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A B S T R A C T   

Polyimides have been widely used in modern industries because of their excellent mechanical and thermal 
properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes de
cades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high- 
performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics 
(MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in 
discovering novel polyimides. We first build a comprehensive library of more than 8 million hypothetical pol
yimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we 
establish multiple ML models for the thermal and mechanical properties of polyimides based on their experi
mentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength. 
The obtained ML models demonstrate excellent predictive performance in identifying the key chemical sub
structures influencing the thermal and mechanical properties of polyimides. The use of explainable machine 
learning describes the effect of chemical substructures on individual properties, from which human experts can 
understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property 
predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify 
three (3) best-performing novel polyimides that have better-combined properties than existing ones through 
Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an 
online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with inter
active visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine 
their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel 
polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the 
proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high 
glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study 
demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD vali
dation. The high-throughput screening of a large computational dataset can serve as a general approach for new 
material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer 
membranes, and dielectrics.   
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1. Introduction 

Polyimides are high-performance engineering plastics that have 
excellent strength and stiffness, exceptional heat resistance, and chem
ical stability. Their attractive mechanical and thermal properties are 
widely utilized in applications for aerospace, automobile, and elec
tronics industries [1–6]. For example, KaptonTm – a polyimide film 
product developed by DuPont Company in the 1950 s has been used till 
now as an excellent electrical insulating material. It can withstand 
temperatures of up to 400 ◦C and maintain excellent mechanical prop
erties across a broad temperature range (-269–400 ◦C). Such 
outstanding thermomechanical properties are of great value in meeting 
multi-functional requirements for many other applications, e.g., high- 
temperature fuel cells, displays, and membrane separations. Several 
polymerization methods are developed to synthesize polyimides, such as 
cycloaddition [7], diesters of tetracarboxylic acids [8], nucleophilic 
substitution [9], etc. Commercially, the DuPont synthesis method uti
lizes the condensation reaction between a dianhydride and a diamine 
upon the elimination of water molecules [10]. An alternative method 
yielding identical products as the DuPont route utilizes the reaction 
between a dianhydride and a diisocyanate with the elimination of car
bon dioxide [11–13] molecule. Different dianhydride, diamines, or dii
socyanates are selected to tailor the properties of the final polyimide 
polymers. For instance, pyromellitic dianhydride (PMDA) + 4,4′-oxy
dianiline (ODA) produces KaptonTm with high thermal resistance and 
mechanical strength [14], diacid anhydride + m-phenylene diamine 
yields polyetherimide that has excellent toughness and rigidity [15], 
while cyclobutane tetracarboxylic dianhydride (CBDA) + ODA leads to a 
polyimide that is colorless with good electrical insulating properties 
[16]. Such experimental studies of dianhydride and diamine/diisocya
nate reactions have resulted in several multi-functional polyimides that 
meet different requirements. Nevertheless, it is impossible for experi
mentalists to exhaust all possible two-component reactions between 
dianhydride and diamine/diisocyanate (that have not been experimen
tally synthesized) for materials design and discovery of novel poly
imides. Designing experiments can be a challenging task that requires a 
high level of expertise, and it is often difficult to develop an optimal 
experimental design without extensive knowledge in the field [17]. 
Therefore, researchers have tried to use computational approaches to 
efficiently predict the properties of new polyimides. 

Most current computational efforts have been devoted to the esti
mation of glass transition temperature Tg as polyimides are among the 
most heat-resistant polymers. Researchers have analyzed the Tg of pol
yimides in various ways like theoretical analysis, molecular dynamics 
(MD) simulations, and using machine learning (ML) techniques. For 
example, using theoretical analysis, Ronova et al. [18] developed a 
method to calculate the conformational parameters of 26 polyimides 
and studied the influence of chemical structure on Tg. They found the 
connecting bridge between two imide rings has varying impacts on the 
rigidity of the polyimide chain, and consequently the Tg. When the imide 
rings are connected by flexible bridges such as ether, carbonyl or silicon, 
the rigidity of the diamine component has a significant impact on the 
rigidity of the resulting polyimide and its Tg. This method is helpful to 
some extent in selecting appropriate diamines and dianhydrides for 
desired Tg, but it is only a qualitative derivation based on a few poly
imides and cannot be applied to estimate the Tg for all other possible 
polyimides. Due to the lack of quantitative theory to correlate the 
chemical structure and Tg, researchers have turn to MD simulations to 
give reasonable judgment of Tg of polyimides. The MD simulated Tg is 
demonstrated to agree well with experimental values for different pol
yimides like UltemTm and ExtemTM [19], (β – CN)APB/ODPA polyimide 
[20], R-BAPS polyimide [21], Isomeric polyimides [22,23], etc. In 
addition, MD allows a careful evaluation of the dependence of Tg on the 
structural factors like chain rigidity, intermolecular interactions, frac
tional free volume, etc. However, it is still unfeasible to simulate all 

possible polyimides with the time-consuming all-atom MD simulations. 
To determine the Tg of polyimides in a more effective way, ML tech
niques have been employed recently to build a predictive model of Tg. 
Wen et al. [24] collected Tg of 225 polyimides, obtained the simplified 
molecular-input line-entry system (SMILES) of their monomers, and 
generated 1342 molecular descriptors as feature inputs for the ML 
model. Their LASSO (least absolute shrinkage and selection operator) 
model together with bagging approach has an average error 18 K in Tg 

prediction, demonstrating a good prediction power of the ML model. 
However, their use of a small dataset brings concerns of the general
ization ability of the obtained ML model, and a further improvement of 
the model using a larger dataset is greatly desired [25]. 

The current challenge for designing new polyimides lies in the fact 
that while polyimides are multi-functional materials that can be poly
merized with two components —dianhydride and diamine/ 
diisocyanate— there is no efficient way to evaluate the multi-functional 
properties of all possible polyimides synthesized from different two- 
component reactions. From the above discussion, all the previous 
studies encounter various issues when assessing the single property (Tg) 
of polyimides. In addition, there is very little work devoting effort to 
exploring other properties simultaneously. Wu et al. [26] estimated Tg 

and tensile modulus (E) for 6 polyimides through MD simulations, and 
Wang et al. [27] synthesized copolyimide for both high strength and low 
dielectric constant. When multiple properties are involved, the evalua
tion of polyimides takes even more effort, and it is understandable that 
the current multi-property studies only examine the simple case of two 
properties at the same time. Facing these difficulties and challenges, we 
realize that the discovery of novel polyimides with excellent multi- 
functional properties needs to be addressed through a new strategy. 

