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Abstract

Early forecasting of student performance in a course is a critical component of
building effective intervention systems. However, when the available student data
is limited, accurate early forecasting is challenging. We present a language genera-
tion transfer learning approach that leverages the general knowledge of pre-trained
language models to address this challenge. We hypothesize that early forecasting
can be significantly improved by fine-tuning large language models (LLMs) via
personalization and contextualization using data on students’ distal factors (aca-
demic and socioeconomic) and proximal non-cognitive factors (e.g., motivation
and engagement), respectively. Results obtained from extensive experimentation
validate this hypothesis and thereby demonstrate the prowess of personalization
and contextualization for tapping into the general knowledge of pre-trained LLMs
for solving the downstream task of early forecasting.

1 Introduction

Modern artificial intelligence (AI) methods, such as deep learning (DL), have been used as a cost-
effective way to build early-warning systems for providing forecasting-based interventions in various
domains, e.g., health (1; 2; 3; 4; 5; 6; 7; 8) and education (9; 10; 11; 12). Specifically, in education,
cognitive data on students’ assessment scores in a course are used to build AI-based forecasting
interventions for changing behavior toward improving academic performance (13; 14; 15). The
effectiveness of the interventions, however, depends on the accuracy of early forecasting, i.e., how
early in the semester the overall performance of the course can be accurately forecasted (16; 17).
This problem is particularly challenging when the amount of training data is limited. In such a
case, training a neural network model (e.g., a recurrent, convolutional, or Transformer) from scratch
does not yield satisfactory performance. On the other hand, transfer learning is challenging due to
the unavailability of relevant pre-trained models or a large dataset on a similar task to pre-train a
model (18).

In this paper, we design a transfer learning approach for early forecasting of learning outcomes in an
undergraduate STEM (science, technology, engineering, and mathematics) course by using generative
deep learning (19), specifically by leveraging a Transformer-based (20) pre-trained language model
(LM). With rapid progress in developing general-purpose LMs (21; 22; 23; 24) capable of storing
vast in-depth knowledge about the world (25; 26), and solving complex tasks via basic reasoning (22;
27; 28) and planning (29), LMs can be leveraged to scaffold A I  for early-warning forecasting
interventions. To this effect, we formulate performance forecasting as a natural language generation
problem. Specifically, we adapt a pre-trained LM with text sequences of students’ academic trajectory
data for generating another text sequence containing their end-of-the-semester predicted performance.
Since we are interested in early forecasting, we use data sequences of varying lengths from the
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beginning of the semester up to the middle of the semester (e.g., 2 weeks, 4 weeks, and 8 weeks) in
a 16-week long semester for LM adaptation. In addition, we experiment with three types of
features of students’ academic trajectories, i.e., their (i) distal factors (academic meta-information
and socioeconomic), (ii) proximal cognitive factors (formative and summative scores in cognitive
tests), and (iii) proximal non-cognitive factors (repeated measures of non-cognitive attributes such as
engagement). Our collected data is ordinal (numeric or real-valued), thus we verbalize it in natural
language text sequences for adapting LMs and then augment it to balance the distribution of different
performance types. Finally, our experimentation includes LMs of varying capacities (with respect to
the number of parameters) with the aim of understanding the impact of large LMs (LLMs) on
improving early forecasting.

Personalization and Contextualization. Distal features are employed to investigate the impact of
personalization on the model’s performance. Drawing on insights from Social Cognitive Career
Theory (30), we propose our working hypothesis (Hypothesis 1): a student’s academic trajectory
and future performance in a course can be correlated with their background distal factors, thus
serving as a valuable prior for the learning model to capture nuanced individualized patterns in
their academic progression. On the other hand, we incorporate proximal non-cognitive features,
measured concurrently with the proximal cognitive features, to offer contextual signals (31) regarding
students’ study-related behavior. Building upon previous research (32) that examines the influence of
non-cognitive attributes, such as motivation and engagement, on students’ learning outcomes, our
working hypothesis (Hypothesis 2) posits that longitudinal assessments of these non-cognitive
factors exhibit a stronger correlation with a student’s evolving academic trajectory. Consequently,
we propose that they should enhance a model’s ability to discern subtle variations in academic
performance that may not be captured solely from cognitive trajectory data. Hence, the fusion of
distal and non-cognitive features with cognitive features should empower a learning model to predict a
student’s future academic performance early in the semester. We validate these hypotheses through
experiments involving different combinations of these three feature types and address the following
research questions.

