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1  | INTRODUCTION

Item response theory (IRT; Mislevy & Verhelst, 1990; Rost, 1990) was developed to better understand 
the mechanism behind an examinee answering a question (item) correctly and to evaluate the discrep-
ancies between examinees or items. The majority of IRT models assume that the response of an ex-
aminee to a question is probabilistic (Thomas, 2011), governed by a latent parameter. For example, an 
accuracy parameter is between 0 and 1 if the response is true or false. In general, the latent probabilistic 
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Abstract
We propose a novel nonparametric Bayesian item response 
theory model that estimates clusters at the question level, 
while simultaneously allowing for heterogeneity at the ex-
aminee level under each question cluster, characterized by 
a mixture of binomial distributions. The main contribution 
of this work is threefold. First, we present our new model 
and demonstrate that it is identifiable under a set of condi-
tions. Second, we show that our model can correctly identify 
question- level clusters asymptotically, and the parameters of 
interest that measure the proficiency of examinees in solv-
ing certain questions can be estimated at a 

√

n rate (up to a 
log term). Third, we present a tractable sampling algorithm 
to obtain valid posterior samples from our proposed model. 
Compared to the existing methods, our model manages to 
reveal the multi- dimensionality of the examinees' profi-
ciency level in handling different types of questions parsi-
moniously by imposing a nested clustering structure. The 
proposed model is evaluated via a series of simulations as 
well as apply it to an English proficiency assessment data set. 
This data analysis example nicely illustrates how our model 
can be used by test makers to distinguish different types of 
students and aid in the design of future tests.
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parameter relies on two main factors: the ability of an examinee and the difficulty of a question. Among 
all IRT models, the Rasch model (Rasch, 1993) is one of the best- known and most widely used models 
thanks to its elegant format and interpretability. When applied to a dichotomous matrix, where each 
column represents a test question and each row is an examinee's response, the Rasch model can be 
encapsulated as a logistic regression that models the (i , j )th entry of the matrix using the linear pre-
dictor that contrasts the ability of the ith examinee and the difficulty of the jth question. While our 
proposed framework builds upon the Rasch model, future work could consider extensions to other IRT 
frameworks such as two- parameter logistic (Muraki, 1992) and three- parameter logistic models (Rouse 
et al., 1999; Zumbo et al., 1997). We refer readers to Thomas (2011) for a more comprehensive review 
on the history of IRT models.

Despite the usefulness of the IRT models, there is evidence that two key assumptions, unidimen-

sionality and local independence (Andrich & Marais, 2019), may be violated in common applications (Bell 
et al., 1988; Keith, 1987; Kreiner & Christensen, 2007; Marais & Andrich, 2008), that is, the ability 
of an examinee cannot be entirely represented by a single parameter (unidimensionality) and the re-
sponses remain dependent after imposing the IRT model structure (local independence). From a sta-
tistical point of view, violations of these assumptions are intertwined. When the mechanism behind 
the true data- generating process cannot be recovered by using a single ability or difficulty parameter 
that corresponds to an examinee or a question, it undoubtedly introduces a conditional dependency on 
the responses due to the lack of fit. Intuitively, unidimensionality is a proper assumption to unveil the 
Guttman pattern (Andrich & Marais, 2019), that is, the examinees who can correctly answer difficult 
questions with a certain probability should be able to answer easy questions with a higher probability. 
Nevertheless, this probably neglects the fact that some examiness could be more expert in handing 
certian questions rather than other questions. Throughout this paper, we use the term heterogeneity to 
describe the phenomenon of an examinee being able to correctly answer classes of questions based 
on content type that is not captured by a unidimensional ability or difficulty parameter. A popular 
approach for accommodating multidimensional IRT data is to impose mixing structures simultane-
ously on the ability of examinees and the difficulty of questions, which generates a mixture of Rasch 
models as a result. This idea has been investigated using frequentist (Alexeev et al., 2011; Rost, 1990) 
and Bayesian (Bolt et al., 2002; Hu et al., 2020; Jang et al., 2018; Miyazaki & Hoshino, 2009; Sen 
et al., 2019) approaches. Indeed, these methods enjoy more robustness and interpretability by allowing 
heterogeneity in the ability of examinees and the difficulty of questions, yet they are limited by the 
structure of the Rasch model; for example, these two main factors have to be linearly contrasted in 
each Rasch model mixture. Technically, using only the first- order information of the two main factors 
while ignoring possible interactions can lead to lack of fit when the two main factors truly interact with 
one another in complex ways. Bartolucci et al. (2017) solves this problem by integrating the two main 
factors into a single accuracy parameter for each question while assuming a global mixing structure 
on the accuracy parameters and letting them share a common sorting order over the mixing compo-
nents. The resutls from Bartolucci et al. (2017) can be interpreted as those examinees who have higher 
accuracy when answering questions of that same type. In addition, such construction introduces het-
erogeneity and dependency between the two main factors by quantifying an examinee's proficiency on 
a question using a mixture of accuracy parameters.

