim 10(b), that V(H) has a partition into two sets, say Uy and U, such that, for every edge v'w’ of the path
C —uu/, (X, (Uj), Xy (Up)) is a complete v'w’-pair of type (t;(v'w’),s;j(v'w’)) for i € {1, 2}. Then, by Claim 10(b), either
(Xu(U1), Xy (Up)) or (Xy(Up), Xy (U3) is a complete uu’-pair.

Case 1: (X, (U1), Xy (Uq)) is a complete uu’ pair. Then (X, (U2), Xy (Uz)) is a complete uu’ pair, too, and (X, H)/U; is an
si-inflation of G (i € {1, 2}). Furthermore, we obtain that n is odd. For otherwise, (X, H) has an independent transversal and
so € is colorable, a contradiction to (A). Choose two vertices y € X, (U1) and y’ € Xy (U>). Since n is odd, there is a partial
transversal T of (X, H) such that dom(T : G) =V (G —v), ¥,y €T, and T is an independent set of H, which implies that
H[T] is strictly f-degenerate. By Proposition 13(c), we obtain that f(x) = dyjTu(x) for all x € X,. Consequently, f(x) =
wyx, y) =t1(vu) for all x € X, (Uq) and f(x) = up(x,y") =ta2(vw) for all x € X, (Uz). Now we can choose two vertices
y € Xy(Uz) and y’ € X\ (Uq) to show that f(x) = uy(x,y) =t1(vw) for all x € X, (Uy) and f(x) = uy(x,y’) =t2(vu) for
all x € X, (Uy). This implies that t;(vu) =t;(vw) for i € {1, 2}. Since v was chosen arbitrarily, it then follows that G =tC,
and f(x) =t; for all x € U; with tjs; =t. Hence € is an odd C-configuration, a contradiction to (B).

Case 2: (Xy(Uq), Xy (U)) is a complete uu’ pair. Then (X, (U3), X,r(Uq)) is a complete uu’ pair, too, implying that
| Xy(Up))| =s for i € {1,2} and all u € V(G), where s € N. This implies that t;(v'w') = t;(v'w') = uc(v’, w’)/s for all
edges v'w’ of C — uu’. Then we obtain that n is even, For otherwise, (X, H) has an independent transversal and so € is
colorable, a contradiction to (A). Now we may argue similarly as in the first case to show that G =tC, and f(x) =t/s for
all x e V(H). Hence € is an even C-configuration, a contradiction to (B). O

By the above claim, G° is a complete graph of order n > 4. Then it follows from Claim 10(a) that V (H) has a partition into
p sets, say U, U2, ..., UP, such that (X, H)/U' is an s;-inflation of G for i € [1, p] and p > 2 (by Claim 9). Then for every
i €[1, p] and every edge uv of G°, there is an integer t;(uv) such that H(X,(U"), X, (U") is a ti(uv)Ks; s, and pg(u,v) =
t;(uv)s;. Furthermore, Ey(U!, V(H) \ U)) = @. Our aim is to show that ¢ is a K-configuration. This final contradiction then
completes the proof of Theorem 14.

Let x € V(H) be an arbitrary vertex. Then x € X,, for exactly one vertex u € V(G). For i € [1, p], we define U,"( =Ut\ X,.
Then (X, H)/U)"< is an s;-inflation of G — v. Since € is constructible (by Claim 3(b)) and G° — v is a complete graph, € is an
M-configuration or a K-configuration. For the function fy of € we obtain that fx(y) = f(¥) —puu(x,y) for all y e V(H)\ Xy
(by Claim 2(a)). Consequently, if x € U, j € [1, p]\ {i} and G’ = G — u, then the following statements hold:

(1) fx(y)=f(y) forall y e U,{, and U,{ is a layer of ¢,. Furthermore, if v € V(G’) and y € X, (UY), then fx(y) = dg (v)/sj.
(2) fry) = f(y)—tiuv) for all v e V(G') and y € X, (U").

