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Abstract

In this paper, we provide simpler reductions from Exact Triangle to two important problems in fine-

grained complexity: Exact Triangle with Few Zero-Weight 4-Cycles and All-Edges Sparse Triangle.

Exact Triangle instances with few zero-weight 4-cycles was considered by Jin and Xu [STOC 2023],

who used it as an intermediate problem to show 3SUM hardness of All-Edges Sparse Triangle with few 4-

cycles (independently obtained by Abboud, Bringmann and Fischer [STOC 2023]), which is further used

to show 3SUM hardness of a variety of problems, including 4-Cycle Enumeration, Offline Approximate

Distance Oracle, Dynamic Approximate Shortest Paths and All-Nodes Shortest Cycles. We provide

a simple reduction from Exact Triangle to Exact Triangle with few zero-weight 4-cycles. Our new

reduction not only simplifies Jin and Xu’s previous reduction, but also strengthens the conditional lower

bounds from being under the 3SUM hypothesis to the even more believable Exact Triangle hypothesis.

As a result, all conditional lower bounds shown by Jin and Xu [STOC 2023] and by Abboud, Bringmann

and Fischer [STOC 2023] using All-Edges Sparse Triangle with few 4-cycles as an intermediate problem

now also hold under the Exact Triangle hypothesis.

We also provide two alternative proofs of the conditional lower bound of the All-Edges Sparse Trian-

gle problem under the Exact Triangle hypothesis, which was originally proved by Vassilevska Williams

and Xu [FOCS 2020]. Both of our new reductions are simpler, and one of them is also deterministic—all

previous reductions from Exact Triangle or 3SUM to All-Edges Sparse Triangle (including Pătraşcu’s

seminal work [STOC 2010]) were randomized.

1 Introduction

In this paper, we present several new simpler reductions between core problems in fine-grained complexity,

which lead to simpler conditional lower bound proofs for a plethora of problems, and at the same time

strengthening some of these results by weakening the hypothesis assumed.

In the Exact Triangle problem (also known as Zero-Weight Triangle), we are given an n-node weighted

graph G whose edge weights are from [±nO(1)],1 and we need to determine whether it contains a triangle

whose edge weights sum up to 0. It is one of the key problems in the field of fine-grained complexity,

primarily due to its relationship between the 3SUM hypothesis and the APSP hypothesis, which are among

the three central hypotheses in fine-grained complexity (the other one is the Strong Exponential Time hy-

pothesis). It is known that under either the 3SUM hypothesis [VW13] or the APSP hypothesis [VW18], the

Exact Triangle problem requires n3−o(1) time. As a result, the following Exact Triangle hypothesis holds as

long as at least one of the 3SUM hypothesis and the APSP hypothesis holds.

*Supported by NSF Grant CCF-2224271.
†Partially supported by NSF Grants CCF-2129139 and CCF-2330048 and BSF Grant 2020356.
1For a nonnegative integer N , [N ] denotes {1, . . . , N} and [±N ] denotes {−N, . . . , N}.
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Hypothesis 1 (Exact Triangle hypothesis). In the Word-RAM model with O(log n)-bit words, Exact Trian-

gle on n-node weighted graphs whose edge weights are from [±nO(1)] requires n3−o(1) time.

By designing reductions from the Exact Triangle problem to other problems, we can obtain conditional

lower bounds that hold under the Exact Triangle hypothesis, which in turn also hold under either the 3SUM

hypothesis or the APSP hypothesis. This makes it desirable to design reductions from the Exact Triangle

problem.

Exact Triangle with few zero-weight 4-cycles. Recently, Jin and Xu [JX23] reduced 3SUM to 4-Cycle

Enumeration, Offline Approximate Distance Oracle, Dynamic Approximate Shortest Paths and All-Nodes

Shortest Cycles. As one of their intermediate steps, they showed 3SUM-hardness of a variant of Exact

Triangle on instances with a small number of zero-weight 4-cycles. This part of their reduction is very tech-

nically involved, and it uses heavy machineries such as the Balog–Szemerédi–Gowers theorem from additive

combinatorics. Independently, Abboud, Bringmann and Fischer [ABF23] also showed 3SUM hardness of

several graph problems including 4-Cycle Enumeration and Offline Approximate Distance Oracle. They do

not use aforementioned variant of Exact Triangle in their reduction, but their reduction also uses tools from

additive combinatorics. (See Figure 1 (right).)

Exact Triangle

3SUM APSP

All-Edges Sparse Triangle

many data structure problems

(dynamic reachability, set disjointness queries, etc.)

[VX20]

this paper

(simpler & det.)

[Păt10] or

[KPP16]

or [CVX22]

Exact Triangle

3SUM APSP

3SUM with

moderate energy

Exact Triangle

with few zero-wt 4-cycles

All-Edges Sparse Triangle

with few 4-cycles

many more problems

(4-cycle enumeration, approximate distance oracles, etc.)

[JX23] or [ABF23]

(complicated!)

[JX23]

[JX23]

or [ABF23]

this paper

(new & simpler!)

[ABKZ22]

(but suboptimal)

Figure 1: Summary of reductions. (See the cited references for precise definitions of some of the intermedi-

ate problems in the right diagram, which may have slight variations in different papers.)