To expedite the discovery of new polyimide with multiple tailored 
properties, we propose an integrated data-driven method that takes 
advantage of ML using a large dataset of real polyimides, a hypothetical 
dataset of more than 8 million possible polyimides for screening using 
the custom-built ML models, and MD simulations for validation. Our 
proposed ML-assisted approach consists of several key steps that are 
carefully designed to maximize the efficiency and effectiveness of the 
material discovery process. These steps include: (1) Historical data 
collection, which involves gathering and organizing a large dataset of 
polyimide structures and their associated properties; (2) ML model 
training, which uses this dataset to develop a predictive model that can 
identify new polyimide candidates with desirable properties; (3) Hy
pothetical structure creation, which involves generating new polyimide 
structures using the predictive model; (4) Promising candidate 
screening, which involves evaluating these new structures based on their 
predicted properties and selecting the most promising candidates for 
further analysis; (5) MD simulation validation, which uses high fidelity 
MD simulations to validate the stability and performance of the selected 
candidates; and (6) Experimental synthesis and measurements, which 
involves synthesizing the most promising candidates in the laboratory 
and measuring their properties to validate predictions of the ML model. 
Together, these steps form a comprehensive and effective workflow for 
discovering new polyimide materials with desirable properties. 

We first collect 2233 real polyimides structures from PoLyInfo 
database [28], with their 7 reported physical properties if there is any 
available, such as density (ρ), glass transition temperature (Tg), melting 
temperature (Tm), decomposition temperature (Td), Young’s modulus 
(E), tensile yield strength (σy), and tensile break strength (σb). PolyInfo 
dataset contains more than 18,000 homopolymers and more than 
494,837 properties. Its information is collected from public literature. 
These polyimides that have been synthesized and characterized exper
imentally constitute a large dataset of real polyimides. Based on this 
large dataset, we train ML models to establish the structure–property 
relationship for each of the seven properties and obtain physical insight 
into the key structural features of different properties. Next, the well- 
trained ML models will work as the predictive tool to estimate 
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multiple properties of new polyimides. We mainly focus on the σy, E, and 
Tg properties as high-temperature mechanical properties are most 
desired for industries like aerospace, automobile, and electronics. In 
accordance with the two polymerization routes of “dianhydride +

diamine” or “dianhydride + diisocyanate” for polyimide synthesis, we 
collect all the existing dianhydride, diamine, and diisocyanate mole
cules from PubChem [29] database, and carry out the polycondensation 
computationally to establish a large dataset of 8 million hypothetical 
polyimides (excluding 2233 existing polyimides). Finally, we identify 
several multi-functional polyimides that outperform the current real 
polyimides, accompanied by validating their properties through all- 
atom MD simulations. Our study designs novel multi-functional poly
imides by significantly expanding the chemical space of polyimides and 
then narrowing them down to promising candidates through ML 
screening and MD validation. Exhausting all possibilities using physics- 
based ML prediction before experimental synthesis successfully allows 
the exploration of the whole design space. Our proposed methodologies, 
with their carefully designed and integrated processes, represent a sig
nificant step forward in the field of polymer informatics. By providing a 
standardized workflow for implementing ML models in the discovery of 
novel polyimides, we aim to accelerate the pace of materials discovery 
and enhance the efficiency of research efforts. Moreover, our study 
demonstrates the critical importance of comprehensive data-driven 
analysis in the successful discovery of novel materials. By leveraging 
historical data and applying advanced ML techniques, we were able to 

identify promising candidates for further development and achieve 
significant improvements in the efficiency and accuracy of the discovery 
process. We believe our findings will have broad implications for the 
field of materials science and inspire further research in the develop
ment of advanced data-driven techniques for materials discovery. Such a 
design strategy is much more efficient compared to the conventional 
trial-and-error process and can be applied to the molecular design of 
other polymeric materials [30]. 

2. Results and discussion 

2.1. Expanding chemical space of polyimides 

Polyimides are mainly formed by the polycondensation either of a 
dianhydride and a diamine with the removal of water molecules 
(Fig. 1a), or of a dianhydride and a diisocyanate with the release of 
carbon dioxide molecules (Fig. 1b). The final product contains two 
functional imide groups that are the signature of polyimides (high
lighted in the red shade in Fig. 1a-d). Fig. 1c illustrates some examples of 
the 2233 real polyimides collected from the PoLyInfo [28] – a database 
of experimentally reported polymers. When locating these 2233 real 
polyimides in a 2D chemical space plot, we find most of them are close to 
each other based on their structural similarity (green points in Fig. 1e). It 
indicates the diversity of the real polyimides is still limited, far from 
covering all possible chemical structures of polyimides. 

Fig. 1. Comparison of real polyimides and 
hypothetical polyimides. (a) Synthesis of 
polyimide from a diamine and a dianhydride. 
(b) Synthesis of polyimide from a diisocyanate 
and a dianhydride. (c) Example structures 
from 2233 real polyimides in PoLyInfo. (d) 
Example structures from 8 million hypotheti
cal polyimides based on reactions shown in 
subplots a and b. (e) Chemical space visuali
zation of the real polyimide dataset (green 
points) and the hypothetical polyimide dataset 
(red points). The 2D visualization is based on 
fingerprints using t-SNE algorithm. The com
parison indicates that hypothetical polyimides 
(red points) cover a much broader chemical 
space while the real polyimide (green points) 
primarily concentrate in a local region. It 
suggests that the hypothetical polyimides are 
much more diverse in chemical structures, as 
shown in subplot d. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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The synthesis route illustrated in Fig. 1a-b has led to the synthesis of 
successful polyimides like KaptonTm, UPILEXTm, AvimidTm, etc., using 
different combinations of two components: dianhydride and diamine/ 
diisocyanate. Although there are plenty of options for dianhydride, 
diamine, and diisocyanate, it is unfeasible to synthesize all possible 
combinations experimentally. For example, in the PubChem [29] data
base - the world’s most extensive collection of existing organic mole
cules containing more than 299 million substances and various 
properties such as toxicity, stereochemistry, topological polar surface 
area, etc. The numbers of dianhydride, diamine, and diisocyanate are 
more than 200, 30000, and 10000, respectively. Thus, the combination 
of dianhydride and diamine will lead to more than 6 million possible 
polyimides, while dianhydride and diisocyanate will lead to more than 2 
million possible polyimides. Although it is impossible to realize these 8 
million polyimides experimentally, from a computational point of view, 
the chemical structures of these 8 million polyimides can be obtained 
when the imide functional group is formed correctly. Fig. 1d illustrates 
several chemical structures of the obtained hypothetical polyimides. 
This hypothetical dataset incorporates more diverse structures that 
occupy a broad area in the chemical space (red points in Fig. 1e). It is 
beneficial for us to expand the chemical space from a local region of real 
polyimides to a broader area of hypothetical polyimides, possibly 
leading to a greater chance to discover novel polyimides with desired 
multi-functional properties. An exhausting search of the 8 million hy
pothetical polyimides is unrealistic to be achieved experimentally but 
can only successfully be done using fast-to-compute ML models. 