From a technical point of view, a mixing structure on the ability of the examinees and the diffi-
culty of the questions induces a binomial mixture model with each logit- transformed accuracy param-
eter expressed as a linear combination of the two main factors. Therefore, the interpretability of the 
two main factors is highly dependent on the identifiability of the binomial mixture model induced 
by the mixing structure. However, it is worth noting that none of the aforementioned works address 
the identifiability problem in the context of a binomial mixture distribution, which is crucial since 
it is not difficult to discover that the density functions are equivalent between Bernoulli(0. 5) and 
0. 5×Bernoulli(0. 1) + 0. 5×Bernoulli(0. 9). If the model is not identifiable, researchers cannot expect 
a fast mixing when performing the Gibbs sampling, and even question the necessity of introducing a 
mixing structure, so let alone ensure the consistency on the mixing parameters and interpret the results.
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Motivated by the works introduced above, we propose a multidimensional IRT model based on a non-
parametric Bayesian procedure, which is termed the ‘averaged constrained binomial mixture’ (ACBM). 
The objective of this paper is to relax the independence assumption implied by the Rasch model, to 
model the heterogeneity, and to address the identifiability issue. Before we present our model, we might 
first imagine a pattern of heterogeneity at both the examinee level and the question level whereby exam-
inees form several groups in each hypothetical cluster of the questions according to their proficiency in 
handling questions of this type, while the grouping pattern could differ between the question clusters. 
To model this idea, we consider the following steps. First, given a dichotomous response matrix, we aim 
to discover a partition over all questions such that in each question cluster, an examinee's responses to 
these questions can be characterized by a binomial distribution, of which the accuracy parameter (i.e., 
the examinee's proficiency in answering these questions) follows a mixing distribution. Technically, our 
proposed Bayesian model is essentially a prior over all mixing distributions given a partition on these 
questions, jointly with a prior over all possible partitions on these questions. The key novelties of our 
proposed model are in interpretation and theoretical guarantees of identifiability and posterior consis-
tency. Our model can infer a partition on questions that reveals information at both levels. At the ques-
tion level, in each question cluster, the examinees are automatically distinguished by their proficiency in 
tackling these questions using a mixing distribution. This allows us to discover a more complex accu-
racy pattern than just simple Guttman patterns (Andrich & Marais, 2019). At the examinee level, each 
mixing accuracy parameter under a given question cluster represents the proficiency of a specific group 
of examinees in handling these questions, which provides information for ‘precision education’, that is, 
statistical evidence to the test maker to identify the examinees who are not skilled in solving a certain 
question type. This information, in turn, is helpful in designing and implementing additional questions 
of this type. In addition, the identifiability of our model is ensured by putting a dynamic upper bound 
on the number of mixing components in each question cluster, where the upper bound is determined 
by the size of the question cluster. We later address the identifiability of our model in Lemma 1. Our 
method can be tractably applied using a Markov chain Monte Carlo (MCMC) sampling algorithm for 
realization and is able to capture the true question partition and estimate the mixing parameters at a 

√

n 
rate (up to a log term), with n defined as the number of examinees, thanks to the rapid developments of 
Bayesian analysis over the past 30 years, in both computational (Ishwaran & James, 2001; Neal, 2000) 
and theoretical (Ghosal & Van der Vaart, 2017; Guha et al., 2019; Ho & Nguyen, 2016; Nobile, 1994; 
Shen et al., 2013) research.

The rest of this article is organized as follows. A motivation and interpretation of our model is given 
in Section 2. The convergence results are presented in Section 3, with proofs deferred to the Appen-
dix S1. In Section 4 we outline the MCMC sampling algorithm and introduce statistics to summarize the 
posterior samples obtained. The simulation study that validates our theoretical results and compares the 
performance between our model and the Rasch model is provided in Section 5. We carry out a real data 
analysis applying our model to an English language assessment data set in Section 6. In Section 7 we 
discuss several possible ways to generalize our model, which paves the way for future study. For ease of 
exposition, proofs, computation algorithms, and additional technical results are given in Appendix S1.

2 | MOTI VATION

Consider an n ×D dichotomous matrix X, whose (i , j )th entry is a random variable, denoted by X
i ,j

 , 
which takes value 1 if the ith examinee answered the jth question correctly and 0 otherwise. We let 
𝒟 ≡ {1, 2,…,D} be an index set on the total number of items, 𝒞 be a partition of 𝒟, and c ∈𝒞 be a clus-
ter of items defined by the partition 𝒞. To illustrate the connection between 𝒞 and 𝒟 using an example, 
we take D to be 3 and a partition 𝒞 of 𝒟 can be 𝒞 = {{1, 2}, {3}}. For this simple example, there are 
just two clusters, c

1
= {1, 2} and c

2
= {3}. Our model construction is motivated by the following example. 

Suppose a professor creates a test to evaluate her students, with the questions being classified into multi-
ple clusters, each cluster being an element c ∈𝒞. Each question cluster c can ideally distinguish different 
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types of students, of which the total number of types is given by K (c ). Moreover, the kth type indicates 
the proficiency of a specific group of students in answering a certain question type c (i.e., heterogeneity), 
which can further be quantified by an accuracy parameter 𝜃(c )

k
, for 1 ≤ k ≤ K (c ). Inspired by this idea, we 

propose the following hierarchical order to model this structural clustering pattern: 

where Dir(K , (𝛼,…, 𝛼)) refers to a Dirichlet distribution with K categories and a concentration parameter 
𝛼 > 0, Beta(a

0
, b
0
) denotes a beta distribution whose shape parameters are a

0
 and b

0
, m(𝒞) denotes a proba-

bility mass function over all possible partitions on 𝒟, q(c )
0
( ⋅ ; 𝛾) denotes the Poisson distribution parameter-

ized by 𝛾 and truncated between 1 and (|c| + 1)∕2, with | ⋅ | referring to the cardinality of a set rather than 
its absolute value. Note that the truncation on q(c )

0
( ⋅ ; 𝛾) refers to the maximum limit of a question cluster c 

in dividing the students into different levels by their proficiency in answering a certain type of questions. 
This limitation relies on the question cluster size |c|. The term (|c| + 1)∕2 is the upper limit on the value 
K
(c ) and is a function of the number of items within the cluster c. This upper limit can be interpreted as the 

‘resolution’ of the question cluster. The superscript (c) highlights that the mixing weights and the number 
of mixtures are allowed to vary across question clusters. The main interest of our Bayesian model is to infer 
{w
(c )

i
}K

(c )

i=1, {𝜃
(c )

i
}K

(c )

i=1, K
(c ), for all c ∈𝒞 and 𝒞 using the posterior distribution, which is expressed as follows: 

where 𝜋
w
, 𝜋
B
, and 𝜋

K
 are the density functions of the Dirichlet distribution, the beta distribution, and the 

Poisson distribution, respectively. Empirically, we integrate out {w (c )
k
}K

(c )

k=1
 and K (c ) following the procedure 

introduced in Green and Richardson (2001) and Miller and Harrison (2018) to reduce the C parameter di-
mensionality for efficient sampling.

