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ARTICLE INFO ABSTRACT
Keywords: Polyimides have been widely used in modern industries because of their excellent mechanical and thermal
Multi-functional polyimides properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes de-

Explainable machine learning
Molecular dynamics
Ultrahigh thermomechanical properties

cades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high-
performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics
(MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in
discovering novel polyimides. We first build a comprehensive library of more than 8 million hypothetical pol-
yimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we
establish multiple ML models for the thermal and mechanical properties of polyimides based on their experi-
mentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength.
The obtained ML models demonstrate excellent predictive performance in identifying the key chemical sub-
structures influencing the thermal and mechanical properties of polyimides. The use of explainable machine
learning describes the effect of chemical substructures on individual properties, from which human experts can
understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property
predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify
three (3) best-performing novel polyimides that have better-combined properties than existing ones through
Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an
online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with inter-
active visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine
their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel
polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the
proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high
glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study
demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD vali-
dation. The high-throughput screening of a large computational dataset can serve as a general approach for new
material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer
membranes, and dielectrics.
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1. Introduction

Polyimides are high-performance engineering plastics that have
excellent strength and stiffness, exceptional heat resistance, and chem-
ical stability. Their attractive mechanical and thermal properties are
widely utilized in applications for aerospace, automobile, and elec-
tronics industries [1-6]. For example, Kapton'™ — a polyimide film
product developed by DuPont Company in the 1950 s has been used till
now as an excellent electrical insulating material. It can withstand
temperatures of up to 400 °C and maintain excellent mechanical prop-
erties across a broad temperature range (-269-400 °C). Such
outstanding thermomechanical properties are of great value in meeting
multi-functional requirements for many other applications, e.g., high-
temperature fuel cells, displays, and membrane separations. Several
polymerization methods are developed to synthesize polyimides, such as
cycloaddition [7], diesters of tetracarboxylic acids [8], nucleophilic
substitution [9], etc. Commercially, the DuPont synthesis method uti-
lizes the condensation reaction between a dianhydride and a diamine
upon the elimination of water molecules [10]. An alternative method
yielding identical products as the DuPont route utilizes the reaction
between a dianhydride and a diisocyanate with the elimination of car-
bon dioxide [11-13] molecule. Different dianhydride, diamines, or dii-
socyanates are selected to tailor the properties of the final polyimide
polymers. For instance, pyromellitic dianhydride (PMDA) + 4,4'-oxy-
dianiline (ODA) produces Kapton™ with high thermal resistance and
mechanical strength [14], diacid anhydride + m-phenylene diamine
yields polyetherimide that has excellent toughness and rigidity [15],
while cyclobutane tetracarboxylic dianhydride (CBDA) + ODA leads to a
polyimide that is colorless with good electrical insulating properties
[16]. Such experimental studies of dianhydride and diamine/diisocya-
nate reactions have resulted in several multi-functional polyimides that
meet different requirements. Nevertheless, it is impossible for experi-
mentalists to exhaust all possible two-component reactions between
dianhydride and diamine/diisocyanate (that have not been experimen-
tally synthesized) for materials design and discovery of novel poly-
imides. Designing experiments can be a challenging task that requires a
high level of expertise, and it is often difficult to develop an optimal
experimental design without extensive knowledge in the field [17].
Therefore, researchers have tried to use computational approaches to
efficiently predict the properties of new polyimides.