To evaluate these hypothetical polyimides computationally, the first 
and the most crucial step is to establish a reliable structure–property 
relationship from the experimentally studied polyimides. Along with the 
reported chemical structures, most of the 2233 real polyimides have 
more than one property measured like thermal, electronic, mechanical, 
or dielectric properties. Table 1 summarizes the 7 properties we 
collected, including density (ρ), glass transition temperature (Tg), 
melting temperature (Tm), thermal decomposition temperature (Td), 
Young’s modulus (E), tensile yield strength (σy), and tensile break 
strength (σb). Experimental values come with uncertainties in terms of 
different samples, different instruments, different measurement 
methods, etc. Taking the average or median value as the representative 
value of a property is a typical approach, and using the median of a 
distribution of property values is found the best way to address uncer
tainty in data sources. Data coming from unstandardized tests remains a 
challenge in the field. To make the best use of the scarce experimental 
data, we examine their test methods and include all reasonable data 
points, and take the median value if needed. 

The establishment of the structure–property relationship for each 
property is a well-defined task that can be addressed with ML techniques 
[30]. The input is the chemical structure of real polyimides (with the 
improved Morgan fingerprints as feature representations in Supporting 
Information S1), while the output is the property. It would be ideal if a 
single ML model deals with 7 properties simultaneously, namely a multi- 
task ML model that predicts 7 properties given a polyimide structure. 
Unfortunately, the problem of task compatibility often leads to inferior 
overall performance when different tasks compete in multi-task learning 
[31]. Fig. 2 plots the 7 properties’ pairwise relationships for the real 

polyimide dataset. The non-diagonal plots display the pairwise re
lationships between any two different properties. We hardly notice 
correlations between mechanical properties and thermal properties such 
as σy vs. Tg, although some correlations are obvious between two ther
mal properties such as Tm vs. Tg. Overall, a multi-task learning of 7 
properties doesn’t show an ideal model performance (see Supporting 
Information S2 for the performance of the multi-task learning), associ
ated with architecture rigidity to predict multiple properties which 
aren’t well-correlated. 

2.2. Explainable ML models and physical insights based on real 
polyimides 

ML algorithms applicable for polymer’s structure–property re
lationships include feed-forward neural networks (FFNN), recurrent 
neural networks (RNN), graph convolutional neural networks (CNN), 
Gaussian process regression (GPR), random forests (RF), etc. We have 
tested different ML algorithms on the single task Tg of polymers, and 
found the FFNN using improved Morgan fingerprints was among the 
best models [25,32,33]. Morgan fingerprint method detects sub
structures enclosed in a circle of radius R, and assigns each detected 
substructure a numerical identifier. We use the SMILES of the repeat unit 
for each polyimide and implement the fingerprint algorithm in RDKit 
with R equals 3. A large number of substructures is detected, but we only 
keep the 121 prominent substructures shared by most polyimides. 
Finally, for each polyimide, we obtain a vector of size 121 in which each 
bit represents the number of a detected substructure. Compared to the 
default Morgan fingerprints, our improved Morgan fingerprints consider 
the frequency of occurrence for each substructure, carrying more 
physical meaning. This input vector is found to be a proper represen
tation as it indicates both what substructures and how many of them 
exist in the polymer’s repeating unit [32]. In the default Morgan feature 
representation 1/0 is used to indicate the existence of a certain sub
structure and different substructures can be hashed into the same vector 
bit. This so-call collision problem can lead to more molecules being 
represented in the same way. There are 9% molecules being duplicately 

Table 1 
7 physical properties collected for 2233 real polyimides from the PoLyInfo.   

ρ Tg Tm Td E σy σb 

Number of 
available 
data points 

337 1870 249 1663 447 110 480 

Property 
range 

0.81 
~ 
1.54 

−9 
~ 
490 

–22 
~ 
517 

60 
~ 
640 

2.12e- 
3 ~ 
18.6 

5.03e- 
5 ~ 
0.25 

8.83e- 
5 ~ 
0.41 

Property 
unit 

g/ 
cm3 

oC oC oC GPa GPa GPa  

E b y Tg Td Tm

E

b

y

Tg

Td

Tm

Fig. 2. Pairwise relationships in the real polyimide dataset. The diagonal 
plots are univariate distribution plots for each property. The non-diagonal plots 
display the pairwise relationships between any two different properties. It is 
hard to notice correlations between mechanical properties and thermal prop
erties such as σy vs. Tg , although some correlations are obvious between two 
thermal properties, such as Tm vs. Tg . 
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represented through the default Morgan fingerprint. But after using our 
improved Morgan fingerprint, there are only 5% molecules being 
duplicately represented. As 5% is only a small portion of the whole 
dataset, it has little effect on the final model training. With improved 
Morgan fingerprints, the collision problem can be addressed. However, 
labeling the number of occurrences for substructures still doesn’t encode 
the microscale level feature of polymers such as average chain length or 
molecular weight. Considering the limitation of the experimental data
set on the MW information, the effect of molecular weight is not 
explicitly represented in the fingerprints. 

After examining the good performance of FFNN with the improved 
Morgan fingerprints on each of the focused properties, we build 7 single- 
task ML models for each property individually. The architecture of each 
ML model, such as the number of layers and number of neurons in each 

layer, is optimized through hyperparameter tuning. Based on the 
training set, we utilize 5-fold cross-validation to fine-tune the hyper
parameters and select the optimal model. Subsequently, we train the 
optimized model on the entire training set and assess its performance on 
the test set. It is noteworthy that we conducted dozens of trials for 
hyperparameter tuning, and in the final ensemble model, we trained 
three models simultaneously. To obtain a better prediction performance, 
we build an ensemble model that averages a few models to get the final 
prediction. For example, the single-task ML model for Tg is optimized to 
have 4 hidden layers, and each layer has 34, 16, 8 neurons, respectively. 
We train this model architecture three times on the same dataset then 
average the three model predictions to a single-task ensemble model for 
Tg. The same strategy is applied to other property tasks (see Supporting 
Information S2 for the architecture of each single-task ensemble model). 

