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1 | INTRODUCTION

Item response theory (IRT; Mislevy & Verhelst, 1990; Rost, 1990) was developed to better understand
the mechanism behind an examinee answering a question (item) correctly and to evaluate the discrep-
ancies between examinees or items. The majority of IRT models assume that the response of an ex-
aminee to a question is probabilistic (Thomas, 2011), governed by a latent parameter. For example, an
accuracy parameter is between 0 and 1 if the response is true or false. In general, the latent probabilistic
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parameter relies on two main factors: the ability of an examinee and the difficulty of a question. Among
all IRT models, the Rasch model (Rasch, 1993) is one of the best-known and most widely used models
thanks to its elegant format and interpretability. When applied to a dichotomous matrix, where each
column represents a test question and each row is an examinee's response, the Rasch model can be
encapsulated as a logistic regression that models the (7,/)th entry of the matrix using the linear pre-
dictor that contrasts the ability of the ith examinee and the difficulty of the /th question. While our
proposed framework builds upon the Rasch model, future work could consider extensions to other IRT
frameworks such as two-parameter logistic (Muraki, 1992) and three-parameter logistic models (Rouse
et al., 1999; Zumbo et al., 1997). We refer readers to Thomas (2011) for a more comprehensive review
on the history of IRT models.

Despite the usefulness of the IRT models, there is evidence that two key assumptions, unidinen-
sionality and Jocal independence (Andrich & Marais, 2019), may be violated in common applications (Bell
et al., 1988; Keith, 1987, Kreiner & Christensen, 2007; Marais & Andrich, 2008), that is, the ability
of an examinee cannot be entirely represented by a single parameter (unidimensionality) and the re-
sponses remain dependent after imposing the IRT model structure (local independence). From a sta-
tistical point of view, violations of these assumptions are intertwined. When the mechanism behind
the true data-generating process cannot be recovered by using a single ability or difficulty parameter
that corresponds to an examinee or a question, it undoubtedly introduces a conditional dependency on
the responses due to the lack of fit. Intuitively, unidimensionality is a proper assumption to unveil the
Guttman pattern (Andrich & Marais, 2019), that is, the examinees who can correctly answer difficult
questions with a certain probability should be able to answer easy questions with a higher probability.
Nevertheless, this probably neglects the fact that some examiness could be more expert in handing
certian questions rather than other questions. Throughout this paper, we use the term heferogeneity to
describe the phenomenon of an examinee being able to correctly answer classes of questions based
on content type that is not captured by a unidimensional ability or difficulty parameter. A popular
approach for accommodating multidimensional IRT data is to impose mixing structures simultane-
ously on the ability of examinees and the difficulty of questions, which generates a mixture of Rasch
models as a result. This idea has been investigated using frequentist (Alexeev et al., 2011; Rost, 1990)
and Bayesian (Bolt et al., 2002; Hu et al.,, 2020; Jang et al., 2018; Miyazaki & Hoshino, 2009; Sen
etal., 2019) approaches. Indeed, these methods enjoy more robustness and interpretability by allowing
heterogeneity in the ability of examinees and the difficulty of questions, yet they are limited by the
structure of the Rasch model; for example, these two main factors have to be linearly contrasted in
each Rasch model mixture. Technically, using only the first-order information of the two main factors
while ignoring possible interactions can lead to lack of fit when the two main factors truly interact with
one another in complex ways. Bartolucci et al. (2017) solves this problem by integrating the two main
factors into a single accuracy parameter for each question while assuming a global mixing structure
on the accuracy parameters and letting them share a common sorting order over the mixing compo-
nents. The resutls from Bartolucci et al. (2017) can be interpreted as those examinees who have higher
accuracy when answering questions of that same type. In addition, such construction introduces het-
erogeneity and dependency between the two main factors by quantifying an examinee's proficiency on
a question using a mixture of accuracy parameters.