The main feature of our model lies in the dependency between the clustering structures at two 
levels. Specifically, the mixing distribution at the examinee level is allowed to vary between question 
groups, whereas most existing methods (Bolt et al., 2002; Hu et al., 2020; Jang et al., 2018; Miyazaki & 
Hoshino, 2009; Sen et al., 2019) suggest that the mixing distribution at the examinee level is invariant 
regardless of the heterogeneity at the question level. We conclude three main benefits for this feature 
of our model. Our model provides more interpretable results (e.g., heterogeneity among examinees 
for each question type) compared with heuristically assuming mixing distributions on the two main 
factors separately, which can hardly be interpreted in this way. Such structural heterogeneity allows us 
to discover more complicated patterns than the Guttman pattern. For example, in a mathematics test, 
it is reasonable to believe that some examinees are more proficient in algebra questions than they are 
in geometric questions. Other examinees are more expert in solving geometric questions but not good 

(1)

X
1,j
,…,X

n,j

i.i.d

∼ p
(c )

F
, ∀j ∈ c , ∀c ∈𝒞,

p
(c )

F
(x )=

K
(c )

∑

k=1

w
(c )

k
× (1− 𝜃

(c )

k
)
1− x × (𝜃

(c )

k
)
x
, for x =0 or 1,

(w
(c )

1
,…, w

(c )

K
(c )
)∼Dir(K (c ), (𝛼,…, 𝛼)),

𝜃
(c )

k

i.i.d

∼ Beta(a
0
, b
0
), for k=1,…,K (c ),

K
(c )∼ q

(c )

0
(K
(c )
; 𝛾),

𝒞∼m(𝒞),

(2)

𝜋
({

{w
(c )

i
}K

(c )

i=1 , {𝜃
(c )

i
}K

(c )

i=1 ,K
(c )

}

c∈𝒞
,𝒞|X

)

∝

n
∏

i=1

∏

c∈𝒞

∏

j∈c

⎛

⎜

⎜

⎝

K
(c )

∑

k=1

w
(c )

k
× (1− 𝜃

(c )

k
)
1−X

i ,j × (𝜃
(c )

k
)
X
i ,j

⎞

⎟

⎟

⎠

×𝜋
w

(

{w
(c )

k
}K

(c )

k=1|K
(c )

)

×𝜋
B

(

{w
(c )

k
}K

(c )

k=1|K
(c )

)

×𝜋
K

(

K
(c )
)

×m(𝒞),
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    | 5BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING

at algebra questions. This cannot be explained by the Guttman mechanism but can be justified by the 
heterogeneity. In addition, we demonstrate that our model is identifiable when our chosen upper bound 
on the number of mixtures is imposed for each question cluster. Indeed, such an upper bound could 
inevitably lead to information loss when the size of a question cluster is small, but it intuitively makes 
sense because one cannot distinguish the proficiency of examinees at a certain type of questions only 
using very few of them. Moreover, the identifiability of our model further contributes to the identifica-
tion of the true clustering structure on the questions, while providing 

√

n (up to a log term) estimates to 
the mixing weights and parameters in each question cluster under mild conditions.

In the next section we present the technical details of our proposed method and introduce the pos-
terior consistency results.

3 | CON V ERGENCE R ESULTS

3.1 | Notation

In addition to the notation introduced in Section 2, throughout the rest of this paper, we will use f ( ⋅ ) 
or f  to denote a function f (x ) if it only takes a single argument. We let X (c )

i
 denote the cluster section of 

random vector X
i
, where X

i
 refers to the dichotomous response of the ith examinee. A similar defini-

tion applies to x (c ) with respect to vector x. We also let 

be the true density function associated with a single question in cluster c. The corresponding true numbers 
of mixtures, mixing weights, and componentwise parameters of p(c )

F
0

(x ) are therefore K (c )
0

, {w (c )
k,0
}
K
(c )

0

k=1
, and 

{𝜃
(c )

k,0
}
K
(c )

0

k=1
. Analogously, a density function sampled following (1) is denoted by p(c )

F
(x ), whose number of 

mixtures, mixing weights, and componentwise parameters are K (c ), {w (c )
k
}K

(c )

k=1
, and {𝜃(c )

k
}K

(c )

k=1
. We denote the 

true partition by 𝒞
0
 and any partition sampled following m( ⋅ ) by 𝒞. For random vector X

i
, we let p

F
0

(x) 
and p

F
(x) be the true density function and a sampled density function following (1), respectively. We also 

let P
0
 and ℙ

F
0

 be the probability distribution and the probability measure induced by p
F
0

, and the expecta-
tion taken under ℙ

F
0

 is denoted by ℙ
F
0

[f ] or ℙ
F
0

f .
For succinctness, we denote the prior on p

F
 in (1) by Π and let Π(c ) for all c ∈𝒞 be the prior on p(c )

F
 

given 𝒞. We define the set of all possible binomial mixtures as 

where the operator ‖ ⋅ ‖
1
 refers to the 𝓁

1
 norm when applied to a vector, and in our situation it is equivalent 

to a summation function as x (c ) is a non- negative dichotomous vector. We point out that the prior Π(c ) is es-
sentially supported on 𝒫(c ) by truncating K between 1 and (|c| + 1)∕2. For every 𝒞 in the support of m(𝒞) , 
we let Π𝒞 ≡ ∏

c∈𝒞Π
(c ) denote the prior on 

∏

c∈𝒞p
(c )

F
. It follows that 

where 𝒮 refers to the collection of all possible partitions of 𝒟. For every c ∈𝒞 and every 𝒞 ∈ 𝒮, we use 
p
(c )

F
0

(x
(c )
) ≡ ∫ p

F
0

(x)dx
(𝒟∖c ) to denote the marginal density of p

F
0

 on the subvector x (c ) and p(c )
F
(x
(c )
) to de-

note the joint density function on x (c ) given p(c )
F
(x ), with similar definition to (3).

(3)
p
(c )

F
0

(x )=

K
(c )

0
∑

k=1

w
(c )

k,0
× (1− 𝜃

(c )

k,0
)
1− x × (𝜃

(c )

k,0
)
x

(4)
𝒫
(c )=

+∞
⋃

K=1

𝒫
(c )
(K )≡

{

p
(c )

F
(x
(c )
): p
(c )

F
(x
(c )
)=

K
∑

k=1

w
(c )

k
(1− 𝜃

(c )

k
)
|c|− ‖x

(c )
‖

1 × (𝜃
(c )

k
)
‖x
(c )
‖

1 ,

w
(c )

k
∈ (0, 1), for k=1,…,K , {𝜃

(c )

k
}K
k=1 are distinct

}

,

(5)Π=
∑

𝒞∈𝒮

m(𝒞)Π𝒞 ,
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3.2 | Convergence results

We begin with the interpretations of the following three assumptions:

(A1) The true partition 𝒞
0
 is in the support of m(𝒞).