In this paper, we vastly simplify Jin and Xu’s reduction by designing a reduction from Exact Triangle

(instead of 3SUM in their case) to the aforementioned variant of Exact Triangle, by a proof that is under two

pages. Moreover, with our new reduction, the lower bounds for 4-Cycle Enumeration, Offline Approximate

Distance Oracle, Dynamic Approximate Shortest Paths and All-Nodes Shortest Cycles in [JX23] now also

hold under the Exact Triangle hypothesis; previously, they only hold under the 3SUM hypothesis. (We

remark that our new reduction does not imply Exact Triangle hardness for problems such as Sidon Set

Verification and 4-LDT, which were shown to be 3SUM hard in [JX23], because the reduction from 3SUM

to them does not use the variant of Exact Triangle as an intermediate problem.)

Our new reduction is inspired by the recent work of Chan, Vassilevska Williams and Xu [CVX23]. In

particular, they showed versions of the Balog–Szemerédi–Gowers theorem that have simpler proofs inspired
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by the famous “Fredman’s trick”2 [Fre76]. We borrow their intuition that Fredman’s trick can help simpli-

fying proofs involving the Balog–Szemerédi–Gowers theorem, but our reduction does not use their results

directly.

All-Edges Sparse Triangle. We also present two simplifications of the known reduction from Exact Tri-

angle to the All-Edges Sparse Triangle problem [VX20], in which we are given an m-edge graph, and

for each edge in the graph, we need to decide whether it is in a triangle. This problem can be solved in

O(m2ω/(ω+1)) time [AYZ97], where ω < 2.372 is the square matrix multiplication exponent [DWZ23].

When ω = 2, this running time becomes O(m4/3). In a landmark paper, Pătraşcu [Păt10] showed that this

problem requires m4/3−o(1) time under the 3SUM hypothesis, matching the running time if ω = 2.3 Vas-

silevska Williams and Xu [VX20] later strengthened this lower bound to make it also work under the Exact

Triangle hypothesis. Another paper by Chan, Vassilevska Williams and Xu [CVX22] showed that condi-

tional lower bounds for All-Edges Sparse Triangle also hold under the real-valued variants of fine-grained

hypotheses, including an m4/3−o(1) time lower bound under the Real APSP hypothesis, an m5/4−o(1) time

lower bound under the Real Exact Triangle hypothesis, and an m6/5−o(1) time lower bound under the Real

3SUM hypothesis. Since Pătraşcu’s work [Păt10], All-Edges Sparse Triangle has been used as a bridge to

show conditional lower bounds for a wide variety of dynamic problems, such as dynamic reachability and

dynamic shortest paths [Păt10, AV14], and also static data structure problems, such as set disjointness and

set intersection [KPP16] and certain types of generalized range queries [DKPW20]. (See Figure 1 (left).)

We design two simple new reductions from Exact Triangle to All-Edges Sparse Triangle, simplifying

Vassilevska Williams and Xu’s reduction [VX20]. In particular, our reductions do not use any hash function

and are considerably shorter than theirs.

Our first reduction is adapted from Chan, Vassilevska Williams and Xu’s reduction from real-valued

problems to All-Edges Sparse Triangle [CVX22]. Even though they were only able to obtain a non-tight

m5/4−o(1) time lower bound for All-Edges Sparse Triangle under the Real Exact Triangle hypothesis, we

show that their ideas can be implemented more efficiently for the integer-valued version of Exact Triangle.

Similar to [CVX22], our new reduction also relies on Fredman’s trick. An additional advantage of this

reduction is that it is deterministic, while the reduction in [VX20] is randomized. Note that Pătraşcu’s

original reduction [Păt10] from 3SUM to All-Edges Sparse Triangle and Kopelowitz, Pettie and Porat’s

later reduction [KPP16] were also randomized (and crucially relied on hashing). Our approach gives the

first deterministic reduction from 3SUM to All-Edges Sparse Triangle as well, yielding the same m4/3−o(1)

conditional lower bound.

Our second reduction borrows an idea from a recent conditional lower bound of Sparse Triangle De-

tection under the strong 3SUM hypothesis by Jin and Xu [JX23]. Sparse Triangle Detection is a problem

closely-related to All-Edges Sparse Triangle, where now we only need to decide if a given graph contains a

triangle or not. Jin and Xu [JX23] showed an m6/5−o(1) lower bound for Sparse Triangle Detection under

the Strong 3SUM hypothesis, which states that 3SUM instances on n integers from [±n2] requires n2−o(1)

time. Previously, Abboud, Bringmann, Khoury and Zamir [ABKZ22] showed an m4/3−o(1) lower bound for

Sparse Triangle Detection under an unbalanced bounded-weight variant of the Exact Triangle hypothesis.

The method for our second reduction can actually lead to more consequences, including an m5/4−o(1)

lower bound of the All-Nodes Sparse Triangle problem (deciding, for each node, whether it is in a trian-

gle) under the Exact Triangle hypothesis, and an m9/7−o(1) lower bound of the Sparse Triangle Detection

2The simple observation that a+ b = a′ + b′ is equivalent to a− a′ = b′ − b.
3Technically, Pătraşcu proved the conditional lower bound for the problem of listing m triangles in an m-edge graph, but this

problem is equivalent up to polylog factors to the All-Edges Sparse Triangle problem under randomized reductions [DKPW20].
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problem under a (more natural) balanced bounded-weight variant of the Exact Triangle hypothesis.