From a technical point of view, a mixing structure on the ability of the examinees and the diffi-
culty of the questions induces a binomial mixture model with each logit-transformed accuracy param-
eter expressed as a linear combination of the two main factors. Therefore, the interpretability of the
two main factors is highly dependent on the identifiability of the binomial mixture model induced
by the mixing structure. However, it is worth noting that none of the aforementioned works address
the identifiability problem in the context of a binomial mixture distribution, which is crucial since
it is not difficult to discover that the density functions are equivalent between Bernoulli(0. 5) and
0.5 X Bernoulli(0. 1) 4 0. 5 X Bernoulli(0. 9). If the model is not identifiable, researchers cannot expect
a fast mixing when performing the Gibbs sampling, and even question the necessity of introducing a
mixing structure, so let alone ensure the consistency on the mixing parameters and interpret the results.
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Motivated by the works introduced above, we propose a multidimensional IRT model based on a non-
parametric Bayesian procedure, which is termed the ‘averaged constrained binomial mixture’ (ACBM).
The objective of this paper is to relax the independence assumption implied by the Rasch model, to
model the heterogeneity, and to address the identifiability issue. Before we present our model, we might
first imagine a pattern of heterogeneity at both the examinee level and the question level whereby exam-
inees form several groups in each hypothetical cluster of the questions according to their proficiency in
handling questions of this type, while the grouping pattern could differ between the question clusters.
To model this idea, we consider the following steps. First, given a dichotomous response matrix, we aim
to discover a partition over all questions such that in each question cluster, an examinee's responses to
these questions can be characterized by a binomial distribution, of which the accuracy parameter (i.c.,
the examinee's proficiency in answering these questions) follows a mixing distribution. Technically, our
proposed Bayesian model is essentially a prior over all mixing distributions given a partition on these
questions, jointly with a prior over all possible partitions on these questions. The key novelties of our
proposed model are in interpretation and theoretical guarantees of identifiability and posterior consis-
tency. Our model can infer a partition on questions that reveals information at both levels. At the ques-
tion level, in each question cluster, the examinees are automatically distinguished by their proficiency in
tackling these questions using a mixing distribution. This allows us to discover a more complex accu-
racy pattern than just simple Guttman patterns (Andrich & Marais, 2019). At the examinee level, each
mixing accuracy parameter under a given question cluster represents the proficiency of a specific group
of examinees in handling these questions, which provides information for ‘precision education’, that is,
statistical evidence to the test maker to identify the examinees who are not skilled in solving a certain
question type. This information, in turn, is helpful in designing and implementing additional questions
of this type. In addition, the identifiability of our model is ensured by putting a dynamic upper bound
on the number of mixing components in each question cluster, where the upper bound is determined
by the size of the question cluster. We later address the identifiability of our model in Lemma 1. Our
method can be tractably applied using a Markov chain Monte Carlo (MCMC) sampling algorithm for
realization and is able to capture the true question partition and estimate the mixing parameters at a \/;
rate (up to a log term), with # defined as the number of examinees, thanks to the rapid developments of
Bayesian analysis over the past 30 years, in both computational (Ishwaran & James, 2001; Neal, 2000)
and theoretical (Ghosal & Van der Vaart, 2017; Guha et al., 2019; Ho & Nguyen, 2016; Nobile, 1994;
Shen et al., 2013) research.

The rest of this article is organized as follows. A motivation and interpretation of our model is given
in Section 2. The convergence results are presented in Section 3, with proofs deferred to the Appen-
dix S1. In Section 4 we outline the MCMC sampling algorithm and introduce statistics to summarize the
posterior samples obtained. The simulation study that validates our theoretical results and compares the
performance between our model and the Rasch model is provided in Section 5. We carry out a real data
analysis applying our model to an English language assessment data set in Section 6. In Section 7 we
discuss several possible ways to generalize our model, which paves the way for future study. For ease of
exposition, proofs, computation algorithms, and additional technical results are given in Appendix S1.

2 | MOTIVATION

Consider an #» X D dichotomous matrix X, whose (7,/)th entry is a random variable, denoted by Xj ;,
which takes value 1 if the /th examinee answered the Jth question correctly and 0 otherwise. We let
2 ={1,2,...,D}bean index set on the total number of items, € be a partition of D, and ¢ € € be a clus-
ter of items defined by the partition €. To illustrate the connection between € and D using an example,
we take D to be 3 and a pattition € of D can be € = {{1,2}, {3}}. For this simple example, there are
just two clusters, ¢; = {1,2}and ¢, = {3}. Our model construction is motivated by the following example.
Suppose a professor creates a test to evaluate her students, with the questions being classified into multi-
ple clusters, each cluster being an element ¢ € €. Each question cluster ¢ can ideally distinguish different
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4 | PAN ET AL.

types of students, of which the total number of types is given by K). Moreover, the £th type indicates
the proficiency of a specific group of students in answering a certain question type ¢ (i.e., heterogeneity),
which can further be quantified by an accuracy parameter 6, © , for 1 < & < K. Inspired by this idea, we
propose the following hierarchical order to model this structural clustering pattern:

11d ©

Xijsoos Xy ~ P> VEC VET,

K©
([)( x)= Z Wg) X (- 95;))1 X (HZ>)X, for x=0or1,

k=1

7, ~Dir (K, (@, ..., ), )

¢) iid
92)1‘~Bem(¢0,b0), for/e=1,...,K<f>,
K© ~ g (KOs ),
€ ~m(6),

where Dir(K, (@, ..., @)) refers to a Dirichlet distribution with K categories and a concentration parameter
a > 0, Beta(a, b)) denotes a beta distribution whose shape parameters are @ and b, 7(€) denotes a proba-
bility mass function over all possible partitions on Z, q@( ;7) denotes the Poisson distribution parameter-
ized by y and truncated between 1 and (|¢| + 1)/2, with| - | referring to the cardinality of a set rather than
its absolute value. Note that the truncation on qof (+;7) refers to the maximum limit of a question cluster ¢
in dividing the students into different levels by their proficiency in answering a certain type of questions.
This limitation relies on the question cluster size |¢| The term (|¢| + 1)/2 is the upper limit on the value
K©@and is a function of the number of items within the cluster ¢. This upper limit can be interpreted as the
‘resolution’ of the question cluster. The superscript (¢) highlights that the mixing weights and the number

of rmxturee are allowed to vary across question clusters. The main interest of our Bayesian model is to infer
{ (f)}K {g(O}K@

—1 K, for all ¢ € € and € using the posterior distribution, which is expressed as follows:

) VK ) K© .
=({1 Z.”}fﬁ,{e“}f.i ,K<>} _EX)