• RQ1: Is the natural language generation approach more effective than numeric feature-based
models for early forecasting of academic performance?

• RQ2: Do personalization and contextualization improve the LM’s early forecasting efficacy?
• RQ3: How does the LM capacity (number of parameters) influence its forecasting perfor-

mance?

Our main contributions comprise the development of a natural language generation approach for
early forecasting of student performance by leveraging the general knowledge of pre-trained LMs.
Most importantly, we demonstrate that the forecasting efficacy can be significantly enhanced by
leveraging large models or L L M s  through personalization and contextualization.

2 Method

We consider student end-of-the-semester performance prediction as a time-series learning problem and
formulate it as a natural language generation problem. It has been shown that time-series forecasting
can be effectively done by adapting pre-trained LMs (33; 34) for solving a natural language generation
task. This approach achieved competitive performance compared to numeric-only Transformer-based
time-series learning approaches (34). The language generation approach requires both the input and
output data to be in a natural language format for adapting the LMs. Since our original dataset (X , Y ) is
numeric, first, we transform it into a natural language dataset ( X , Y ). Below we provide
a formal description of the natural language generation problem, followed by a description of the
natural language dataset development process.

2.1     Problem Formulation
The numeric (ordinal real-valued) input data X  =  { x  , x , ..., x }  from n students contains three
types of features, i.e., (i) one-time measure of distal factors D  =  {d , d , ..., d }  collected at the begin-
ning of the semester, (ii) repeated measures of proximal cognitive factors starting from the beginning
of the semester up to time t, formalized by C t  =  {C 1 , C 2 , ..., C t }, where C t  measures q features at
time t, i.e., {ct  , ct , ..., ct } ,  and (iii) repeated measures of proximal non-cognitive factors starting from
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the beginning of the semester up to time t, formalized by N C t  =  {N C 1 , N C 2 , ..., N C t },  where
N C t  measures r  features at time t, i.e., {nct , nct , ..., nct } .  The distal and proximal measures (from
the beginning of the semester up to time t) are concatenated to create each sequence (D , C t , N C t )  in
X .  The output data Y =  {y  , y , ..., y }  contains end-of-semester performance which is grouped into
four types: at-risk (grade C  or below), prone-to-risk (grade above C  but below B), average (grade above
B  but below A), and outstanding (grade A  or above).

For fine-tuning the LM, the numeric dataset (X , Y ) is verbalized into a natural language dataset ( X
, Y ) (described further below). Specifically, each sequence in X and Y contains

standard lexical literals used in English (e.g., words and phrases). The input text sequence, which is used
as a prompt for the LM, includes suitable instructions for solving a task (e.g., predicting future
performance) for instruction fine-tuning (35). The output text sequence captures a full expression of
the prediction.

For the LM, an encoder-decoder architecture is used. The encoder f  (.) maps the input sequence
(xt e x t 1  , xtext 2  , ..., xtextl  )  to an intermediate latent embedding sequence (z1, z2, ..., zl).

z =  f E ( x t e x t 1  , xtext 2  , ..., xtextl  ; θE )

where θ E  are the weights of the encoder.

The decoder f  (.) takes the latent embeddings (z , z , ..., z )  to generate an output sequence (ŷ
, ŷ , ..., ŷ )  in an auto-regressive fashion, i.e., at each step the decoder f  (.) uses

previously generated symbols ŷ as additional input for generating the next token ŷ .The
probability of generating the m-th token ŷ e x t m  is given by

p(ŷ e x t m  |ŷ ext< m; z1, z2, ..., zl ) =  sof tmax(fD (ŷ  ext< m ; z1, z2, ..., zl ; θD ))

where θ     are the weights of the decoder. For fine-tuning the encoder-decoder LM, the multi-class
cross-entropy loss function is used. The number of classes in the loss function is set by the total
number of tokens in the vocabulary. For a batch size B ,  the loss function is:

