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In the present paper we extend the following three coloring concepts for the class of finite 
undirected graphs having multiple edges but no loops. First of all, the generalized color-
ing concept, in which the same colored vertices of a graph induce a subgraph satisfying a 
prescribed graph property. Secondly, the concept of variable degeneracy, which was intro-
duced by Borodin, Kostochka and Toft in 2000; this makes it possible to give a common 
generalization of the point partition number and the list chromatic number. Finally, the DP-
coloring concept as introduced by Ďvorák and Postle in 2018, where a list assignment of a 
graph is replaced by a cover. Combining these three coloring concepts leads to generaliza-
tions of various classical coloring results, including the theorems of Brooks, of Gallai, and 
of Erdős, Rubin and Taylor. Our main result is a DP-version of a theorem about partitions 
of graphs into a fixed number of induced subgraphs with bounded variable degeneracy due 
to Borodin, Kostochka, and Toft.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction and main results

Our notation is standard. In particular, N denotes the set of positive integers and N0 = N ∪ {0}. For integers k and �, 
let [k, �] = {x ∈ Z | k ≤ x ≤ �}. The term graph refers to a finite undirected graph possibly with multiple edges but without 
loops. For a graph G , V (G) and E(G) denote the vertex set and the edge set of G , respectively. The number of vertices of G
is called the order of G and is denoted by |G|. A graph G is called empty if |G| = 0; in this case we also write G = ∅. For a 
vertex v of G , let EG (v) denote the set of edges of G incident with v . Recall that every edge e of G is incident with exactly 
two vertices of G which are called the ends of e. We call dG (v) = |EG(v)| the degree of v in G . Then �(G) = maxv dG(v)

is the maximum degree of G , and δ(G) = minv dG(v) is the minimum degree of G , where we set �(∅) = δ(∅) = 0. For 
two different vertices u, v of G , let EG(u, v) = EG(u) ∩ EG(v). If e ∈ EG(u, v), then we also say that e is an edge of G
joining u and v; and that u is a neighbor of v and vice versa. Furthermore, μG (u, v) = |EG(u, v)| is the multiplicity of the 
vertex pair u, v in G; and μ(G) = maxu �=v μG(u, v) is the maximum multiplicity of G . The graph G is said to be simple if 
μ(G) ≤ 1. As usual, we denote by NG (v) the neighborhood of v in G , that is, the set of vertices u of G with EG(u, v) �= ∅. 
A graph G is called k-degenerate if each subgraph H of G satisfies δ(H) ≤ k. For X, Y ⊆ V (G), we denote by EG(X, Y ) the 
set of edges of G joining a vertex of X with a vertex of Y . Furthermore, G[X] is the subgraph of G induced by X , i.e., 
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V (G[X]) = X and E(G[X]) = EG(X, X). Define G − X = G[V (G) \ X], and, for v ∈ V (G), define G − v = G − {v}. If G ′ is a
subgraph of G , we write G ′ ⊆ G , that is, V (G ′) ⊆ V (G), E(G ′) ⊆ E(G), and each edge of G ′ has the same ends in G ′ as in G . 
If G ′ ⊆ G and G ′ �= G , then G ′ is a proper subgraph of G . A vertex set I ⊆ V (G) is independent in G if G[I] has no edges. 
A matching of a graph G is a set M of edges of G with no common ends; the matching M is called perfect if |M| = |G|

2 , or 
equivalently, if every vertex of G is an end of exactly one edge of M . A separating vertex of a connected graph G is a vertex 
v ∈ V (G) such that G − v has at least two components. The separating vertices of a disconnected graph are defined to be 
those of its components. We denote by S(G) the set of separating vertices of G . Furthermore, a block of G is a maximal 
connected subgraph B of G such that S(B) = ∅. Note that each block of G is an induced subgraph of G . We denote by B(G)

the set of blocks of G . If B(G) = {G}, we also say that G is a block. We denote by Kn the complete graph of order n ≥ 0 and 
by Cn the cycle of order n ≥ 3. A cycle is said to be even or odd depending on whether its order is even or odd. Clearly, 
both Kn with n ≥ 1 and Cn with n ≥ 3 are blocks and simple graphs. For a graph G , we denote by Go the underlying simple 
graph of G , that is, Go is a simple graph with V (Go) = V (G) and E(Go) = {uv | u, v ∈ V (G), μG(u, v) > 0}. Note that G and 
Go have the same block structure, that is, for every X ⊆ V (G) we have G[X] ∈ B(G) if and only if Go[X] ∈ B(Go).

Given a graph G , a coloring of G with color set C is a mapping ϕ : V (G) → C . Then, the sets ϕ−1(c) = {v ∈ V (G) | ϕ(v) =
c} with c ∈ C are called color classes of the coloring ϕ . A list assignment of G with color set C is a mapping L : V (G) → 2C

that assigns to each vertex v ∈ V (G) a set (list) L(v) ⊆ C of colors. A coloring ϕ of G is called an L-coloring if ϕ(v) ∈ L(v)

for all v ∈ V (G). A cover of G is a pair (X, H) consisting of a map X and a graph H satisfying the following two conditions:

(C1) X : V (G) → 2V (H) is a function that assigns to each vertex v ∈ V (G) a vertex set Xv = X(v) ⊆ V (H) such that the sets 
Xv with v ∈ V (G) are pairwise disjoint.

(C2) H is a graph with vertex set V (H) = ⋃
v∈V (G) Xv such that each Xv is an independent set of H , and, for any two 

distinct vertices u, v ∈ V (G), the set EH (Xu, Xv) is the union of μG (u, v) (possibly empty) matchings of H .

Let G be a graph and let (X, H) be a cover of G . Let uv ∈ E(Go), let X ⊆ Xu , and Y ⊆ Xv . Then define H(X, Y ) = H[X∪Y ]; 
note that H(X, Y ) is a bipartite graph with parts X and Y , and �(H(Xu, Xv)) ≤ μG(u, v) (by (C2)). If |Xv | ≥ k for all 
v ∈ V (G), we say that (X, H) is a k-cover of G . A transversal of (X, H) is a vertex set T ⊆ V (H) such that |T ∩ Xv | = 1
for all v ∈ V . A set T ⊆ V (H) is called partial transversal of (X, H) if |T ∩ Xv | ≤ 1 for all v ∈ V (G). For Y ⊆ V (H), let 
dom(Y : G) = {v ∈ V (G) | Xv ∩ Y �=∅} be the domain of Y in G .

Colorings of graphs become a subject of interest only when some restrictions to the color classes are imposed. Let G
denote the class of all graphs. A graph property is a subclass of G that is closed with respect to isomorphisms. Let P be 
a graph property. The property P is said to be non-trivial if P contains a non-empty graph, but not all graphs. We call P
monotone if P is closed under taking subgraphs; and we call P hereditary if P is closed under taking induced subgraphs. 
If P is closed under taking (vertex) disjoint unions, then P is called additive. Clearly, every monotone graph property is 
hereditary, but not conversely. An overview about hereditary graph properties is given in [7]. Some popular graph properties 
that are non-trivial, monotone, and additive are the following:

O = {G ∈ G | G is edgeless},
and

Dk = {G ∈ G | G is k-degenerate}
with k ∈ N0. Note that D0 = O, D1 is the class of forests, and O ⊆ Dk ⊆ Dk+1 for all k ∈ N0. If P is additive, then a graph 
belongs to P if and only if each of its components belong to P . For a non-trivial and hereditary graph property P , let

CR(P) = {G ∈ G | G /∈ P, but G − v ∈ P for all v ∈ V (G)}
and define

d(P) = min{δ(G) | G ∈ C R(P)}.
Note that CR(Dk) contains all connected (k + 1)-regular graphs and d(Dk) = k + 1. In particular CR(O) = 〈K2〉, that is, each 
graph in CR(O) is isomorphic to K2, and d(O) = 1. The statements of the following proposition are well known and easy to 
prove (see e.g. [33, Proposition 1]).

Proposition 1. Let P be a non-trivial and hereditary graph property. Then the following statements hold:

(a) K0, K1 ∈P .
(b) A graph G belongs to CR(P) if and only if each proper induced subgraph of G belongs to P , but G itself does not belong to P .
(c) G /∈P if and only if G contains an induced subgraph G ′ with G ′ ∈ CR(P).
(d) CR(P) �= ∅ and d(P) ∈N0 .
(e) If G /∈P , but G − v ∈P for some vertex v of G, then dG(v) ≥ d(P).
2
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Let P be a graph property, and let G be a graph. A P-coloring of G with color set C is a coloring ϕ of G with color 
set C such that G[ϕ−1(c)] ∈ P for all c ∈ C . If L is a list assignment for G , then a (P, L)-coloring of G is an P-coloring 
ϕ of G such that ϕ(v) ∈ L(v) for all v ∈ V (G). The P-chromatic number of G , denoted by χ(G : P), is the least integer 
k for which G admits a P-coloring with a set of k colors. The P-choice number of G , denoted by χ�(G : P), is the least 
integer k such that G has a (P, L)-coloring whenever L is a list assignment of G satisfying |L(v)| ≥ k for all v ∈ V (G). If 
(X, H) is a cover of G , then a P-transversal of (X, H) is a transversal T of (X, H) such that H[T ] ∈P . An O-transversal of 
(X, H) is also referred to as an independent transversal of (X, H). A P-transversal of (X, H) is also called a (P, (X, H))-
coloring of G . Note that G admits a (P, (X, H))-coloring if and only if G has a coloring ϕ with color set V (H) such that 
T = {ϕ(v) | v ∈ V (G)} is a P-transversal of (X, H). The P-DP-chromatic number of G , denoted by χDP(G : P), is the least 
integer k such that G admits a (P, (X, H))-coloring whenever (X, H) is a k-cover of G . We also write χ(G), χ�(G) and 
χDP(G) for χ(G : O), χ�(G : O) and χDP(G : O), and the corresponding terms are chromatic number, choice number, and
DP-chromatic number, respectively. The choice number was introduced, independently, by Vizing [40] and by Erdős, Rubin, 
and Taylor [15]. The DP-chromatic number was introduced by Ďvorák and Postle [14]. From the definition it follows that 
every graph G satisfies

χ(G : P) ≤ χ�(G : P) ≤ χDP(G : P) (1.1)

provided that P is non-trivial, hereditary, and additive. The first inequality follows from the fact that a P-coloring of a 
graph G with color set C may be considered as a (P, L)-coloring of G for the constant list assignment L ≡ C . To see the 
second inequality, suppose that χDP(G : P) = k and let L be a list assignment for G with |L(v)| ≥ k for all v ∈ V (G). Define 
(X, H) to be the cover of G such that Xv = {v} × L(v) for all v ∈ V (G) and, for two distinct vertices (u, c) and (v, c′) of H , 
we have

μH ((u, c), (v, c′)) =
{

μG(u, v) if c = c′,
0 if c �= c′.

We say that (X, H) is the cover associated with the list assignment L. It is easy to check that (X, H) is indeed a k-cover of 
G , and (X, H) has a P-transversal if and only if G admits a (P, L)-coloring. This implies, in particular, that χ�(G : P) ≤ k. 
Note that the additivity of P is only needed for the second inequality.

We call a graph property reliable if it is non-trivial, hereditary and additive. In what follows we shall focus mainly on 
such properties. Suppose that P is a reliable graph property and G is an arbitrary graph. Then

G ′ ⊆ G implies χDP(G
′ : P) ≤ χDP(G : P). (1.2)

This follows from the fact that a k-cover (X ′, H ′) of G ′ can be extended to a k-cover (X, H) of G such that H ′ is obtained 
from H by deleting all sets Xv with v ∈ V (G) \ V (G ′). Hence, if T is a P-transversal of (X, H), then T ′ = T ∩ V (H ′) is a 
P-transversal of G ′ , since H ′[T ′] is an induced subgraph of H[T ] and P is hereditary. Since P is additive, it then follows 
from (1.2) that

χDP(G : P) = max{χDP(G
′ : P) | G ′ is a component of G}. (1.3)

Furthermore, we claim that deletion of any vertex or edge of G decreases the P-DP-chromatic number of G by at most 
μ(G). If e ∈ EG(u, v), then G − v is a subgraph of G − e. Hence it suffices to show that every vertex v of G satisfies

χDP(G : P) − μ(G) ≤ χDP(G − v : P) ≤ χDP(G : P). (1.4)

The second inequality follows from (1.2). To see the first inequality define k = χDP(G − v :P) and let (X, H) be a (k +μ(G))-
cover of G . Let x ∈ Xv and let (X ′, H ′) be the cover of G ′ such that X ′

u = Xu \ NH (x) for all u ∈ V (G ′) and H ′ = H − (Xv ∪
NH (x)). By (C2), (X ′, H ′) is a k-cover of G ′ and, therefore, (X ′, H ′) has a P-transversal T ′ . Then T = T ′ ∪ {x} is a P-
transversal of (X, H), since P is reliable and H[T ] is the disjoint union of H ′[T ′] and K1. Consequently, χDP(G : P) ≤
k + μ(G) = χDP(G − v :P) + μ(G). This proves (1.4).