Most current computational efforts have been devoted to the esti-
mation of glass transition temperature T, as polyimides are among the
most heat-resistant polymers. Researchers have analyzed the T, of pol-
yimides in various ways like theoretical analysis, molecular dynamics
(MD) simulations, and using machine learning (ML) techniques. For
example, using theoretical analysis, Ronova et al. [18] developed a
method to calculate the conformational parameters of 26 polyimides
and studied the influence of chemical structure on T,. They found the
connecting bridge between two imide rings has varying impacts on the
rigidity of the polyimide chain, and consequently the T,. When the imide
rings are connected by flexible bridges such as ether, carbony! or silicon,
the rigidity of the diamine component has a significant impact on the
rigidity of the resulting polyimide and its T,. This method is helpful to
some extent in selecting appropriate diamines and dianhydrides for
desired Tg, but it is only a qualitative derivation based on a few poly-
imides and cannot be applied to estimate the T, for all other possible
polyimides. Due to the lack of quantitative theory to correlate the
chemical structure and Tg, researchers have turn to MD simulations to
give reasonable judgment of T, of polyimides. The MD simulated T, is
demonstrated to agree well with experimental values for different pol-
yimides like Ultem™ and Extem™ [19], (B — CN)APB/ODPA polyimide
[20], R-BAPS polyimide [21], Isomeric polyimides [22,23], etc. In
addition, MD allows a careful evaluation of the dependence of T, on the
structural factors like chain rigidity, intermolecular interactions, frac-
tional free volume, etc. However, it is still unfeasible to simulate all
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possible polyimides with the time-consuming all-atom MD simulations.
To determine the T, of polyimides in a more effective way, ML tech-
niques have been employed recently to build a predictive model of Tj.
Wen et al. [24] collected T, of 225 polyimides, obtained the simplified
molecular-input line-entry system (SMILES) of their monomers, and
generated 1342 molecular descriptors as feature inputs for the ML
model. Their LASSO (least absolute shrinkage and selection operator)
model together with bagging approach has an average error 18 K in T,
prediction, demonstrating a good prediction power of the ML model.
However, their use of a small dataset brings concerns of the general-
ization ability of the obtained ML model, and a further improvement of
the model using a larger dataset is greatly desired [25].

The current challenge for designing new polyimides lies in the fact
that while polyimides are multi-functional materials that can be poly-
merized with two components —dianhydride and diamine/
diisocyanate— there is no efficient way to evaluate the multi-functional
properties of all possible polyimides synthesized from different two-
component reactions. From the above discussion, all the previous
studies encounter various issues when assessing the single property (T,)
of polyimides. In addition, there is very little work devoting effort to
exploring other properties simultaneously. Wu et al. [26] estimated T,
and tensile modulus (E) for 6 polyimides through MD simulations, and
Wang et al. [27] synthesized copolyimide for both high strength and low
dielectric constant. When multiple properties are involved, the evalua-
tion of polyimides takes even more effort, and it is understandable that
the current multi-property studies only examine the simple case of two
properties at the same time. Facing these difficulties and challenges, we
realize that the discovery of novel polyimides with excellent multi-
functional properties needs to be addressed through a new strategy.

To expedite the discovery of new polyimide with multiple tailored
properties, we propose an integrated data-driven method that takes
advantage of ML using a large dataset of real polyimides, a hypothetical
dataset of more than 8 million possible polyimides for screening using
the custom-built ML models, and MD simulations for validation. Our
proposed ML-assisted approach consists of several key steps that are
carefully designed to maximize the efficiency and effectiveness of the
material discovery process. These steps include: (1) Historical data
collection, which involves gathering and organizing a large dataset of
polyimide structures and their associated properties; (2) ML model
training, which uses this dataset to develop a predictive model that can
identify new polyimide candidates with desirable properties; (3) Hy-
pothetical structure creation, which involves generating new polyimide
structures using the predictive model; (4) Promising candidate
screening, which involves evaluating these new structures based on their
predicted properties and selecting the most promising candidates for
further analysis; (5) MD simulation validation, which uses high fidelity
MD simulations to validate the stability and performance of the selected
candidates; and (6) Experimental synthesis and measurements, which
involves synthesizing the most promising candidates in the laboratory
and measuring their properties to validate predictions of the ML model.
Together, these steps form a comprehensive and effective workflow for
discovering new polyimide materials with desirable properties.