T ITII| vt a0~ i

=1 (€% jEc | k=1
© ©
X7, ( O K(r)) x EB({W,S) 1O K@)
X 1y (K9) X m(®),

where 7, 7, and 7wy are the density functions of the Dirichlet distribution, the beta distribution, and the
Poisson dlstrlbutlon respectively. Empirically, we integrate out {w( ) }KO and K following the procedure
introduced in Green and Richardson (2001) and Miller and Harrison (2018) to reduce the C parameter di-
mensionality for efficient sampling,

The main feature of our model lies in the dependency between the clustering structures at two
levels. Specifically, the mixing distribution at the examinee level is allowed to vary between question
groups, whereas most existing methods (Bolt et al., 2002; Hu et al., 2020; Jang et al., 2018; Miyazaki &
Hoshino, 2009; Sen et al., 2019) suggest that the mixing distribution at the examinee level is invariant
regardless of the heterogeneity at the question level. We conclude three main benefits for this feature
of our model. Our model provides more interpretable results (e.g., heterogeneity among examinees
for each question type) compared with heuristically assuming mixing distributions on the two main
factors separately, which can hardly be interpreted in this way. Such structural heterogeneity allows us
to discover more complicated patterns than the Guttman pattern. For example, in a mathematics test,
it is reasonable to believe that some examinees are more proficient in algebra questions than they are
in geometric questions. Other examinees are more expert in solving geometric questions but not good
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BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING | 5

at algebra questions. This cannot be explained by the Guttman mechanism but can be justified by the
heterogeneity. In addition, we demonstrate that our model is identifiable when our chosen upper bound
on the number of mixtures is imposed for each question cluster. Indeed, such an upper bound could
inevitably lead to information loss when the size of a question cluster is small, but it intuitively makes
sense because one cannot distinguish the proficiency of examinees at a certain type of questions only
using very few of them. Moreover, the identifiability of our model further contributes to the identifica-
tion of the true clustering structure on the questions, while providing \/; (up to a log term) estimates to
the mixing weights and parameters in each question cluster under mild conditions.

In the next section we present the technical details of our proposed method and introduce the pos-
terior consistency results.

3 | CONVERGENCE RESULTS
3.1 | Notation

In addition to the notation introduced in Section 2, throughout the rest of this paper, we will use f( )
or f to denote a function f(x)if it only takes a single argument. We let Xl@ denote the cluster section of
random vector X, where X refers to the dichotomous response of the /th examinee. A similar defini-
tion applies to x) with respect to vector x. We also let

K
ph) .X‘) Z () 1 _ 0(0 )1 —x (6(5) ) (3)

be the true density function associated with a single question in cluster ¢. The corresponding true nurnbers
of mlxtures mixing weights, and componentwise parameters of pF () are therefore K ¢ ), (! () } and
k=

{9(4) } el Analogously, a density function sampled following (1) is denoted by p (x) whose number of

© KO
;) 51’ nd{g([)}k T

true partition by € and any partition sampled following 7( - ) by 6. For random vector X, we let pp, (%)

mixtures, mixing weights, and componentwise parameters are K © {w We denote the
and pp(x) be the true density function and a sampled density function following (1), respectively. We also
let Py and P, be the probability distribution and the probability measure induced by pp, and the expecta-
tion taken under P, is denoted by Pg, [f]or P, /.

For succinctness, we denote the prior on py in (1) by IT and let TI® for all ¢ € € be the prior on p
given 6. We define the set of all possible binomial mixtures as

+o0 K
‘ ‘ = X 2 ‘ ‘ ‘ N el = [|x©@ HNNG
K=1 —l

WZ) €(0,1), for £=1,...,K, {95;) }I/§=1 are distinct},

whete the operatot || - ||; refers to the £ norm when applied to a vectot, and in out situation it is equivalent
to a summation function as x(9 is a non-negative dichotomous vector. We point out that the prior I s es-
sentially supported on 2 by truncating K between 1 and (|¢| 4 1)/2. For every & in the support of 7(%),
welet Iy = [] IE%H(‘) denote the prior on ] [E%pl(::) . It follows that

CeS
whete & refers to the collection of all possible pattitions of 2. For every ¢ € € and every ‘g E S, we use
© (x(‘)) = Pr, (x)dx@) to denote the marglnal density of pp, on the subvector x@and p (X@) to de-
note the joint denqty function on x( given pF (x), with similar deﬁnltlon to (3).
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6 | PAN ET AL.

3.2 | Convergence results
We begin with the interpretations of the following three assumptions:

(A1) The true pattition € is in the support of w(E).
(A2) For all ¢ € B, the following propetties hold for pl(fj:

Distinctness: 0 < 0@ + 9@ <1, for1<i#/ <K
j <

Non—trivial welghts ( 0> 0, forevery 1<A<K| @, ©)
1
Bounded component number: K(g[) < %

(A3) For every € in the support of 7(€), the true density has at least €, > 0 distance from the best
estimation induced by € with respect to the Kullback—Leibler divergence,1 that is,

[T2 9 - IO > e

c€EB, €EF 1

where p( ) (%), for all ¢ € F, is obtained by minimizing KL( © ((y; p@ (X(‘>)>, with respect to
p@(x(f)) e P

The first two assumptions are quite standard. Assumption (Al) is necessary to ensure our model is
correctly specified. The only eye-catching part of Assumption (A2) is the constraint on the number of
components under each question cluster. This constraint aims to guarantee that the binomial mixture
part in our proposed model is identifiable, as noted by Teicher (1963). Later, in Lemma 1, we will prove
that the binomial mixture model is first-order identifiable. Assumption (A3; is a weaker condition than
the general identifiability assumption. In fact, the density function [| e%ﬁ (x9)is non-identifiable for
some instances of { {», 0@}[6% , for example, the corresponding density functions are identical
given different parameterizations

{i=1,0=20.5) (1), (20 =1,0=0.5} _ (3}

and {{ 0( 9 =1, (9([> =0.5},2(123)} when D = 3. Therefore, one cannot directly apply Doob's theorem
(Doob, 1949) but needs to resort to Assumption (A3) and Theorem 1 for the consistency on 6.