L  =  −
X  X  

yte x t m  logŷ e x t m

b = 1  m = 1

2.2     Language Dataset Development
Creating the Numeric Dataset. We collected data on numeric measures of distal factors and
time-varying proximal factors (cognitive and non-cognitive) of N  =  48 first-year college students
enrolled in an introductory programming course on M AT L A B  at a large public university in the
USA. The distal data is 9-dimensional and was collected at the beginning of the semester. It includes
students’ course-related meta-information (class standing and major) and socioeconomic status
(gender, race, international or native student, parents’ education background, highest education level
of a single parent, highest education level of another parent, family yearly income, science identity,
and reflected science identity). The proximal cognitive data is 41-dimensional and includes students’
assessment scores (formative and summative) in the 16-week course (12 homework assignments, 12
labs, 6 diaries, 8 quizzes, 2 projects, and 1 final exam). This data was obtained from the course’s
learning management system, namely Canvas. The proximal non-cognitive data is 28-dimensional
and includes repeated measures of students’ motivation (intrinsic and extrinsic) and engagement
(behavioral, emotional, and cognitive) factors throughout the duration of the 16-week semester. The
non-cognitive data were collected through a smartphone-based application that triggered contextually
appropriate, study-specific daily questions based on rules specified by researchers. Participants’
answers were aggregated on secure, cloud-based servers for analysis.

Due to the high dimensionality of the data (78-dimensional feature space) across three types of
features (9-dimensional distal, 41-dimensional cognitive proximal, and 28-dimensional non-cognitive
proximal), measures beyond the initial weeks result in lengthy sequences for each student. After
verbalization, the sequences become even longer. Due to the limited size of the input context window
of the LMs (512 tokens) we used in this research, we needed to shorten the length of the sequences by
utilizing only a subset of the three types of features. Specifically, we manually selected the following
features: 5-dimensional distal factors (class standing, major, gender, race, and family yearly income),
21-dimensional proximal cognitive factors spanning over the first 8 weeks of the semester (first 4
Diaries, 6 Labs, 4 Quizzes, 6 Homework Assignment, and 1 Project), and 2-dimensional proximal
non-cognitive factors (i.e., two measures of emotional engagement). These three types of features
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were used to create the numeric sequences in input data X .  We interspersed the three features to
maintain their temporal order.

Note that we adapted the LMs using data sequences of varying lengths, e.g., sequences spanning over
the first 2 weeks, 4 weeks, and 8 weeks. Thus, the number of cognitive features varies based on the
length of a sequence. For example, for the 8-week long sequence, we used 21 cognitive features; for
the 4-week long sequence, we used 10 cognitive features; and for the 2-week long sequence, we used 4
cognitive features. The numeric output data Y was created by using the end-of-semester final letter
grade. We categorized the output into four performance groups: at-risk, prone-to-risk, average, and
outstanding. The groups were coded by integers 0 to 3, respectively. Finally, the input and output
data were combined to create a numeric dataset (X , Y ). We created three numeric datasets based on 8-
week-long, 4-week-long, and 2-week-long input sequences.

Pre-processing the Numeric Dataset. The non-cognitive longitudinal data contained missing values
caused by participants’ skipping questions or temporarily uninstalling the app. We identified two
types of missing values, (i) responses to all questions on a day were missing, and (ii) responses to a
fraction of the questions were missing. For the first case, we used the Last Observation Carried
Forward (LOCF) imputation method (36). However, in some cases we could not find a previous day
with all questions answered, so we used a matching future day. Addressing the second case was
challenging due to the presence of missed follow-up questions. When the response to the trigger
question on the previous day differed, copying the response for the follow-up question using LOCF
would be unreliable (37). To remedy this, we searched for a previous day in which the participant
responded to both the trigger question and the follow-up question, and the trigger question’s response
was the same as the missing day’s trigger question’s response. In such a case, we applied the LOCF
method on the matched previous day. If no matching previous days were found, we used a matching
future day for imputation.