(A2) For all c ∈𝒞
0
, the following properties hold for p(c )

F
0

: 

(A3) For every 𝒞 in the support of m(𝒞), the true density has at least 𝜖
0
> 0 distance from the best 

estimation induced by 𝒞 with respect to the Kullback– Leibler divergence,1 that is, 

where p(c )
F
∗ (x

(c )
), for all c ∈𝒞, is obtained by minimizing KL

(

p
(c )

F
0

(x
(c )
); p
(c )

F
(x
(c )
)

)

, with respect to 
p
(c )

F
(x
(c )
) ∈𝒫

(c ).
The first two assumptions are quite standard. Assumption (A1) is necessary to ensure our model is 

correctly specified. The only eye- catching part of Assumption (A2) is the constraint on the number of 
components under each question cluster. This constraint aims to guarantee that the binomial mixture 
part in our proposed model is identifiable, as noted by Teicher (1963). Later, in Lemma 1, we will prove 
that the binomial mixture model is first- order identifiable. Assumption (A3) is a weaker condition than 
the general identifiability assumption. In fact, the density function 

∏

c∈𝒞p
(c )

F
(x
(c )
) is non- identifiable for 

some instances of 
{

{w
(c )

k
, 𝜃
(c )

k
}
c∈𝒞 ,𝒞

}

, for example, the corresponding density functions are identical 
given different parameterizations 

and {{𝜃(c )
1
=1, 𝜃

(c )

1
=0. 5}

c={1,2,3}} when D = 3. Therefore, one cannot directly apply Doob's theorem 
(Doob, 1949) but needs to resort to Assumption (A3) and Theorem 1 for the consistency on 𝒞.

Theorem 1. Assume (A1) and (A3) are satisfied. Then 

Theorem 1 states that our proposed model can correctly identify the latent question partition as-
ymptotically; for example, when the number of examinees increases, we can expect that the question 
clustering configuration sampled from the posterior distribution of our model will eventually converge 
to the true question partition.

(6)

Distinctness: 0<𝜃
(c )

i ,0
≠𝜃(c )

j ,0
<1, for 1≤ i ≠ j ≤K (c )

0
.

Non−trivial weights: w
(c )

k,0
>0, for every 1≤k≤K (c )

0
.

Bounded component number: K
(c )

0
≤ |c|+1

2

.

 1The Kullback– Leibler divergence between f (x ) and g (x ) is defined as 

KL(f (x); g (x)) = ∫ log
(

f (x)

g (x)

)

f (x)dx.

‖

‖

‖

‖

‖

‖

∏

c∈𝒞
0

p
(c )

F
0

(x
(c )
)−

∏

c∈𝒞

p
(c )

F
∗ (x

(c )
)

‖

‖

‖

‖

‖

‖1

> 𝜖
0
,

{{wc
1
=1, 𝜃

(c )

1
=0. 5}

c={1,2}, {w
c

1
=1, 𝜃

(c )

1
=0. 5}

c={3}}

(7)Π(𝒞=𝒞
0
|X
1
,…,X

n
)→1 a. s . P

0
.
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    | 7BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING

To pave the way to our next theorem, we prove that the binomial mixture model is first- order iden-
tifiable, which is defined as follows.

Lemma 1. (First- order identifiability) Assume that {𝜃
i
}K
i=1 are distinct, that {𝛼

i
}K
i=1 and 

{𝛽
i
}K
i=1 are real- valued coefficients, and that (A3) holds. Suppose that 

where f (y|, 𝜃
i
, n) =

(

n

y

)

(1− 𝜃
i
)
n− y
(𝜃
i
)
y and 

Then 𝛼
1
= 𝛽

1
=… = 𝛼

K
= 𝛽

K
= 0, if 1 ≤ K ≤ (n + 1)∕2.

Lemma 1 is indispensable for estimating, at a 
√

n rate, the true mixing weights and the true com-
ponentwise parameters under each question cluster. The results of Theorem 1 and Lemma 1 yield our 
final result.

Theorem 2. Assume (A1)– (A3) are satisfied. Then the proposed model can estimate the 
true parameters a posteriori, given a contraction rate 𝜖

n
, 

where M ′ > 0 is a universal constant, 𝜖
n
= (log(n))t∕

√

n, for any t > 1.
Theorem 2 indicates that our model can detect the heterogeneity in examinees while identifying the 

true question partition.

4 | BAY ESI A N INFER ENCE A ND A LGOR ITHM

We begin with the outline of our posterior sampling algorithm, which consists of the following four 
steps,

1. For each column (question), calculate the marginal likelihood when all students possess the 
same accuracy in answering this question, for example marginalizing the binomial likelihood 
over the beta prior in Equation (1).

2. Conditioning on the row (examinee) assignment under each column (question) cluster, update the 
column assignment by enumerating from column 1 to column D.

3. Conditioning on the column (question) assignment, update the row (examinee) assignment under each 
column (question) cluster by enumerating from row 1 to row n a total of n

rep
 times.

4. Loop between steps 2 and 3 n
iter

 times to approach the stationary distribution.

The detailed algorithm is deferred to Appendix S1. It is worth pointing out that step 2 is essen-
tially Algorithm 1 proposed by Neal (2000), if each column (question) is treated as an ‘individual’, 
whose parameter is the rowwise partition on the examinees. To update the rowwise partition in step 

(8)
K
∑

i=1

𝛼
i
f (y|, 𝜃

i
, n)+

K
∑

i=1

𝛽
i

𝜕f

𝜕𝜃
i

f (y|, 𝜃
i
, n)=0,

𝜕f

𝜕𝜃
i

f (y|, 𝜃
i
, n)= 𝟙(1≤ y≤ n)n

(

n− 1

y − 1

)

(1− 𝜃
i
)
n− 1− (y − 1)

(𝜃
i
)
y − 1

− 𝟙(0≤ y≤ n− 1)n
(

n− 1

y

)

(1− 𝜃
i
)
n− 1− y

(𝜃
i
)
y
.