We say that G is (P, χDP)-critical if every proper induced subgraph G ′ of G satisfies χDP(G ′ : P) < χDP(G : P). By (1.3)
it follows that every (P, χDP)-critical graph is empty or connected.

Proposition 2. Let P be a reliable graph property and let G be a graph. Then G has an induced subgraph G ′ such that χDP(G ′ : P) =
χDP(G :P) and G ′ is (P, χDP)-critical.

Proof. Among all induced subgraphs G ′ of G satisfying χDP(G ′ : P) = χDP(G : P) we choose one whose order is minimum. 
Then G ′ has the desired properties. �

The above proposition implies that many problems related to the P-DP-chromatic number of graphs can be reduced to 
problems about (P, χDP)-critical graphs. The study of critical graphs with respect to the ordinary chromatic number was 
initiated by Dirac in the 1950s (see e.g. [11] and [12]) and has attracted a lot of attention until today.
3
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Let G be a graph, and let (X, H) be a cover of G . Given a vertex v ∈ V (G), a partial transversal T of (X, H) such 
that dom(T : G) = V (G − v) and H[T ] ∈ P is said to be a (P, v)-transversal of (X, H). We call (X, H) a P-critical cover
of G if (X, H) has no P-transversal, but for every vertex v ∈ V (G) there exists a (P, v)-transversal. Note that if G is a 
(P, χDP)-critical graph with χDP(G : P) = k, then χDP(G − v : P) ≤ k − 1 for all v ∈ V (G) and, therefore, G has a P-critical 
(k − 1)-cover.

Note that if P is a reliable graph property, then any graph in CR(P) is connected. Furthermore, since K1 ∈ P (by 
Proposition 1(a)), this implies that d(P) ≥ 1 and O ⊆P .

Proposition 3. Let P be a reliable graph property with d(P) = r, let G be graph, and let (X, H) be a P-critical cover of G. Then the 
following statements hold:

(a) dG (v) ≥ r|Xv | for all v ∈ V (G).
(b) Let v be a vertex of G such that dG(v) = r|Xv |, and let T be a (P, v)-transversal of (X, H). Moreover, for x ∈ Xv , let

Hx = H[T ∪ {x}] and dx = dHx(x).

Then dx = r for all x ∈ Xv and dG(v) = ∑
x∈Xv

dx.

Proof. Let v be an arbitrary vertex of G . Since (X, H) is a P-critical cover of G , there is a (P, v)-transversal of (X, H). Let 
T be an arbitrary (P, v)-transversal of (X, H). Since (X, H) has no P-transversal, Hx = H[T ∪ {x}] /∈ P for all x ∈ Xv . Then 
Proposition 1(e) implies that dx = dHx(x) ≥ d(P) = r for all x ∈ Xv . Since |T ∩ Xu | = 1 for all u ∈ V (G − v), we then obtain 
from (C2) that

dG(v) = |EG(v)| ≥
∑
x∈Xv

|EHx(x)| =
∑
x∈Xv

dx ≥ r|Xv |.

Then dG (v) = r|Xv | implies that dx = r for all x ∈ Xv . Thus (a) and (b) are proved. �

Let P be a reliable graph property with d(P) = r, let G be a graph, and let (X, H) be a P-critical cover of G . Then define

V (G, X, H,P) = {v ∈ V (G) | dG(v) = r|Xv |}.
A vertex v ∈ V (G) is said to be a low vertex if v ∈ V (G, X, H, P), and a high vertex, otherwise. By the above proposition, 
every high vertex v of G satisfies dG (v) ≥ r|Xv | + 1. Moreover, we call G[V (G, X, H, P)] the low vertex subgraph of G with 
respect to (X, H, P).

The next result, which is one of our main results in this paper, characterizes the block structure of the low vertex 
subgraph of cover critical graphs. For covers associated with list assignments of simple graphs, this result was obtained in 
1995 by Borowiecki, Drgas-Burchardt and Mihók [8, Theorem 3]. First we need some notation. If G is a graph and t ∈ N , 
then G ′ = tG denotes the graph that results from G by replacing each of its edges with t parallel edges, that is, V (G ′) = V (G)

and μG ′ (u, v) = tμG(u, v) for any two distinct vertices u, v of G . A graph G is called a brick if G = tKn with t, n ∈ N , or 
G = tCn with t, n ∈N and n ≥ 3. The proof of the next result is given at the end of Section 2.

Theorem 4. Let P be a reliable graph property with d(P) = r, let G be a graph, and let (X, H) be a P-critical cover of G. If B is a 
block of the low vertex subgraph G[V (G, X, H, P)] of G, then B is a brick, or B = tB ′ with t ∈ N such that either B ′ ∈ CR(P) and B ′
is r-regular, or B ′ ∈P and �(B ′) ≤ r.

In 1963, Gallai [16, Satz (E1)] characterized the low vertex subgraph of simple graphs being critical with respect to 
the ordinary chromatic number. He proved that each block of such a low vertex subgraph is a complete graph or an odd 
cycle, thereby extending Brooks’ famous theorem in [10]. That this also holds for list critical simple graphs was proved by 
Thomassen [39], an extension to list critical simple hypergraphs was given by Kostochka and Stiebitz [22]. For simple graphs, 
both results are special cases of Theorem 4 by putting P = O and by choosing covers associated either with constant list 
assignments or with arbitrary list assignments.

Corollary 5. Let P be a reliable graph property with d(P) = r. Then the following statements hold:

(a) If G is a (P, χDP)-critical graph with χDP(G : P) = k + 1 and k ≥ 0, then δ(G) ≥ rk. Moreover, if U = {v ∈ V (G) | dG(v) = rk}, 
then each block B of G[U ] satisfies that B is a brick, or B = tB ′ with t ∈ N such that either B ′ ∈ CR(P) and B ′ is r-regular, or 
B ′ ∈P and �(B ′) ≤ r.

(b) Every graph G satisfies χDP(G :P) ≤ �(G) + 1.
r

4
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Proof. To prove (a), note that the assumptions imply that G has a P-critical k-cover, say (X, H) such that |Xv | = k for 
all v ∈ V (G). Then dG (v) ≥ r|Xv | = rk for all v ∈ V (G) (by Proposition 3). Hence δ(G) ≥ rk and U = V (G, X, H, P) and, 
therefore, the statements about the blocks in B(G[U ]) are implied by Theorem 4. To prove (b), let G be an arbitrary graph 
with χDP(G : P) = k + 1. Then there is a (P, χDP)-critical graph G ′ with G ′ ⊆ G and χDP(G ′ : P) = k + 1 (by Proposition 2). 
Hence, �(G) ≥ �(G ′) ≥ δ(G ′) ≥ rk (by (a)), which leads to χDP(G :P) = k + 1 ≤ �(G)/r + 1. �

For the ordinary DP-chromatic number (i.e. for P = O), Corollary 5(a) was proved by Bernshteyn, Kostochka, and Pron 
[3]; they indeed proved Theorem 4 for P = O. Since CR(O) = 〈K2〉 and d(P) = 1, the only type of blocks that can occur in 
this case are bricks. As noticed by Bernshteyn, Kostochka, and Pron [3], for t, n ∈ N with n ≥ 3, we have χDP(tCn) = 2t + 1
even in the case when n ≡ 0 (mod 2).

For a reliable graph property P and a graph G , we have χDP(G : P) = 0 if and only if |G| = 0; and χDP(G : P) = 1 if 
and only if G ∈ P . Furthermore, G ∈ CR(P) if and only if G is (P, χDP)-critical and χDP(G : P) = 2 (Proposition 1(b)). Next, 
we want to establish a Brooks type result for the P-DP-chromatic number. The case P = O of the following result was 
obtained by Bernshteyn, Kostochka, and Pron [3].

Theorem 6. Let P be a reliable graph property with d(P) = r, and let G be a connected simple graph. Then

χDP(G : P) ≤
⌈

�(G)

r

⌉
, (1.5)

unless G = Kkr+1 for some integer k ≥ 0, or G is r-regular and G ∈ CR(P), or P =O and G is a cycle.

Proof. Let G be a connected graph. If �(G) is not divisible by r, then (1.5) is an immediate consequence of Corollary 5(b) 
and we are done. So assume that �(G) = kr for some integer k ≥ 0. Then χDP(G :P) ≤ k + 1 (by Corollary 5(b)). In the case 
that χDP(G :P) ≤ k we are done, too. Hence it remains to consider the case that χDP(G :P) = k + 1. Then G has an induced 
subgraph G ′ such that G ′ is (P, χDP)-critical and χDP(G ′ :P) = k + 1 (by Proposition 2). Then δ(G ′) ≥ rk (by Corollary 5(b)) 
and, since G is connected and �(G ′) ≤ �(G) = rk, we obtain that G = G ′ and so G is regular of degree rk. This implies that 
the set of low vertices U = {v ∈ V (G) | dG (v) = rk} satisfies U = V (G) = V (G ′) and so G = G ′[U ]. Since G is a simple graph, 
it then follows from Theorem 4 that G is a complete graph, or G is a cycle, or G is r-regular and G ∈ CR(P), or G ∈ P and 
�(G) ≤ r. Since G is regular of degree kr, we conclude that G itself is a block, unless k = 1. If k = 1, then G is r-regular 
and χDP(G : P) = 2, which implies that G /∈ P . Since G is (P, χDP)-critical, χDP(G − v : P) ≤ 1 for every v ∈ V (G), and so 
G − v ∈P for every v ∈ V (G). Consequently, G ∈ CR(P) and we are done. Now assume that k �= 1. Then G is a block and so 
G is a complete graph or a cycle.

If G is a Kn , then n − 1 = kr and we are done. It remains to consider the case that G is a cycle. Since G is kr-regular 
and k �= 1, this implies that k = 2, r = 1 and χDP(G : P) = 3. Since P is reliable, O ⊆ P . If K2 ∈ CR(P) then P = O
(by Proposition 1(b)(c)) and we are done, too. Otherwise K2 ∈ P , and it is not difficult to show that χDP(G : P) ≤ 2, a 
contradiction. Let (X, H) be an arbitrary cover of G such that |Xv | = 2 for all v ∈ V (G). It suffices to show that there exists 
a transversal T of (X, H) such that H[T ] ∈ P . If (X, H) has an independent transversal, this is obviously true. Otherwise, it 
follows from [34, Theorem 2] that if e is an edge of H , then there exists a transversal T of (X, H) such that e is the only 
edge of H[T ] and so H[T ] ∈P . This completes the proof. �

Note that the above theorem for P = O implies Brooks’ famous theorem [10] from 1941 saying that any connected 
simple graph G satisfies χ(G) ≤ �(G) unless G is a complete graph or an odd cycle (use (1.1) and the trivial fact that any 
even cycle has χ = 2).

The next result is an extension of a well known result about degree choosable graphs due to Erdős, Rubin, and Taylor 
[15], it was independently proved by Oleg Borodin in his thesis (Problems of coloring and of covering the vertex set of a 
graph by induced subgraphs, Novosibirsk 1979). For P = O, the next result was obtained by Bernshteyn, Kostochka, and 
Pron [3]. Note that K2 is the only graph in CR(O) and K1 is the only block belonging to O.

Theorem 7. Let P be a reliable graph property with d(P) = r, let G be a connected graph, and let (X, H) be a cover of G such that 
r|Xv | ≥ dG(v) for all v ∈ V (G). If G is not (P, (X, H))-colorable, then each block B of G is a brick, or B = tB ′ with t ∈ N such that 
either B ′ ∈ CR(P) and B ′ is r-regular, or B ′ ∈P and �(B ′) ≤ r.