Fig. 3. Performance and feature importance of the single-task ensemble model for Tg. (a) The parity plot of the single-task ensemble FFNN model using 
improved Morgan fingerprints as input features. The ensemble average predictions are illustrated in dots, while the variance from the three models in the ensemble is 
illustrated with error bars. (b) Substructure importance plot. It lists the most important substructure in descending order and each dot represents the impact from a 
particular sample in the training set. (c) The most important 12 substructures associated with Tg according to SHAP values. The central atom of the substructures is 
highlighted in blue. Aromatic atoms are highlighted in yellow. Atoms’ connectivity is highlighted in light gray. (d) The individual SHAP value plot for the highest Tg 

polyimide poly[(2,8-dimethyl-5,5-dioxodibenzothiophene-3,7-diamine)-alt-(biphenyl-3,3′:4,4′-tetracarboxylic dianhydride)]. Its Tg prediction f(x) is based on the 
mean Tg of all real polyimides (base value) and contributions of its substructures. Red or blue arrows indicate positive or negative contribution of each substructure. 
The feature value of a substructure can be “0′′ meaning the absence of the substructure in the molecule, but its feature importance is still a valid value indicated by 
the length of the arrow. Top substructures in this polyimide are highlighted in different colors on the left. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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All our models are implemented using the Keras package [34]. Among 
the 7 properties, σy-E combination characterizes mechanical strength 
and modulus of resilience of a material, and Tg is a key representative of 
thermal property. This study aims at a multi-functional objective where 
we intend to discover novel polyimides that have high performance for 
σy, E, and Tg simultaneously. 

Firstly for Tg, the model performance and feature importance are 
illustrated in Fig. 3. Among the 1870 real polyimides whose Tg is 
experimentally reported, with a random splitting, 90% of the data points 
are used as the training set, and the other 10% data points are held out as 
the test set. R2 as well as the Mean Absolute Error (MAE) and the Root 
Mean Squared Error (RMSE) are employed to quantify the performance 
of the ensemble model. The error bar indicates the variance of the 

predictions from the three models contained in the ensemble, suggesting 
the difference in the prediction performance from the single model to 
the ensemble model. It shows that R2 of 0.92 and 0.78 are obtained for 
the model training and validation, respectively (Fig. 3a). Such predic
tion performance is comparable to other Tg models trained on different 
polymer datasets [8]. When a predictive model is established, we prefer 
to get insights into how each substructure feature affects the final 
property. Therefore, we calculate SHapley Additive exPlanations 
(SHAP) values to evaluate the impact of substructures on the Tg (see 
Supporting Information S3 for the details of SHAP). The top sub
structures influencing the model’s output are listed in Fig. 3b-c. Each 
row in Fig. 3b represents a substructure, and dots along the same row 
indicates the SHAP value of that substructure from different polyimides. 

Fig. 4. Performance and feature importance of the single-task ensemble model for σy. (a) The parity plot of the single-task ensemble FFNN model using 
improved Morgan fingerprints as input features. The ensemble average predictions are illustrated in dots, while the variance from the three models in the ensemble is 
illustrated with error bars. (b) Substructure importance plot. It lists the most important substructures in descending order and each dot represents the impact of a 
particular sample in the training set. (c) The most important substructures associated with σy according to SHAP values. The central atom of the substructures is 
highlighted in blue. Aromatic atoms are highlighted in yellow. Atoms’ connectivity is highlighted in light gray. (d) The individual SHAP value plot for the highest σy 

polyimide poly(1,4-phenylenediamine)-alt-[4,4′-oxybis(phthalic anhydride)]}. Its σy prediction f(x) is based on the mean σy of all real polyimides (base value) and 
contributions of its substructures. Red or blue arrows indicate positive or negative contribution of each substructure. The feature value of a substructure can be “0′′

meaning the absence of the substructure in the molecule, but its feature importance is still a valid value indicated by the length of the arrow. Top substructures in this 
polyimide are highlighted in different colors on the left. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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From the perspective of functional groups, high glass transition tem
peratures usually correlate to heteroaromatic units, rigid aromatic units, 
or inflexible linkages [10,32]. These features are reflected by the key 
substructures like numerical identifies “4874”, “3352”, and “2833”, etc. 
The most important substructure in the dataset is “5650”, which com
prises aromatic rings and oxygen rings. The revealed high impact of 
aromatic rings and oxygen linkages on Tg is consistent with previous 
studies [32,35]. Examination of SHAP values of the highest Tg poly
imide, poly[(2,8-dimethyl-5,5-dioxodibenzothiophene-3,7-diamine)- 
alt-(biphenyl-3,3’:4,4’-tetracarboxylic dianhydride)], is highlighted in 
Fig. 3d. The feature values for important substructures are presented. 
Three substructures contributing most to the high Tg are highlighted in 

the molecular graph with colored circles, showing the impact of the 
revealed key substructures. Our developed ensemble model is not only 
with good predictive accuracy, but also with clear physical explanations. 
Therefore, we will apply the obtained model to make high-throughput 
screening of the 8 million hypothetical polyimides. 

For σy, there are 110 real polyimides whose σy values are experi
mentally reported. Following the same training process as Tg we obtain 
R2 of 0.94 and 0.85 for the model training and validation (Fig. 4a). It is 
shown that without ensembling, a single model would give a large error 
bar at some points, but after with ensembling, the ensemble average 
prediction match much better with the true value. It well demonstrates 
the advantage of the ensemble model in reducing the prediction 