Theorem 1. Assume (A1) and (A3) are satisfied. Then

€ =6,X,...X,)=>1 as D, (7)

Theorem 1 states that our proposed model can correctly identify the latent question partition as-
ymptotically; for example, when the number of examinees increases, we can expect that the question
clustering configuration sampled from the posterior distribution of our model will eventually converge
to the true question partition.

"The Kullback—Lcibler divergence between f(X) and g(x) is defined as

KL/ (x);:4(x)) = Jlog <f )f (x)dx.
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BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING | 7

To pave the way to our next theorem, we prove that the binomial mixture model is first-order iden-
tifiable, which is defined as follows.

Lemma 1. (First-order identifiability) Assume that {Hj}ZK: , are distinct, that {ai}lK: ,and
{B; }fi , are real-valued coefficients, and that (A3) holds. Suppose that

S S _ ®)
2 @010+ X Bimef01,0,m =0,
=1 =1 z

where £ (31,8, 1) = (y )(1 — 0,8,y and

d —
a—f,ifol,ol-,n>= msjsﬂ)zzg_})(l—9»”‘1‘0"1’(0,-)”1

—10<y<n— 1)%(”; ! )(l —0,)' 7170,y

Thenay=p1=...=ag =P =01 <K< (n+1)/2
Lemma 1 is indispensable for estimating, at a 4/# rate, the true mixing weights and the true com-
ponentwise parameters under each question cluster. The results of Theorem 1 and LLemma 1 yield our
final result.

Theorem 2. Assume (A1)—(A3) are satisfied. Then the proposed model can estimate the
true parameters a posteriori, given a contraction rate €,

(¢) .
({py: |’”g(:<):>(z') B ”’fg' sM'e,, ”‘95:()»(:') B '95',[())“2 sM'e,, fori=1,..,KY,

©)
KO=K Ve, E=F X, ... X,) =1, as P,

where M > 0 is a universal constant, €, = (log(n)) / \/;, Sforany t > 1.
Theorem 2 indicates that our model can detect the heterogeneity in examinees while identifying the
true question partition.

4 | BAYESIAN INFERENCE AND ALGORITHM

We begin with the outline of our posterior sampling algorithm, which consists of the following four
steps,

1. For each column (question), calculate the marginal likelihood when all students possess the
same accuracy in answering this question, for example marginalizing the binomial likelihood
over the beta prior in Equation (1).

2. Conditioning on the row (examinee) assignment under each column (question) cluster, update the
column assignment by enumerating from column 1 to column D.

3. Conditioning on the column (question) assignment, update the row (examinee) assignment under each
column (question) cluster by enumerating from row 1 to row # a total of #,.,, times.

rep

4. Loop between steps 2 and 3 7, times to approach the stationary distribution.

iter

The detailed algorithm is deferred to Appendix S1. It is worth pointing out that step 2 is essen-
tially Algorithm 1 proposed by Neal (2000), if each column (question) is treated as an ‘individual’,
whose parameter is the rowwise partition on the examinees. To update the rowwise partition in step
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8 | PAN ET AL.

3, we modify the aforementioned Algorithm 1 to accommodate the upper bound on the number of
(student) mixtures under each column (question) cluster, which leads to a sampling scheme which is
slightly different from theorem 4.1 of Miller and Harrison (2018). Based on the findings in our sim-
ulation studies, we notice that 7, = 200 and 7., = 400 are sufficient to obtain trustworthy posterior
samples when #» < 1000 and D < 80. In addition, for the hyper-parameters defined in (1), we let both
ay and by be 0.01 and y equal to 1 such that the prior information is sufficiently non-informative but
new clusters still have sufficient probability of being generated for both column (question) and row
(examinee) in practice. The probability mass function 7(%) is chosen as the exchangeable partition
probability function (EPPF; Pitman, 20006) of the mixture of finite mixtures model (MFM; Miller
& Harrison, 2018) to ensure a closed form on the full conditional distribution when sampling. The
most time-consuming task (# = 1,000 and D = 80) among the simulation studies and the real data
analysis takes approximately 6 hours to finish after being assigned to a server with 94.24 GB RAM,
24 processing cores, operating at 3.33GHz.