Proof. By assumption, (X, H) has no P-transversals. Then there is a vertex set U ⊆ V (G) such that the cover (X ′, H ′) of 
G ′ = G −U with H ′ = H−⋃

u∈U Xu and X ′ = X |V (G)\U is P-critical. By Proposition 3, we have dG ′ (u) ≥ r|X ′
u| = r|Xu | ≥ dG(u)

for all u ∈ V (G ′). Since G is connected, this implies that G = G ′ and so (X, H) is a P-critical cover of G . Moreover it follows 
that r|Xv | = dG(v), from which we obtain that V (G, X, H, P) = V (G), that is, G is its own low vertex subgraph. Then 
Theorem 4 implies the required properties for the blocks of G . �
5
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Fig. 1. A G-saturated cover (X, H) of G and its 2-inflation ( X̃, H̃).

2. DP-Coloring and variable degeneracy

For proving Theorem 4, we shall establish a result (Theorem 8) that combines DP-coloring with variable degeneracy. Let 
H be a graph and let f be a vertex function of H , i.e. f : V (H) → N0. Then sp( f ) = {x ∈ V (H) | f (x) > 0} is the support
of f in H , and spo( f ) = {x ∈ V (H) | f (x) = 0} is the complementary support of f in H . For a set X ⊆ V (H), define

f (X) =
∑
x∈X

f (x).

A subgraph H̃ of H is called strictly f -degenerate if each non-empty subgraph H ′ of H̃ contains a vertex x such that 
dH ′(x) < f (x). Note that if a subgraph H̃ of H is a strictly f -degenerate, then V (H̃) ⊆ sp( f ). The concept of variable 
degeneracy seems to have been first studied by Borodin, Kostochka, and Toft [6]. DP-colorings with variable degeneracy for 
simple graphs were introduced by Sittitrai and Nakprasit [36] although they use a slightly different approach.

In this section we study the following coloring problem. A configuration is a tuple C = (G, X, H, f ) such that G is a 
graph, (X, H) is a cover of G , and f is a vertex function of H . Given a configuration C = (G, X, H, f ), we want to decide 
whether (X, H) has a transversal T such that H[T ] is strictly f -degenerate. In general, this decision problem is NP-complete. 
However, if we add a certain degree condition it might become a polynomial problem.

Let C = (G, X, H, f ) be a configuration. We call C degree-feasible if for each vertex v of G we have

f (Xv) =
∑
x∈Xv

f (x) ≥ dG(v).

Furthermore, we say that C is colorable if (X, H) has a transversal T such that H[T ] is strictly f -degenerate, otherwise C is 
said to be uncolorable. If we want to decide whether C is colorable, or not, we always assume that |Xv | = r for all v ∈ V (G)

with r ≥ 1, for otherwise we may add virtual vertices x and put f (x) = 0. In what follows, we shall use this assumption in 
order to simplify our description. Our aim is to characterize degree feasible uncolorable configurations.

First, we need some more notation. Let G be a non-empty graph, and let (X, H) be a cover of G . For every edge uv
of Go , H(Xu, Xv) is a bipartite graph with parts Xu and Xv and �(H(Xu, Xv)) ≤ μG(u, v) (by (C2)). We say that (X, H) is
G-saturated if for every edge uv of Go , the bipartite graph H(Xu, Xv) is regular of degree μG(u, v), see Fig. 1. If the cover 
(X, H) is G-saturated and G is connected, then there is an integer r ∈ N such that |Xv | = r for all v ∈ V (G); in this case 
we say that (X, H) is an r-uniform cover of G . Let U ⊆ V (H) be an arbitrary set. For v ∈ V (G), we define Xv (U ) = Xv ∩ U . 
Let G ′ = G[dom(U : G)], let H ′ = H[U ], and let X ′ : V (G ′) → 2U be the map with X ′

v = Xv(U ) for all v ∈ V (G ′). Then 
(X ′, H ′) is a cover of G ′ and we write (X ′, H ′) = (X, H)/U , we call this cover a subcover of (X, H) restricted to U . If 
dom(U : G) = V (G), then (X ′, H ′) is a cover of G , in this case we say that (X ′, H ′) is a full subcover of (X, H) restricted to 
U . If (X ′, H ′) = (X, H)/U is a full subcover of (X, H) restricted to U and (X ′, H ′) is G-saturated, then EH (U , V (H) \ U ) = ∅

(by (C1) and (C2)).
Let G be a non-empty graph, let (X, H) be a cover of G , and let s ∈ N be an integer such that μH (x, y) ≡ 0 (mod s) for 

every pair (x, y) of distinct vertices of H . We now construct a new cover ( X̃, H̃) of G as follows:

• For every vertex x of H let Ux be a set of s new vertices, and let X̃v = ⋃
x∈Xv

Ux for all v ∈ V (G); note that | X̃v | = s|Xv |.
• For every pair x, y of distinct vertices of H , let H̃x,y = H̃[Ux ∪ U y] be a copy of the bipartite graph mKs,s with parts Ux

and U y where m = μH (x, y)/s. Let H̃ denote the union of all these graphs H̃x,y .
6
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It is easy to show that ( X̃, H̃) is a cover of G; we call this cover s-inflation of (X, H) (see Fig. 1). By an inflation of (X, H)

we mean an s-inflation of (X, H) with s ∈N , which only exists if H = sH ′ . Clearly, if (X, H) is G-saturated, so is each of its 
inflations.

Given a graph G , we define two special types of covers of G . A cover (X, H) of G is called a G-cover if Xv = {xv} for all 
v ∈ V (G) and μH (xu, xv) = μG(u, v) for every edge uv of Go . Note that H is a copy of G with xv �→ v as isomorphism, and 
so dH (xv ) = dG(v) for all v ∈ V (G). Furthermore, (X, H) is G-saturated. A cover (X, H) of G is called a double G-cover if 
G = tCn with n ≥ 3 and t ∈ N for a cycle Cn = (v1, v2, . . . , vn, v1), Xvi (i ∈ [1, n]) is a set of two vertices, say xi, xn+i , and 
μH (xi, x j) = t if i − j ≡ 1 (mod 2n) else μH (xi, x j) = 0. Clearly, (X, H) is G-saturated. Note that the cover (X, H) shown on 
the right side of Fig. 1 is a double G-cover for G = 2C4.

Next we recursively define the family of constructible configurations. A uniform configuration (G, X, H, f ) is called con-
structible if one of the following five conditions hold:

(K1) (G, X, H, f ) is an M-configuration, that is, G is a block and there exists a set U ⊆ V (H) such that (X, H)/U is an 
inflation of a G-cover, and, for v ∈ V (G) and x ∈ Xv , we have f (x) = dG(v)/|Xv(U )| if x ∈ U else f (x) = 0. The set U
is called layer of (X, H).

Remark 1. Note that the cover (X, H)/U is a full subcover of (X, H) that is G-saturated, and, for v ∈ V (G), we have 
f (Xv) = f (Xv(U )) = dG(v). Hence any M-configuration is degree feasible.

(K2) (G, X, H, f ) is a K-configuration, that is, G = tKn with t, n ∈ N and there are integers n1, n2, . . . , np ∈ N with p ≥ 1
such that n1 +n2 + . . .+np = n −1. Moreover, there are p disjoint subsets U1, U2, . . . , Up of V (H) such that (X, H)/Ui
is an inflation of a G-cover for i ∈ [1, p], and, for v ∈ V (H) and x ∈ Xv , we have f (x) = (tni)/|Xv(Ui)| if x ∈ Ui for 
i ∈ [1, p] else f (x) = 0. The set Ui is said to be a layer of (G, X, H, f ) of type ni (i ∈ [1, p]).

Remark 2. Note that the cover (X, H)/Ui is G-saturated for i ∈ [1, p], and, for v ∈ V (G), we have f (Xv(Ui)) = tni and 
so f (Xv) = t(n − 1) = dG (v). Hence any K-configuration is degree feasible. Furthermore, a K-configuration with p = 1
is also an M-configuration.

(K3) (G, X, H, f ) is an odd C-configuration, that is, G = tCn with t, n ∈ N and n ≥ 3 odd. Moreover, there are two disjoint 
subsets U1, U2 of V (H) such that (X, H)/Ui is an inflation of a G-cover for i ∈ {1, 2}, and, for v ∈ V (G) and x ∈ Xv , 
we have f (x) = t/|Xv(Ui)| if x ∈ Ui for i ∈ {1, 2} else f (x) = 0.

Remark 3. Note that the cover (X, H)/Ui is G-saturated for i ∈ {1, 2}, and, for v ∈ V (G), we have f (Xv(Ui)) = t and so 
f (Xv) = 2t = dG(v). Hence any odd C-configuration is degree feasible. Furthermore, if n = 3 then (G, X, H, f ) is also a 
K-configuration.

(K4) (G, X, H, f ) is an even C-configuration, that is, G = tCn with t, n ∈ N and n ≥ 4 even. Moreover, there is a subset U
of H such that (X, H)/U is an inflation of a double G-cover, and, for v ∈ V (G) and x ∈ Xv , we have f (x) = 2t/|Xv(U )|
if x ∈ U else f (x) = 0.

Remark 4. Note that the cover (X, H)/U is G-saturated, and, for v ∈ V (G), we have f (Xv) = f (Xv(U )) = 2t = dG(v). 
Hence any even C-configuration is degree feasible.

(K5) There are two disjoint constructible configurations, say (G1, X1, H1, f 1) and (G2, X2, H2, f 2), such that G is obtained 
from the disjoint graphs G1 and G2 by identifying a vertex v1 ∈ V (G1) and a vertex v2 ∈ V (G2) to a new vertex v∗ , 
H is obtained from the disjoint graphs H1 and H2 by choosing a bijection π from Xv1 to Xv2 and identifying each 
vertex x ∈ Xv1 with π(x) to a vertex x∗ , and f is defined as

f (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f 1(y) if y ∈ V (H1) \ Xv1 ,

f 2(y) if y ∈ V (H2) \ Xv2 ,

f 1(x) + f 2(π(x)) if y is obtained from the identification of x ∈ Xv1

with π(x) ∈ Xv2 .

In this case, we say that (G, X, H, f ) is obtained from (G1, X1, H1, f 1) and (G2, X2, H2, f 2) by merging v1 and v2 to 
v∗ .

By a C-configuration we mean either an odd or an even C-configuration. The next result characterizes uncolorable degree 
feasible configurations whose underlying graph is connected.
7
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Theorem 8. Let G be a connected graph, let (X, H) be a cover of G, and let f : V (H) → N0 be a function. Then, (G, X, H, f ) is an 
uncolorable degree-feasible configuration if and only if (G, X, H, f ) is constructible.

For the class of simple graphs, Theorem 8, formulated in a slightly different terminology, was obtained by F. Lu, Q. Wang 
and T. Wang, see [28]. For covers (X, H) associated with constant list assignments of G , Theorem 8 is a reformulation of a 
result that was obtained in 2000 by Borodin, Kostochka, and Toft [6, Theorem 8] for simple graphs and extended in 2021 
by Schweser and Stiebitz [35, Theorem 2] to graphs and hypergraphs. The proof of Theorem 8 resembles the proofs given 
in [6] and [35]; the proof is done via a sequence of five propositions and one theorem.

Recall that for a graph G , we denote by B(G) the set of blocks of G . Furthermore, for v ∈ V (G), let Bv (G) = {B ∈
B(G) | v ∈ V (B)}. Note that two blocks of G have at most one vertex in common; and a vertex v belongs to S(G) if and 
only if v belongs to more than one block of G . The blocks of G form a tree-like structure, and a block B of G is called an
end-block of G if |S(G) ∩ V (B)| = 1. Any connected graph G is either block or has at least two end-blocks.

Next, we want to describe the block structure of a constructible configuration. First, we need some notation. Let G be 
a connected graph, let (X, H) be a cover of G , and let B be a non-empty induced subgraph of G . Then we denote by XB

the restriction of the map X to V (B), and by HB we denote the subgraph of H induced by the vertex set U = ⋃
v∈V (B) Xv . 

Clearly, (XB , HB) is a cover of B , and (XB , HB) = (X, H)/U . In particular, XB
v = Xv for every vertex v of B , and HB(Xu, Xv) =

H(Xu, Xv) for every edge uv of Bo . The proof of the following proposition can be easily done by induction on the number 
of blocks of the graph G . The after next proposition is an immediate consequence; note that an edge of G belongs to exactly 
one block of G .

Proposition 9. Let C = (G, X, H, f ) be a constructible configuration. Then for every B ∈ B(G), there is a unique function f B , such 
that CB = (B, XB , HB , f B) is anM-, K- or C-configuration, and, for v ∈ V (G) and x ∈ Xv , we have

f (x) =
∑

B∈Bv (G)

f B(x)

In what follows, we call f B the B-part of the function f .