Claim 12. No configuration €, with x € V (H) is an M-configuration.

Proof. Suppose, this is false. Then ¢y is an M-configuration for a vertex x € V(H), say x € X, for u € V(G). Let G’ =G —u,
let U =sp(fy) and U =sp°(fy). Then (X, H)/U is an inflation of G’ and fx(y) =0 for all y € U€. By (1), this implies that
p =2 and either U =U} or U = U2. By symmetry we may assume that U = U} and hence x € U;. Since U} is the only
layer of the M-configuration €, we obtain from (1) and (2) that

(3) f(y) = fx(y) =dg (v)/s1, provided that v € V(G’) and y € X, (U"), and
(4) f(y)=ta(uv), provided that v € V(G') and y € X, (U?).

Let T be an arbitrary transversal of (X, H)/ U;. Then, for every vertex v € V(G’), denote by y(v) the unique vertex in
T N X, (UY). Furthermore, since G’° is a complete graph, we obtain that durr(y) = fx(y) = f(y) for all y € T, where
the second equation follows from (1). Now let v be an arbitrary vertex of G/, and let y € X, (U?) be an arbitrary vertex.
Replace in T the vertex y(v) by y and denote the resulting set by T’. Then T’ is a partial transversal of (X, H). Since
Ey(U', V(H)\ U") = @, we obtain that y is an isolated vertex in H[T'] and, therefore, H[T’] is strictly f-degenerate.
Since dom(T’ : G) = V(G’), it then follows from Proposition 13 that for all X' € X,(U?) we have f(x) = durropyn ) =
U (X', y) =t2(uv) = f(y), where the last equality follows from (3). Since (v, y) was chosen arbitrarily with v € V(G’) and
y € Xy (U?), we obtain that there is an integer t, such that f(z) =t, for all ze U? and t;j(uv) =t; for all v € V(G’). Let
vv’ be an arbitrary edge of G° — u. Then Claim 2(a) implies that t; > t2(vv’). We claim that equality holds. For otherwise,
t» > t2(vv’), and we choose two vertices y € X, (U2) and y’ € X,»(U?), and let T’ be the set obtained from T by replacing
y(v), y(v') by y,y’. Then T’ is a partial transversal of (X, H) such that dom(T’": G) = V(G'), Ex(T'\{y, y'}, {y,¥'}) = &,
and dyr)(¥) = dur (') = t2(vv') <t = f(y) = f(y'). Consequently, H[T'] is strictly f-degenerate and Proposition 13
implies that, for the vertex x € X, we have

0<try=fx) =dyrupn® =pux y)+uux y)=f) + f) =2t
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which is impossible. This proves the claim that tz(vv’) = t;. Consequently, G = tK, with t = sata, (X, H)/Uy is an s3-
inflation of G, and f(z) =t for all ze U2. Then G’ =tK,_; and it follows from (3) that

fy)=tn—2)/s; forally e U] (2.4)

Let t; =t/sq. Let X' € X, (U) be an arbitrary vertex. There is a partial transversal T of (X, H) such that dom(T : G) = V(G)
and [TNU'|=|G'| —2=n—2.1f y is the only vertex of T belonging to U2, then y’ is an isolated vertex of H[T]. For
every vertex y € TN U!, we have duim(y) =t1(n —3) =t —3)/s1 < f(y) (by (2.4)). Hence HI[T] is strictly f-degenerate,
and Proposition 13(c) then yields that f(x") = durupey(®) = t1(n —2). Since (X, H)/U! is an sq-inflation of G and G =tKj,,
this implies that ¢ is a K-configuration, where U; is a layer of type ny =n — 2, and U, is a layer of type ny = 1. This
contradiction completes the proof. O

Since G° is a complete graph of order n > 4, Claim 12 implies that €, is a K-configuration for all x € V (H) and, therefore,
G —visaty,K, for all ve V(G). Since n > 4, this implies that G =tK, with t € N. For i € [1,n], (X, H)/Uf is an s;-inflation
of G, which implies that there is a t; € N such that t = s;t;. Now we claim that the function f of ¢ restricted to UJ is
constant. So let y,y’ be two vertices of UJ. Then there is a vertex u € V(G) such that neither y nor y’ belong to Xy.
Since p > 2, there is a vertex x € X, (U?) with i # j. By (1), this implies that U} is a layer of the M-configuration €. Then
fx) = fx(y") and, by (1), f(¥) = fu(¥) = fx(¥y") = f(¥"). This proves the claim.