2 Exact Triangle with Few Zero-Weight 4-Cycles

In this section, we will consider Exact Triangle instances where the edge weights wij can be different from

wji, and the weight of a triangle (i, j, k) is defined as wij+wjk+wki. The following property was considered

by [JX23].

Property 2.1. In an Exact Triangle instance on edge set E and weight function w,

• Antisymmetry: For every (i, j) ∈ E, it holds that (j, i) ∈ E and wij = −wji;

• Few zero-weight 4-cycles: The number of (i, j, k, ℓ) for which (i, j), (j, k), (k, ℓ), (ℓ, i) ∈ E and

wij +wjk+wkl +wli = 0 is at most n3 (we will call each (i, j, k, ℓ) a zero-weight 4-cycle, and here,

i, j, k, ℓ are not necessarily distinct).

Jin and Xu [JX23] gave a long and complicated proof that Exact Triangle instances on graphs with

Property 2.1 require n3−o(1) time under the 3SUM hypothesis. We present a much simpler proof of the

same result under the Exact Triangle hypothesis (from which one can then obtain conditional lower bounds

for a host of other problems, including 4-Cycle-Enumeration and Offline Approximate Distance Oracle, as

shown in [JX23]):

Theorem 2.2. Under the Exact Triangle hypothesis, Exact Triangle instances on n-node graphs with Prop-

erty 2.1 requires n3−o(1) time.

Proof. Suppose for the sake of contradiction that Exact Triangle instances on n-node graphs with Prop-

erty 2.1 can be solved in O(n3−ε) time for some ε > 0.

Given any Exact Triangle instance on G = (V,E) (where wij = wji for all edges ij), we can copy

V three times to V1, V2, V3, add E between any two copies of V , and direct the edges in the direction of

V1 → V2 → V3 → V1. This way, we can add in the edges in the reverse directions with negated weights.

Hence, the Antisymmetry property is satisfied.

Let δ > 0 be some constant to be fixed later. We consider the following two cases:

The number of zero-weight 4-cycles is at most n4−δ. In this case, we randomly partition the vertices to

reduce the problem to multiple smaller Exact Triangle instances, reducing the overall number of zero-weight

4-cycles significantly while preserving all zero-weight triangles.

Let x > 0 be a constant. We create n1−x buckets of vertices, and put each v ∈ V into one of the

buckets chosen uniformly at random. For every triple of buckets, we create an Exact Triangle instance on

the subgraph induced by the vertices in the three buckets. Each instance contains O(nx) nodes w.h.p.4 It

suffices to solve all O(n3−3x) instances of these small Exact Triangle instances.

For any triple of buckets B1, B2, B3, and any zero-weight 4-cycle (i, j, k, ℓ) in the original graph with

distinct i, j, k, ℓ, (i, j, k, ℓ) appears in the small instance induced by B1, B2, B3 with probability 1
n4−4x .

Therefore, in expectation, the number of zero-weight 4-cycles with distinct nodes in the instance induced by

buckets B1, B2, B3 is O(n4x−δ). By sampling random distinct tuples of nodes i, j, k, ℓ in the small instance

and testing whether they form a zero-weight 4-cycle, we can estimate the number of zero-weight 4-cycles

with distinct vertices up to n2x additive error w.h.p. in Õ(n
4x

n2x ) = Õ(n2x) time. If the estimated count is at

4With high probability, i.e., probability 1−O(1/nc) for an arbitrarily large constant c.
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least 2n2x, we use brute-force to solve this small instance in O(n3x) time. Note that this case happens with

probability O(n
4x−δ

n2x ) = O(n2x−δ) by Markov’s inequality. Otherwise, the number of zero-weight 4-cycles

in the instance is at most O(n3x) w.h.p. (O(n2x) from zero-weight 4-cycles with distinct nodes, and O(n3x)
from zero-weight 4-cycles with some repeated nodes). We can add some isolated nodes in the small instance

to increase its number n′ of nodes (n′ will still be O(nx)), so that the number of zero-weight 4-cycles can

be bounded by (n′)3. Thus, we can call an algorithm for Exact Triangle with Property 2.1 on this small

instance, which runs in O(n(3−ε)x) time.

Overall, the expected running time is

O
(
n3−3x ·

(
n2x−δ · n3x + n(3−ε)x

))
= O(n3+2x−δ + n3−3εx),

which is O(n3− 3ε
2+3ε

δ) by setting x = δ/(2 + 3ε).

The number of zero-weight 4-cycles is more than Ω(n4−δ). In this case, there exists (i0, k0) ∈ E that

participates in Ω(n2−δ) zero-weight 4-cycles. We can find such an (i0, k0) by testing all O(n2) pairs. To test

a given pair (i0, k0), we can estimate the number of (i, k) such that (i0, k0, i, k) form a zero-weight 4-cycle

with up to o(n2−δ) additive error w.h.p., by sampling random pairs (i, k), in Õ( n2

n2−δ ) = Õ(nδ) time. The

total time is Õ(n2+δ).
For each k, define rk := wi0,k −wi0,k0 . Define E0 := {(i, k) ∈ E : wik −wi,k0 = rk}. Note that E0 is

exactly the set of (i, k) where (i0, k0, i, k) forms a zero-weight 4-cycle, because

wik − wi,k0 = wi0,k − wi0,k0 ⇐⇒ wi0,k0 +wk0,i + wik + wk,i0 = 0

by the Antisymmetry property (and Fredman’s trick). Thus, |E0| = Ω(n2−δ) w.h.p.