Fig. 5. Performance and feature importance of the single-task ensemble model for E. (a) The parity plot of the single-task ensemble FFNN model using 
improved Morgan fingerprints as input features. The ensemble average predictions are illustrated in dots, while the variance from the three models in the ensemble is 
illustrated with error bars. (b) Substructure importance plot. It lists the most important substructures in descending order and each dot represents the impact of a 
particular sample in the training set. (c) The most important substructures associated with E according to SHAP values. The central atom of the substructures is 
highlighted in blue. Aromatic atoms are highlighted in yellow. Atoms’ connectivity is highlighted in light gray. (d) The individual SHAP value plot for the highest E 
polyimide poly[1,4-phenylene-tetra(oxy-1,4-phenylene) pyromellitimide]. Its E prediction f(x) is based on the mean E of all real polyimides (base value) and con
tributions of its substructures. Red or blue arrows indicate the positive or negative contribution of each substructure. The feature value of a substructure can be “0′′

meaning the absence of the substructure in the molecule, but its feature importance is still a valid value indicated by the length of the arrow. Top substructures in this 
polyimide are highlighted in different colors on the left. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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variance. In addition, this single-task ensemble model outperforms the 
multi-task model, whose R2 reaches only 0.5 ~ 0.86 (See Supporting 
Information S2 and Ref. [35]). It is evident that multi-task learning 
compromises the σy prediction performance because of the minimal 
correlation between these properties. From the perspective of key sub
structures based on SHAP values, most of the important ones for σy in 
Fig. 4b-c don’t match the top key substructures for Tg (Fig. 3b-c). Some 
substructures like “935” and “5952” related to aromatic rings are the 
common critical features for both properties, but their synergy with 
other substructures still requires careful examination case by case. For 
example, both features make positive contributions to the σy of the poly 
(1,4-phenylenediamine)-alt-[4,4’-oxybis(phthalic anhydride)]} as 
shown in Fig. 4d. This polyimide processes the highest σy of 0.25 GPa 
among all real polyimides. Intuitively, we realize that certain aromatic 
rings play important roles in improving Tg and σy properties, and the 
obtained ensemble models are able to reveal the inherent correlations 
and provide quantitative estimations directly. 

Not limited to the multi-functionality of two properties Tg and σy, we 
also incorporate a third property, Young’s modulus E, to consider the 
stiffness of polyimides. We train and validate the FFNN single-task 
ensemble model using 447 real polyimides with available E values. 
The obtained R2 of 0.92 and 0.81 for the model training and validation 
(Fig. 5a), respectively, are superior to the value of 0.44 ~ 0.74 for the 
multi-task model (See supporting information S2 and Ref. [35]). Similar 
to σy, the property E has no clear correlations with other properties, 
which makes the single-task learning a better choice. The most impor
tant substructure of the ensemble model for E is presented in Fig. 5b-c. 
When the contributions of substructures are shown for the highest E 
polyimide poly[1,4-phenylene-tetra(oxy-1,4-phenylene) pyromelliti
mide], the substructure “5952” that has a positive impact in the previous 
highest Tg and highest σy conditions is now making a negative contri
bution. We can infer that the influence of a substructure is not an 
invariant. For example, among the substructures of a polyimide, a 
particular substructure can have a positive impact on a property; while 
among the substructures of another polyimide, the same substructure 
may have a negative impact on this property. Therefore, a substructure’s 
influence is based on the synergistic interaction of all substructures for 
the polyimide. Fig. 5d highlights two key substructures governing E, but 
it is worth noticing that their contributions are part of the combined 

effect of all substructures. 
Because of the synergistic effect of these substructures, each sub

structure’s feature importance for a property is different according to 
different polymers. To have a general evaluation of a substructure’s 
contribution to a given property, the corresponding values obtained 
from analyzing different polymers can be averaged as an index. For a 
certain substructure, three indexes can be obtained to roughly charac
terize its contribution to the three properties. Fig. 6 shows the average 
feature importance of each substructure for three properties in a prin
cipal component analysis (PCA) plot. It indicates the overall contribu
tions of different substructures toward different properties. From the 
PCA plot of the three properties, the first two principal components PC1 
and PC2 explained most of the variance in the data, and some general 
guidelines can be obtained. Firstly, it is clear that most substructures 
locate near the origin, demonstrating the difficulty in differentiating 
their contributions to different properties. Secondly, the property σy as a 
variable vector is nearly orthogonal to the other two properties Tg and E, 
indicating the challenge to adjust σy of a polyimide while adjusting its Tg 

and E. Lastly, some key substructures aforementioned like “935” that is 
critical for all three properties are far away from the origin, demon
strating their high impact on the overall performance of a polyimide. 
Compared to the feature importance analysis for one property, the PCA 
analysis provides a more general evaluation on how different sub
structures are correlated with respect to different properties, which help 
us gain more insights on how each substructure affects the polyimide’s 
properties. 

2.3. Discovery of multifunctional polyimides through Pareto frontier 
analysis 

Single-task ML models allow us to evaluate a specific property given 
a new polyimide. When we apply the well-trained ML models on the 8 
million hypothetical polyimides, we obtain estimations of their σy, E, 
and Tg so that we can discover better performers regarding the multi- 
functionalities. As there are three properties to compete against each 
other, the design space becomes three-dimensional, as illustrated in 
Fig. 7. In the real polyimide dataset, some polyimides only have one or 
two properties reported experimentally. However, all three properties 
are needed in this 3D space. Thus, for those properties that are not 

TgE

y

Fig. 6. PCA analysis on feature importance for three properties of 121 substructures.  
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reported, we complement them with the ML model predictions. Using 
the completed data of σy, E, Tg, all real polyimides are positioned 
accordingly in Fig. 7. Although the resultant design space is based on a 
mixture of experimental values and ML predictions, we consider it well 
constructed and reliable, given the good predictive performance of the 
ML models (Figs. 3-5). 

When examining the ML predicted σy, E, and Tg of all hypothetical 
polyimides, some of them can be referred to as the Pareto frontier [36], 
for which none of the properties can be improved without degrading 
other properties. This set of Pareto frontier of hypothetical polyimides 
defines an envelope boundary for the three properties (σy, E, and Tg). 
Among the Pareto frontier of hypothetical polyimides, the three best- 
performing hypothetical polyimides (high σy, E, and Tg at the same 
time) are selected (see Supporting Information S4 for the 3D property 
space of hypothetical polyimides). Similarly, based on the three prop
erties of all real polyimides, a new set of Pareto frontier can be identi
fied, which defines the property boundary of real polyimides (shown in 
Fig. 7). Fig. 7 also illustrates the projections of all real polyimides on 
three planes. The 2D Pareto frontier line is more straightforward on each 
plane and the E -Tg, E - σy, and σy -Tg combinations are three special cases 
from the 3D design space (see Supporting Information S4 for the indi
vidual 2D projection figures). When the three best-performing novel 
polyimides discovered from the 8 million hypothetical polyimides 
(indicated by red stars) are superposed in Fig. 7, it is found that the 
discovered hypothetical polyimides are beyond the Pareto frontier 
boundary of real polyimides, suggesting superior performances. Their 
chemical structures are shown on the right side of Fig. 7. Compared to 