To summarize the posterior samples, we use the following three statistics to estimate the column
(question) partition, the rowwise (examinee) partition under each column cluster, and the compo-
nentwise accuracy under each column cluster. The column (question) partition is estimated using Dahl's
estimate (Dahl, 2006), defined as

~ 7o 2
£ =argmin { 8; (G ) -7, } ,
1<P<M ; /; / ’

~ Col A~
€ — %C(ﬂ(f),

(10)

where M is the number of MCMC iterations after burn-in, ‘gCOI(f ) refers to the column assignment at
the Zth iteration after burn-in, &, ; (L)) is an indicator function, defined as ﬂ(‘gc’)l(f )= %COl(f )
Wlth (gc‘)l(f ) denoting the clustering assignment of the /th column and 7FC o is obtained by averagmg

8 (%COl(f)) over post-burn-in MCMC samples, namely, 7, 20 = Z r=1 9 (%COl(f ))- The column pat-
tition summarized by Dahl's estimate is believed to be the most representatlve one as it minimizes the
entrywlse ¢ y-distance between the self-concordance matrix of a given partition and the probability ma-
trix 2 Iy ° that any pair of columns 7 and / are clustered together. The rowwise (student) partition is then
summarized from the iterations where the column (question) partition is equal to %COl(f),

/= argmin Z Z 2{51/((5R0Wd(f)) AROW’!}

1<t <Mz ()= d=1 i=1 j=1 11
g Row;d Row;d ,
& =@ (D), for d=1,...,D,

where GRV () refers to the row assignment of the dth column at the £th iteration after burn-in and ﬂROW d

W
is defined in a similar way with n-c"l for the dth column. It can be expected that ties happen for ?5 for all
5ol g Rowid
decandforallce @ by deﬁmtlon Analogous to the idea behind @ ", " looks for an iteration such
that the squared ¢,-distance is minimized averaged over all columns. The componentwise accuracy under

. . . . . A Col Row;d
each column cluster is then estimated using a posterior mean given ¢ and € ford=1,...,D.

5 | SIMULATION

We study our proposed method using four data-generating processes (DGPs) and compare the result of
our model with that given by the Rasch model (Rasch, 1993). The Rasch model is realized using the zam
package in R. The four DGPs are designed to mimic the situations when the data are generated under
our proposed model or the Rasch model, given increasing number of examinees (# = 100, 300, 1000).

A0 " LIESPPOT

dq/:sdny wouy

dny) suonIpuo) pue sWIA L, ay1 398 *[£702/60/0z] U0 Kreiqry aurjuQ K3[1a ‘oW Wy - Sexa] JO ANsIoatun) £q zzeg [dswa/[ [ 11°0/10p/wod Kaia’.

PUB-SULID) WO KI[1A".

2SUDIIT sUOWIO)) 2ANEAI) d[qearjdde oy £q PaUIdAOS are SA[OILIE V() tasn JO SA[NI J0j AIRIqI] AUI[UQ KIIA UO (SUOTIPI



BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING | 9

We proceed by outlining the first four DGPs, deferring the details to Appendix S1. The first two DGPs
are designed under our model,

* DGPI. Twenty questions are divided into five column (question) clusters, with three large question
clusters and the remaining two questions individually forming two question clusters. Under each
column (question) cluster, the accuracy within each mixture stays identical and the mixture number
satisfies the constraint.

* DGP2. Sixty questions are divided into five column (question) clusters, with three large question
clusters and the remaining questions individually forming two question clusters. Under each column
(question) cluster, the accuracy within each mixture stays identical and the mixture number satisfies
the constraint.

The last two DGPs are generated following the Rasch model, that is,

X»-~Bernoulh(0 fori=1,...,nand;j=1,...,D,
expi{¢; —w;} (12)

Y resplé -y )

1/)

with the two DGPs being presented as follows:

* DGP3. Twenty questions are divided into two column (question) clusters by letting y/; take a value
from { —0.5,0. 5} and three row clusters by letting &; randomly take a value from { — 2,0, 2}, follow-
ing the DGP defined in (12).

* DGP4. Sixty questions are divided into two column (question) clusters by letting y; take a value from
{ —0.5,0.5} and three row clusters by letting &; randomly take a value from { — 2,0, 2}, following the
DGP defined in (12).

To validate Theorem 2, we consider the first two DGPs and adopt the following criteria:

A Col
CWRI=RI(® ,G,),

D
_1 SRowid | (e(d)
ADK=— PR CaR Y
d=1
K
1 . ~(0) (0
ADW= 1(RI(% <‘g )_1>X 2 (0) m(l[glz ”’(,(f)(,-)_”’o;z' +
I% | & ke
%, K, i=1 (13)
1(R1(% ,%o)¢1)x2,
Ky’ 2
(o) . NN G
ADP=1R"” >k, ;e @) x z lfez%: K@%l; 0,07 = O+
0 0 -

(1(1?“) <KNviee %O))) 1,

where CWRI, ADK, ADW and ADP denote the columnwise Rand index, averaged absolute difference in
the rowwise number of component, averaged absolute difference in the rowwise weights, and averaged £,
-difference in the rowwise accuracy. RI(%, ") denotes the Rand index (Rand, 1971) between € and €,
¢e(d) represents the column cluster ¢ to which the dth column is assigned, 69 ( + ) refers to the permutation
operator, w, and 0 ; denote the ith true mixing welght and the /th true componentwise accuracy under the
column (questlon) cluster ¢ respectively. & ([) and 9 © represent the estimated values of u/( and 9@ using the

posterior mean. Note that the penalty for mlsldentlfymg the true column (question) partltlon is added to
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10 | PAN ET AL.

ADW, which matches the maximum difference between the estimated mixing weights and the true mixing
weights. A similar penalty is also attached to ADP. Ideally, we expect CWRI to converge to 1 and the other
three criteria to shrink towards 0 if Theorem 2 is true. The correct limiting values and the decreasing stan-
dard error successfully manifest our theoretical results, suggested by Table 1.