We first collect 2233 real polyimides structures from PoLylInfo
database [28], with their 7 reported physical properties if there is any
available, such as density (p), glass transition temperature (T), melting
temperature (T;,), decomposition temperature (T;), Young’s modulus
(E), tensile yield strength (o), and tensile break strength (o). PolyInfo
dataset contains more than 18,000 homopolymers and more than
494,837 properties. Its information is collected from public literature.
These polyimides that have been synthesized and characterized exper-
imentally constitute a large dataset of real polyimides. Based on this
large dataset, we train ML models to establish the structure-property
relationship for each of the seven properties and obtain physical insight
into the key structural features of different properties. Next, the well-
trained ML models will work as the predictive tool to estimate
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multiple properties of new polyimides. We mainly focus on the 6, E, and
T, properties as high-temperature mechanical properties are most
desired for industries like aerospace, automobile, and electronics. In
accordance with the two polymerization routes of “dianhydride +
diamine” or “dianhydride + diisocyanate” for polyimide synthesis, we
collect all the existing dianhydride, diamine, and diisocyanate mole-
cules from PubChem [29] database, and carry out the polycondensation
computationally to establish a large dataset of 8 million hypothetical
polyimides (excluding 2233 existing polyimides). Finally, we identify
several multi-functional polyimides that outperform the current real
polyimides, accompanied by validating their properties through all-
atom MD simulations. Our study designs novel multi-functional poly-
imides by significantly expanding the chemical space of polyimides and
then narrowing them down to promising candidates through ML
screening and MD validation. Exhausting all possibilities using physics-
based ML prediction before experimental synthesis successfully allows
the exploration of the whole design space. Our proposed methodologies,
with their carefully designed and integrated processes, represent a sig-
nificant step forward in the field of polymer informatics. By providing a
standardized workflow for implementing ML models in the discovery of
novel polyimides, we aim to accelerate the pace of materials discovery
and enhance the efficiency of research efforts. Moreover, our study
demonstrates the critical importance of comprehensive data-driven
analysis in the successful discovery of novel materials. By leveraging
historical data and applying advanced ML techniques, we were able to
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identify promising candidates for further development and achieve
significant improvements in the efficiency and accuracy of the discovery
process. We believe our findings will have broad implications for the
field of materials science and inspire further research in the develop-
ment of advanced data-driven techniques for materials discovery. Such a
design strategy is much more efficient compared to the conventional
trial-and-error process and can be applied to the molecular design of
other polymeric materials [30].

2. Results and discussion
2.1. Expanding chemical space of polyimides

Polyimides are mainly formed by the polycondensation either of a
dianhydride and a diamine with the removal of water molecules
(Fig. 1a), or of a dianhydride and a diisocyanate with the release of
carbon dioxide molecules (Fig. 1b). The final product contains two
functional imide groups that are the signature of polyimides (high-
lighted in the red shade in Fig. 1a-d). Fig. 1c illustrates some examples of
the 2233 real polyimides collected from the PoLyInfo [28] — a database
of experimentally reported polymers. When locating these 2233 real
polyimides in a 2D chemical space plot, we find most of them are close to
each other based on their structural similarity (green points in Fig. 1e). It
indicates the diversity of the real polyimides is still limited, far from
covering all possible chemical structures of polyimides.

Fig. 1. Comparison of real polyimides and
hypothetical polyimides. (a) Synthesis of
polyimide from a diamine and a dianhydride.
(b) Synthesis of polyimide from a diisocyanate
and a dianhydride. (c¢) Example structures
from 2233 real polyimides in PoLyInfo. (d)
| Example structures from 8 million hypotheti-
cal polyimides based on reactions shown in
subplots a and b. (e) Chemical space visuali-
zation of the real polyimide dataset (green
points) and the hypothetical polyimide dataset
N—| (red points). The 2D visualization is based on
fingerprints using t-SNE algorithm. The com-
parison indicates that hypothetical polyimides
(red points) cover a much broader chemical
space while the real polyimide (green points)
primarily concentrate in a local region. It
suggests that the hypothetical polyimides are
much more diverse in chemical structures, as

imide group
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shown in subplot d. (For interpretation of the
references to color in this figure legend, the
* reader is referred to the web version of this
article.)
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The synthesis route illustrated in Fig. 1a-b has led to the synthesis of
successful polyimides like Kapton™, UPILEX'™, Avimid™™, etc., using
different combinations of two components: dianhydride and diamine/
diisocyanate. Although there are plenty of options for dianhydride,
diamine, and diisocyanate, it is unfeasible to synthesize all possible
combinations experimentally. For example, in the PubChem [29] data-
base - the world’s most extensive collection of existing organic mole-
cules containing more than 299 million substances and various
properties such as toxicity, stereochemistry, topological polar surface
area, etc. The numbers of dianhydride, diamine, and diisocyanate are
more than 200, 30000, and 10000, respectively. Thus, the combination
of dianhydride and diamine will lead to more than 6 million possible
polyimides, while dianhydride and diisocyanate will lead to more than 2
million possible polyimides. Although it is impossible to realize these 8
million polyimides experimentally, from a computational point of view,
the chemical structures of these 8 million polyimides can be obtained
when the imide functional group is formed correctly. Fig. 1d illustrates
several chemical structures of the obtained hypothetical polyimides.
This hypothetical dataset incorporates more diverse structures that
occupy a broad area in the chemical space (red points in Fig. 1e). It is
beneficial for us to expand the chemical space from a local region of real
polyimides to a broader area of hypothetical polyimides, possibly
leading to a greater chance to discover novel polyimides with desired
multi-functional properties. An exhausting search of the 8 million hy-
pothetical polyimides is unrealistic to be achieved experimentally but
can only successfully be done using fast-to-compute ML models.