Creating the Language Dataset. We created a language generation dataset ( X , Y ) by
transforming the numeric dataset (X , Y ) into natural language text. For this transformation, we
designed a template (see the Appendix) comprising two components: the verbalized input sequence
and the verbalized output sequence. In addition, for making the adaptation of the LM amenable to
instruction fine-tuning (35), the input sequences include suitable additional information, such as we
prepended the following message to the student’s proximal cognitive information: “A student
obtained the following assessment scores in an introductory programming course ...”, and the
following message to the student’s distal information: “Some background information about the
student: ...”.

Augmenting the Language Dataset. The verbalized data ( X , Y ) contains an unbalanced
distribution of 48 input-output text sequences (24 outstanding, 12 average, 6 prone-to-risk, 6 at risk).
Because of the small size of the dataset and its skewed distribution, it is challenging to effectively
fine-tune an LM and reliably evaluate it. To address this challenge, we augmented the verbalized
data by using the oversampling method that was based on the random sampling technique (38; 39).
The oversampling method involves duplicating the samples from each class by introducing token
variations using the synonym replacement method (40). We employed a straightforward heuristic
to increase the number of samples in each class. Specifically, we duplicated the existing samples
by an integer multiple, using smaller multiples for the larger classes and vice versa. For example,
we doubled the instances in the largest class while increasing the samples of the minority classes
by a factor of 5. The resulting 144 samples have a near-balance distribution of classes, i.e., 48
outstanding, 36 average, 30 prone-to-risk, and 30 at risk. For creating the test datasets, we sample
� 30% instances from the augmented datasets by maintaining a balanced class distribution.

3 Experiments
To address the three research questions given in Section 1, we conducted a set of four experiments,
i.e., Experiment 1 (C + NC + D), Experiment 2 (C + NC), Experiment 3 (C + D), and Experiment 4
(C). These experiments are based on different combinations of the three types of features, i.e., distal
(D), proximal cognitive (C), and proximal non-cognitive (NC). In each experiment, we fine-tuned the
LMs using three language datasets created from proximal data of varying lengths: 8-week, 4-week,
and 2-week. Furthermore, in the LM-based experiments, we utilized LMs with varying capacities in
terms of parameters (small, medium, and large). The LMs were evaluated by searching for matching
keywords from their predicted output sequences for the performance types.
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Experimental Setting. For the encoder-decoder LM, we used FLAN-T5 (41), which is a variant
of the T5 model (25). The FLAN-T5 model is instruction fine-tuned, making it suitable for our
purposes. We employed FLAN-T5 with three different capacities, determined by the number of
parameters: FLAN-T5-Small (80M), FLAN-T5-Base (250M), and FLAN-T5-Large (770M). These
LMs have a context window limited to 512 tokens. For the numeric feature-based baseline models,
we used three types of neural models, i.e., the sequential long short-term memory (LSTM) (42),
non-sequential convolutional neural network (CNN) with a one-dimensional convolutional kernel
(43), and a Transformer (20)-based encoder. Additional information on the baseline models is
provided in the Appendix.

The baseline models were trained using 3 variably-length numeric datasets containing only the
cognitive features. Exploring baseline models with all three feature types is planned as future work.
To ensure compatibility with the LM-based experiments, the numeric datasets were created from the
augmented verbalized datasets by decoding the cognitive feature part of text sequences into numeric
values. We used the same test sets to evaluate both model types, employing the following metrics:
accuracy, precision, recall, and F1 score.

3.1     Results
RQ1: Is the natural language generation approach more effective than numeric feature-based
models for early forecasting of academic performance? Figure 1 presents a performance comparison
between three LMs and three baseline numeric feature-based neural models using three datasets of
varying lengths. For the 8-week and 4-week data, LMs of all sizes outperform the baseline models.
For the 2-week data, the numeric Transformer model (accuracy=55%) shows a slight improvement
over the large LM (with an accuracy of 52%). However, it’s important to note that, unlike the LMs,
the numeric Transformer model does not exhibit improvement with more data; its accuracies for the
4-week and 8-week datasets are 57% and 59%, respectively. In contrast, the large LM achieves an
accuracy of ≥  70% with the 4-week and 8-week datasets. A  detailed comparison of the performance
of the baseline models is provided in the Appendix.