We can test whether there is a zero-weight triangle using at least one edge in E0 as follows. Say

wik +wkj +wji = 0 for some edge (i, k) ∈ E0. The condition is equivalent to wi,k0 + rk +wkj +wji = 0,

which further is equivalent to wi,k0 + wji = −wkj − rk. We create two matrices A,B where Aij :=
wi,k0 + wji and Bjk := −wkj − rk. Now the problem becomes the following: for every (i, k) ∈ E0,

test whether there exists j such that Aij = Bjk. This can be solved by computing the so-called Equality

Product of the two matrices A and B, which is known to be in O(n(3+ω)/2) time [Mat91] (see [CVX23] for

more applications of Equality Product combined with Fredman’s trick). After this step, we can remove E0

from E, and by symmetry, we can also remove all edges that are reverses to the edges in E0. Then we can

iteratively solve the Exact Triangle instance on the remaining graph.

Putting things together. The overall algorithm is as follows. It determines which case we are at by

estimating the number of zero-weight 4-cycles in Õ(nδ) time. We can call the second case at most O(nδ)
expected number of times because each time we remove a subset of Ω(n2−δ) edges w.h.p. Also, we can call

the first case at most once. Thus, the overall running time is

Õ(n2δ + n3− 3ε
2+3ε

δ + nδ · (n2+δ + n(3+ω)/2)),

which is truly subcubic by setting δ properly (say δ = 0.1). This would violate the Exact Triangle hypothe-

sis, so Exact Triangle instances on n-node graphs with Property 2.1 requires n3−o(1) time.
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3 All-Edges Sparse Triangle: First Alternative Proof

In this section, we present the first alternative proof for the lower bound of All-Edges Sparse Triangle under

the Exact Triangle hypothesis (from which one can then obtain conditional lower bounds for many data

structure problems [Păt10, AV14, KPP16]). This proof is adapted from Chan, Vassilevska Williams and

Xu’s reduction from real-valued problems to All-Edges Sparse Triangle [CVX22]. We combine it with an

extra simple idea where we iteratively halve the weights. The new reduction is entirely deterministic, unlike

all previous reductions for All-Edges Sparse Triangle, and avoids any form of hashing.

Theorem 3.1. Under the Exact Triangle hypothesis, All-Edges Sparse Triangle requires m4/3−o(1) time.

Proof. Without loss of generality, we assume that the Exact-Triangle instance is on a tripartite graph with

node partitions A,B,C where |A| = |B| = n and |C| = √
n and with weight function w. Such an instance

requires n2.5−o(1) time under the Exact-Triangle hypothesis. We also solve a stronger version, where for

every (a, b) ∈ A × B, we need to find a cab ∈ C where |wab + wb,cab + wa,cab | ≤ 3, if one exists.

This version is stronger because if we multiply all initial edge weights by 4, then finding such (a, b, cab) is

equivalent to finding zero-weight triangles.

First, we recursively solve the instance where the edge weights wij are replaced with ⌊wij/2⌋. The base

case is when all the edge weights are in [±O(1)]. In this case, the instance can be solved in Õ(nω) time, by

enumerating all triples of edge weights that sum up to [±3], and then find triangles with the corresponding

edge weights using known methods for finding triangles in unweighted graphs [AGMN92].

Suppose for every (a, b), we already found kab (via recursion) where |⌊wab/2⌋+ ⌊wb,kab/2⌋ + ⌊wa,kab/2⌋| ≤
3 if one exists. Then we need to find cab with |wab + wb,cab + wa,cab | ≤ 3 if one exists.

Let Lk,δ := {(a, b) ∈ A×B : kab = k,wab+wbk +wka = δ} for k ∈ C and δ ∈ {−6, . . . , 9}. If some

Lk,δ has size greater than n1.5, we split it to O(
|Lk,δ|

n1.5 ) subsets of size O(n1.5). The total number of subsets

will remain O(|C| + n2

n1.5 ) = O(n0.5). We also split the set C into nε equally-sized subsets {Cs}s∈[nε].

For each subset L = Lk,δ, each δ′ ∈ {−3, . . . , 3}, and each subset Cs, we create the following All-Edges

Sparse Triangle instance:

• The vertex sets are A′, B′, U , where A′ is a copy of A, B′ is a copy of B, and U is Cs × [±nO(1)]
(sparsely represented).

• For every (a, b) ∈ L, add an edge between a ∈ A′ and b ∈ B′.

• For every (a, c) ∈ A× Cs, add an edge between a and (c, wac − wak + δ − δ′).

• For every (b, c) ∈ B × Cs, add an edge between b and (c, wbk − wbc).

Then we detect for every edge (a, b) in the graph, whether it is contained in a triangle. If so, we

exhaustively search cab in Cs (for each edge (a, b), we only perform this exhaustive search once).

Correctness. First, we show that for any triangle (a, b, (c, u)) that is in any of the created All-Edges Sparse

Triangle instances, c is a valid candidate for cab. This is because wac−wak+δ−δ′ = u = wbk−wbc, which

implies wab+wbc+wca = δ′+(wab+wbk+wak−δ) (by Fredman’s trick). Now, wab+wbk+wak−δ = 0
because any edge (a, b) in this particular All-Edges Sparse Triangle instance has wab + wbk + wak = δ by

the definition of Lk,δ. Therefore, wab + wbc + wca = δ′ ∈ [±3] and thus c is a valid candidate for cab.