To evaluate these hypothetical polyimides computationally, the first
and the most crucial step is to establish a reliable structure-property
relationship from the experimentally studied polyimides. Along with the
reported chemical structures, most of the 2233 real polyimides have
more than one property measured like thermal, electronic, mechanical,
or dielectric properties. Table 1 summarizes the 7 properties we
collected, including density (p), glass transition temperature (Tg),
melting temperature (Tp,), thermal decomposition temperature (Tj),
Young’s modulus (E), tensile yield strength (c,), and tensile break
strength (op). Experimental values come with uncertainties in terms of
different samples, different instruments, different measurement
methods, etc. Taking the average or median value as the representative
value of a property is a typical approach, and using the median of a
distribution of property values is found the best way to address uncer-
tainty in data sources. Data coming from unstandardized tests remains a
challenge in the field. To make the best use of the scarce experimental
data, we examine their test methods and include all reasonable data
points, and take the median value if needed.

The establishment of the structure-property relationship for each
property is a well-defined task that can be addressed with ML techniques
[30]. The input is the chemical structure of real polyimides (with the
improved Morgan fingerprints as feature representations in Supporting
Information S1), while the output is the property. It would be ideal if a
single ML model deals with 7 properties simultaneously, namely a multi-
task ML model that predicts 7 properties given a polyimide structure.
Unfortunately, the problem of task compatibility often leads to inferior
overall performance when different tasks compete in multi-task learning
[31]. Fig. 2 plots the 7 properties’ pairwise relationships for the real

Table 1
7 physical properties collected for 2233 real polyimides from the PoLyInfo.
p Tg Tm Tq E Gy Cp
Number of 337 1870 249 1663 447 110 480
available
data points
Property 0.81 -9 -22 60 2.12e- 5.03e- 8.83e-
range ~ ~ ~ ~ 3~ 5~ 5~
1.54 490 517 640 18.6 0.25 0.41
Property g/ °C °C °C GPa GPa GPa
unit cm®

Chemical Engineering Journal 465 (2023) 142949

1.5+

p (g/em’) ]

081
17.54

E (GPa)

044

o, (GPa) 1

0.
0.254

a,(GPa) |

0.
5001
T, (°C)

01
6001

7,(°C)

0.
5004

T,,(°C)
s

0.8 1.4 70 15 0 040 0.250” 5000 600 0 500
plgem’) E@GP)  0,(GPa) 6, (GPa)  T,(C)  T,(C)  T,(0)

Fig. 2. Pairwise relationships in the real polyimide dataset. The diagonal
plots are univariate distribution plots for each property. The non-diagonal plots
display the pairwise relationships between any two different properties. It is
hard to notice correlations between mechanical properties and thermal prop-
erties such as o, vs. Ty, although some correlations are obvious between two
thermal properties, such as T, vs. Tg.

polyimide dataset. The non-diagonal plots display the pairwise re-
lationships between any two different properties. We hardly notice
correlations between mechanical properties and thermal properties such
as oy vs. T, although some correlations are obvious between two ther-
mal properties such as T, vs. T,. Overall, a multi-task learning of 7
properties doesn’t show an ideal model performance (see Supporting
Information S2 for the performance of the multi-task learning), associ-
ated with architecture rigidity to predict multiple properties which
aren’t well-correlated.