.
(a) 8-week (b) 4-week

(c) 2-week
Figure 1: Comparison of the models (cognitive feature-based).

RQ2: Do personalization and contextualization improve the LM’s early forecasting efficacy? To
address RQ2, we use the evaluation statistics (see Table 1) of the best-performing large LM (i.e.,
FLAN-T5-Large). The models were fine-tuned with four combinations of the 3 feature types using
the 8-week, 4-week, and 2-week language datasets. We see that personalized and contextualized
LMs (i.e., fine-tuned with cognitive (C), non-cognitive (NC), and distal (D) features) exhibit the best
performance. With the use of these three features, the LM can forecast student performance with an
accuracy of 77% as early as the end of the 2nd week of the semester. To enable effective early
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intervention, achieving high recall for the at-risk (AR) and prone-to-risk (PR) groups is imperative.
The recall for the A R  group by the 2-week model is 100%. The 4-week LM achieves a recall of
100% for the at-risk (AR) group and 80% for the prone-to-risk (PR) group, both of which are critical.
Finally, with more data, the 8-week model archives 89% accuracy.
Table 1: Evaluation of the large LM (FLAN-T5-Large) fine-tuned with four combinations of the 3
feature types using the 8-week, 4-week, and 2-week datasets. The best results are in bold.
Legends: C=Cognitive, NC=Non-Cognitive, D=Distal, AR=At-Risk, PR=Prone-To-Risk,
AV=Average, OU=Outstanding, P=Precision, R=Recall, F1=F1 Score, A=Accuracy

Features Class P
8-week 4-week 2-week

R F1 A P R F1 A P R F1 A

C
+

NC + D

C
+

NC

C
+
D

C

A R 0.78 1.00 0.88
PR 0.89 0.80 0.84
AV 0.92 1.00 0.96
OU 0.93 0.81 0.87
A R 0.70 1.00 0.82
PR 1.00 0.60 0.75
AV 0.73 1.00 0.85
OU 0.92 0.75 0.83
A R 0.78 1.00 0.88
PR 0.89 0.80 0.84
AV 0.67 0.73 0.70
OU 0.79 0.69 0.73
A R 0.60 0.86 0.71
PR 0.86 0.60 0.71
AV 0.60 0.82 0.69
OU 0.92 0.69 0.79

0.89

0.82

0.77

0.73

1.00 1.00 1.00
0.89 0.80 0.84
0.71 0.91 0.80
0.86 0.75 0.80
0.70 1.00 0.82
0.86 0.60 0.71
0.69 1.00 0.81
0.91 0.62 0.74
0.88 1.00 0.93
0.71 1.00 0.83
0.69 0.82 0.75
0.89 0.50 0.64
0.62 0.71 0.67
0.67 0.60 0.63
0.67 0.91 0.77
0.83 0.62 0.71

0.84

0.77

0.77

0.70

0.64 1.00 0.78
1.00 0.50 0.67
0.73 1.00 0.85
0.85 0.69 0.76
0.62 0.71 0.67
0.71 0.50 0.59
0.62 0.91 0.74
0.77 0.62 0.69
0.60 0.86 0.71
0.71 0.50 0.59
0.70 0.64 0.67
0.59 0.62 0.61
0.36 0.57 0.44
0.88 0.70 0.78
0.54 0.64 0.58
0.42 0.31 0.36

0.77

0.68

0.64

0.52

On the other hand, LMs fine-tuned with only cognitive data (no personalization or contextualization)
perform worst on all datasets exhibiting as low as 52% accuracy by the 2-week model. The recall for the
at-risk group in this early model is low (57%), making it unreliable. Even with the 8-week data, the
LM can achieve only 86% recall for the at-risk group and 60% recall for the prone-to-risk group.