6



Then we show that if c ∈ Cs is a valid candidate for cab, then (a, b, (c, u)) for some u is a triangle in

some of the created All-Edges Sparse Triangle instances. Because c is a valid candidate for cab, and

1

2
(wab + wbc + wca)−

3

2
≤ ⌊wab/2⌋+ ⌊wbc/2⌋ + ⌊wca/2⌋ ≤

1

2
(wab + wbc + wca) .

we have −3 ≤ ⌊wab/2⌋+⌊wbc/2⌋+⌊wac/2⌋ ≤ 3
2 ≤ 3, so kab must also exist (in particular, it can take value

c, but it can be any other valid value as well). Therefore, (a, b) ∈ Lkab,δ, where δ = wab+wa,kab +wb,kab ∈
{−6, . . . , 9}. Also, let δ′ = wab + wac + wbc. The edge (a, b) will be included in the All-Edges Sparse

Triangle instance created for L = Lkab,δ, δ′ and Cs. Because wab+wak+wbk−δ = 0 = wab+wac+wbc−δ′,
we have wac − wak + δ − δ′ = wbk − wbc, so we will find a triangle for the edge (a, b) (in particular,

(a, b, (c, wbk − wbc)) is a valid triangle).

Running time. Suppose the running time for All-Edges Sparse Triangle is O(m4/3−ε) for some ε > 0,

then the overall running time can be bounded as follows. The time for handling the base case is Õ(nω).
In each recursive step, we need to solve O(n0.5+ε) instances of All-Edges Sparse Triangle, which run in

Õ(n0.5+ε · (n1.5)4/3−ε) = Õ(n2.5−0.5ε) time. For every edge (a, b), we also need to spend time performing

the exhaustive search, which run in Õ(n2 · n0.5−ε) = O(n2.5−ε) time. Overall, the running time is Õ(nω +
n2.5−0.5ε), which would violate the Exact Triangle hypothesis.

4 All-Edges Sparse Triangle: Second Alternative Proof

In this section, we present the second alternative proof for the lower bound of All-Edges Sparse Triangle

under the Exact-Triangle hypothesis, which is based on an idea from the recent conditional lower bound of

Sparse Triangle Detection under the strong 3SUM hypothesis by Jin and Xu [JX23].

Let EXACT-TRI(n | W ) denote the time complexity of the problem of detecting a zero-weight triangle

in an n-node tripartite graph with edge weights in [±W ]. Let EXACT-TRI-LIST(n, t | W ) denote the

time complexity of the problem of listing all t zero-weight triangles in an n-node tripartite graph with edge

weights in [±W ] (note that the value of t is not given in advance).

Let SPARSE-TRI(m), AE-SPARSE-TRI(m), and AN-SPARSE-TRI(m) denote the time complexity of

the Sparse Triangle Detection, All-Edges Sparse Triangle, and All-Nodes Sparse Triangle problems respec-

tively for an m-edge unweighted tripartite graph.5 Let SPARSE-TRI-LIST(m, t) denote the time complexity

of the problem of listing all t triangles in an m-edge unweighted tripartite graph.

Our main idea for reducing Exact Triangle to Sparse Triangle Listing is encapsulated in the proof of the

following lemma, which is short and simple.

Lemma 4.1. EXACT-TRI-LIST(n, t | W ) ≤ O(1) · SPARSE-TRI-LIST(n2W 1/3, t).

Proof. Exact Triangle Listing for weights in [±W ] reduces to O(1) instances of Exact Triangle Listing

for weights in [±q]3 with q := W 1/3, since we can map any number x = x1q
2 + x2q + x3 ∈ [±W ]

with x1 ∈ [±q], x2, x3 ∈ {0, . . . , q − 1} to the triple ϕ(x) = (x1, x2, x3) ∈ [±q]3; then x + y +
z = 0 iff ϕ(x) + ϕ(y) + ϕ(z) ∈ ∆ for a constant-size set ∆ = {(0, 0, 0), (0,−1, q), (0,−2, 2q)} +
{(0, 0, 0), (−1, q, 0), (−2, 2q, 0)}. For every δ ∈ ∆, we need to solve an instance where the target weight

of the triangle is δ; by subtracting δ from all edges in one of the edge parts, the target can become 0 again

(this will only increase the edge weight bound by a constant factor).

5As a reminder, in the Sparse Triangle Detection problem, we need to determine whether a given graph contains a triangle; in

the All-Nodes Sparse Triangle problem, we need to decide whether each node in a given graph is contained in a triangle.
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Let G be an n-node tripartite graph with node partition A,B,C and edge weights in [±q]3. Construct a

new unweighted tripartite graph G′ with node partition A× [±q]2, B × [±q]2, C × [±q]2:

• Add an edge between (a, x1, z3) ∈ A× [±q]2 and (b, y3, x2) ∈ B × [±q]2 iff ab is an edge in G with

weight (x1, x2,−y3 − z3).

• Add an edge between (b, y3, x2) ∈ B × [±q]2 and (c, z2, y1) ∈ C × [±q]2 iff bc is an edge in G with

weight (y1,−x2 − z2, y3).

• Add an edge between (c, z2, y1) ∈ C × [±q]2 and (a, x1, z3) ∈ A× [±q]2 iff ca is an edge in G with

weight (−x1 − y1, z2, z3).