In the last two DGPs, the assumptions of the Rasch model are satisfied. We propose to study the per-
formance of our model in identifying the true column (question) and row (student) partltlons defined

as the labelling of y; and &, respectively, and compate the performance of estimating 9 = _oplbimwl
J T ltexpléi -wy)
using the following two criteria in addition to CWRI:
AR RI ~ Row;d <-gROW;(c(d))
RI= z ( 0 )5
. D (14)
A d
D1=—DZ 291 —6(;1.)
A a=1

where ARWRI is the abbreviation of averaged rowwise Rand index and /él(d) can be directly provided by the
Rasch model or using the posterior mean for our model. The results are presented in Table 2.

It is interesting to note that when 7 increases, CWRI increases towards 1 and ARWRI stays at a
high value. Though ARWRI is not guaranteed to converge towards 1, our model is able to identify
most of the correct labels for examinees when the latent accuracy parameters are sufficiently well
separated. In addition, our model achieves a higher ARWRI when more questions are available under
each question cluster, which matches our intuition. That is, more questions are more helpful in
correctly distinguishing different types of students by comparing the results of DGP4 with those
of DGP3. By comparing the D; (distance definition) values of our proposed model and the Rasch
model, our model provides a more efficient estimate of the accuracy parameter 9 »» especially when
nand D are large (e.g., DGP4).

TABLE 1 Median (standard error) of the four criteria over 100 Monte Carlo replications for each of the first two DGPs
given different sample sizes.

DGP n CWRI ADK ADW ADP
1 100 1.000 (0.005) 0.000 (0.181) 0.082 (0.395) 0.064 (0.192)
300 1.000 (0.000) 0.000 (0.158) 0.034 (0.015) 0.033 (0.014)
1000 1.000 (0.000) 0.000 (0.097) 0.014 (0.006) 0.013 (0.007)
2 100 1.000 (0.001) 0.625 (0.273) 0.811 (0.338) 0.417 (0.166)
300 1.000 (0.000) 0.000 (0.144) 0.029 (0.136) 0.023 (0.068)
1000 1.000 (0.000) 0.000 (0.075) 0.016 (0.005) 0.013 (0.003)

TABLE 2 Median (standard error) of the three criteria over 100 Monte Carlo replications for each of the last two DGPs
given different sample sizes.

ACBM Rasch
DGP ” CWRI ARWRI D, D,
3 100 0.474 (0.193) 0.922 (0.088) 0.093 (0.018) 0.073 (0.005)
300 1.000 (0.048) 0.814 (0.020) 0.077 (0.015) 0.068 (0.003)
1000 1.000 (0.000) 0.818 (0.009) 0.066 (0.005) 0.066 (0.002)
4 100 0.919 (0.174) 0.978 (0.016) 0.026 (0.022) 0.050 (0.003)
300 1.000 (0.007) 0.979 (0.007) 0.012 (0.003) 0.043 (0.002)

1000 1,000 (0.000) 0.977 (0.004) 0.009 (0.001) 0.040 (0.001)
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BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING 1

6 | TEST DATA ANALYSIS
6.1 | Descriptive analysis

The data consist of the English exam results for the 2020—2021 academic year from No. 11 Middle
School of Wuhan, Bingjiang Campus, which is a state middle school in Jiang'an district of Wuhan,
China. This exam is a final English exam for Grade 8 students in the autumn semester of the 2020—
2021 academic year. There are 16 classes with 858 students taking this exam. The data set consists of
858 examinees (7 = 858) and 70 questions (D = 70), where the questions are from a single exam. The 70
questions fall into four major types (listening comprehension, multiple choice, Cloze test, and reading
comprehension). We proceed by carrying out an exploratory data analysis. By looking at the estimated
accuracy marginalized for each question (column) or each row (examinee), visualized on the left-hand
side of Figure 1, it is obvious that the questions are designed hierarchically in terms of their difficulty,
indicated by estimated accuracies ranging from .247 to .981. In addition, the proficiency of examinees
is fairly heterogeneous, as the displayed histogram demonstrates a left-skewed feature with a long tail.
To be more specific, the histogram implies that most examinees can solve more than 70% of the ques-
tions, while a small proportion of the examinees, whose estimated accuracy is below .4, may probably
have failed the test. Such heterogeneity can also be viewed from the boxplots of the Rasch parameters,
as shown on the right-hand side of Figure 1, where § and y are defined similatly to those in (12). As
the primary goal of analysing this data set is to explain the heterogeneity, we next present the results by
applying our proposed model.

6.2 | ACBM analysis

To apply our proposed model, we set the number of iterations to 7., = 400, Hrep = 400, which are suf-
ficient to thoroughly explore the posterior high-density region based on our simulation analyses. The
hyperparameters are chosen as 4, =.01 and §; =. 01 to ensure non-informative prior knowledge, while
new column and row clusters can still be generated. Given such settings, our model is implemented
repeatedly 100 times with different initial values. The reported column (question) partition is believed
to be representative as the median Rand index between it and the other column partitions is 0.91 with
a standard deviation of 0.04 over the 100 Monte Carlo replications. The estimated accuracy parameters
using posterior mean under each column cluster and the number of entries corresponding to each ac-
curacy parameter are summarized in Table 3.