A  comparison between the influence of personalization (cognitive + distal) and contextualization
(cognitive + non-cognitive) shows that contextualization is slightly more effective in increasing
the model’s forecasting efficacy. For example, the accuracy of the 8-week contextualized model is
82%, while that of the 8-week personalized model is 77%. It’s important to note that both the
personalized-only and contextualized-only models perform equally well for the at-risk group, and
the difference in their performance is minimal. More importantly, for achieving optimal forecasting
power, both personalization and contextualization are essential but not sufficient, as we demonstrate
below when addressing RQ3.

RQ3: How does the LM capacity (number of parameters) influence its forecasting performance? A
comparison of the test accuracies among the three variably-size LMs based on cognitive features (see
Figure 1) shows that as the model size gets bigger, the LM acquires more capacity for improved
forecasting. Even after personalization and contextualization, the at-risk group recall for both the
small and medium models is 86%, whereas the large model obtains 100% recall (see Appendix for a
detailed comparison of the variably-size LMs). Thus, evidently, optimal early forecasting via
personalization and contextualization of LMs is achievable when we utilize large LMs (LLMs).

Discussion. Our experimental results validate the two hypotheses. Specifically, we show that
personalization and contextualization facilitate the early forecasting capability of the LM. However,
tapping into the intricacies of personal and contextual signals from students’ academic trajectories is
contingent on the quality of the prior, i.e., the quality of LM’s general knowledge. In other words, the
general knowledge prior is effective only when we utilize LLMs. Thus, our research emphasizes the
significance of personalization and contextualization to unleash the potential of pre-trained LLMs
toward early forecasting. Apart from small data, the key constraint that narrowed the scope of our
investigation is the limited memory of available GPUs. Due to this limitation, we could not utilize
the full dimension of the distal and proximal non-cognitive features. Also, the small memory of the
GPUs prevented us from using rich and expressive instructions in the prompts. Finally, we could
not leverage LLMs with ≥  1 billion parameters. In the future, our effort will be to circumvent these
limitations for harnessing the full potential of LLMs.
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4 Appendix

In this section, we provide performance statistics of the language models (medium and small),
baseline models, the template used for verbalizing numeric data into a language generation dataset,
and the experimental setting.

4.1     Performance of the Language Models (Medium &  Small) and Baseline Models

Table 2: Evaluation of the medium LM (FLAN-T5-base) fine-tuned with four combinations of the 3
feature types using the 8-week, 4-week, and 2-week datasets. The best results are in bold.
Legends: C=Cognitive, NC=Non-Cognitive, D=Distal, AR=At-Risk, PR=Prone-To-Risk,
AV=Average, OU=Outstanding, P=Precision, R=Recall, F1=F1 Score, A=Accuracy

Features Class P
8-week 4-week 2-week

R F1 A P R F1 A P R F1 A

C
+

NC + D

C
+

NC

C
+
D

C

A R 1.00
PR 0.78
AV 0.91
OU 0.83
0.88 1.00
0.58 0.70
0.82 0.71
0.77 0.85
0.60 0.78
0.83 0.78
0.73 0.73
0.71 0.73
0.64 0.64
0.67 0.75
0.73 0.82
0.54 0.64

0.86 0.92
0.70 0.74
0.91 0.91
0.94 0.88
1.00 1.00
0.70 0.70
0.91 0.80
0.69 0.76
1.00 0.88
0.70 0.74
0.73 0.73
0.69 0.71
1.00 0.78
0.60 0.67
0.82 0.82
0.56 0.60

0.86

0.80

0.75

0.70

0.78 1.00 0.88
0.89 0.80 0.84
0.79 1.00 0.88
0.92 0.69 0.79
0.71 0.71 0.71
0.75 1.00 0.67
0.69 1.00 0.81
0.77 0.62 0.69
1.00 1.00 1.00
0.69 0.90 0.78
0.64 0.82 0.72
0.70 0.44 0.54
0.86 0.86 0.86
0.57 0.40 0.47
0.53 0.82 0.64
0.77 0.62 0.69