2.2. Explainable ML models and physical insights based on real
polyimides

ML algorithms applicable for polymer’s structure-property re-
lationships include feed-forward neural networks (FFNN), recurrent
neural networks (RNN), graph convolutional neural networks (CNN),
Gaussian process regression (GPR), random forests (RF), etc. We have
tested different ML algorithms on the single task T, of polymers, and
found the FFNN using improved Morgan fingerprints was among the
best models [25,32,33]. Morgan fingerprint method detects sub-
structures enclosed in a circle of radius R, and assigns each detected
substructure a numerical identifier. We use the SMILES of the repeat unit
for each polyimide and implement the fingerprint algorithm in RDKit
with R equals 3. A large number of substructures is detected, but we only
keep the 121 prominent substructures shared by most polyimides.
Finally, for each polyimide, we obtain a vector of size 121 in which each
bit represents the number of a detected substructure. Compared to the
default Morgan fingerprints, our improved Morgan fingerprints consider
the frequency of occurrence for each substructure, carrying more
physical meaning. This input vector is found to be a proper represen-
tation as it indicates both what substructures and how many of them
exist in the polymer’s repeating unit [32]. In the default Morgan feature
representation 1/0 is used to indicate the existence of a certain sub-
structure and different substructures can be hashed into the same vector
bit. This so-call collision problem can lead to more molecules being
represented in the same way. There are 9% molecules being duplicately
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represented through the default Morgan fingerprint. But after using our
improved Morgan fingerprint, there are only 5% molecules being
duplicately represented. As 5% is only a small portion of the whole
dataset, it has little effect on the final model training. With improved
Morgan fingerprints, the collision problem can be addressed. However,
labeling the number of occurrences for substructures still doesn’t encode
the microscale level feature of polymers such as average chain length or
molecular weight. Considering the limitation of the experimental data-
set on the MW information, the effect of molecular weight is not
explicitly represented in the fingerprints.

After examining the good performance of FFNN with the improved
Morgan fingerprints on each of the focused properties, we build 7 single-
task ML models for each property individually. The architecture of each
ML model, such as the number of layers and number of neurons in each
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layer, is optimized through hyperparameter tuning. Based on the
training set, we utilize 5-fold cross-validation to fine-tune the hyper-
parameters and select the optimal model. Subsequently, we train the
optimized model on the entire training set and assess its performance on
the test set. It is noteworthy that we conducted dozens of trials for
hyperparameter tuning, and in the final ensemble model, we trained
three models simultaneously. To obtain a better prediction performance,
we build an ensemble model that averages a few models to get the final
prediction. For example, the single-task ML model for T is optimized to
have 4 hidden layers, and each layer has 34, 16, 8 neurons, respectively.
We train this model architecture three times on the same dataset then
average the three model predictions to a single-task ensemble model for
T,. The same strategy is applied to other property tasks (see Supporting
Information S2 for the architecture of each single-task ensemble model).
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polyimide poly[(2,8-dimethyl-5,5-dioxodibenzothiophene-3,7-diamine)-alt-(biphenyl-3,3":4,4'-tetracarboxylic dianhydride)]. Its T, prediction f(x) is based on the
mean T, of all real polyimides (base value) and contributions of its substructures. Red or blue arrows indicate positive or negative contribution of each substructure.
The feature value of a substructure can be “0” meaning the absence of the substructure in the molecule, but its feature importance is still a valid value indicated by
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All our models are implemented using the Keras package [34]. Among
the 7 properties, 6,-E combination characterizes mechanical strength
and modulus of resilience of a material, and Ty is a key representative of
thermal property. This study aims at a multi-functional objective where
we intend to discover novel polyimides that have high performance for
oy, E, and T, simultaneously.

Firstly for Tg, the model performance and feature importance are
illustrated in Fig. 3. Among the 1870 real polyimides whose T, is
experimentally reported, with a random splitting, 90% of the data points
are used as the training set, and the other 10% data points are held out as
the test set. R? as well as the Mean Absolute Error (MAE) and the Root
Mean Squared Error (RMSE) are employed to quantify the performance
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predictions from the three models contained in the ensemble, suggesting
the difference in the prediction performance from the single model to
the ensemble model. It shows that R? of 0.92 and 0.78 are obtained for
the model training and validation, respectively (Fig. 3a). Such predic-
tion performance is comparable to other T, models trained on different
polymer datasets [8]. When a predictive model is established, we prefer
to get insights into how each substructure feature affects the final
property. Therefore, we calculate SHapley Additive exPlanations
(SHAP) values to evaluate the impact of substructures on the T, (see
Supporting Information S3 for the details of SHAP). The top sub-
structures influencing the model’s output are listed in Fig. 3b-c. Each
row in Fig. 3b represents a substructure, and dots along the same row

of the ensemble model. The error bar indicates the variance of the indicates the SHAP value of that substructure from different polyimides.
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contributions of its substructures. Red or blue arrows indicate positive or negative contribution of each substructure. The feature value of a substructure can be “0”
meaning the absence of the substructure in the molecule, but its feature importance is still a valid value indicated by the length of the arrow. Top substructures in this
polyimide are highlighted in different colors on the left. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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From the perspective of functional groups, high glass transition tem- the molecular graph with colored circles, showing the impact of the
peratures usually correlate to heteroaromatic units, rigid aromatic units, revealed key substructures. Our developed ensemble model is not only
or inflexible linkages [10,32]. These features are reflected by the key with good predictive accuracy, but also with clear physical explanations.
substructures like numerical identifies “4874”, “3352”, and “2833”, etc. Therefore, we will apply the obtained model to make high-throughput
The most important substructure in the dataset is “5650”, which com- screening of the 8 million hypothetical polyimides.