(9)
Π({p

(c )

F
: |w

(c )

𝜎(c )(i )
− w

(c )

i ,0
|≲M ′𝜖

n
, ‖𝜃

(c )

𝜎(c )(i )
− 𝜃

(c )

i ,0
‖

2
≲M ′𝜖

n
, for i =1,…,K (c ),

K
(c )=K

(c )

0
,∀c ∈𝒞,𝒞=𝒞

0
}|X

1
,…,X

n
)→1, a. s . P

0
,
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8 |   PAN et al.

3, we modify the aforementioned Algorithm 1 to accommodate the upper bound on the number of 
(student) mixtures under each column (question) cluster, which leads to a sampling scheme which is 
slightly different from theorem 4.1 of Miller and Harrison (2018). Based on the findings in our sim-
ulation studies, we notice that n

iter
= 200 and n

rep
= 400 are sufficient to obtain trustworthy posterior 

samples when n ≤ 1000 and D ≤ 80. In addition, for the hyper- parameters defined in (1), we let both 
a
0
 and b

0
 be 0.01 and 𝛾 equal to 1 such that the prior information is sufficiently non- informative but 

new clusters still have sufficient probability of being generated for both column (question) and row 
(examinee) in practice. The probability mass function m(𝒞) is chosen as the exchangeable partition 
probability function (EPPF; Pitman, 2006) of the mixture of finite mixtures model (MFM; Miller 
& Harrison, 2018) to ensure a closed form on the full conditional distribution when sampling. The 
most time- consuming task (n = 1, 000 and D = 80) among the simulation studies and the real data 
analysis takes approximately 6 hours to finish after being assigned to a server with 94.24 GB RAM, 
24 processing cores, operating at 3.33GHz.

To summarize the posterior samples, we use the following three statistics to estimate the column 
(question) partition, the rowwise (examinee) partition under each column cluster, and the compo-
nentwise accuracy under each column cluster. The column (question) partition is estimated using Dahl's 
estimate (Dahl, 2006), defined as 

where M is the number of MCMC iterations after burn- in, 𝒞Col
(𝓁) refers to the column assignment at 

the 𝓁th iteration after burn- in, 𝛿
i ,j
(𝒞

Col
(𝓁)) is an indicator function, defined as 𝟙(𝒞Col

i
(𝓁) =𝒞

Col

j
(𝓁)), 

with 𝒞Col

i
(𝓁) denoting the clustering assignment of the ith column, and 𝜋Col

i ,j
 is obtained by averaging 

𝛿
i ,j
(𝒞

Col
(𝓁)) over post- burn- in MCMC samples, namely, 𝜋Col

i ,j
= 1

M

∑

M

𝓁=1 𝛿i ,j (𝒞
Col
(𝓁)). The column par-

tition summarized by Dahl's estimate is believed to be the most representative one as it minimizes the 
entrywise 𝓁

2
- distance between the self- concordance matrix of a given partition and the probability ma-

trix 𝜋Col
i ,j

 that any pair of columns i and j are clustered together. The rowwise (student) partition is then 
summarized from the iterations where the column (question) partition is equal to 𝒞Col

(𝓁), 

where 𝒞Row;d
(𝓁) refers to the row assignment of the dth column at the 𝓁th iteration after burn- in and 𝜋Row;d

i ,j
 

is defined in a similar way with 𝜋Col
i ,j

 for the dth column. It can be expected that ties happen for 𝒞̂
Row;d

 for all 

d ∈ c and for all c ∈ 𝒞̂
Col

 by definition. Analogous to the idea behind 𝒞̂
Col

, 𝒞̂
Row;d

 looks for an iteration such 

that the squared 𝓁
2
- distance is minimized averaged over all columns. The componentwise accuracy under 

each column cluster is then estimated using a posterior mean given 𝒞̂
Col

 and 𝒞̂
Row;d

 for d = 1,…,D.

5 | SIMUL ATION

We study our proposed method using four data- generating processes (DGPs) and compare the result of 
our model with that given by the Rasch model (Rasch, 1993). The Rasch model is realized using the tam 
package in R. The four DGPs are designed to mimic the situations when the data are generated under 
our proposed model or the Rasch model, given increasing number of examinees (n = 100, 300, 1000). 

(10)
𝓁= argmin

1≤𝓁≤M
n
∑

i=1

n
∑

j=1

{

𝛿
i ,j
(𝒞

Col
(𝓁))− 𝜋Col

i ,j

}

2

,

𝒞̂
Col

=𝒞
Col
(𝓁),

(11)
𝓁= argmin

1≤𝓁≤M ;𝒞Col(𝓁)=𝒞̂Col
D
∑

d=1

n
∑

i=1

n
∑

j=1

{

𝛿
i ,j
(𝒞

Row;d
(𝓁))−𝜋Row;d

i ,j

}

2

,

𝒞̂
Row;d

=𝒞
Row;d

(𝓁), for d =1,…,D,

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12322 by U
niversity O

f Texas - H
am

/Tm
c, W

iley O
nline Library on [20/09/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



    | 9BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING

We proceed by outlining the first four DGPs, deferring the details to Appendix S1. The first two DGPs 
are designed under our model,

• DGP1. Twenty questions are divided into five column (question) clusters, with three large question 
clusters and the remaining two questions individually forming two question clusters. Under each 
column (question) cluster, the accuracy within each mixture stays identical and the mixture number 
satisfies the constraint.

• DGP2. Sixty questions are divided into five column (question) clusters, with three large question 
clusters and the remaining questions individually forming two question clusters. Under each column 
(question) cluster, the accuracy within each mixture stays identical and the mixture number satisfies 
the constraint.

The last two DGPs are generated following the Rasch model, that is, 

with the two DGPs being presented as follows:

• DGP3. Twenty questions are divided into two column (question) clusters by letting 𝜓
j
 take a value 

from {− 0. 5, 0. 5} and three row clusters by letting 𝜉
i
 randomly take a value from {− 2, 0, 2}, follow-

ing the DGP defined in (12).
• DGP4. Sixty questions are divided into two column (question) clusters by letting 𝜓

j
 take a value from 

{− 0. 5, 0. 5} and three row clusters by letting 𝜉
i
 randomly take a value from {− 2, 0, 2}, following the 

DGP defined in (12).