Now, let u be an arbitrary vertex of G. By Proposition 13(c), there is a partial transversal of (X, H) such that dom(T :
G) = V(G") and HI[T] is strictly f-degenerate. For i € [1, p], let n; = |T N U'| yielding that ny +ny + --- + np=n-—1. By
Proposition 13(c), f(x) = dyrupy () for all x € X, which implies that f(x) =t;n; = tn;/s; when x € Xu(UY (i € [1, p]).
Consequently, f(z) =tn;/s; for all ze U' (i €[1, p]), and so € is a K-configuration, where U' is a layer of order n; > 0. This
contradiction completes the proof of Theorem 14. W

Proof of Theorem 4. Let P be a reliable graph property with d(P) =r, let G be a graph, let (X, H) be a P-critical cover
of G, and let B be an arbitrary block of the low vertex subgraph G[V (G, X, H, P)], and let G’ = G — V(B). Since (X, H) is
a ‘P-critical cover of G, there is a partial transversal T of (X, H) such that domg(T) = V(G’) and H[T] € P. For a vertex
u € V(B) and a color x € Xy, let H, = H[T U {x}] and dy x =dp, (x). Let U be the union of the sets X, with u € V(B), and
let (X', H") = (X, H)/U. Furthermore, define a vertex function f for H by

f(x) =max{0,r —dy x}

whenever u € V(B) and x € X,. Note that X’ = X® and H' = HB. First assume that (X’, H’) has a transversal T’ such that
H'[T’] is strictly f-degenerate. Note that this implies that f(x) > 0 for all x € T'. Furthermore, T’ U T is a transversal of
(X, H), and hence H[T’ U T] ¢ P. From Proposition 1(c) it then follows that there is a set Ty C T’ U T such that H[T{] €
CR(P). Then Proposition 1(e) implies that §(H[T1]) >r. Since H[T] € P, we have T{ N T’ # &, and so H[T; N T'] is a non-
empty induced subgraph of H'[T'] = H[T']. Since H’[T'] is strictly f-degenerate, H = H[T{ N T’] contains a vertex x with
dg(x) < f(x). Then x € Xy for some u € V(B) and f(x) =r —dy x. This leads to dyr,j(X) =dg (%) +dyx < f(x) +dyx <1, a
contradiction to §(H[T1]) >r.

It remains to consider the case when (X', H") has no transversal that is strictly f-degenerate. Let u € V(B) be an arbitrary

vertex. As u is a low vertex, we have d¢(u) =r|Xy|. Furthermore, we have
Z dyx <dg_v@-uu) =dg(u) —dp(u),
xeXy
where the first inequality follows from (C2). Then we obtain that
Y F= ) r—du)=rlXul= Y dyu=de) = Y dyu>dp(u). (255)
xeXy xeXy xeXy xeXy

Consequently, € = (B, X, H’, f) is an uncolorable degree-feasible configuration. By Theorem 8 it then follows that ¢ is a
constructible configuration. Since B is a block, € is a K-, C-, or M-configuration. In the first two cases, B is a brick, and we
are done. It remains to consider the case when € is an M-configuration. Then there is a set U C V(H’) such that (X', H")/U
is an s-inflation of B, and for u € V(B) and x € X, we have s = |X,(U)| and f(x) =dp(u)/s if x e U else f(x) =0. This
implies that B =sB’. Consequently, for every vertex u of B, we have

f(Xy) =dp(u) =sdp (u).
By (2.5), this implies that f(x) =r —dx, whenever u € V(B) and x € X,,. Hence

sdp () =dp(u) = f(Xu) = f(Xu(U)) = Z (r—duyx) <rs,

xeXy(U)
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which implies that A(B’) <r. If B’ € P, then we are done. If B’ ¢ P, then B’ has an induced subgraph B* € CR(P) (by
Proposition 1(c)). Then §(B*) > d(P) =r, which implies that B’ = B* and B’ is r-regular. Hence we are done, too. This
completes the proof. O