the chemical structures of three real polyimides near Pareto frontiers on 
the left side of Fig. 7, we find common structural features such as aro
matic rings in the backbone of the main chain and the sulfonyl func
tional of two double bonds between the sulfur and oxygen. This 
similarity suggests a successful pattern captured by our ML models 
(Figs. 3-5). In addition, features like pyridine rings are hardly found in 
the real polyimide structures and are observed in the discovered novel 
polyimides. Pyridine rings increase the aromaticity of the polymer 
structures and help to maintain mechanical properties at high temper
atures [37–43]. The important substructures influencing the thermo
mechanical properties of polyimides are embodied in these discovered 
novel polyimides. They locate beyond the Pareto frontier boundary in 
the real polyimides design space, denoting improved multi- 
functionalities and, therefore, better options for experimental synthe
sis. If based on more thermal/mechanical properties, the radar charts for 
7 properties (shown in Supporting Information S5) also demonstrate a 
more balanced performance of the three discovered hypothetical poly
imides. In terms of their locations in the t-SNE chemical space, the three 
novel polyimides are not far away from the real polyimides. In this 
respect, they are similar to real polyimides but possess extraordinary 
properties that have not been discovered (see Supporting Information S6 
for the t-SNE chemical space location of the three novel polyimides). 

2.4. MD validation of thermal and mechanical properties 

To validate the thermomechanical properties of the discovered novel 
polyimides, we carry out all-atom MD simulations to analyze their three 
properties, σy, E, and Tg. We build all-atoms models to simulate the novel 

Fig. 7. Comparisons of the three properties of real polyimides. Red dots and squares correspond to the performance of real polyimides in 3D coordinates. Red 
squares are polyimides whose σy, E, and Tg define a boundary to which no other real polyimides can reach (Pareto frontier). The red stars, however, are hypothetical 
polyimides we discover whose properties are beyond the Pareto frontier. The projections of these red markers on three planes are shown in different colors. The 
boundaries on each 2D plane are better illustrated with the lines passing Pareto frontiers. The chemical structures of three real polyimides near the Pareto frontier are 
shown on the left, and the chemical structures of the three hypothetical polyimides that most beyond the Pareto frontier are shown on the right. The key substructures 
identified in Figs. 3-5 are highlighted in different colors for both three real polyimides and three hypothetical polyimides. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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polyimides made of two components (dianhydride + diamine/diiso
cyanate). The polymer consistent force field (PCFF) [44–47] is used to 
define interatomic interactions. It is a second-generation force field 
[45,48–51], parameterized for organic compounds containing H, C, N, 
O, S, P, halogen atoms, and ions. PCFF has a broad coverage of organic 
polymers in calculations of cohesive energies, mechanical properties, 
compressibilities, heat capacities, and elastic constants. We employ a 
multi-step strategy [52] to simulate the cross-linking reactions of poly
imide. Reactive atoms are first assigned to monomers (dianhydride) and 
crosslinkers (diamine/diisocyanate), and then covalent bonds (elastic 
springs) are formed between reactive atoms within a cutoff distance. 
After relaxing the cross-linked network for a while, extra hydrogen 
atoms are removed, and partial charges are adjusted to follow the 

charge-neutral principle. Based on the relaxed network, the second 
round of cross-linking continues with an increased cutoff distance. When 
the curing degree is satisfied, the cross-linking simulation stops further 
bond breaking and formation [53–55]. We pack 500 of each component 
within the 3D-periodic amorphous cell. The curing target is to reach 
more than 90 percent of reactive atoms on monomers. The final cross- 
linked polymer models contain ~ 20,000 atoms and have a box side 
length of 65 Å (see Supporting Information S7 for the details of cross- 
linking steps). Periodic boundary conditions are set along with all 
three directions. LAMMPS (Large-scale Atomic/Molecular Massively 
Parallel Simulator) package is used for MD simulations. 

Before simulations of thermal or mechanical properties, polyimides 
are equilibrated first through a 21-step MD equilibration protocol (see 
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Fig. 8. MD simulations of three novel polyimides beyond the current Pareto frontier. (a) The four rows show the molecular structure of the repeat unit, MD 
simulation box of semi-crystalline structures, the specific volume vs. temperature curve for Tg extraction, and stress vs. strain curves of the three semi-crystalline 
structures for E and σy extraction. (b) The parity plots of MD simulation vs. experiment/ML prediction for E, σy, and Tg . All MD simulated Tg , E and σy values 
are comparable to experimental measurements or ML predictions. 

L. Tao et al.                                                                                                                                                                                                                                      



Chemical Engineering Journal 465 (2023) 142949

11

Supporting Information S7 for the details of the 21-step equilibration). 
To obtain the Tg of the system, we carry out a cooling process simulation 
by gradually decreasing the temperature from 1000 K to 100 K. The 
simulated specific volume vs. temperature curves is shown in Fig. 8. The 
segments at both sides of the curve have a constant slope, which rep
resents two different phases (rubbery and glassy). The least-square fitted 
lines are also plotted in Fig. 8, and their interception represents the Tg 

[54,56,57]. It is worth noting that the time scale of MD simulation is 
around nanoseconds, so the modeled cooling rate is much faster than 
that of the experiments [57–60]. Although the simulated cooling rate is 
not exactly consistent with experiments, the Tg estimation from MD 
simulation is still proven to reasonably agree with the experimental 
value [58–62]. The tensile simulation for stress–strain response is ach
ieved by changing the simulation box with a constant strain rate. Like 
the condition of high cooling rate in Tg simulation, the high strain rate in 
MD simulation differs from the true values in experiments. Nevertheless, 
a low strain-rate sensitivity has been demonstrated with a relatively 
small strain rate, for example, around 1 × 108 s−1. 