To validate Theorem 2, we consider the first two DGPs and adopt the following criteria: 

where CWRI, ADK, ADW and ADP denote the columnwise Rand index, averaged absolute difference in 
the rowwise number of component, averaged absolute difference in the rowwise weights, and averaged 𝓁

2

- difference in the rowwise accuracy. RI(𝒞,𝒞′
) denotes the Rand index (Rand, 1971) between 𝒞 and 𝒞′, 

c (d ) represents the column cluster c to which the d th column is assigned, 𝜎(c )( ⋅ ) refers to the permutation 
operator, w (c )

0;i
 and 𝜃(c )

0;i
 denote the ith true mixing weight and the ith true componentwise accuracy under the 

column (question) cluster c respectively. ŵ (c )
i

 and 𝜃̂
(c )

i
 represent the estimated values of w (c )

0;i
 and 𝜃(c )

0;i
 using the 

posterior mean. Note that the penalty for misidentifying the true column (question) partition is added to 

(12)
X
i ,j

ind

∼ Bernoulli(𝜃
i ,j
), for i =1,…, n and j =1,…,D,

𝜃
i ,j
=

exp{𝜉
i
−𝜓

j
}

1+exp{𝜉
i
−𝜓

j
}
,

(13)

CWRI=RI(𝒞̂
Col

,𝒞
0
),

ADK=
1

D

D

∑

d=1

|

|

|

|

|𝒞̂
Row;d

|−K
(c (d ))

0

|

|

|

|

,

ADW=1(RI(𝒞̂
Col

,𝒞
0
)=1)×

1

|𝒞
0
|

∑

c∈𝒞
0

1

K

(c )

0

min

𝜎(c )

K

(c )

0
∑

i=1

|

|

|

|

ŵ

(c )

𝜎(c )(i )
− w

(c )

0;i

|

|

|

|

+

1(RI(𝒞̂
Col

,𝒞
0
)≠1)× 2,

ADP=1(K̂
(c )≥K (c )

0
, c ∈𝒞

0
)×

1

|𝒞
0
|

∑

c∈𝒞
0

√

√

√

√

√

1

K

(c )

0

min

𝜎(c )

K

(c )

0
∑

i=1

‖

‖

‖

‖

𝜃̂
(c )

𝜎(c )(i ) − 𝜃
(c )

0;i

‖

‖

‖

‖

2

2

+

(

1(K̂

(c )

<K
(c )

0
)∨1(c ∉𝒞

0
))

)

× 1,
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10 |   PAN et al.

ADW, which matches the maximum difference between the estimated mixing weights and the true mixing 
weights. A similar penalty is also attached to ADP. Ideally, we expect CWRI to converge to 1 and the other 
three criteria to shrink towards 0 if Theorem 2 is true. The correct limiting values and the decreasing stan-
dard error successfully manifest our theoretical results, suggested by Table 1.

In the last two DGPs, the assumptions of the Rasch model are satisfied. We propose to study the per-
formance of our model in identifying the true column (question) and row (student) partitions, defined 
as the labelling of 𝜓

j
 and 𝜉

i
 respectively, and compare the performance of estimating 𝜃(d )

0;i
≡ exp{𝜉

i
−𝜓

j
}

1+ exp{𝜉
i
−𝜓

j
}
 

using the following two criteria in addition to CWRI: 

where ARWRI is the abbreviation of averaged rowwise Rand index and ̂𝜃
(d )

i
 can be directly provided by the 

Rasch model or using the posterior mean for our model. The results are presented in Table 2.
It is interesting to note that when n increases, CWRI increases towards 1 and ARWRI stays at a 

high value. Though ARWRI is not guaranteed to converge towards 1, our model is able to identify 
most of the correct labels for examinees when the latent accuracy parameters are sufficiently well 
separated. In addition, our model achieves a higher ARWRI when more questions are available under 
each question cluster, which matches our intuition. That is, more questions are more helpful in 
correctly distinguishing different types of students by comparing the results of DGP4 with those 
of DGP3. By comparing the D

1
 (distance definition) values of our proposed model and the Rasch 

model, our model provides a more efficient estimate of the accuracy parameter 𝜃(c )
0,i

, especially when 
n and D are large (e.g., DGP4).

(14)
ARWRI=

1

D

D
∑

d=1

RI(𝒞̂
Row;d

,𝒞
Row;(c(d))

0
),

D
1
=
1

nD

n
∑

i=1

D
∑

d=1

|

|

|

|

𝜃̂
(d )

i
− 𝜃

(d )

0;i

|

|

|

|

T A B L E  1  Median (standard error) of the four criteria over 100 Monte Carlo replications for each of the first two DGPs 
given different sample sizes.

DGP n CWRI ADK ADW ADP

1 100 1.000 (0.005) 0.000 (0.181) 0.082 (0.395) 0.064 (0.192)

300 1.000 (0.000) 0.000 (0.158) 0.034 (0.015) 0.033 (0.014)

1000 1.000 (0.000) 0.000 (0.097) 0.014 (0.006) 0.013 (0.007)

2 100 1.000 (0.001) 0.625 (0.273) 0.811 (0.338) 0.417 (0.166)

300 1.000 (0.000) 0.000 (0.144) 0.029 (0.136) 0.023 (0.068)

1000 1.000 (0.000) 0.000 (0.075) 0.016 (0.005) 0.013 (0.003)

T A B L E  2  Median (standard error) of the three criteria over 100 Monte Carlo replications for each of the last two DGPs 
given different sample sizes.

DGP n

ACBM Rasch

CWRI ARWRI D
1

D
1

3 100 0.474 (0.193) 0.922 (0.088) 0.093 (0.018) 0.073 (0.005)

300 1.000 (0.048) 0.814 (0.020) 0.077 (0.015) 0.068 (0.003)

1000 1.000 (0.000) 0.818 (0.009) 0.066 (0.005) 0.066 (0.002)

4 100 0.919 (0.174) 0.978 (0.016) 0.026 (0.022) 0.050 (0.003)

300 1.000 (0.007) 0.979 (0.007) 0.012 (0.003) 0.043 (0.002)

1000 1.000 (0.000) 0.977 (0.004) 0.009 (0.001) 0.040 (0.001)
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    | 11BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING

6 | TEST DATA A NA LYSIS

6.1 | Descriptive analysis

The data consist of the English exam results for the 2020– 2021 academic year from No. 11 Middle 
School of Wuhan, Bingjiang Campus, which is a state middle school in Jiang'an district of Wuhan, 
China. This exam is a final English exam for Grade 8 students in the autumn semester of the 2020– 
2021 academic year. There are 16 classes with 858 students taking this exam. The data set consists of 
858 examinees (n = 858) and 70 questions (D = 70), where the questions are from a single exam. The 70 
questions fall into four major types (listening comprehension, multiple choice, Cloze test, and reading 
comprehension). We proceed by carrying out an exploratory data analysis. By looking at the estimated 
accuracy marginalized for each question (column) or each row (examinee), visualized on the left- hand 
side of Figure 1, it is obvious that the questions are designed hierarchically in terms of their difficulty, 
indicated by estimated accuracies ranging from .247 to .981. In addition, the proficiency of examinees 
is fairly heterogeneous, as the displayed histogram demonstrates a left- skewed feature with a long tail. 
To be more specific, the histogram implies that most examinees can solve more than 70% of the ques-
tions, while a small proportion of the examinees, whose estimated accuracy is below .4, may probably 
have failed the test. Such heterogeneity can also be viewed from the boxplots of the Rasch parameters, 
as shown on the right- hand side of Figure 1, where 𝜉 and 𝜓 are defined similarly to those in (12). As 
the primary goal of analysing this data set is to explain the heterogeneity, we next present the results by 
applying our proposed model.

6.2 | ACBM analysis

To apply our proposed model, we set the number of iterations to n
iter

= 400, n
rep

= 400, which are suf-
ficient to thoroughly explore the posterior high- density region based on our simulation analyses. The 
hyperparameters are chosen as a

0
= . 01 and b

0
= . 01 to ensure non- informative prior knowledge, while 

new column and row clusters can still be generated. Given such settings, our model is implemented 
repeatedly 100 times with different initial values. The reported column (question) partition is believed 
to be representative as the median Rand index between it and the other column partitions is 0.91 with 
a standard deviation of 0.04 over the 100 Monte Carlo replications. The estimated accuracy parameters 
using posterior mean under each column cluster and the number of entries corresponding to each ac-
curacy parameter are summarized in Table 3.

F I G U R E  1  Left: boxplots of the estimated accuracy marginalized over each question or examinee; Right: boxplots of the 
Rasch parameters.
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12 |   PAN et al.

Following Table 3, a question cluster that contains more questions tends to possess more compo-
nents. The estimation of most componentwise accuracy parameters is precise, since most estimated 
standard deviation values are one order of magnitude smaller than the corresponding estimated accu-
racy parameters. We further conjecture that the questions that are assigned to the clusters below the 
middle line in Table 3 are not effective in distinguishing different types of examinees, suggested by our 
model. Recall that the number of examinees' mixtures is bounded above by (|c| + 1)∕2 to ensure model 
identifiability. It is hence impossible to identify more than one examinees' mixture when a question 
cluster has less than three questions. In other words, an ideal question cluster should consist of at least 
three questions to be able to detect the heterogeneity among examinees (referring to Lemma 1). Based 
on the test questions, it can be observed that the questions grouped under clusters 7, 8, and 9 require 
students to possess strong contextual comprehension skills. These questions are highly demanding and 
challenging as they assess students' ability to comprehend the entire article in an abstract manner. This 
is also supported by the low average accuracy suggested by the lower part of Table 3. On the other hand, 
the questions assigned to clusters 1, 2, and 6 comprise questions that are intended to assess the exam-
inees' foundational knowledge, such as their proficiency in using various tenses, pronouns, and basic 
listening skills. The relatively lighter shade of the blocks corresponding to these clusters in Figure 2 also 
indicates this.

The estimated componentwise accuracy parameters can further be visualized using Figure 2, after 
rearranging the columns (questions) into a consecutive layout according to the estimated column (ques-
tion) partition given by ACBM, for both ACBM and the Rasch estimations simultaneously.

T A B L E  3  The number of components (K) and the estimated componentwise accuracy parameters under each question 
cluster and the corresponding cluster size (|c|).

Cluster Size (|c|) K ≤ (|c| + 1)∕2 Estimated accuracy

1 4 2 .443, .872

2 20 5 .001, .344, .645, .924, .999

3 5 2 .218, .671

4 17 4 .179, .419, .726, .937

5 12 4 .001, .417, .752, .989

6 8 3 .164, .853, .999

7 2 1 .411

8 1 1 .791

9 1 1 .247

F I G U R E  2  The estimated accuracy parameters aligned in a matrix after permuting the questions based on the estimated 
column (question) partition. Left: ACBM; Right: Rasch model.
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    | 13BAYESIAN NONPARAMETRIC FOR HETEROGENEITY LEARNING

Intuitively, the ACBM gradient plot looks like a discretized version of the Rasch gradient plot, which 
implies that our proposed model can recover the Rasch model's result to some extent. As an advantage over 
the Rasch model, our proposed model can automatically identify possible question clusters and the mixing 
structures on the examinees thereof. Note that the Guttman pattern is revealed locally if we look into the 
accuracy parameters of the corresponding examinees in question clusters 3 and 5. The questions in cluster 
5 are listening comprehension and multiple- choice questions, which are in general easier compared to the 
questions assigned to question cluster 3, the majority of which are difficult reading comprehension ques-
tions. To provide more insights, we present a contingency table for clusters 3 and 5 in Table 4. For example, 
among the examinees who correctly answered questions from cluster 3 with a higher accuracy (.671), only 
one of them answered questions from cluster 5 with an accuracy being less than or equal to .417. In contrast, 
469 (94. 4%) of them answer correctly to the questions in cluster 5 with an accuracy of .988. This finding 
agrees with the prior belief that questions in cluster 5 are easier than those in cluster 3 and further indicates 
that our method can effectively capture the Guttman pattern locally based on specific question clusters.

We further discuss the heterogeneity as indicated by the red rectangle in Figure 2. Based on Table 5, 
for these examinees who are less proficient in question cluster 3 (accuracy = .218), 54.3% (25/46) of them 
did well in question cluster 4 with a .937 accuracy. On the other hand, for those who do well in question 
cluster 4 (accuracy ≥ .726), 37.5% (42/112) of them did not perform well in question cluster 3 (accuracy 
= .218). Such heterogeneity is not solely explained by randomness as we have a sufficiently large number 
of samples in estimating each accuracy parameter. Similar findings can also be discovered in the region 
formed by the blue rectangle in the same figure. It is gratifying to see that our method can capture such 
heterogeneity, whereas the Rasch model is unable to do so by using a single parameter to model the 
ability of examinees over all questions.