The number of edges in G′ is O(n2q) = O(n2W 1/3) (for example, to count the number of edges added

in the first bullet, note that there are O(q) ways to write a given number in [±q] as −y3 − z3). Furthermore,

(a, x1, z3), (b, y3, x2), (c, z2, y1) form a triangle in G′ iff a, b, c form a triangle in G whose edges ab, bc, ca
have weights (x1, x2, x3), (y1, y2, y3), (z1, z2, z3) summing to (0, 0, 0). Thus, we can solve Exact Triangle

Listing on G by solving Triangle Listing on G′.

For the above lemma to be effective, the universe size W needs to be subcubic. To lower the universe

size, we use a standard hashing trick described in the next lemma. We only need the simplest type of linear

hash functions (mod p for a random prime p), and this is the only place in this reduction where randomization

is used.

Lemma 4.2. EXACT-TRI(n | nO(1)) ≤ Õ(1) · EXACT-TRI-LIST(n, Õ(t) | n3/t) for any t.

Proof. Pick a random prime p in [n3/(2t), n3/t]. To solve Exact Triangle for a given weighted graph, we

take the weights mod p and solve Exact Triangle Listing to find all triangles with weights congruent to

0 mod p. The answer is yes iff one of these triangles actually has zero weight. For a fixed triangle with

nonzero weight, the probability that its weight is congruent to 0 mod p is O((t/n3) log n), since there are

O( n3/t
log(n3/t)) primes in [n3/(2t), n3/t], and a fixed number in [nO(1)] has at most O( logn

log(n3/t)) prime divisors

in this range. Thus, the expected number of triangles with nonzero weights congruent to 0 mod p (i.e.,

number of false positives) is O(t log n). Thus, if the process takes more than EXACT-TRI-LIST(n, Õ(t) |
n3/t) time, we can terminate and infer that the answer is yes with probability Ω(1) (or w.h.p. by repeating

logarithmically many times).

The main result now immediately follows:

Theorem 4.3. Under the Exact Triangle hypothesis, All-Edges Sparse Triangle requires m4/3−o(1) time.

Proof. We first show that for listing all t triangles in an m-edge graph when t = Θ(m) requires m4/3−o(1)

time, under the Exact Triangle hypothesis.

Combining Lemmas 4.1 and 4.2 gives

EXACT-TRI(n | nO(1)) ≤ Õ(1) · SPARSE-TRI-LIST(n3/t1/3, Õ(t))

≤ Õ(1) · SPARSE-TRI-LIST(n9/4, Õ(n9/4))) by setting t = n9/4

≤ Õ(n3−(9/4)ε) if SPARSE-TRI-LIST(m,m) ≤ O(m4/3−ε).

To prove hardness for All-Edges Sparse Triangle instead of Sparse Triangle Listing, we apply a known

(simple) reduction from Sparse Triangle Listing to All-Edges Sparse Triangle from [DKPW20, Theorem

1.4].
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4.1 Discussion and Further Consequences

Monte Carlo randomization is used in the proof of Lemma 4.2. With a little more effort, it is possible to

modify it to require only Las Vegas randomization.6 However, it is not clear how to completely derandom-

ize this reduction without slow-down. If a deterministic reduction is desired, see our alternative proof in

Section 3.

Compared to Vassilevska Williams and Xu’s reduction [VX20] from Exact Triangle to Sparse Triangle

Listing or All-Edges Sparse Triangle, the new reduction is not only simpler, but also better in a technical

sense. Their reduction [VX20, Theorem 3.4] (also randomized) basically shows that

EXACT-TRI(n | nO(1)) ≤ Õ(n2ρ) · SPARSE-TRI-LIST(n2−ρ, n3−3ρ).

Setting ρ = 1/2 gives EXACT-TRI(n | nO(1)) ≤ Õ(n)·SPARSE-TRI-LIST(n3/2, n3/2), which is Õ(n3−(3/2)ε)
if SPARSE-TRI-LIST(m,m) ≤ O(m4/3−ε). In contrast, the proof of Theorem 4.3 provides a slightly better

bound of Õ(n3−(9/4)ε).
As an application, we derive a new conditional lower bound for All-Nodes Sparse Triangle, a natural

problem “in between” All-Edges Sparse Triangle and Sparse Triangle Detection. (The previous reduction

could also be used in combination of Lemma 4.5 below, but the dependence on ε would again be worse.)

Let SPARSE-TRI-LIST(m, t, dmax) denote the time complexity of the problem of listing all t triangles in

an m-edge unweighted tripartite graph with maximum degree dmax.

Lemma 4.4. EXACT-TRI-LIST(n, t | W ) ≤ Õ(1) · SPARSE-TRI-LIST(n2W 1/3, t, O(n/W 1/3)).

Proof. As in the proof of Lemma 4.1, we may assume the edge weights are in [±q]3 with q := W 1/3.

Pick a random function h : A ∪ B ∪ C → [q]3. For each edge uv, replace the weight wuv by ŵuv =
wuv +h(v)−h(u) ∈ [±2q]3. Clearly, the weight of each triangle remains unchanged. Now, apply the same

construction of G′ as in the proof of Lemma 4.1 (with q adjusted by a factor of 2).