Since we are interested in multi-functional polyimides with high Tg, 
σy, and E properties, we first select 3 real polyimides whose Tg, σy, and E 
are relatively high for MD verification. To obtain reliable simulation 
results, we first benchmarked our MD method by simulating ten 
experimental polyimides with amorphous structures (see Supporting 
Information S7 for their chemical structures, molecular structures, 
SMILES, specific volume vs. temperature curves, the stress vs. strain 
curves, and the extracted thermal and mechanical properties). The 
resulting thermal and mechanical properties, including Tg, E, and σy, are 
in excellent agreement with their corresponding measurements as re
ported in the experiments. For these selected 3 high-performance real 
polyimides, they may not have all three properties reported, but we have 
obtained reasonable ML estimations as approximate true values from 
Section 2.2. Given the planar nature of monomers due to abundant 
benzene rings, the polyimide cases in consideration are expected to be 
semi-crystalline or have an ordered phase. That is to say, polymers have 
different molecular states, such as amorphous, semi-crystalline, and full- 
crystalline. Polymers with a high degree of crystallinity have higher 

mechanical properties than their corresponding amorphous phase. As 
described in PolyInfo dataset, these selected polyimides are semi- 
crystalline structures. Likewise, molecules-based ML models are also 
implicitly related to polyimides’ aggregation state through their thermal 
and mechanical properties. To verify these points, we first simulate the 
mechanical properties of the selected high-performance polyimides with 
the amorphous state. Additionally, polymer structure predictor (PSP) 
[63], as a tool proposed to predict the polymer crystal structure models, 
is also employed to build extra full-crystalline and semi-crystalline 
structures for these polyimides. In addition, the degree of crystalliza
tion for semi-crystalline structures is 0.55, which is determined using the 
Polymer Genome platform [63]. Results indicated that the mechanical 
properties of full-crystalline structures are highest, followed by semi- 
crystalline structures, and amorphous structures (see Supporting Infor
mation S9 for the details of MD simulations and model setup for full- 
crystalline and semi-crystalline structures). The results obtained in 
Fig. 8b and Table 2 show the mechanical properties of semi-crystalline 
structures. Obviously, when the selected polyimides are semi- 
crystalline structures, Young’s modulus and yield strength of three 
real polyimides (experimental measurements) and three novel poly
imides (ML predictions) are well consistent with MD simulations. In 
addition, MD simulated Tg is comparable to experimental measure
ments. In addition to the focused three properties, density as a funda
mental intrinsic property of the material is also listed for comparison. In 
short, these investigations show that the discrepancies between the MD- 
estimated properties and the ML-predicted properties are within an 
acceptable range, considering the uncertainties in MD simulations and 
ML predictions. 

In addition to MD validation before the future experimental study, 
we further examine the synthesizability of these polyimides. We calcu
late Schuffenhauer’s synthetic accessibility (SA) score of the 3 novel 
polyimides’ two reacting components. The SA score of 1 ~ 10 indicates 
the accessibility from easy to difficult. The highest SA score is 3.81 for 
the discovered 3 polyimides, which suggests easy synthesizability (see 
Supporting Information S8 for the SA score analysis). 

Table 2 
Comparison of ML predictions and MD simulations of three novel polyimides.  

Note: Diff = (MD - ML) / MD * 100%. 
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2.5. Experimental validation of the discovered polyimide #2 

Considering all the differences between MD simulation results and 
ML predictions listed in Table 2, we found that the novel polyimide #2 
had relatively smaller differences. Therefore, we selected the #2 
candidate for further experimental synthesis and measurement. Guided 
by the aforementioned reaction template and reacting components, we 
purchased all required chemicals from Sigma Aldrich unless otherwise 
stated. The reacting components for the discovered polyimide #2 are 

1,4,5,8-naphthalenetetracarboxylic dianhydride (1,4,5,8 NTDA) and p- 
Phenylenediamine (p-PDA). In addition, p-Cresol or p-chlorophenol was 
used to improve the solubility of the reacting components (referred to as 
p-Cresol reaction or p-chlorophenol reaction), as shown in Fig. 9a. p- 
Cresol (99%) was supplied by Thermo Fisher Scientific. The solvents and 
1,4,5,8 NTDA were used as received without further purification, while 
p-PDA was sublimated at 150 ◦C before use. On one hand, even though 
synthetic accessibilities scores indicate that the syntheses of these 
promising polymers are feasible, it is still difficult to find some excellent 

Fig. 9. Experimental synthesis and measurement of the discovered polyimide #2. (a) The reaction between the two reacting components 1,4,5,8-naphthale
netetracarboxylic dianhydride (1,4,5,8 NTDA) and p-Phenylenediamine (p-PDA). p-Cresol or p-chlorophenol was used to improve the solubility of the reacting 
components. (b) The effect of molecular weight on the Tg from MD simulations. Models with different molecular weights are simulated. The Tg estimations and the 
corresponding standard deviations are plotted in dots and error bars. The Fox and Loshaek Equation fits well with the obtained data, describing the Tg dependency 
with molecular weight. (c) The reacted sample of the discovered polyimide #2. The product precipitates only 20 min into the reaction, leading to a low molecular 
weight of the final sample. (d) Thermogravimetric analysis (TGA) results of the samples by either p-Cresol reaction or p-chlorophenol reaction. Td = 550 ◦C is 
obtained and in good agreement of the ML prediction of 536 ◦C. Tg = 275 ◦C is obtained and lower than the ML prediction due to the low molecular weight of the 
final product. (e) Differential scanning calorimetry (DSC) results of the samples by either p-Cresol reaction or p-chlorophenol reaction. When the heating rate is 
changed from 10 ◦C to 50◦ C/min, Tg response at 275 ◦C becomes more obvious. 
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solvents to dissolve the reactants; on the other hand, mechanical tests 
require more samples and further processing of the sample into a dog- 
bone specimen. Therefore, in this experimental part, we focus on 
measuring the Tg. 

In a typical reaction, 1.00 g (3.73 mmol) of 1,4,5,8 NTDA, 0.403 g 
(3.73 mmol) of p-PDA, and 50.0 g of p-chlorophenol were charged into 
an oven-dried two-neck round bottom flask equipped with a magnetic 
stirrer. The flask was fitted with a Dean–Stark trap and a reflux tube, and 
then transferred to an oil bath heated to 240 ◦C. The color of the solution 
changed from brown to crimson and eventually dark purple as the re
action progressed. To ensure inert conditions throughout the polymer
ization, the reaction was refluxed under a slow stream of nitrogen (10 
mL min−1). After 15 h, the reaction mixture was allowed to cool to room 
temperature and centrifuged at 8000 rpm to isolate the polymer pre
cipitates. Subsequently, the residue was stirred in p-chlorophenol (20 g 
× 3) at 50 ◦C and centrifuged again to remove any unreacted monomers. 
Finally, the polymer was dried in a vacuum oven at 240 ◦C for 24 h. A 
similar procedure was followed for the polymerization reaction in p- 
cresol. Yield: 34.0 % for the p-chlorophenol reaction and 31.8 % for the 
p-cresol reaction. Fig. 9c shows the obtained sample of the polyimide 
#2. The product precipitates ~ 20 min into the reaction, leading to a low 
molecular weight of the final sample. 