3. Critical graphs with few edges

Gallai [16] established a lower bound for the number of edges possible in a simple graph G being critical with respect to
the chromatic number, where the bound is depending on |G| and x (G). The proof given by Gallai uses the characterization
of the low vertex subgraph that he obtained in [16]. We can easily adopt Gallai’s proof to establish a Gallai type bound for
the number of edges of cover critical simple graphs in general. Our result is an extension of Gallai’s result [16, Satz 4.4].
First we need the following result due to Mihék and Skrekovsky [29, Corollary 4]; this result is an extension of Gallai’s
technical lemma [16, Lemma 4.5].

Theorem 15. Let p > 1 be an integer. Let F be a non-empty simple graph such that A(F) < p and A(B) < p for all blocks B € B(F).
Then

<p—]+ %) |F| —2|E(F)| = 2.

Theorem 16. Let P be a reliable graph property with d(P) =r, let G be a simple graph that has a P-critical k-cover with k > 3. Then

21EG)| > (kr+ kr—2 Gl + 2kr
- (kr +1)2 -3 (kr +1)2 -3

unless G = Kyr1.

Proof. Let V be the vertex set of G, and let n = |V|. For a set X C V, let e(X) denote the number of edges of the subgraph
G[X] of G induced by X. Let p =kr and let

p—2 / 2[)
R = + —— andR =
(p <p+1)2—3> (pr12-3

Our aim is to show that 2e(V) > Rn+ R’. Let U ={v € V | dg(v) = p} be the set of low vertices and let W =V \ U.
Note that dg(v) > p+ 1 for all ve W (by Proposition 3). Note that p>3r>3 and n>p+1=kr+ 1. If U =g, then
2e(V) > (p+1)n> Rn+ R’ and we are done. So assume that U # @&. Let F = G[U] be the low vertex subgraph. If K = K11
is a subgraph of F, then K is a component of G. As G has a P-critical k-cover, G is connected. Hence G = K = Ky,1 and
we are done. So suppose that no subgraph of F is a Kp11. Since p > 3r > 3, Theorem 4 then implies that A(F) < p and
A(B) < p for all blocks B € B(F). From Theorem 15 it then follows that

(p—]—l—%)lUl—Ze(U)zZ.

Since every vertex of U has degree p in G and n = |U| + |W|, we then obtain that

2
2e(V) =2e(W)+2p|U| —2e(U) > 2p|U| — 2e(U) > <p +1-— E) Ul + 2.
On the other hand, since every vertex in W has degree at least p + 1, we obtain that

2e(V)zpn+[W[=(p+Dn—|U|

Adding the first inequality to the second inequality multiplied with (p +1 — 2/p) yields

2e(V)(p+2-2/p)=(p+1-2/p)(p+Dn+2.
As (p+2—2/p)=(p?+2p—2)/p >0, this leads to

(P>+p—2)(p+1n+2p

=Rn+R.
p*+2p—2 i

2e(V) =

Thus the proof is complete. W
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Corollary 17. Let G be a simple graph that has an O-critical k-cover of G with k > 3. Then
2EG) > (k4 —F =2 6+ — X
- (k+1)2-3 (k+1)2-3
unless G = Ky1.
For covers associated with constant list assignments Corollary 17 is a reformulation of Gallai’s result [16, Satz 4.4] from

1963. For covers associated with general list assignments, Corollary 17 was obtained by Kostochka, Stiebitz, and Wirth [23].
The next corollary for P = O was obtained by Bernshteyn, Kostochka, and Pron [3, Corollary 10].