Proposition 10. Let C = (G, X, H, f ) be a constructible configuration, let B ∈ B(G), let f B be the B-part of f , and let CB =
(B, XB , HB , f B). Suppose that there is a pair u, v of distinct vertices of B such that H(Xu, Xv) has only one component. Then CB

is an M-configuration, and if u, v are distinct vertices of B with μH (u, v) =m > 0, then H(Xu, Xv) is a tKs,s with m = ts for s, t ∈N .

The next proposition proves the “if”-direction of Theorem 8.

Proposition 11. Let (G, X, H, f ) be a constructible configuration. Then the following statements hold:

(a) f (Xv) = dG(v) for all v ∈ V (G).
(b) (G, X, H, f ) is uncolorable.

Proof. Statement (a) holds if G is a block (see Remarks 1 - 4); for arbitrary connected graphs G it then easily follows from 
Proposition 9. The proof of (b) is by reductio ad absurdum. Then we may choose a configuration C = (G, X, H, f ) such that

(1) C is constructible,
(2) C is colorable, i.e., there is a transversal T of (X, H) such that H[T ] is strictly f -degenerate, and
(3) |G| is minimum subject to (1) and (2).

Note that if f (x) = 0 for some vertex x ∈ V (H), then H[{x}] is not strictly f -degenerate and, hence, x cannot be contained 
in any strictly f -degenerate subgraph of H .

First, assume that (G, X, H, f ) is an M-configuration. Then G is a block and there exists a set U ⊆ V (H) such that 
(X, H)/U is an s-inflation of a G-cover of G . Let v ∈ V (G) and x ∈ Xv . Then s = |Xv(U )|, and f (x) = dG (v)/s if x ∈ U else 
f (x) = 0. Consequently, T ⊆ U and dH[T ](x) = dG (v)/s = f (x) if x ∈ T , a contradiction.

Next assume that (G, X, H, f ) is a K-configuration. Then G = tKn with t, n ∈N and there are integers n1, n2, . . . , np ∈N
with p ≥ 1 such that n1 + n2 + . . . + np = n − 1. Moreover, there are p disjoint subsets U1, U2, . . . , Up of V (H) such 
that (X, H)/Ui is an inflation of a G-cover for i ∈ [1, p], and for v ∈ V (H) and x ∈ Xv we have f (x) = (tni)/|Xv(Ui)| if 
x ∈ Ui for i ∈ [1, p] else f (x) = 0. Then T is a subset of U1 ∪ U2 ∪ · · · ∪ Up . Since |T | = n, there is an i ∈ [1, p], such that 
m = |T ∩ Ui | ≥ ni + 1. If (X, H)/Ui is an s-inflation of G , then s = |Xv(Ui)| for all v ∈ V (G) and H ′ = H[T ∩ Ui] is a (t/s)Km

implying that d′
H (x) = (t/s)(m − 1) ≥ (t/s)ni = f (x) for every x ∈ V (H ′), a contradiction. If (G, X, H, f ) is a C-configuration, 

we may argue similarly to get a contradiction.
To complete the proof, it remains to consider the case that C = (G, X, H, f ) is obtained from two constructible config-

urations C1 = (G1, X1, H1, f 1) and C2 = (G2, X2, H2, f 2) by merging v1 ∈ V (G1) and v2 ∈ V (G2) to a new vertex v∗ . To 
8
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simplify the proof, we assume that v1 = v2 = v∗ and X1
v∗ = X2

v∗ (i.e., π = id). Since |G| was chosen minimal with respect 
to (1) and (2), we conclude that Ci is uncolorable for i ∈ {1, 2}. By (2), (X, H) has a transversal T such that H[T ] is strictly 
f -degenerate. Let T i = T ∩ V (Hi) (i ∈ {1, 2}) and let xv∗ be the unique vertex from Xv∗ ∩ T . Then T 1 ∩ T 2 = {xv∗ }, and 
f (xv∗ ) = f 1(xv∗ ) + f 2(xv∗ ) and f (x) = f i(x) for all x ∈ T i \ {xv∗ } (i ∈ {1, 2}). Since Ci is uncolorable, the subgraph H[T i] is 
not strictly f i-degenerate implying that there is a subgraph H̃ i of H[T i] such that d

H̃i (x) ≥ f i(x) for all x ∈ V (H̃ i) (i ∈ {1, 2}). 
If xv∗ does not belong to H̃ i , then H̃ i is a subgraph of H[T ] − xv∗ and so H̃ i is strictly f i-degenerate as H[T ] is strictly 
f -degenerate, which is impossible. Hence xv∗ belongs to H̃ i (for i ∈ {1, 2}). Then H̃ = H̃1 ∪ H̃2 is a subgraph of H[T ]. Let x
be an arbitrary vertex of H̃ . If x �= xv∗ , then x belongs to H̃ i − xv∗ for some i ∈ {1, 2}, and so dH̃ (x) = d

H̃i (x) ≥ f i(x) = f (x). 
Furthermore, we have

dH̃ (xv∗) = d
H̃1(xv∗) + d

H̃2(xv∗) ≥ f 1(xv∗) + f 2(xv∗) = f (xv∗).

Hence, H̃ ⊆ H[T ] is not strictly f -degenerate and so H[T ] is not strictly f -degenerate, as well, a contradiction. �

As a consequence of the above proposition, it only remains to show that each uncolorable degree-feasible configuration 
is constructible. To this end, we apply the following reduction method.

Proposition 12 (Reduction). Let C = (G, X, H, f ) be a configuration, let v ∈ V (G) \ S(G) and xv ∈ Xv such that f (xv) > 0. Moreover, 
let C′ = (G ′, X ′, H ′, f ′) be the tuple with G ′ = G − v, (X ′, H ′) = (XG ′

, HG ′
), and

f ′(x) = max{0, f (x) − μH (x, xv)}
for all x ∈ V (H ′). Then, C′ is a configuration and the following statements hold:

(a) If C is degree-feasible, then so is C′.
(b) If C is uncolorable, then so is C′.

In the following, we write C′ = C/(v, xv ).

Proof. That C′ is a configuration is evident, note that H ′ = H − Xv . For the proof of (a) assume that C is degree-feasible. 
Let u be an arbitrary vertex of G ′ . Then we have

dG(u) − dG ′(u) = μG(u, v) ≥
∑
x∈Xu

μH (x, xv),

where the last inequality follows from the fact that both sets Xu and Xv are independent and EH (Xu, Xv) is a union of 
μG(u, v) matchings (by (C2)). Then we conclude that∑

x∈Xu

f ′(x) ≥
∑
x∈Xu

( f (x) − μH (x, xv)) ≥ dG(u) −
∑
x∈Xu

μH (x, xv) ≥ dG ′(u).

Hence C′ is degree-feasible and (a) is proved. For the proof of (b) assume that C′ is colorable. Then there is a transversal 
T ′ of (X ′, H ′) such that H ′[T ′] is strictly f ′-degenerate. Clearly, T = T ′ ∪ {xv} is a transversal of (X, H). Let H̃ be a non-
empty subgraph of H[T ]. We claim that there is a vertex x in H̃ such that dH̃ (x) < f (x). If xv is the only vertex of H̃ , 
then f (xv) > 0 = dH̃ (xv ) and we are done. Otherwise, H̃ contains a vertex x �= xv such that dH[T ′](x) < f ′(x) since H ′[T ′] is 
strictly f ′-degenerate. Then f ′(x) = f (x) − μH (x, xv) and so

dH̃ (x) ≤ dH[T ](x) + μH (x, xv) < f ′(x) + μH (x, xv) = f (x).

This proves that H[T ] is strictly f -degenerate. Consequently, C is colorable and (b) is proved. �

By using the reduction method, we obtain the following useful properties of uncolorable degree-feasible configurations.

Proposition 13. Let G be a connected graph and let (G, X, H, f ) be an uncolorable degree-feasible configuration. Then, the following 
statements hold:

(a) f (Xu) = dG(u) for all u ∈ V (G).
(b) If v ∈ V (G) \ S(G) and xv ∈ Xv with f (xv ) > 0, then, for every u ∈ V (G − v), we have f (y) ≥ μH (y, xv) for all y ∈ Xu and 

μG(u, v) = ∑
y∈Xu

μH (y, xv).
(c) If |G| ≥ 2 and if u is an arbitrary vertex of G, then there is a partial transversal T of (X, H) such that dom(T : H) = V (G − u)

and H[T ] is strictly f -degenerate, and, for every such transversal T and every vertex x ∈ Xu, we have f (x) = dH[T∪{x}](x).
9
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Proof. The proof of (a) is by induction on the order of G . If |G| = 1 then spo( f ) = V (H) and the statement is obvious. 
Suppose |G| ≥ 2 and let u ∈ V (G) be an arbitrary vertex. Since G is connected, there is a non-separating vertex v �= u in 
G and, since f (Xv) ≥ dG(v) ≥ 1, there is at least one vertex xv ∈ Xv with f (xv) > 0. By Proposition 12, (G ′, X ′, H ′, f ′) =
(G, X, H, f )/(v, xv ) is an uncolorable degree-feasible configuration, where G ′ = G − v and X ′

w = Xw for all vertices w of G ′ . 
By applying the induction hypothesis, we obtain

f ′(Xu) = f ′(X ′
u) = d′

G(u).

Since G ′ = G − v , we have

dG(u) − dG ′(u) = μG(u, v) ≥
∑
y∈Xu

μH (y, xv),

where the last inequality follows from (C2). Furthermore, f ′(y) ≥ f (y) − μH (y, xv) for all y ∈ Xu . Consequently, we obtain 
that

dG ′(u) =
∑
y∈Xu

f ′(y) ≥
∑
y∈Xu

( f (y) − μH (y, xv)) ≥ dG(u) −
∑
y∈Xu

μH (y, xv) ≥ dG ′(u),

which implies that 
∑

y∈Xu
f (y) = dG(u), f ′(y) = f (y) − μH (y, xv) ≥ 0 for all y ∈ Xu and μG(u, v) = ∑

y∈Xu
μH (y, xv). This 

proves (a) and (b).
For the proof of (c), assume that |G| ≥ 2 and u ∈ V (G). Let G ′ = G − u, let X ′ be the restriction of X to V (G ′), and let 

H ′ = H − Xu . Then (G ′, X ′, H ′, f ) is a degree-feasible configuration. Furthermore, each component of G ′ contains a vertex 
v ∈ NG(u) and we then obtain from (a) that

f (Xv) = dG(v) > dG ′(v).

Then it follows from (a) applied to each component of G ′ that (X ′, H ′) has a transversal T such that H ′[T ] is strictly 
f -degenerate. Then T is a partial transversal of (X, H) such that dom(T : H) = V (G ′) and H[T ] = H ′[T ] is strictly f -
degenerate. Now let T be such a partial transversal. Since (G, X, H, f ) is uncolorable, for each x ∈ Xu , H[T ∪ {x}] contains 
a non-empty subgraph Hx such that f (y) ≤ dHx (y) for all y ∈ V (Hx). Clearly, Hx contains x and so f (x) ≤ dHx(x) ≤
dH[T∪{x}](x). For a vertex y ∈ T , let v = v y be the unique vertex of G ′ such that y ∈ Xv . Using (a) and (C2), we then 
obtain that

dG(u) =
∑
x∈Xu

f (x) ≤
∑
x∈Xu

dH[T∪{x}](x) =
∑
x∈Xu

∑
y∈T

μH (x, y)

=
∑
y∈T

∑
x∈Xu

μH (x, y) ≤
∑
y∈T

μG(u, v y) =
∑

v∈V (G ′)
μG(u, v) = dG(u).

This obviously implies that f (x) = dH[T∪{x}](x) for all x ∈ Xu . This proves (c). �

Let C = (G, X, H, f ) be a configuration. Then we call G the fundamental graph of C, (X, H) the cover of C, and f the
function of C. The next theorem proves the “only if”-direction of Theorem 8.

Theorem 14. If C is an uncolorable degree-feasible configuration whose fundamental graph is connected, then C is constructible.

Proof. The proof is by reductio ad absurdum. Let C = (G, X, H, f ) be a minimal counter-example, that is, G is a connected 
graph such that

(A) C is an uncolorable degree-feasible configuration,
(B) C is not constructible, and
(C) |G| is minimum subject to (A) and (B).