0.84

0.73

0.73

0.66

0.55 0.86 0.67
0.71 0.50 0.59
0.71 0.91 0.80
0.75 0.56 0.64
0.46 0.86 0.60
0.64 0.70 0.67
0.67 0.73 0.70
0.75 0.38 0.50
0.67 0.86 0.75
0.56 0.50 0.53
0.86 0.55 0.67
0.58 0.69 0.63
0.50 0.57 0.53
0.83 0.50 0.62
0.35 0.64 0.45
0.50 0.31 0.38

0.68

0.61

0.64

0.48

Table 3: Evaluation of the small LM (FLAN-T5-small) fine-tuned with four combinations of the 3
feature types using the 8-week, 4-week, and 2-week datasets. The best results are in bold.
Legends: C=Cognitive, NC=Non-Cognitive, D=Distal, AR=At-Risk, PR=Prone-To-Risk,
AV=Average, OU=Outstanding, P=Precision, R=Recall, F1=F1 Score, A=Accuracy

Features Class P
8-week 4-week 2-week

R F1 A P R F1 A P R F1 A

C
+

NC + D

C
+

NC

C
+
D

C

A R 1.00
PR 1.00
AV 0.77
OU 0.76
0.88 1.00
0.58 0.70
0.82 0.82
0.77 0.62
0.60 0.86
0.83 0.50
0.73 0.73
0.71 0.75
0.64 1.00
0.67 0.60
0.73 0.73
0.54 0.44

0.86 0.92
0.40 0.57
0.91 0.83
1.00 0.86
0.93 0.82
0.64 0.75
0.82 0.85
0.69 0.83
0.71 0.88
0.62 0.84
0.73 0.70
0.73 0.73
0.78 0.71
0.63 0.71
0.73 0.69
0.48 0.79

0.82

0.75

0.70

0.64

0.60 0.43 0.50
0.89 0.80 0.84
0.77 0.91 0.83
0.71 0.75 0.73
0.50 0.71 0.59
0.67 0.60 0.63
0.67 0.73 0.70
0.77 0.62 0.69
0.86 0.86 0.86
0.75 0.90 0.82
0.44 0.64 0.52
0.67 0.38 0.48
0.67 0.57 0.62
0.50 0.30 0.37
0.64 0.82 0.72
0.61 0.69 0.65

0.75

0.66

0.64

0.61

0.60 0.86 0.71
0.62 0.50 0.56
0.67 0.73 0.70
0.64 0.56 0.60
0.42 0.71 0.53
0.80 0.40 0.53
0.50 0.73 0.59
0.82 0.56 0.67
0.67 0.86 0.75
0.60 0.60 0.60
0.56 0.82 0.67
0.56 0.31 0.40
0.25 0.43 0.32
0.40 0.20 0.27
0.45 0.45 0.45
0.50 0.50 0.50

0.64

0.59

0.59

0.41

4.2     Template for Natural Language Sequence Generation

Input Sequence:
A  student obtained the following assessment scores in an introductory programming course on
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Table 4: Evaluation of the three baseline models trained with cognitive features using the 8-week,
4-week, and 2-week datasets. The best results are in bold.
Legends: AR=At-Risk, PR=Prone-To-Risk, AV=Average, OU=Outstanding, P=Precision, R=Recall,
F1=F1 Score, A=Accuracy

Model Class P
8-week 4-week 2-week

R F1 A P R F1 A P R F1 A

CNN

L S T M

Transformer

A R 0.50 0.86 0.63
PR 0.83 0.50 0.62
AV 1.00 0.09 0.17
OU 0.56 0.88 0.68
A R 1.00 0.14 0.25
PR 0.27 0.40 0.32
AV 0.33 0.27 0.30
OU 0.37 0.44 0.40
A R 0.78 1.00 0.88
PR 0.57 0.40 0.47
AV 0.41 0.64 0.50
OU 0.73 0.50 0.59

0.59

0.34

0.59

0.44 0.57 0.50
1.00 0.30 0.46
0.33 0.55 0.43
0.37 0.56 0.58
0.00 0.00 0.00
0.00 0.00 0.00
0.26 0.73 0.38
0.33 0.19 0.24
0.54 1.00 0.70
1.00 0.60 0.75
0.40 0.18 0.25
0.50 0.62 0.56