Corollary 18. Let P be a reliable graph property with d(P) =r and let G be a (P, xpp)-critical simple graph with xpp(G : P) =k+1
and k > 3. Then

kr—2 2kr
21E(G)| = | kr + |G

(kr +1)2 -3 + (kr+1)2 -3

unless G = Kyry1.

However, the first bound for the number of edges of simple graphs being critical with respect to the chromatic number
was obtained in 1957 by Dirac [12]. In 1974 Dirac [13] proved that his bound is sharp and characterized the class of
extremal graphs.

For k > 2, let Dir(k) denote the family of simple graphs G whose vertex set consists of three non-empty pairwise disjoint
sets A, By and By with

|B1l+ B2l = [A| +1=k

and two additional vertices v and v; such that A and By U B; are cliques in G not joined by any edge, and N¢(vi) = AUB;
for i =1,2. Then G has order 2k + 1 and independence number 2, and so x(G) > k + 1. However, if we delete a vertex
or an edge, then it is easy to check that the resulting graph has an O-coloring with k colors. Consequently, if G € Dir(k)
then x(G —v) < x(G) =k + 1 for all v € V(G) (such graphs are usually called (k + 1, x)-critical, similarly we define
(k+1, x¢)-critical and (k + 1, xpp)-critical). This implies that if G € Dir(k) and (X, H) is the cover of G associated with the
constant list assignment L = [1, k], then (X, H) is an O-critical k-cover of G. A simple graph G is called k-list-critical if G
has an O-critical k-cover that is associated with a list assignment L, which is the case if and only if G has no L-coloring,
but G — v has one for all v € V(G). Every simple graph G that is (k + 1, x,)-critical is k-list-critical, but not conversely.
The standard example is a graph G that is obtained from two disjoint copies of Kj; by adding exactly one edge joining
a vertex u of the first copy with a vertex u’ of the second copy. The cover (X, H) associated with the list assignment L
defined by L(u) =L(u") =[2,k+ 1] and L(v) = [1,k] is an O-critical k-cover of G, and so G is k-list-critical, but G is not
(k4 1, xe¢)-critical as ¢ (Kgy1) = xe(G) =k + 1.
In 1957 Dirac proved that every (k + 1, x)-critical graph G distinct from Ky4q and with k > 3 satisfies

2|E(G)| > k|G| +k —2

and in 1974 he proved that equality holds if and only if G € Dir(k). In 2002 Kostochka and Stiebitz [21] proved that every
k-list-critical graph G not containing Ky and with k > 3 satisfies the Dirac bound, and they asked whether equality holds
if and only if G belongs to Dir(k). That this is indeed the case was proved in 2018 by Bernsteyn and Kostochka [2] by
proving the following result.

Theorem 19. Let G be a simple graph that has an O-critical k-cover with k > 3. If G does not contain Ky1 as a subgraph, then

2|E(G)| = k|G| +k—2
and equality holds if and only if G € Dir(k).

The graphs belonging to Dir(k) have another interesting feature. As observed by Stiebitz, Tuza, and Voigt [38], if G €
Dir(k) and (X, H) is a k-cover associated with a list assignment L of G, then G has no (O, (X, H))-coloring if and only if
L =[1,k] is the constant list assignment. Whether this also holds for arbitrary k-covers of G seems to be unknown.