By Proposition 13(a) we have

f (Xv) = dG(v) for all v ∈ V (G). (2.1)

Clearly, |G| ≥ 2, as for |G| = 1 we have V (G) = {v} and f (x) = 0 for all x ∈ Xv implying that (G, X, H, f ) is an M-
configuration and hence constructible, a contradiction to (B). We reach a contradiction via a sequence of twelve claims.

Claim 1. G is a block.
10
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Proof. Otherwise, G is the union of two connected graphs G1 and G2 such that V (G1) ∩ V (G2) = {v∗} and |Gi | < |G| for 
i ∈ {1, 2}. For i ∈ {1, 2}, let (Xi, Hi) = (XGi

, HGi
) which is a cover of Gi . We now define a vertex function f i of Hi as follows. 

By Proposition 13(c), (X, H) has a partial transversal T such that dom(T : G) = V (G − v∗) and H[T ] is strictly f -degenerate. 
Let T1 = T ∩ V (H1) and let T2 = T ∩ V (H2). Then H[T ] is the disjoint union of H[T1] and H[T2]; note that H[Ti] = Hi[Ti]. 
Then, using Proposition 13(c), we obtain that

f (x) = dH[T∪{x}](x) = dH[T1∪{x}](x) + dH[T2∪{x}](x)

for all x ∈ Xv∗ , and we set f i(x) = dH[Ti∪{x}](x) for i ∈ {1, 2} and x ∈ Xv∗ . For a vertex v of Gi − v∗ , let f i(x) = f (x) for all 
x ∈ Xv . Clearly, Ci = (Gi, Xi, Hi, f i) is a configuration for i ∈ {1, 2}.

First, we claim that Ci is uncolorable for i ∈ {1, 2}. For otherwise, by symmetry, we may assume that C1 is colorable. 
Then, there is a transversal T 1 of (X1, H1) such that H1[T 1] is strictly f 1-degenerate. Clearly, T = T 1 ∪ T2 is a transversal 
of (X, H), and we claim that H[T ] is strictly f -degenerate. Otherwise, there is a subgraph H̃ of H[T ] with dH̃ (x) ≥ f (x) for 
all x ∈ V (H̃). Since H[T2] is strictly f -degenerate, H̃ contains vertices of T 1. Since H[T 1] is strictly f 1-degenerate, there is 
a vertex y ∈ V (H̃) ∩ T 1 such that dH̃−T2

(y) < f 1(y). If y /∈ Xv∗ , then

f (y) ≤ dH̃ (y) = dH̃−T2
(y) < f 1(y) = f (y),

which is impossible. If y ∈ Xv∗ , then f 2(y) = dH[T2∪{y}](y) and we obtain that

f (y) ≤ dH̃ (y) = dH̃−T2
(y) + dH̃[T2∪{y}](y) < f 1(y) + f 2(y) = f (y),

which is impossible, too. Hence, H[T ] is strictly f -degenerate and so C is colorable, a contradiction to (A). This shows that 
Ci is uncolorable for i ∈ {1, 2}, as claimed.

Next, we claim that Ci is degree-feasible for i ∈ {1, 2}. By (2.1) and the definition of f i , we obtain that f i(Xv) = f (Xv) =
dG (v) = dGi (v) for all v ∈ V (Gi − v∗). Moreover, we have

dG(v∗) = f (Xv∗) = f 1(Xv∗) + f 2(Xv∗) = dG1(v∗) + dG2(v∗). (2.2)

Since Ci is uncolorable, it follows from Proposition 13(a) that f i(Xv∗ ) ≤ dGi (v∗) for i ∈ {1, 2}. By (2.2), this implies that 
f i(Xv∗ ) = dGi (v∗) for i ∈ {1, 2}. Consequently, Ci is degree-feasible for i ∈ {1, 2}.

Since C = (G, X, H, f ) is a minimal counter-example and |Gi | < |G| for i ∈ {1, 2}, we conclude that Ci = (Gi, Xi, Hi, f i) is 
a constructible configuration, and so C is obtained from the constructible configurations C1 and C2 by merging two vertices 
to v∗ . Hence, C is a constructible configuration, a contradiction to (B). �
Claim 2. Let v ∈ V (G) and let xv ∈ Xv such that f (xv ) > 0. Then the configuration C′ = C/(v, xv ) is constructible. If f ′ is the function 
of C′ , then for every vertex u of G − v, we have

(a) f ′(y) = f (y) − μH (y, xv) ≥ 0 for all y ∈ Xu, and
(b) μG(u, v) = ∑

y∈Xu
μH (y, xv).

Proof. From (A) and Proposition 12 it follows that C′ = C/(v, xv ) is an uncolorable degree-feasible configuration. Since G is 
a block (by Claim 1), G − v is connected. By (B) and (C), this implies that C′ is a constructible configuration. Furthermore, 
we have f (y) ≥ μH (y, xv) (by Proposition 13(b)) and f ′(y) = max{0, f (y) −μH (y, xv)}, which yields (a). Statement (b) also 
follows from Proposition 13(b). �

Let uv be an edge of Go , let X ⊆ Xu and Y ⊆ Xv . We call (X, Y ) a complete uv-pair of type (t, s) if H(X, Y ) is a tKs,s

and μH (u, v) = ts. Note that if (X, Y ) is a complete uv-pair of type (t, s) and U = X ∪ Y , then G ′ = G[{u, v}] is a (ts)K2, 
and (X, H)/U is an s-inflation of a G ′-cover of G ′ . Let

C P (G) = {uv ∈ E(Go) | (Xu, Xv) is a complete uv-pair}
Let U = sp( f ) be the support of f , and let f ∗ be the restriction of f to U . Then it follows from Claim 2 that the cover 

(X ′, H ′) = (X, H)/U is G-saturated. Furthermore, (G, H ′, X ′, f ∗) is an uncolorable degree-feasible configuration which is not 
constructible. Hence (G, X ′, H ′, f ∗) is also a smallest counterexample and we may assume that U = V (H). As an immediate 
consequence of Claim 2, we then obtain the following result.

Claim 3. For the configuration C = (G, X, H, f ) the following statements hold:

(a) For every edge uv of Go, the graph H(Xu, Xv) is a bipartite graph with parts Xu and Xv that is regular of degree μG(u, v).
(b) If v ∈ V (G) and x ∈ Xv , then C/(v, x) is a constructible configuration.
11
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Since G is connected, it follows from Claim 3(a) that C is r-uniform for an integer r ≥ 1. If r = 1, then Xv = {xv} for all 
v ∈ V (G) and μH (xv , xu) = μG(u, v) for every pair u, v of distinct vertices of G implying that (X, H) is a G-cover of G and 
f (xv) = dG(v) for all v ∈ V (H). Hence C is an M-configuration. This contradiction to (B) shows that r ≥ 2.

Let v be an arbitrary vertex of G , and let x be an arbitrary vertex of Xv . Then define Cx = C/(v, x). By Claim 3, Cx

is a constructible configuration and we denote by fx the function of Cx . Note that G ′ = G − v is a connected graph and 
Cx = (G ′, XG ′

, HG ′
, fx). Since Cx is constructible, we can use the block decomposition of Cx described in Proposition 9. If 

B ∈ B(G ′), then we denote by f Bx the B-part of the function fx . One important consequence of Proposition 9 and Claim 2(a) 
is the following:

f Bx (y) = fx(y) = f (y) − μH (y, x) whenever y ∈ Xu and u ∈ V (B) \ S(G ′). (2.3)

Claim 4. Let v ∈ V (G) be an arbitrary vertex, let G ′ = G − v, let B ∈ B(G ′), and let u, u′ be two distinct vertices of V (B) \ S(G ′). If 
u ∈ NG(v) and u′ /∈ NG(v), then uv ∈ C P (G).

Proof. Suppose that (Xu, Xv) is not a complete pair. Let m = μG(u, v). By Claim 3(a), H(Xu, Xv) is an m-regular bipar-
tite graph with parts Xu and Xv . Consequently, there is a vertex y ∈ Xu and two distinct vertices x1, x2 ∈ Xv such that 
μH (x1, y) �= μH (x2, y). For i ∈ {1, 2}, let f i = f Bxi . Then CB

xi = (B, XB , HB , f i) is an M-, or K-, or C-configuration (i ∈ {1, 2}). 
Since u′ /∈ NH (v), we have f1(z) = f2(z) = f (z) > 0 for all z ∈ Xu′ (by (2.3)). Consequently, sp( f i) = V (HB) for i ∈ {1, 2}. 
Since μH (x1, y) �= μH (x2, y), we have f1(y) �= f2(y) (by (2.3)). First assume that CB

x1 is an M-configuration. Then CB
x2 is 

an M-configuration, too (by Proposition 10), implying that f1(y) = dB(u)/r = f2(y), a contradiction. Otherwise, CB
x1 is a 

K-configuration with at least two layers, or a C-configuration where the underlying cycle has at least four vertices. This also 
leads to f1(y) = f2(y), a contradiction. This completes the proof. �
Claim 5. We have C P (G) �= E(Go).

Proof. Suppose that C P (G) = E(Go). Then (X, H) is an r-inflation of a G-cover of G . Our aim is to show that C is an M-
configuration, a contradiction to (B). To this end, it suffices to show that f (y) = dG(u)/r whenever y ∈ Xu and u ∈ V (G). 
So let u ∈ V (G). Since |G| ≥ 2, there is a vertex v ∈ NG(u) and a vertex x ∈ Xv . Then vu ∈ C P (G), and so H(Xu, Xv) is a 
tKr,r with tr = μG(u, v), which leads to f (y) = fx(y) + t for all y ∈ Xu . Note that G ′ = G − v is a connected graph and Cx

is constructible. If u is the only vertex of G ′ , then fx(y) = 0 for all y ∈ Xu , which leads to f (y) = t = dG(u)/r as claimed. 
It remains to consider the case that |G ′| ≥ 2. Let B ∈ B(G ′) be an arbitrary block. Then |B| ≥ 2 and hence there is an edge 
ww ′ ∈ E(Bo). Since ww ′ ∈ C P (G), we obtain that HB(Xw , Xw ′ ) = H(Xw , Xw ′ ) is a t′Kr,r with t′r = μG(w, w ′). Hence CB

x is 
an M-configuration (Proposition 10), and, therefore, f Bx (z) = dB(z)/r whenever z ∈ Xw and w ∈ V (B). Using Proposition 9
for Cx , for every vertex y ∈ Xu obtain that

fx(y) =
∑

B∈Bu(G ′)
f Bx (y) = 1

r

∑
B∈Bu(G ′)

dB(u) = d′
G(u)

r
,

which implies that f (y) = fx(y) + t = 1
r (d

′
G (u) + μG(u, v)) = 1

r dG(u). This completes the proof. �
Assume that G has only two vertices, say u and v . For any vertex x ∈ Xv , the configuration Cx is constructible and so 

fx(y) = 0 for all y ∈ Xu , which implies that f (y) = fx(y) + μH (y, x) = μH (y, x) for y ∈ Xu . By symmetry, we also obtain 
for any vertex y ∈ Xu that μH (y, x) = f (x) > 0 for all x ∈ Xv . Furthermore, f (Xv) = f (Xu) = dG (u) = dG(v). This implies 
that H(Xu, Xv) is a tKr,r and f (x) = t for all x ∈ V (H). Hence C is an M-configuration. This contradiction to (B) shows that 
|G| ≥ 3.

Claim 6. We have C P (G) = ∅.

Proof. Suppose that C P (G) �= ∅. By Claim 5, there is an edge e = uw ∈ E(Go) \ C P (G). Since G is a block, there is a cycle 
in Go containing the edge e and an edge belonging to C P (G). Let C be a shortest such cycle. Then C is an induced cycle 
of Go . First assume that there is a vertex v ∈ V (G) \ V (C). Then Cx is an constructible configuration where x ∈ Xv . Clearly, 
there is a block B of G − v containing V (C). Then Bo contains uv and an edge of C P (G), which implies, by Proposition 10, 
that uv ∈ C P (G), a contradiction. It remains to consider the case that Go = C . Then there are three vertices v, w, w ′ such 
that vw ∈ E(C) \ C P (G) and ww ′ ∈ E(C) ∩ C P (G). Then B = G[{w, w ′}] is a block of G ′ = G − v . Let x ∈ Xv be an arbitrary 
vertex. Clearly, CB

x is an M-configuration. Since ww ′ ∈ C P (G), we have sp( f Bx ) = Xw ∪ Xw ′ , which implies that f Bx (y) = t
for all y ∈ Xw . Since w /∈ S(G ′), we obtain, for y ∈ Xw , that fx(y) = f Bx (y) = t and f (y) = t + μH (y, x) (by (2.3)). Since 
x was chosen arbitrarily in Xv and H(Xv , Xw) is a regular bipartite graph, we obtain that H(Xv , Xw) is a t′Kr,r . Hence 
vw ∈ C P (G), a contradiction. �
12
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Combining Claim 6 and Claim 4, we obtain the following result.