To measure the thermal properties of the final product, differential 
scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were 
performed. DSC was performed on a Discovery DSC2500 (TA In
struments) between 20 and 400 ◦C at a heating rate of 10 ◦C min−1 or 
50 ◦C min−1. TGA was performed on a Discovery TGA5500 thermog
ravimetric analyzer (TA Instruments) between 30 and 1000 ◦C at a 
heating rate of 10 ◦C min−1. Fig. 9d shows the TGA results, giving Td =

550 ◦C which is in good agreement with the ML prediction of 536 ◦C. Tg 

= 275 ◦C is obtained which is lower than the ML prediction of 383 ◦C 
due to the low molecular weight of the final product. The Fox and 
Loshaek Equation develops an empirical formula for the prediction of 
the molecular weight dependence of the Tg [64]. It describes that at a 
lower molecular weight or degree of crosslinking, a lower Tg is resulted. 
With further MD simulations for models with different molecular 
weights, the Tg performance of the sample is well-fitted according to the 
Fox and Loshaek Equation, as shown in Fig. 9b. When the ML model 
predicts the limiting value of the glass transition temperature at a very 
high molecular weight, the actual molecular weight or degree of cross
linking of the obtained sample affects its Tg in a significant way. One 
limitation of our ML model is that the experimental related parameters 
(e.g., molecular weight) are difficult to incorporate in the ML model 
training because it was reported for only a few of the ~ 1800 datasets. 
Fig. 9e is for the further experimental measurement of Tg from DSC 
results. It demonstrates a similar Tg response at 275 ◦C. It is also 
observed that when the heating rate is changed from 10 ◦C to 50◦ C/min, 
the Tg response at 275 ◦C becomes more obvious, which is a typical 
situation for measuring the glass transition of rigid polymers like poly
mers with intrinsic microporosity (PIMs) [65]. 

3. Conclusion 

Multi-functional polyimide is a key technology enabler for diverse 
applications, such as high-temperature fuel cells, polymer composites, 
and membranes. However, successful products of polyimides are limited 
to a few of them, like KaptonTm. To discover more promising polyimides 
with better performance, we build a large hypothetical polyimide 
dataset for high-throughput screening. 8 million possible polyimides are 
obtained computationally based on the polycondensation of existing 
dianhydride and diamine/diisocyanate molecules. This hypothetical 
dataset significantly expands the chemical space of existing polyimides, 
offering a great opportunity for materials discovery and design. How
ever, it is infeasible to synthesize all of them for experimental analysis. 
To this end, we establish structure–property relationships through 

predictive ML models to do the high throughput screening of these 8 
million hypothetical polyimides. Among the collected 7 properties (ρ, 
Tg, Tm, Td, E, σy, and σb), we focus on 3 properties, Tg, E, and σy, and find 
single-task ML model outperforms the multi-task ML model. With the 
help of explainable ML models, we identify the key substructures 
influencing the thermal and mechanical properties of polyimides, such 
as aromatic rings and oxygen linkages. Applying the well-trained ML 
models to the 8 million hypothetical polyimides, we identify 3 best- 
performing novel polyimides with simultaneous high values of Tg, E, 
and σy. Consistent key substructures are also present in the discovered 
novel polyimides contributing to the high performances. Their ther
momechanical properties are found beyond the Pareto frontier of 
existing polyimides, further confirmed by MD simulations. Although 
their chemical structures have not been reported experimentally, their 
polymerization route is well established, and corresponding reacting 
components are found easy to synthesize with a low synthetic accessi
bility score. Using the ML-guided reaction template and reacting com
ponents, we synthesize the discovered polyimide #2 successfully and 
measure its thermal properties. Due to the low molecular weight of the 
sample obtained, its measured Tg follows the Fox and Loshaek Equation 
and the experimentally obtained value of thermal decomposition tem
perature 550 ◦C demonstrates excellent thermal stability. Our study has 
successfully identified several novel polyimides with exceptional ther
momechanical properties, offering promising directions for the synthe
sis of innovative materials with a wide range of potential applications. 
Through the use of advanced ML techniques and a carefully designed 
workflow, we were able to rapidly screen a large number of potential 
candidates and identify those with the most desirable properties. These 
novel polyimides demonstrate excellent mechanical strength, thermal 
stability, and other important characteristics, making them highly 
attractive candidates for use in a variety of fields, including aerospace, 
electronics, and automotive industries. We believe our findings will 
make a significant contribution to the development of new materials and 
inspire further research in this exciting and rapidly evolving field. 

This study discovers novel polyimides with promising thermo
mechanical properties and guides the further experimental synthesis of 
innovative polyimides. More importantly, our method of utilizing 
explainable ML techniques and high-fidelity MD simulations demon
strates an efficient way to deal with a daunting number of chemical 
structures. It is important to note that our proposed method is designed 
specifically to provide guidance for the selection of promising candi
dates and corresponding raw materials, rather than to evaluate the 
entire experimental synthesis process. While factors such as solvent se
lection, reaction time, temperature control, toxicity, and other condi
tions are undoubtedly critical aspects of the experimental synthesis 
process, they are outside the scope of this study. Nonetheless, we believe 
that our ML-assisted workflow represents a significant step forward in 
the field of polymer informatics and offers exciting possibilities for 
future research. By leveraging the power of advanced ML techniques and 
carefully designed workflows, we can rapidly identify promising can
didates for further development and enhance the efficiency and effec
tiveness of materials discovery efforts. Looking ahead, we believe that 
similar workflows could be established to evaluate the entire experi
mental synthesis process and further enhance the reproducibility and 
reliability of materials discovery research. Additionally, our method 
could be further applied to the high throughput screening for other 
polymeric material problems, such as organic photovoltaics, polymer 
membranes, and dielectrics. 

4. Data and code availability 

Data and code are available at https://github.com/figotj/Polyimide 
_explorer. Based on our hardware specifications (12th Gen Intel(R) 
Core(TM) i7-12700 K 3.60 GHz, 32 GB DDR5 RAM) and NVIDIA RTX 
A4000 Graphics Card, the training of the machine learning model takes 
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less than 1 h to finish. To process and screen the 8 million hypothetical 
polyimides, it takes ~ 10 h to complete. And we develop an online 
interactive platform https://polyimide-explorer.herokuapp.com/ for 
better visualization of more than 77,000 high-performing hypothetical 
polyimides. Detailed information is illustrated in the platform including 
polyimide’s molecular structures, properties, polymerization route, and 
the corresponding reacting components that are commercially available. 
The developed machine learning model is also embedded in the platform 
for easy application. 
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