0.50

0.25

0.57

0.45 0.71 0.56
0.44 0.70 0.54
0.22 0.18 0.20
0.75 0.38 0.50
0.15 0.29 0.20
0.00 0.00 0.00
0.00 0.00 0.00
0.42 0.81 0.55
0.56 0.71 0.63
0.80 0.60 0.71
0.00 0.00 0.00
0.46 0.81 0.59

0.45

0.34

0.55

[NAME OF LANGUAGE] in [SEMESTER] from week 1 to week [n] for [LIST OF GRADED COM-
PONENTS]: in week 1, scored [?] out of [?] in [NAME OF COGNITIVE TEST], ..., [MEASURE
OF TWO EMOTIONAL ENGAGEMENT FEATURES:]  student believes that student might get
[X] grade and student is [Y] satisfied with performance; in week 2 [CONTINUE A S  BEFORE] ...
in week [n], scored [?] out of [?] in [NAME OF COGNITIVE TEST],  ..., [MEASURE OF TWO
EMOTIONAL ENGAGEMENT FEATURES:] student believes that student might get [X] grade and
student is [Y] satisfied with performance. Some background information about the student: Student
is a [RACE], [GENDER] in his/her class standing year with a major in [Z]. His/Her family income is
[$].

Output Sequence:

• If the student’s grade is (A+, A, A-), the output sequence would be: At the end of the
semester, the student will exhibit an outstanding performance.

• If the student’s grade is (B+, B, B-), the output sequence would be: At the end of the semester,
the student will exhibit an average performance.

• If the student’s grade is (C+, C, C-), the output sequence would be: At the end of the semester,
the student will be prone to risk.

• If the student’s grade is (below C-), the output sequence would be: At the end of the semester,
the student will be at-risk.

Legends:

• X :  A/B/C/D/not pass
• Y:  very/somewhat/a little/not at all
• Z: Agriculture Engineering/Biological System Engineering/Construction Engineer-

ing/Mechanical Engineering/Prefer to self-describe
• $: Less than $10,000/$10,000 - $19,999/$20,000 - $49,999/$50,000 - $99,999/$100,000 -

$149,999/More than $150,000.

4.3     Experimental Setting

For the encoder-decoder LM, we used FLAN-T5 (41), which is a variant of the T5 model (25). The
FLAN-T5 model is instruction fine-tuned, which is suitable for our purpose. We utilized three varying
sizes of FLAN-T5, i.e., FLAN-T5-Small (80M), FLAN-T5-Base (250M), and FLAN-T5-Large
(770M). These LMs have a context window limited to 512 tokens.

For the numeric feature-based baseline models, we used three types of neural models, i.e., the
sequential long short-term memory (LSTM) (42), non-sequential convolutional neural network
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(CNN) with a one-dimensional convolutional kernel (43), and a Transformer (20). The LSTM
processes numeric features as a sequence of observations for capturing long-term dependencies. We
used a 3-layer LSTM network with 128 neurons, 64 neurons, and 32 neurons, respectively. After
each LSTM layer, a Batch Normalization layer is applied to enhance training stability and accelerate
convergence. Unlike the LSTM model, which can capture long-term dependencies, the 1D CNN
model is good at capturing local patterns in the data. The CNN comprises three 1D convolutional
layers, each featuring 64 filters, a 3-unit kernel size, and enhanced by batch normalization and ReLU
activation functions, followed by a Global Average Pooling 1D layer before the output layer. The
encoder-based Transformer includes residual connections, layer normalization, and dropout. In
addition, the projection layers are implemented through 1D CNN. We used 4 encoder blocks. Finally,
the dense layer with 128 neurons is followed by the classification layer. We initialized these models
with random weights.

For all experiments, we used a batch size of 6, fine-tuned/trained for 50 epochs using an AdamW (44)
optimizer. The choice of batch size was constrained by the limited memory available for fine-tuning
the LMs.

The experiments with FLAN-T5 small and base models were conducted on Google Colab using a
Tesla T4 GPU with 16 GB of memory. The FLAN-T5 large experiments were done on two Tesla
V100 GPUs with 32 GB of memory using distributed training.
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