Claim 7. Let v ∈ V (G) be an arbitrary vertex, let G ′ = G − v, let B ∈B(G ′), and let u, u′ be two distinct vertices of V (B) \ S(G ′). Then, 
either {u, u′} ⊆ NG(v) or {u, u′} ∩ NG(v) = ∅.

Claim 8. The simple graph Go is a cycle or a complete graph.

Proof. Suppose that Go is not a complete graph. Since G is a block and |G| ≥ 3, we have 2 ≤ δ(Go) ≤ |Go| − 2 = |G| − 2. Let 
v ∈ V (G) be a vertex of minimum degree in Go . If B = G − v is a block, then B contains a vertex u ∈ NG(v) and a vertex 
u′ /∈ NG(v), contradicting Claim 7. So G ′ = G − v is not a block and there are at least two end-blocks of G ′ . Let B be an 
arbitrary end-block of G ′ . By the choice of v , we obtain that |B| ≥ δ(Go). Since B is an end-block of G ′ , there is exactly 
one vertex u ∈ V (B) ∩ S(G ′). Since G is a block, v has in G a neighbor belonging to B − u. By Claim 7 this implies that 
V (B − u) ⊆ NG(v). Since G has at least two end-blocks, this leads to δ(Go) ≥ 2(δ(Go) − 1) and hence to δ(Go) = 2. Then 
|B| = 2 and the vertex w ∈ V (B − u) has degree δ(Go) in Go . Furthermore G ′ = G − v has exactly two end-blocks. If we 
repeat this argument with w , we obtain that Go is a cycle. �

Let uw be an arbitrary edge of Go and let m = μG(u, w). Then m > 0 and the bipartite graph H(Xu, Xw) is regular 
of degree m (Claim 3(a)). A component of H(Xu, Xw) is called a uw-part of H . For a subgraph H ′ of H(Xu, Xw), let 
Xu(H ′) = Xu ∩ V (H ′) and Xw(H ′) = Xw ∩ V (H ′). If H ′ is a component of H(Xu, Xw) and (Xu(H ′), Xw(H ′)) is a complete 
uw-pair, then H ′ is a tKs,s with m = ts; in this case we say that H ′ is a full uv-part of H of type (t, s). Note that if H1 and 
H2 are full uw-parts of H , then V (H1) = V (H2) or V (H1) ∩ V (H2) = ∅, and in the later case EH (V (H1), V (H2)) = ∅. By 
(C2) it follows that if H ′ is a subgraph of H(Xu, Xw), then H is a full uw-part if and only if (Xu(H ′), Xw(H ′)) is a complete 
uw-pair.

Claim 9. If uw is an edge of Go, then H(Xu, Xw) is the disjoint union of p full uw-parts with p ≥ 2.

Proof. Let uw be an arbitrary edge of Go . Since |G| ≥ 3, there is a vertex v ∈ NG(u) \ {w}. Then G ′ = G − v is connected 
and there is a block B ∈ B(G ′) containing u and w . Since Go is a cycle or a complete graph (by Claim 8), it follows that 
u /∈ S(G ′). Let x ∈ Xv be an arbitrary vertex. Then Cx is a constructible configuration. Since C P (G) = ∅, it then follows from 
Proposition 10 that H(Xu, Xw) = HB(Xu, Xw) has at least two components. Since uw was chosen arbitrarily, the same holds 
for the bipartite graph H(Xv , Xu). Now let y be an arbitrary vertex of Xu . Then for x we can choose a vertex in Xv that is 
no neighbor of y in H . By (2.3), this implies that f Bx (y) = f (y) > 0. Then y belongs to a full uw-part of H , since CB

x is an 
M-, or K-, or C-configuration, y ∈ sp( f Bx ), and H(Xu, Xw) = HB(Xu, Xw). This proves the claim. �
Claim 10. Let vu and uw be two distinct edges of Go, let (X, Y ) be a complete vu-pair, and (Z , W ) be a complete uw-pair. Suppose 
that Y ∩ Z �= ∅. Then Y = Z and, moreover, the following statements hold:

(a) If Go is a complete graph of order n ≥ 4, then (X, W ) is a complete vw-pair.
(b) If Go is a cycle, then there are exactly two complete vu pairs.

Proof. First assume that Go is a complete graph of order n ≥ 4. Then there is a vertex y ∈ Y ∩ Z and a vertex v ′ ∈ V (G) \
{u, v, w}. By Claim 9, there is a vertex x ∈ Xv ′ such that μH (x, y) = 0. Then we have fx(y) = f (y) > 0 (by Claim 2(a)). Since 
Go is a complete graph, Cx is an M-configuration or a K-configuration and y belongs to a layer U of Cx . Then X, Y , W , and 
Z are all contained in U , which implies that Y = Z and (X, W ) is a complete vw-pair. So we are done.

Now assume that Go is a cycle. Then Go − v is a path, B = G[{u, w}] is an end-block of G ′ = G − v and u /∈ S(G ′). Let 
x ∈ Xv be an arbitrary vertex, and let Ux = sp( f Bx ) and Uc

x = spo( f Bx ). Then CB
x = (B, XB , HB , f Bx ) is an M-configuration 

implying that H[Ux] is a full uw-part of H . By Claim 9, Ux �= ∅. For x, x′ ∈ Xv , we have Ux = Ux′ or Ux ∩ Ux′ = ∅. Now let 
X ′ = {x ∈ Xv | H[Ux] = H(Z , W )}. By (2.3), we obtain that for y ∈ Xu and x ∈ Xv we have

f Bx (y) = fx(y) = f (y) − μH (x, y)

Suppose that H(Z , W ) is a tKs,s . Let Z ′ = Xu \ Z . If x ∈ X ′ , then Z ′ ⊆ spo( f Bx ) which yields that μH (x, y) = f (y) > 0 for all 
y ∈ Z ′ . Consequently, Z ′ ⊆ NH (x) for all x ∈ X ′ . Now let x ∈ Xv be a vertex such that there is an y ∈ Z with μH (x, y) = 0. 
Then fx(y) = f (y) > 0 which implies that Z ⊆ sp( fx) and so x ∈ X ′ . Consequently, Z ⊆ NH (x) for all x ∈ Xv \ X ′ . From 
Claim 9 it then follows that (X ′, Z ′) and (Xv \ X ′, Z) are the only complete vu-pairs. Consequently, Y = Z and (b) holds. �

In what follows, by an inflation of G we mean an inflation of a G-cover of G . Recall that an inflation of G is an s-inflation 
of G for some s ∈N .

Claim 11. Go is a complete graph of order n ≥ 4.
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Proof. Suppose this is false. Then, by Claim 8, Go is a cycle C and n = |C | ≥ 3. Let v be an arbitrary vertex of C , let 
u and w be the two neighbors of v in C , and let u′ be the neighbor of u in C different from v . Then it follows 
from Claim 10(b), that V (H) has a partition into two sets, say U1 and U2, such that, for every edge v ′w ′ of the path 
C − uu′ , (Xv ′ (Ui), Xw ′ (Ui)) is a complete v ′w ′-pair of type (ti(v ′w ′), si(v ′w ′)) for i ∈ {1, 2}. Then, by Claim 10(b), either 
(Xu(U1), Xu′ (U1)) or (Xu(U1), Xu′ (U2) is a complete uu′-pair.

Case 1: (Xu(U1), Xu′(U1)) is a complete uu′ pair. Then (Xu(U2), Xu′(U2)) is a complete uu′ pair, too, and (X, H)/Ui is an 
si-inflation of G (i ∈ {1, 2}). Furthermore, we obtain that n is odd. For otherwise, (X, H) has an independent transversal and 
so C is colorable, a contradiction to (A). Choose two vertices y ∈ Xu(U1) and y′ ∈ Xw(U2). Since n is odd, there is a partial 
transversal T of (X, H) such that dom(T : G) = V (G − v), y, y′ ∈ T , and T is an independent set of H , which implies that 
H[T ] is strictly f -degenerate. By Proposition 13(c), we obtain that f (x) = dH[T∪{x}](x) for all x ∈ Xv . Consequently, f (x) =
μH (x, y) = t1(vu) for all x ∈ Xv(U1) and f (x) = μH (x, y′) = t2(vw) for all x ∈ Xv(U2). Now we can choose two vertices 
y ∈ Xu(U2) and y′ ∈ Xw(U1) to show that f (x) = μH (x, y) = t1(vw) for all x ∈ Xv(U1) and f (x) = μH (x, y′) = t2(vu) for 
all x ∈ Xv(U2). This implies that ti(vu) = ti(vw) for i ∈ {1, 2}. Since v was chosen arbitrarily, it then follows that G = tCn

and f (x) = ti for all x ∈ Ui with ti si = t . Hence C is an odd C-configuration, a contradiction to (B).

Case 2: (Xu(U1), Xu′ (U2)) is a complete uu′ pair. Then (Xu(U2), Xu′ (U1)) is a complete uu′ pair, too, implying that 
|Xu(Ui))| = s for i ∈ {1, 2} and all u ∈ V (G), where s ∈ N . This implies that t1(v ′w ′) = t2(v ′w ′) = μG(v ′, w ′)/s for all 
edges v ′w ′ of C − uu′ . Then we obtain that n is even, For otherwise, (X, H) has an independent transversal and so C is 
colorable, a contradiction to (A). Now we may argue similarly as in the first case to show that G = tCn and f (x) = t/s for 
all x ∈ V (H). Hence C is an even C-configuration, a contradiction to (B). �

By the above claim, Go is a complete graph of order n ≥ 4. Then it follows from Claim 10(a) that V (H) has a partition into 
p sets, say U1, U2, . . . , U p , such that (X, H)/U i is an si-inflation of G for i ∈ [1, p] and p ≥ 2 (by Claim 9). Then for every 
i ∈ [1, p] and every edge uv of Go , there is an integer ti(uv) such that H(Xu(U i), Xv(U i)) is a ti(uv)Ksi ,si and μG (u, v) =
ti(uv)si . Furthermore, EH (U i, V (H) \ U i) = ∅. Our aim is to show that C is a K-configuration. This final contradiction then 
completes the proof of Theorem 14.

Let x ∈ V (H) be an arbitrary vertex. Then x ∈ Xu for exactly one vertex u ∈ V (G). For i ∈ [1, p], we define U i
x = U i \ Xu . 

Then (X, H)/U i
x is an si-inflation of G − v . Since Cx is constructible (by Claim 3(b)) and Go − v is a complete graph, Cx is an 

M-configuration or a K-configuration. For the function fx of Cx we obtain that fx(y) = f (y) −μH (x, y) for all y ∈ V (H) \ Xu

(by Claim 2(a)). Consequently, if x ∈ U i , j ∈ [1, p] \ {i} and G ′ = G − u, then the following statements hold:

(1) fx(y) = f (y) for all y ∈ U j
x , and U j

x is a layer of Cx . Furthermore, if v ∈ V (G ′) and y ∈ Xv(U j), then fx(y) = dG ′ (v)/s j .
(2) fx(y) = f (y) − ti(uv) for all v ∈ V (G ′) and y ∈ Xv(U i).

Claim 12. No configuration Cx with x ∈ V (H) is an M-configuration.

Proof. Suppose, this is false. Then Cx is an M-configuration for a vertex x ∈ V (H), say x ∈ Xu for u ∈ V (G). Let G ′ = G − u, 
let U = sp( fx) and Uc = spo( fx). Then (X, H)/U is an inflation of G ′ and fx(y) = 0 for all y ∈ Uc . By (1), this implies that 
p = 2 and either U = U1

x or U = U2
x . By symmetry we may assume that U = U1

x and hence x ∈ U2. Since U1
x is the only 

layer of the M-configuration Cx , we obtain from (1) and (2) that

(3) f (y) = fx(y) = dG ′ (v)/s1, provided that v ∈ V (G ′) and y ∈ Xv(U1), and
(4) f (y) = t2(uv), provided that v ∈ V (G ′) and y ∈ Xv(U2).