Consider a fixed node (a, x1, z3) ∈ A × [±2q]2, and a fixed b ∈ B. Then (a, x1, z3) has a (unique)

neighbor (b, y3, x2) in G′ for some y3 and x2 only if the first component of ŵab is equal to x1, i.e., h(b)
is equal to h(a) − wab + x1 in the first component. This holds with probability at most 1/q, since the first

component of h(b) is uniformly distributed in [q] conditioned to any fixed h(a). For a fixed c ∈ C , the

probability that (a, x1, z3) has a (unique) neighbor (c, z2, y1) for some z2 and y1 is similarly at most 1/q.

Thus, the expected degree of (a, x1, z3) is at most n/q = n/W 1/3.

We now remove all nodes of degree more than 6n/W 1/3 from G′. The probability that a fixed node is

removed is at most 1/6 by Markov’s inequality. Thus, the probability that any fixed triangle is eliminated

is at most 1/2. To solve Exact Triangle Listing on G, we solve Sparse Triangle Listing on G′, repeating

logarithmically many times to ensure a high survival probability bound per triangle.

Lemma 4.5. SPARSE-TRI-LIST(m, t, dmax) ≤ Õ(AN-SPARSE-TRI(m+ tdmax)).

Proof. We describe a recursive algorithm for Sparse Triangle Listing: Given an m-edge tripartite graph G
with node partition A,B,C , arbitrarily divide A into two subsets A1 and A2 of size |A|/2. For each j ∈ [2],
run the All-Nodes Sparse Triangle oracle to identify the subset Bj of nodes in B that participate in triangles

6For example, in the proof of Lemma 4.2, when the process takes more than the allotted time, we return “not sure” instead of

yes. If there is at most one zero-weight triangle, the probability of returning “not sure” is small. By standard random-sampling

arguments, we can run the algorithm on logarithmically many subgraphs where one of the subgraphs has a unique zero-weight

triangle with good probability if there exists a zero-weight triangle. If “not sure” is reported for all such subgraphs, we restart from

scratch.
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in the subgraph of G induced by Aj ∪B ∪C; then recursively solve the Sparse Triangle Listing problem on

the subgraph of G induced by Aj ∪Bj ∪ C .

Observe that each edge in A × B or A × C participates in one subproblem per level in the recursion.

Furthermore, an edge (b, c) ∈ B×C participates in at most f(b) subproblems per level, where f(b) denotes

the number of triangles that b participates in. Thus, the sum of the number of edges over all the subproblems

per level is O(m +
∑

b∈B f(b)dmax) = O(m + tdmax). There are O(log n) levels of recursion. By super-

linearity of AN-SPARSE-TRI(·), the entire algorithm runs in O(AN-SPARSE-TRI(m+ tdmax) log n) time.

Theorem 4.6. Under the Exact Triangle hypothesis, All-Nodes Sparse Triangle requires m5/4−o(1) time.

Proof. Combining Lemmas 4.2, 4.4 and 4.5 gives

EXACT-TRI(n | nO(1)) ≤ Õ(1) · AN-SPARSE-TRI(n3/t1/3 + t4/3)

≤ Õ(1) · AN-SPARSE-TRI(n12/5) by setting t = n9/5

≤ Õ(n3−(12/5)ε) if AN-SPARSE-TRI(m) ≤ O(m5/4−ε).

Unfortunately, a nontrivial lower bound for Sparse Triangle Detection is still out of reach under the

Exact Triangle hypothesis. However, we have the following result if we assume the Strong Exact Triangle

hypothesis, namely, that Exact Triangle for integer weights in [±n] requires n3−o(1) time. (Recent work has

considered similarly defined Strong APSP hypothesis, Strong 3SUM hypothesis, and so on [CVX23, JX23].)

The proof here only needs Lemma 4.1, so the reduction is even simpler (and deterministic).

Theorem 4.7. Under the Strong Exact Triangle hypothesis, Sparse Triangle Detection requires m9/7−o(1)

time.

Proof. The analog of Lemma 4.1 for detection instead of listing implies that EXACT-TRI(n | W ) ≤ O(1) ·
SPARSE-TRI(n2W 1/3), and so EXACT-TRI(n | n) ≤ O(SPARSE-TRI(n7/3)).

Abboud et al. [ABKZ22] were the first to prove conditional lower bounds for Sparse Triangle Detection

under a variant of the Exact Triangle hypothesis (which they call “the Strong Zero-Triangle Conjecture”).

More precisely, they showed a better lower bound of m4/3−o(1) under an “unbalanced” version of the hy-

pothesis, specifically, that Exact Triangle for a tripartite graph with n nodes in the first part, and
√
n nodes

in the second and third parts, and weights in [±√
n] requires n2−o(1) time. In contrast, Theorem 4.7 assumes

the Strong Exact Triangle hypothesis in the balanced case, which appears more natural.

Compared to Abboud et al.’s reduction (which is extremely simple), ours is more powerful in some

sense. Let EXACT-TRI(n1, n2, n3 | W ) denote the time complexity of Exact Triangle for a tripartite graph

with n1, n2, n3 nodes in its three parts and edge weights in [±W ]. They basically observed that

EXACT-TRI(n1, n2, n3 | W ) ≤ O(1) · SPARSE-TRI(n1n2 + n1n3 + n2n3W ).