For simple graphs whose order is large, the Gallai bound beats the Dirac bound, however, only if the order is at least
quadratic in k. Let fi(n) denote the minimum number of edges in any (k+ 1, x)-critical simple graph of order n. By Konig’s
theorem, characterizing bipartite graphs (i.e., graphs with x < 2), the only (3, x)-critical graphs are the odd cycles. So the
function is only interesting for k > 3. For the many partial results obtained for this function the reader is referred to the
paper by Kostochka and Yancey [24] from 2014. Kostochka and Yancey succeeded to determine the best linear approximation
for the function fi(n) with k > 3, a as consequence they obtained that
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Let flf (n) denote the minimum number of edges in any (k + 1, x¢)-critical of order n, and let f,fp (n) denote the minimum
number of edges in any (k + 1, xpp)-critical simple graph of order n. For both functions we have the Gallai bound as well
as the Dirac bound. For the function f,fp (n) this seems to be all what is known. For the function f,f (n) some improvements
have been made by Kostochka and Stiebitz [22] and more recently by Kierstead and Rabern [19]. It would be interesting to
find further improvements, and to prove or disprove that f,f n) > fr(n) (n>k+2=>5).
Given a reliable graph property P with d(P) =r, we say that a graph G is (k+ 1, P, x)-critical if x (G—v:P) < x(G:
P)=k+1 for all v e V(G). Let Fp(k,n) denote the minimum number of edges in any (k + 1, P, x)-critical simple graph
of order n. From Theorem 16 it follows that

kr —2 Nt 2kr
(kr +1)2 -3 (kr+1)2 —3°

Until now this Gallai type bound is all what is known. One question is whether a Dirac type bound can be proved, at
least for some specific properties P. Apart from the property O, the best investigated property is D;. The class Dy of
d-degenerate (simple) graphs was introduced and investigated in 1970 by Lick and White [26]. For the parameter y (G : Dy)
Lick and White used the term point partition number while Bollobas and Manvel [4] used the term d-chromatic number.
The point partition number were investigated by various researchers including Lick and White [26], Kronk and Mitchem [25],
Mitchem [30], Borodin [5], Bollobas and Manvel [4], and possibly others. The term 7P-chromatic number was introduced by
Hedetniemi [18] in 1968. He studied, in particular, the D;-chromatic number under the name point aboricity and proved
that any planar graph G satisfies x (G : D7) < 3. Clearly, this is a simple consequence of the fact that any planar graph G
is 5-degenerate; hence we have xpp(G : Dq) < 3. Note that CR(D4) contains all connected (d + 1)-regular graphs and so
d(Dg) =d + 1. This implies, in particular, that

2k —2 4 4k
k+1)2 -3 2k+1)2 -3°

In 2002 Skrekovski [37] proved that 2Fp, (k,n) > 2kn + 2k — 2, but it is not known whether Fp, (k,n) > 2 fi(n), provided
that n is large enough. The only reliable property P for which a Dirac-type bound for the function Fp is known are the
properties Do = O and Dj.

Readers who are interested in additional information concerning the generalized coloring problem are referred to the
survey by Albertson, Jamison, Hedetniemi, and Locke [1] and to the survey by Borowiecki and Mihdék [9].

2Fp(k,n) > (kr—i—

2Fp, (k,n) > <2k +

4. Concluding remarks

Partitioning and coloring graphs under given degree constraints is a well-established area within graph theory and has
attracted a lot of attention to date. One of the earliest results in this area was obtained by Lovasz [27] in 1966. He proved
that every simple graph G with A(G) <d{+dy +---+dp for di,d>,...,dp € N has a coloring ¢ with color set C =1, p]
such that A(G[(p‘l(i)]) < d;j for all colors i € C. Partitioning of simple graphs into a fixed number of induced subgraphs
with bounded degeneracy (coloring number) were first studied in the late 1970s by Borodin [5] as well as by Bollobas
and Manvel [4]. Colorings of simple graphs under variable degeneracy constraints was first studied in 2000 by Borodin,
Kostochka, and Toft [6]. They investigated the following coloring problem for the class of simple graphs; for the class of
graphs and hypergraphs this problem was studied by Schweser and Stiebitz [35]. Let p € N be a fixed integer, and let
(G, f) be a pair such that G is a graph and f= (f1, f2,..., fp) is a vector function of G, ie., fi:V(G) — Np. We say that
(G, f) is colorable if there is a coloring ¢ of G with color set C =[1, p] such that G[p~1(i)] is strictly f;-degenerate for
all colors i € C, for otherwise we say that (G, f) is uncolorable. This coloring problem has several interesting applications
(see [6], [34] and [35]); the two most popular applications are the following. If fi =1 for all i € C, then (G, f) is colorable
if and only if x(G) < p. Let L be a list assignment with color set C, and define, for a vertex v € V(G) and a color i € C,
fitv)y=1if i e L(v) else fij(v) =0. Recall that if a subgraph H of G is strictly fj-degenerate, then V (H) C sp(f;) implying
that i € L(v) for all v € V(H). Hence (G, f) is colorable if and only if G has a proper L-coloring, i.e., an (O, L)-coloring.
Hence the decision problem whether (G, f) is colorable is NP-complete. However, if we add a certain degree condition, this
problem can be solved in polynomial time. We call (G, f) degree-feasible if every vertex v € V(G) satisfies