Let T be an arbitrary transversal of (X, H)/U1
x . Then, for every vertex v ∈ V (G ′), denote by y(v) the unique vertex in 

T ∩ Xv(U1). Furthermore, since G ′o is a complete graph, we obtain that dH[T ](y) = fx(y) = f (y) for all y ∈ T , where 
the second equation follows from (1). Now let v be an arbitrary vertex of G ′ , and let y ∈ Xv(U2) be an arbitrary vertex. 
Replace in T the vertex y(v) by y and denote the resulting set by T ′ . Then T ′ is a partial transversal of (X, H). Since 
EH (U1, V (H) \ U1) = ∅, we obtain that y is an isolated vertex in H[T ′] and, therefore, H[T ′] is strictly f -degenerate. 
Since dom(T ′ : G) = V (G ′), it then follows from Proposition 13 that for all x′ ∈ Xu(U2) we have f (x′) = dH[T ′∪{x′}](x′) =
μH (x′, y) = t2(uv) = f (y), where the last equality follows from (3). Since (v, y) was chosen arbitrarily with v ∈ V (G ′) and 
y ∈ Xv(U2), we obtain that there is an integer t2 such that f (z) = t2 for all z ∈ U2 and ti(uv) = t2 for all v ∈ V (G ′). Let 
vv ′ be an arbitrary edge of Go − u. Then Claim 2(a) implies that t2 ≥ t2(vv ′). We claim that equality holds. For otherwise, 
t2 > t2(vv ′), and we choose two vertices y ∈ Xv(U2) and y′ ∈ Xv ′(U2), and let T ′ be the set obtained from T by replacing 
y(v), y(v ′) by y, y′. Then T ′ is a partial transversal of (X, H) such that dom(T ′ : G) = V (G ′), EH (T ′ \ {y, y′}, {y, y′}) = ∅, 
and dH[T ′](y) = dH[T ′](y′) = t2(vv ′) < t2 = f (y) = f (y′). Consequently, H[T ′] is strictly f -degenerate and Proposition 13
implies that, for the vertex x ∈ Xu , we have

0 < t2 = f (x) = dH[T ′∪{x}](x) = μH (x, y) + μH (x, y′) = f (y) + f (y′) = 2t2,
14
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which is impossible. This proves the claim that t2(vv ′) = t2. Consequently, G = tKn with t = s2t2, (X, H)/U2 is an s2-
inflation of G , and f (z) = t2 for all z ∈ U2. Then G ′ = tKn−1 and it follows from (3) that

f (y) = t(n − 2)/s1 for all y ∈ U1
x . (2.4)

Let t1 = t/s1. Let x′ ∈ Xu(U1) be an arbitrary vertex. There is a partial transversal T of (X, H) such that dom(T : G) = V (G ′)
and |T ∩ U1| = |G ′| − 2 = n − 2. If y′ is the only vertex of T belonging to U2, then y′ is an isolated vertex of H[T ]. For 
every vertex y ∈ T ∩ U1, we have dH[T ](y) = t1(n − 3) = t(n − 3)/s1 < f (y) (by (2.4)). Hence H[T ] is strictly f -degenerate, 
and Proposition 13(c) then yields that f (x′) = dH[T∪{x′}](x′) = t1(n − 2). Since (X, H)/U1 is an s1-inflation of G and G = tKn , 
this implies that C is a K-configuration, where U1 is a layer of type n1 = n − 2, and U2 is a layer of type n2 = 1. This 
contradiction completes the proof. �

Since Go is a complete graph of order n ≥ 4, Claim 12 implies that Cx is a K-configuration for all x ∈ V (H) and, therefore, 
G − v is a tv Kn for all v ∈ V (G). Since n ≥ 4, this implies that G = tKn with t ∈N . For i ∈ [1, n], (X, H)/U i is an si-inflation 
of G , which implies that there is a ti ∈ N such that t = siti . Now we claim that the function f of C restricted to U j is 
constant. So let y, y′ be two vertices of U j . Then there is a vertex u ∈ V (G) such that neither y nor y′ belong to Xu . 
Since p ≥ 2, there is a vertex x ∈ Xu(U i) with i �= j. By (1), this implies that U j

x is a layer of the M-configuration Cx . Then 
fx(y) = fx(y′) and, by (1), f (y) = fx(y) = fx(y′) = f (y′). This proves the claim.

Now, let u be an arbitrary vertex of G . By Proposition 13(c), there is a partial transversal of (X, H) such that dom(T :
G) = V (G ′) and H[T ] is strictly f -degenerate. For i ∈ [1, p], let ni = |T ∩ U i | yielding that n1 + n2 + · · · + np = n − 1. By 
Proposition 13(c), f (x) = dH[T∪{x}](x) for all x ∈ Xu , which implies that f (x) = tini = tni/si when x ∈ Xu(U i) (i ∈ [1, p]). 
Consequently, f (z) = tni/si for all z ∈ U i (i ∈ [1, p]), and so C is a K-configuration, where U i is a layer of order ni > 0. This 
contradiction completes the proof of Theorem 14. �

Proof of Theorem 4. Let P be a reliable graph property with d(P) = r, let G be a graph, let (X, H) be a P-critical cover 
of G , and let B be an arbitrary block of the low vertex subgraph G[V (G, X, H, P)], and let G ′ = G − V (B). Since (X, H) is 
a P-critical cover of G , there is a partial transversal T of (X, H) such that domG(T ) = V (G ′) and H[T ] ∈ P . For a vertex 
u ∈ V (B) and a color x ∈ Xu , let Hu = H[T ∪ {x}] and du,x = dHu (x). Let U be the union of the sets Xu with u ∈ V (B), and 
let (X ′, H ′) = (X, H)/U . Furthermore, define a vertex function f for H by

f (x) = max{0, r − du,x}
whenever u ∈ V (B) and x ∈ Xu . Note that X ′ = XB and H ′ = HB . First assume that (X ′, H ′) has a transversal T ′ such that 
H ′[T ′] is strictly f -degenerate. Note that this implies that f (x) > 0 for all x ∈ T ′ . Furthermore, T ′ ∪ T is a transversal of 
(X, H), and hence H[T ′ ∪ T ] /∈ P . From Proposition 1(c) it then follows that there is a set T1 ⊆ T ′ ∪ T such that H[T1] ∈
CR(P). Then Proposition 1(e) implies that δ(H[T1]) ≥ r. Since H[T ] ∈ P , we have T1 ∩ T ′ �= ∅, and so H[T1 ∩ T ′] is a non-
empty induced subgraph of H ′[T ′] = H[T ′]. Since H ′[T ′] is strictly f -degenerate, H̃ = H[T1 ∩ T ′] contains a vertex x with 
dH̃ (x) < f (x). Then x ∈ Xu for some u ∈ V (B) and f (x) = r − du,x . This leads to dH[T1](x) = dH̃ (x) + du,x < f (x) + du,x ≤ r, a 
contradiction to δ(H[T1]) ≥ r.

It remains to consider the case when (X ′, H ′) has no transversal that is strictly f -degenerate. Let u ∈ V (B) be an arbitrary 
vertex. As u is a low vertex, we have dG(u) = r|Xu |. Furthermore, we have

∑
x∈Xu

du,x ≤ dG−V (B−u)(u) = dG(u) − dB(u),

where the first inequality follows from (C2). Then we obtain that
∑
x∈Xu

f (x) ≥
∑
x∈Xu

(r − dx,u) = r|Xu| −
∑
x∈Xu

dx,u = dG(u) −
∑
x∈Xu

dx,u ≥ dB(u). (2.5)

Consequently, C = (B, X ′, H ′, f ) is an uncolorable degree-feasible configuration. By Theorem 8 it then follows that C is a 
constructible configuration. Since B is a block, C is a K-, C-, or M-configuration. In the first two cases, B is a brick, and we 
are done. It remains to consider the case when C is an M-configuration. Then there is a set U ⊆ V (H ′) such that (X ′, H ′)/U
is an s-inflation of B , and for u ∈ V (B) and x ∈ Xu , we have s = |Xu(U )| and f (x) = dB(u)/s if x ∈ U else f (x) = 0. This 
implies that B = sB ′ . Consequently, for every vertex u of B , we have

f (Xu) = dB(u) = sdB ′(u).

By (2.5), this implies that f (x) = r − dx,u whenever u ∈ V (B) and x ∈ Xu . Hence

sdB ′(u) = dB(u) = f (Xu) = f (Xu(U )) =
∑

(r − du,x) ≤ rs,

x∈Xu(U )

15
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which implies that �(B ′) ≤ r. If B ′ ∈ P , then we are done. If B ′ /∈ P , then B ′ has an induced subgraph B∗ ∈ CR(P) (by 
Proposition 1(c)). Then δ(B∗) ≥ d(P) = r, which implies that B ′ = B∗ and B ′ is r-regular. Hence we are done, too. This 
completes the proof. �
3. Critical graphs with few edges

Gallai [16] established a lower bound for the number of edges possible in a simple graph G being critical with respect to 
the chromatic number, where the bound is depending on |G| and χ(G). The proof given by Gallai uses the characterization 
of the low vertex subgraph that he obtained in [16]. We can easily adopt Gallai’s proof to establish a Gallai type bound for 
the number of edges of cover critical simple graphs in general. Our result is an extension of Gallai’s result [16, Satz 4.4]. 
First we need the following result due to Mihók and Škrekovsky [29, Corollary 4]; this result is an extension of Gallai’s 
technical lemma [16, Lemma 4.5].

Theorem 15. Let p ≥ 1 be an integer. Let F be a non-empty simple graph such that �(F ) ≤ p and �(B) < p for all blocks B ∈ B(F ). 
Then (

p − 1+ 2

p

)
|F | − 2|E(F )| ≥ 2.

Theorem 16. Let P be a reliable graph property with d(P) = r, let G be a simple graph that has a P-critical k-cover with k ≥ 3. Then

2|E(G)| ≥
(
kr + kr − 2

(kr + 1)2 − 3

)
|G| + 2kr

(kr + 1)2 − 3

unless G = Kkr+1 .

Proof. Let V be the vertex set of G , and let n = |V |. For a set X ⊆ V , let e(X) denote the number of edges of the subgraph 
G[X] of G induced by X . Let p = kr and let

R =
(
p + p − 2

(p + 1)2 − 3

)
and R ′ = 2p

(p + 1)2 − 3
.

Our aim is to show that 2e(V ) ≥ Rn + R ′ . Let U = {v ∈ V | dG(v) = p} be the set of low vertices and let W = V \ U . 
Note that dG (v) ≥ p + 1 for all v ∈ W (by Proposition 3). Note that p ≥ 3r ≥ 3 and n ≥ p + 1 = kr + 1. If U = ∅, then 
2e(V ) ≥ (p + 1)n ≥ Rn + R ′ and we are done. So assume that U �= ∅. Let F = G[U ] be the low vertex subgraph. If K = Kp+1

is a subgraph of F , then K is a component of G . As G has a P-critical k-cover, G is connected. Hence G = K = Kkr+1 and 
we are done. So suppose that no subgraph of F is a Kp+1. Since p ≥ 3r ≥ 3, Theorem 4 then implies that �(F ) ≤ p and 
�(B) < p for all blocks B ∈ B(F ). From Theorem 15 it then follows that

(
p − 1+ 2

p

)
|U | − 2e(U ) ≥ 2.

Since every vertex of U has degree p in G and n = |U | + |W |, we then obtain that

2e(V ) = 2e(W ) + 2p|U | − 2e(U ) ≥ 2p|U | − 2e(U ) ≥
(
p + 1− 2

p

)
|U | + 2.

On the other hand, since every vertex in W has degree at least p + 1, we obtain that

2e(V ) ≥ pn + |W | ≥ (p + 1)n − |U |.
Adding the first inequality to the second inequality multiplied with (p + 1 − 2/p) yields

2e(V )(p + 2− 2/p) ≥ (p + 1 − 2/p)(p + 1)n + 2.

As (p + 2 − 2/p) = (p2 + 2p − 2)/p > 0, this leads to

2e(V ) ≥ (p2 + p − 2)(p + 1)n + 2p

p2 + 2p − 2
= Rn + R ′.

Thus the proof is complete. �
16
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Corollary 17. Let G be a simple graph that has an O-critical k-cover of G with k ≥ 3. Then

2|E(G)| ≥
(
k + k − 2

(k + 1)2 − 3

)
|G| + 2k

(k + 1)2 − 3

unless G = Kk+1 .

For covers associated with constant list assignments Corollary 17 is a reformulation of Gallai’s result [16, Satz 4.4] from 
1963. For covers associated with general list assignments, Corollary 17 was obtained by Kostochka, Stiebitz, and Wirth [23]. 
The next corollary for P =O was obtained by Bernshteyn, Kostochka, and Pron [3, Corollary 10].