1.00- i Max: 0.981 5 Max: 3.892
Median: 0.857 Median: 0.85
Max: 1.595
0.75- Median: 0.239
0-
- @
g 2 Median: -2.372
§ 0.50 =
<
.
I 5 Min: 45.183
] in:
0254 - Min: 0.247
Min: -8.068
.
0.00- MigHo v
examinee qucét\ow\ Rasch parameter

FIGURE 1 Left: boxplots of the estimated accuracy marginalized over each question or examinee; Right: boxplots of the
Rasch parameters.
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12 | PAN ET AL.

Following Table 3, a question cluster that contains more questions tends to possess more compo-
nents. The estimation of most componentwise accuracy parameters is precise, since most estimated
standard deviation values are one order of magnitude smaller than the corresponding estimated accu-
racy parameters. We further conjecture that the questions that are assigned to the clusters below the
middle line in Table 3 are not effective in distinguishing different types of examinees, suggested by our
model. Recall that the number of examinees' mixtures is bounded above by (|¢| + 1)/2 to ensure model
identifiability. It is hence impossible to identify more than one examinees' mixture when a question
cluster has less than three questions. In other words, an ideal question cluster should consist of at least
three questions to be able to detect the heterogeneity among examinees (referring to Lemma 1). Based
on the test questions, it can be observed that the questions grouped under clusters 7, 8, and 9 require
students to possess strong contextual comprehension skills. These questions are highly demanding and
challenging as they assess students' ability to comprehend the entire article in an abstract manner. This
is also supported by the low average accuracy suggested by the lower part of Table 3. On the other hand,
the questions assigned to clusters 1, 2, and 6 comprise questions that are intended to assess the exam-
inees' foundational knowledge, such as their proficiency in using various tenses, pronouns, and basic
listening skills. The relatively lighter shade of the blocks corresponding to these clusters in Figure 2 also
indicates this.

The estimated componentwise accuracy parameters can further be visualized using Figure 2, after
rearranging the columns (questions) into a consecutive layout according to the estimated column (ques-
tion) partition given by ACBM, for both ACBM and the Rasch estimations simultaneously.

TABLE 3 The number of components (K) and the estimated componentwise accuracy parameters under each question
cluster and the corresponding cluster size (¢|).

Cluster Size (|¢[) K< (le| +1)/2 Estimated accuracy
1 4 2 443, .872
2 20 5 .001, .344, .645, .924, 999
3 5 2 218, .671
4 17 4 179, 419, .726, 937
5 12 4 .001, .417, .752, .989
6 8 3 164, .853, .999
7 2 1 411
8 1 1 791
9 1 1 247

ACEM Rasch

Clster: 1 2 s 4 s s 7m0

Accuracy
1.00

Examinees

8 & 8 &
Examinees

250~

a0 o
Questions Questions

FIGURE 2 The estimated accuracy parameters aligned in a matrix after permuting the questions based on the estimated
column (question) partition. Left: ACBM; Right: Rasch model.

A0 *LIESHFOT

wouy

:sdny) SUOHIPUO)) PUE SWID, 3Y1 39S *[£70Z/60/0Z] U0 K1eIqI] urjuQ K3[1Ay “OW [ /W - Sexa] JO ANs1oatun) £q zzeg [dswa/[ [ 11°01/10p/wod K[ia”.

110)/W05" KA[IA"

ASUIIT SuOWIO)) AANEa1) d[qeatidde o) £q PauIA0S are SI[OILE YO 128N JO I[N 10} KIRIqIT duI[uQ) KI[IAN UO (¢



BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING | 13

Intuitively, the ACBM gradient plot looks like a discretized version of the Rasch gradient plot, which
implies that our proposed model can recover the Rasch model's result to some extent. As an advantage over
the Rasch model, our proposed model can automatically identify possible question clusters and the mixing
structures on the examinees thereof. Note that the Guttman pattern is revealed locally if we look into the
accuracy parameters of the corresponding examinees in question clusters 3 and 5. The questions in cluster
5 are listening comprehension and multiple-choice questions, which are in general easier compared to the
questions assigned to question cluster 3, the majority of which are difficult reading comprehension ques-
tions. To provide more insights, we present a contingency table for clusters 3 and 5 in Table 4. For example,
among the examinees who correctly answered questions from cluster 3 with a higher accuracy (.671), only
one of them answered questions from cluster 5 with an accuracy being less than or equal to .417. In contrast,
469 (94.4 %) of them answer correctly to the questions in cluster 5 with an accuracy of .988. This finding
agrees with the prior belief that questions in cluster 5 are easier than those in cluster 3 and further indicates
that our method can effectively capture the Guttman pattern locally based on specific question clusters.

We further discuss the heterogeneity as indicated by the red rectangle in Figure 2. Based on Table 5,
for these examinees who are less proficient in question cluster 3 (accuracy = .218), 54.3% (25/46) of them
did well in question cluster 4 with a .937 accuracy. On the other hand, for those who do well in question
cluster 4 (accuracy > .726), 37.5% (42/112) of them did not perform well in question cluster 3 (accuracy
=.218). Such heterogeneity is not solely explained by randomness as we have a sufficiently large number
of samples in estimating each accuracy parameter. Similar findings can also be discovered in the region
formed by the blue rectangle in the same figure. It is gratifying to see that our method can capture such
heterogeneity, whereas the Rasch model is unable to do so by using a single parameter to model the
ability of examinees over all questions.