7 | DISCUSSION

In this paper we propose a novel IRT model using an averaged mixture of binomial distributions with 
constraints, the novelty of which basically comes from the modelling of heterogeneity and the justifi-
cation of the identifiability issue. Our model is shown to be effective in both theoretical and practical 
aspects. Namely, the identifiability conclusion and posterior contraction results indicate that the latent 
accuracy parameters of interest to us can be estimated at a 

√

n (up to a log term) rate asymptotically. 
In addition, the posterior samples of these parameters can be obtained using a tractable sampling al-
gorithm that satisfactorily approaches the stationary distributions according to the simulation results. 
Compared to the existing methods, including the Rasch model and multi- dimensional models, our 

T A B L E  4  Contingency table of examinees' count in terms of the accuracy parameters for clusters 3 and 5.

C3 (Difficult)

C5 (Easy)

Acc = .001 Acc = .417 Acc = .753 Acc = .988

Acc = .218 5 34 73 239

Acc = .671 0 1 27 469

T A B L E  5  Contingency table of the count of the examinees in the red rectangle in terms of the accuracy parameters for 
cluster 3 and 4.

C3

C4

Acc = .419 Acc = .726 Acc = .937

Acc = .218 4 17 25

Acc = .671 3 14 56
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model manages to reveal the multi- dimensionality of the examinees' proficiency level in handling dif-
ferent types of questions parsimoniously due to its discrete nature, thanks for the nested clustering 
structure. In fact, our proposed model is closely related to many existing multidimensional IRT models. 
Inspired by the statement in Reckase (2009, p. 79) –  ‘There are two major types of multidimensional 
item response models … One type of model is based on a linear combination of 𝜓- coordinates … The 
second type of model separates the cognitive tasks in a test item into parts and uses a unidimensional 
model for each part’ –  we reformulate our model and investigate its connection with these two majori-
ties. Note that the conditional probability of X

i ,j
= 1 given by our model is 

where 𝜓 (c (j ))
k

 is the natural parameter of 𝜃(c (j ))
k

 and Pr(Z(c (j ))
i

= k) = w
(c )

k
. The summation inside the product 

of the last display of (15) can be obtained by degenerating equation (4.5) of Reckase (2009), 

by letting d
j
= 0 and 

∑

m

𝓁=1 a𝓁𝜓𝓁 be 
∑

c∈𝒞ac (j )𝜓
(c (j ))

k
, where a

c (j )
= 1 if j ∈ c and 0 otherwise. Furthermore, 

if we take the product as a whole and revisit equation (4.20) of Reckase (2009), 

we can also do the degeneration by specifying the parameters. The key difference between our method and 
the two alternatives above is that our method emphasizes the estimation of 𝒞, 𝜓 (c (j ))

k
 and w (c )

k
 for all c ∈𝒞 

rather than the latent factors.
The main limitation of the current method is the lack of within- item dimensionality specification. De-

spite the ability to automatically identify the clustering structure at the question and examinee level, it is 
incapable of differentiating the types of proficiency exhibited by examinees while tackling certain question 
types. For example, our model cannot account for the linear combination of 𝜓- coordinates as defined in 
(17), which is also of research interest. To conduct such an analysis, one can certainly resort to a secondary 
multi- dimensional IRT analysis based on the clustering analysis results given by our model at the cost of 
losing the one- step integrity. Another limitation of our method is that it does not provide a direct inference 
of either the ability of examinees or the difficulty of questions, as is commonly achieved in most existing 
Rasch's models and multi- dimensional models. In contrast, our model centers on modelling the proficiency 
level of specific examinee subgroups correspoding to certain question clusters. Therefore, the choice of the 
model depends on the goal of the study, so that if the main objective is to make inferences about the abilities 
of examinees and the difficulties of questions, our model may not be the most suitable option.

For future study, one possible generalization is to consider the product of Bernoulli densities in place 
of the binomial density, such that the accuracy parameters of the questions assigned to a question clus-
ter can be arranged in ascending order after a permutation. In other words, without loss of generality, 
suppose there exists a permutation 𝜎( ⋅ ) given a question cluster indexed by 1, 2,…,D′; we define the 
product of Bernoulli densities as 

(15)

Pr(X
i ,j
=1|𝒞, 𝜃

(c (j ))

k
,K
(c (j ))

,Z
(c (j ))

i
)

=

K
(c (j ))

∏

k=1

[

𝜃
(c (j ))

k

]

1(Z
(c (j ))

i
=k)

=

K
(c (j ))

∏

k=1

[

exp{𝜓
(c (j ))

k
}

1+exp{𝜓
(c (j ))

k
}

]1(Z
(c (j ))

i
=k)

,

(16)Pr(X
i ,j
=1|𝜓

i
, a, d

j
)=

exp{
∑

m

𝓁=1
a𝓁𝜓𝓁+dj}

1+exp{
∑

m

𝓁=1
a𝓁𝜓𝓁+dj}

,

(17)Pr(X
i ,j
=1|𝝍

i
, d
j
)=

m
∏

k=1

exp{𝜓
i ,𝓁 − dj ,𝓁}

1+exp{𝜓
i ,𝓁 − dj ,𝓁}

,
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where 𝜎( ⋅ ) is shared within the question cluster. We may call them ordered Bernoulli densities. We expect 
that such a gradient of the accuracy parameters can better explain the Guttman pattern than the kernel 
function currently used. The only concern of this structure is the identifiability of using this kernel den-
sity, which requires further investigation. One can directly apply our theoretical results if the product of 
Bernoulli densities is shown to be first- order identifiable under certain conditions. Another possible way 
of improving is to consider a more advanced sampling algorithm than ours, which is a typical application 
of Algorithm 1 proposed by Neal (2000). The method of split- merge sampling (Jain & Neal, 2004) or slice 
sampling (Neal, 2003) can be used to accelerate the procedure to approach the stationary distribution. 
Future simulation studies might also comprehensively examine the difference between our model and the 
alternatives that accommodate heterogeneity by introducing mixing structure at both the item and subject 
levels.
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