Corollary 18. Let P be a reliable graph property with d(P) = r and let G be a (P, χDP)-critical simple graph with χDP(G :P) = k +1
and k ≥ 3. Then

2|E(G)| ≥
(
kr + kr − 2

(kr + 1)2 − 3

)
|G| + 2kr

(kr + 1)2 − 3

unless G = Kkr+1 .

However, the first bound for the number of edges of simple graphs being critical with respect to the chromatic number 
was obtained in 1957 by Dirac [12]. In 1974 Dirac [13] proved that his bound is sharp and characterized the class of 
extremal graphs.

For k ≥ 2, let Dir(k) denote the family of simple graphs G whose vertex set consists of three non-empty pairwise disjoint 
sets A, B1 and B2 with

|B1| + |B2| = |A| + 1 = k

and two additional vertices v1 and v2 such that A and B1 ∪ B2 are cliques in G not joined by any edge, and NG (vi) = A ∪ Bi
for i = 1, 2. Then G has order 2k + 1 and independence number 2, and so χ(G) ≥ k + 1. However, if we delete a vertex 
or an edge, then it is easy to check that the resulting graph has an O-coloring with k colors. Consequently, if G ∈ Dir(k)
then χ(G − v) < χ(G) = k + 1 for all v ∈ V (G) (such graphs are usually called (k + 1, χ)-critical, similarly we define
(k + 1, χ�)-critical and (k + 1, χDP)-critical). This implies that if G ∈ Dir(k) and (X, H) is the cover of G associated with the 
constant list assignment L ≡ [1, k], then (X, H) is an O-critical k-cover of G . A simple graph G is called k-list-critical if G
has an O-critical k-cover that is associated with a list assignment L, which is the case if and only if G has no L-coloring, 
but G − v has one for all v ∈ V (G). Every simple graph G that is (k + 1, χ�)-critical is k-list-critical, but not conversely. 
The standard example is a graph G that is obtained from two disjoint copies of Kk+1 by adding exactly one edge joining 
a vertex u of the first copy with a vertex u′ of the second copy. The cover (X, H) associated with the list assignment L
defined by L(u) = L(u′) = [2, k + 1] and L(v) = [1, k] is an O-critical k-cover of G , and so G is k-list-critical, but G is not
(k + 1, χ�)-critical as χ�(Kk+1) = χ�(G) = k + 1.

In 1957 Dirac proved that every (k + 1, χ)-critical graph G distinct from Kk+1 and with k ≥ 3 satisfies

2|E(G)| ≥ k|G| + k − 2

and in 1974 he proved that equality holds if and only if G ∈ Dir(k). In 2002 Kostochka and Stiebitz [21] proved that every 
k-list-critical graph G not containing Kk+1 and with k ≥ 3 satisfies the Dirac bound, and they asked whether equality holds 
if and only if G belongs to Dir(k). That this is indeed the case was proved in 2018 by Bernsteyn and Kostochka [2] by 
proving the following result.

Theorem 19. Let G be a simple graph that has an O-critical k-cover with k ≥ 3. If G does not contain Kk+1 as a subgraph, then

2|E(G)| ≥ k|G| + k − 2

and equality holds if and only if G ∈ Dir(k).

The graphs belonging to Dir(k) have another interesting feature. As observed by Stiebitz, Tuza, and Voigt [38], if G ∈
Dir(k) and (X, H) is a k-cover associated with a list assignment L of G , then G has no (O, (X, H))-coloring if and only if 
L ≡ [1, k] is the constant list assignment. Whether this also holds for arbitrary k-covers of G seems to be unknown.

For simple graphs whose order is large, the Gallai bound beats the Dirac bound, however, only if the order is at least 
quadratic in k. Let fk(n) denote the minimum number of edges in any (k +1, χ)-critical simple graph of order n. By König’s 
theorem, characterizing bipartite graphs (i.e., graphs with χ ≤ 2), the only (3, χ)-critical graphs are the odd cycles. So the 
function is only interesting for k ≥ 3. For the many partial results obtained for this function the reader is referred to the 
paper by Kostochka and Yancey [24] from 2014. Kostochka and Yancey succeeded to determine the best linear approximation 
for the function fk(n) with k ≥ 3, a as consequence they obtained that
17



A.V. Kostochka, T. Schweser and M. Stiebitz Discrete Mathematics 346 (2023) 113186
lim
n→∞

2 fk(n)

n
= k + 1− 2

k
.

Let f �
k (n) denote the minimum number of edges in any (k + 1, χ�)-critical of order n, and let f dpk (n) denote the minimum 

number of edges in any (k + 1, χDP)-critical simple graph of order n. For both functions we have the Gallai bound as well 
as the Dirac bound. For the function f dpk (n) this seems to be all what is known. For the function f �

k (n) some improvements 
have been made by Kostochka and Stiebitz [22] and more recently by Kierstead and Rabern [19]. It would be interesting to 
find further improvements, and to prove or disprove that f �

k (n) ≥ fk(n) (n ≥ k + 2 ≥ 5).
Given a reliable graph property P with d(P) = r, we say that a graph G is (k + 1, P, χ)-critical if χ(G − v : P) < χ(G :

P) = k + 1 for all v ∈ V (G). Let FP (k, n) denote the minimum number of edges in any (k + 1, P, χ)-critical simple graph 
of order n. From Theorem 16 it follows that

2FP (k,n) ≥
(
kr + kr − 2

(kr + 1)2 − 3

)
n + 2kr

(kr + 1)2 − 3
.

Until now this Gallai type bound is all what is known. One question is whether a Dirac type bound can be proved, at 
least for some specific properties P . Apart from the property O, the best investigated property is D1. The class Dd of 
d-degenerate (simple) graphs was introduced and investigated in 1970 by Lick and White [26]. For the parameter χ(G :Dd)

Lick and White used the term point partition number while Bollobás and Manvel [4] used the term d-chromatic number. 
The point partition number were investigated by various researchers including Lick and White [26], Kronk and Mitchem [25], 
Mitchem [30], Borodin [5], Bollobás and Manvel [4], and possibly others. The term P-chromatic number was introduced by 
Hedetniemi [18] in 1968. He studied, in particular, the D1-chromatic number under the name point aboricity and proved 
that any planar graph G satisfies χ(G : D1) ≤ 3. Clearly, this is a simple consequence of the fact that any planar graph G
is 5-degenerate; hence we have χDP(G : D1) ≤ 3. Note that CR(Dd) contains all connected (d + 1)-regular graphs and so 
d(Dd) = d + 1. This implies, in particular, that

2FD1(k,n) ≥
(
2k + 2k − 2

(2k + 1)2 − 3

)
n + 4k

(2k + 1)2 − 3
.

In 2002 Škrekovski [37] proved that 2FD1 (k, n) ≥ 2kn + 2k − 2, but it is not known whether FD1 (k, n) ≥ 2 fk(n), provided 
that n is large enough. The only reliable property P for which a Dirac-type bound for the function FP is known are the 
properties D0 =O and D1.

Readers who are interested in additional information concerning the generalized coloring problem are referred to the 
survey by Albertson, Jamison, Hedetniemi, and Locke [1] and to the survey by Borowiecki and Mihók [9].

4. Concluding remarks

Partitioning and coloring graphs under given degree constraints is a well-established area within graph theory and has 
attracted a lot of attention to date. One of the earliest results in this area was obtained by Lovász [27] in 1966. He proved 
that every simple graph G with �(G) < d1 + d2 + · · · + dp for d1, d2, . . . , dp ∈ N has a coloring ϕ with color set C = [1, p]
such that �(G[ϕ−1(i)]) < di for all colors i ∈ C . Partitioning of simple graphs into a fixed number of induced subgraphs 
with bounded degeneracy (coloring number) were first studied in the late 1970s by Borodin [5] as well as by Bollobás 
and Manvel [4]. Colorings of simple graphs under variable degeneracy constraints was first studied in 2000 by Borodin, 
Kostochka, and Toft [6]. They investigated the following coloring problem for the class of simple graphs; for the class of 
graphs and hypergraphs this problem was studied by Schweser and Stiebitz [35]. Let p ∈ N be a fixed integer, and let 
(G, f) be a pair such that G is a graph and f = ( f1, f2, . . . , f p) is a vector function of G , i.e., f i : V (G) → N0. We say that 
(G, f) is colorable if there is a coloring ϕ of G with color set C = [1, p] such that G[ϕ−1(i)] is strictly f i-degenerate for 
all colors i ∈ C , for otherwise we say that (G, f) is uncolorable. This coloring problem has several interesting applications 
(see [6], [34] and [35]); the two most popular applications are the following. If f i ≡ 1 for all i ∈ C , then (G, f) is colorable 
if and only if χ(G) ≤ p. Let L be a list assignment with color set C , and define, for a vertex v ∈ V (G) and a color i ∈ C , 
f i(v) = 1 if i ∈ L(v) else f i(v) = 0. Recall that if a subgraph H of G is strictly f i-degenerate, then V (H) ⊆ sp( f i) implying 
that i ∈ L(v) for all v ∈ V (H). Hence (G, f) is colorable if and only if G has a proper L-coloring, i.e., an (O, L)-coloring. 
Hence the decision problem whether (G, f) is colorable is NP-complete. However, if we add a certain degree condition, this 
problem can be solved in polynomial time. We call (G, f ) degree-feasible if every vertex v ∈ V (G) satisfies

p∑
i=1

f i(v) ≥ dG(v).

A good characterization of uncolorable degree feasible pairs (G, f ) whose underlying graph G is connected were obtained 
in [6], for the class of simple graphs, and in [35], for the class of graphs and hypergraphs. This characterization can be easily 
deduced from Theorem 8. To this end, we associate to the pair (G, f ) a configuration C as follows: the fundamental graph 
18
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of C is G , the cover of C is the cover (X, H) associated to the constant list assignment L ≡ C = [1, p], that is, Xv = {v} × C
for all v ∈ V (G) and for two distinct vertices (u, i) and (v, j) of H we have

μH ((u, i), (v, j)) =
{

μG(u, v) if i = j,
0 if i �= j,

and the function of C is the function f with f (u, i) = f i(u) for u ∈ V (G) and i ∈ C . Then it is easy to check that (G, f )
is degree feasible if and only if C = (G, X, H, f ) is degree feasible; and (G, f ) is colorable if and only if C is colorable. 
Hence Theorem 8, respectively Proposition 9, yields a constructive characterization of uncolorable degree-feasible pairs 
(G, f), provided that G is a connected graph. This is exactly the characterization given in [6] for simple graphs and in [35]
for graphs in general. If (G, f ) is an uncolorable degree-feasible pair and G is a block, then it follows from Theorem 8 that 
(G, f ) satisfies one of the following three conditions:

• There is an integer j such that f j(v) = dG (v) and f i(v) = 0 for i �= j and v ∈ V (G).
• G = tKn for some integers t, n ∈ N and there are integers n1, n2, . . . , np ∈ N0 such that n1 + n2 + · · · + np = n − 1 and 

f(v) = (tn1, tn2, . . . , tnp) for all v ∈ V (G).
• G = tCn for some integers t, n, where t ≥ 1 and n ≥ 3 is odd, and there are two integers k, � ∈ [1, p] such that

f i(v) =
{
t if i ∈ {k, �},
0 if i ∈ [1, p] \ {k, �}

for all v ∈ V (G).

Note that if G is a block, the configuration associated to (G, f ) can never be an even C-configuration. Consequently, The-
orem 8 is a far reaching generalization of many well known and interesting results related to ordinary colorings as well 
as to generalized colorings of graphs. That it is worthwhile to study these coloring problems also for graphs having mul-
tiple edges was first pointed out by Kim and Ozeki [20]; they used these concepts to study colorings of signed graphs. As 
demonstrated by the second author in his thesis (Coloring of Graphs, Digraphs, and Hypergraphs, TU Ilmenau, 2020) the 
characterization of uncolorable pairs for graphs in general can be used to obtain Brooks type results for the dichromatic 
number and list dicromatic number of digraphs; such results were first obtained by Harutyunyan and Mohar [17] in 2012. 
The decomposition result of Lovász has a short and elegant proof. Moreover, it has motivated a large number of follow-up 
investigations in this direction. Two more recent papers about partitioning and coloring graphs with degree constrains were 
published by Rabern, see [31] and [32].
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[14] Z. Ďvorák, L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of length 4 to 8, J. Comb. Theory, Ser. B 

129 (2018) 38–54.
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