p
> fiv) = de(v).
i=1
A good characterization of uncolorable degree feasible pairs (G, f) whose underlying graph G is connected were obtained

in [6], for the class of simple graphs, and in [35], for the class of graphs and hypergraphs. This characterization can be easily
deduced from Theorem 8. To this end, we associate to the pair (G, f) a configuration € as follows: the fundamental graph

18



A.V. Kostochka, T. Schweser and M. Stiebitz Discrete Mathematics 346 (2023) 113186

of € is G, the cover of € is the cover (X, H) associated to the constant list assignment L = C =[1, p], that is, X, ={v} x C
for all v € V(G) and for two distinct vertices (u, i) and (v, j) of H we have

ifi =j,
ifi # j,
and the function of € is the function f with f(u,i) = fj(u) for u € V(G) and i € C. Then it is easy to check that (G, f)
is degree feasible if and only if € = (G, X, H, f) is degree feasible; and (G, f) is colorable if and only if € is colorable.
Hence Theorem 8, respectively Proposition 9, yields a constructive characterization of uncolorable degree-feasible pairs
(G, f), provided that G is a connected graph. This is exactly the characterization given in [6] for simple graphs and in [35]

for graphs in general. If (G, f) is an uncolorable degree-feasible pair and G is a block, then it follows from Theorem 8 that
(G, f) satisfies one of the following three conditions:

wr (U, i), (v, j)) = { gc(u, v)

e There is an integer j such that fj(v) =dg(v) and fi(v) =0 fori# j and v € V(G).

e G =tK, for some integers t,n € N and there are integers ny,na,...,n, € Ng such that ny +n;+---4+n,=n—1 and
f(v) = (tnq,tny, ..., tnp) for all v e V(G).

e G =tC, for some integers t,n, where t > 1 and n > 3 is odd, and there are two integers k, £ € [1, p] such that

|t ifie{k e,
f;(V)—{o ifi e[1, p]\{k ¢}

for all v € V(G).

Note that if G is a block, the configuration associated to (G, f) can never be an even C-configuration. Consequently, The-
orem 8 is a far reaching generalization of many well known and interesting results related to ordinary colorings as well
as to generalized colorings of graphs. That it is worthwhile to study these coloring problems also for graphs having mul-
tiple edges was first pointed out by Kim and Ozeki [20]; they used these concepts to study colorings of signed graphs. As
demonstrated by the second author in his thesis (Coloring of Graphs, Digraphs, and Hypergraphs, TU Ilmenau, 2020) the
characterization of uncolorable pairs for graphs in general can be used to obtain Brooks type results for the dichromatic
number and list dicromatic number of digraphs; such results were first obtained by Harutyunyan and Mohar [17] in 2012.
The decomposition result of Lovasz has a short and elegant proof. Moreover, it has motivated a large number of follow-up
investigations in this direction. Two more recent papers about partitioning and coloring graphs with degree constrains were
published by Rabern, see [31] and [32].
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