7 | DISCUSSION

In this paper we propose a novel IRT model using an averaged mixture of binomial distributions with
constraints, the novelty of which basically comes from the modelling of heterogeneity and the justifi-
cation of the identifiability issue. Our model is shown to be effective in both theoretical and practical
aspects. Namely, the identifiability conclusion and posterior contraction results indicate that the latent
accuracy parameters of interest to us can be estimated at a \/Z (up to a log term) rate asymptotically.
In addition, the posterior samples of these parameters can be obtained using a tractable sampling al-
gorithm that satisfactorily approaches the stationary distributions according to the simulation results.
Compared to the existing methods, including the Rasch model and multi-dimensional models, our

TABLE 4 Contingency table of examinces' count in terms of the accuracy parameters for clusters 3 and 5.

C5 (Easy)
C3 (Difficult) Acc =.001 Acc = 417 Acc =.753 Acc = .988
Acc =.218 5 34 73 239
Acc = .671 0 1 27 469

TABLE 5 Contingency table of the count of the examinees in the red rectangle in terms of the accuracy parameters for
cluster 3 and 4.

C4
C3 Acc = .419 Acc =.726 Acc =.937
Acc = .218 4 17 25

Acc = .671 3 14 56
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14 | PAN ET AL.

model manages to reveal the multi-dimensionality of the examinees' proficiency level in handling dif-
ferent types of questions parsimoniously due to its discrete nature, thanks for the nested clustering
structure. In fact, our proposed model is closely related to many existing multidimensional IRT models.
Inspired by the statement in Reckase (2009, p. 79) — “There are two major types of multidimensional
item response models ... One type of model is based on a linear combination of y-coordinates ... The
second type of model separates the cognitive tasks in a test item into parts and uses a unidimensional
model for each part’ — we reformulate our model and investigate its connection with these two majori-
ties. Note that the conditional probability of X ; = 1given by our model is

Pr(X,;=1]6,6", K(r(/)) ZW»)

j<G0)
_/6)
~TIfe]
= “) 15
a 12, =k)
[ ey
w1 | 1+ exp{u/([(/)) }
where l//( 75 the natural parameter of 0( 7 and Pr(Z; ) = =k) = ([) . The summation inside the product

of the last display of (15) can be obtained by degenerating equation (4.5) of Reckase (2009),

CXp{ Zl;:l ﬂfl[/f +ﬂj7}
1+6Xp{ E?:l apy o +d/ } ’

Pr(X, =]y, a,d)= (16)

by letting d; = 0 and Z';zl aywybe Y fe%af(/)l//:w, where a4, = 1if J € ¢and 0 otherwise. Furthermore,

if we take the product as a whole and revisit equation (4.20) of Reckase (2009),

a

exp{y,,—d s}
Pr(X,, = 1|y, d)= L i
o(X;,;=1ly;.d) g I+exply; =4} .

we can also do the degeneration by specifying the parameters. The key difference between our method and
the two alternatives above is that our method emphasizes the estimation of €, l[/ k D and u/ Vforallc € E
rather than the latent factors.

The main limitation of the current method is the lack of within-item dimensionality specification. De-
spite the ability to automatically identify the clustering structure at the question and examinee level, it is
incapable of differentiating the types of proficiency exhibited by examinees while tackling certain question
types. For example, our model cannot account for the linear combination of y-coordinates as defined in
(17), which is also of research interest. To conduct such an analysis, one can certainly resort to a secondary
multi-dimensional IRT analysis based on the clustering analysis results given by our model at the cost of
losing the one-step integrity. Another limitation of our method is that it does not provide a direct inference
of either the ability of examinees or the difficulty of questions, as is commonly achieved in most existing
Rasch's models and multi-dimensional models. In contrast, our model centers on modelling the proficiency
level of specific examinee subgroups correspoding to certain question clusters. Therefore, the choice of the
model depends on the goal of the study, so that if the main objective is to make inferences about the abilities
of examinees and the difficulties of questions, our model may not be the most suitable option.

For future study, one possible generalization is to consider the product of Bernoulli densities in place
of the binomial density, such that the accuracy parameters of the questions assigned to a question clus-
ter can be arranged in ascending order after a permutation. In other words, without loss of generality,
suppose there exists a permutation ¢( - ) given a question cluster indexed by 1,2, ..., D; we define the
product of Bernoulli densities as
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ind . . /
XIJ ~ Bernoulh(pl-)/-), pi,(f(l) SPZ,G(Z) S e Spi,G(D,)’ for] = 1, ceey D 5 (18)

where o( - ) is shared within the question cluster. We may call them ordered Bernoulli densities. We expect
that such a gradient of the accuracy parameters can better explain the Guttman pattern than the kernel
function currently used. The only concern of this structure is the identifiability of using this kernel den-
sity, which requires further investigation. One can directly apply our theoretical results if the product of
Bernoulli densities is shown to be first-order identifiable under certain conditions. Another possible way
of improving is to consider a more advanced sampling algorithm than ours, which is a typical application
of Algorithm 1 proposed by Neal (2000). The method of split-merge sampling (Jain & Neal, 2004) or slice
sampling (Neal, 2003) can be used to accelerate the procedure to approach the stationary distribution.
Future simulation studies might also comprehensively examine the difference between our model and the
alternatives that accommodate heterogeneity by introducing mixing structure at both the item and subject
levels.
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