Setting n2 = n3 = W =
√
n gives EXACT-TRI(n,

√
n,

√
n | √n) ≤ O(SPARSE-TRI(n3/2)), which is

O(n2−(3/2)ε) if SPARSE-TRI(m) ≤ O(m4/3−ε). In contrast, straightforward modification of the proof of

Lemma 4.1 yields a more general bound:

EXACT-TRI(n1, n2, n3 | W ) ≤ min
q1,q2,q3: q1q2q3=W

O(1) · SPARSE-TRI(n1n2q3 + n1n3q2 + n2n3q1)

= O(1) · SPARSE-TRI((n1n2n3)
2/3W 1/3 + n1n2 + n1n3 + n2n3).
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A A Simple Reduction from 3SUM to Sparse Triangle Listing

By combining with known reductions from 3SUM to Convolution-3SUM [Păt10, KPP16, CH20] and from

Convolution-3SUM to Exact Triangle [VW13], the result in Section 4 implies a reduction from 3SUM

to Sparse Triangle Listing. In this appendix, we describe a more direct modification to obtain a simple

reduction from 3SUM to Sparse Triangle Listing, without going through Convolution-3SUM and Exact

Triangle. The proof is very similar to the one in Section 4 (based on an idea in [JX23]), and is also similar to

ideas contained in a proof by Abboud, Bringmann and Fischer [ABF23], but we feel it is worthwhile to write

out the proof explicitly, since it is simpler (and more “symmetric”) than Pătraşcu’s original reduction [Păt10]

or Kopelowitz, Pettie and Porat’s later reduction [KPP16], and may have pedagogical value (being the easiest

to teach).

Let 3SUM(n | W ) denote the time complexity of the 3SUM problem for n numbers in [±W ]. Let

3SUM-LIST(n, t | W ) denote the time complexity of the problem of listing all t triples of numbers summing

to 0 for n numbers in [±W ] (note that t is not given in advance).

We first adapt Lemma 4.1.

Lemma A.1. 3SUM-LIST(n, t | W ) ≤ O(1) · SPARSE-TRI-LIST(nW 1/3, t).

12



Proof. 3SUM for numbers in [±W ] reduces to O(1) instances of 3SUM for triples in [±q]3 with q := W 1/3,

by the same mapping ϕ.

Let A,B,C be three given sets of n triples in [±q]3. Construct an unweighted tripartite graph G′ with

node partition {1} × [±q]2, {2} × [±q]2, {3} × [±q]2:

• Add edge between (1, x1, z3) ∈ {1}× [±q]2 and (2, y3, x2) ∈ {2}× [±q]2 iff (x1, x2,−y3−z3) ∈ A.

• Add edge between (2, y3, x2) ∈ {2}× [±q]2 and (3, z2, y1) ∈ {3}× [±q]2 iff (y1,−x2−z2, y3) ∈ B.

• Add edge between (3, z2, y1) ∈ {3}× [±q]2 and (1, x1, z3) ∈ {1}× [±q]2 iff (−x1−y1, z2, z3) ∈ C .

The number of edges in G′ is O(nq) = O(nW 1/3). Observe that (1, x1, z3), (2, y3, x2), (3, z2, y1) form

a triangle in G′ iff (x1, x2, x3) ∈ A, (y1, y2, y3) ∈ B, (z1, z2, z3) ∈ C sum to (0, 0, 0) for some x3, y2, z1.

Thus, we can solve 3SUM Listing on A,B,C by solving Triangle Listing on G′.

Lemma A.2. 3SUM(n | nO(1)) ≤ Õ(1) · 3SUM-LIST(n, Õ(t) | n3/t) for any t.

Proof. Similar to the proof of Lemma 4.2.

Theorem A.3. Under the 3SUM hypothesis, All-Edges Sparse Triangle requires m4/3−o(1) time.

Proof. Combining Lemmas A.1 and A.2 gives

3SUM(n | nO(1)) ≤ Õ(1) · SPARSE-TRI-LIST(n2/t1/3, Õ(t))

≤ Õ(1) · SPARSE-TRI-LIST(n3/2, Õ(n3/2))) by setting t = n3/2

≤ Õ(n2−(3/2)ε) if SPARSE-TRI-LIST(m,m) ≤ O(m4/3−ε).

To prove hardness for All-Edges Sparse Triangle instead of Sparse Triangle Listing, we can again apply

a known reduction from Sparse Triangle Listing to All-Edges Sparse Triangle [DKPW20].

We remark that the proof of Lemma A.1 is similar to a proof of Jin and Xu [JX23] that 3SUM(n | n2) ≤
Õ(1) · SPARSE-TRI(n5/3), implying an m6/5−o(1) lower bound for Sparse Triangle Detection under the

Strong 3SUM hypothesis. In fact, it is basically a reinterpretation. The only main difference is that their

proof used a different mapping ϕ via the Chinese remainder theorem with three primes. Their proof also used

randomization, but the only reason was that they wanted the lower bound to hold for more structured graph

instances with bounded maximum degree. A proof in Abboud, Bringmann and Fischer’s work [ABF23] also

contained similar ideas (they also used randomized hashing to bound vertex degrees).

Remark A.4. Our first approach in Section 3 can also be adapted to give a direct reduction from 3SUM

to All-Edges Sparse Triangle, by combining the idea of halving the weights with the reduction from Real

3SUM to #All-Edges Sparse Triangle in [CVX23]. The resulting reduction is deterministic and completely

avoids hashing, unlike all previous reductions. (Note that if we instead go through Convolution-3SUM

and Exact Triangle, the part of the reduction from 3SUM to Convolution-3SUM would already need hash-

ing [Păt10, KPP16], although this part has been derandomized [CH20].)
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