prises aromatic rings and oxygen rings. The revealed high impact of For oy, there are 110 real polyimides whose o, values are experi-
aromatic rings and oxygen linkages on T, is consistent with previous mentally reported. Following the same training process as T, we obtain
studies [32,35]. Examination of SHAP values of the highest T, poly- R? of 0.94 and 0.85 for the model training and validation (Fig. 4a). It is
imide, poly[(2,8-dimethyl-5,5-dioxodibenzothiophene-3,7-diamine)- shown that without ensembling, a single model would give a large error
alt-(biphenyl-3,3’:4,4’-tetracarboxylic dianhydride)], is highlighted in bar at some points, but after with ensembling, the ensemble average
Fig. 3d. The feature values for important substructures are presented. prediction match much better with the true value. It well demonstrates
Three substructures contributing most to the high T, are highlighted in the advantage of the ensemble model in reducing the prediction
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variance. In addition, this single-task ensemble model outperforms the
multi-task model, whose R? reaches only 0.5 ~ 0.86 (See Supporting
Information S2 and Ref. [35]). It is evident that multi-task learning
compromises the o, prediction performance because of the minimal
correlation between these properties. From the perspective of key sub-
structures based on SHAP values, most of the important ones for ¢, in
Fig. 4b-c don’t match the top key substructures for T, (Fig. 3b-c). Some
substructures like “935” and “5952” related to aromatic rings are the
common critical features for both properties, but their synergy with
other substructures still requires careful examination case by case. For
example, both features make positive contributions to the ¢, of the poly
(1,4-phenylenediamine)-alt-[4,4’-oxybis(phthalic ~ anhydride)]} as
shown in Fig. 4d. This polyimide processes the highest ¢, of 0.25 GPa
among all real polyimides. Intuitively, we realize that certain aromatic
rings play important roles in improving T, and o, properties, and the
obtained ensemble models are able to reveal the inherent correlations
and provide quantitative estimations directly.

Not limited to the multi-functionality of two properties T, and c,, we
also incorporate a third property, Young’s modulus E, to consider the
stiffness of polyimides. We train and validate the FFNN single-task
ensemble model using 447 real polyimides with available E values.
The obtained R? of 0.92 and 0.81 for the model training and validation
(Fig. 5a), respectively, are superior to the value of 0.44 ~ 0.74 for the
multi-task model (See supporting information S2 and Ref. [35]). Similar
to oy, the property E has no clear correlations with other properties,
which makes the single-task learning a better choice. The most impor-
tant substructure of the ensemble model for E is presented in Fig. 5b-c.
When the contributions of substructures are shown for the highest E
polyimide poly[1,4-phenylene-tetra(oxy-1,4-phenylene) pyromelliti-
mide], the substructure “5952” that has a positive impact in the previous
highest T, and highest o, conditions is now making a negative contri-
bution. We can infer that the influence of a substructure is not an
invariant. For example, among the substructures of a polyimide, a
particular substructure can have a positive impact on a property; while
among the substructures of another polyimide, the same substructure
may have a negative impact on this property. Therefore, a substructure’s
influence is based on the synergistic interaction of all substructures for
the polyimide. Fig. 5d highlights two key substructures governing E, but
it is worth noticing that their contributions are part of the combined
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effect of all substructures.

Because of the synergistic effect of these substructures, each sub-
structure’s feature importance for a property is different according to
different polymers. To have a general evaluation of a substructure’s
contribution to a given property, the corresponding values obtained
from analyzing different polymers can be averaged as an index. For a
certain substructure, three indexes can be obtained to roughly charac-
terize its contribution to the three properties. Fig. 6 shows the average
feature importance of each substructure for three properties in a prin-
cipal component analysis (PCA) plot. It indicates the overall contribu-
tions of different substructures toward different properties. From the
PCA plot of the three properties, the first two principal components PC1
and PC2 explained most of the variance in the data, and some general
guidelines can be obtained. Firstly, it is clear that most substructures
locate near the origin, demonstrating the difficulty in differentiating
their contributions to different properties. Secondly, the property ¢, as a
variable vector is nearly orthogonal to the other two properties T, and E,
indicating the challenge to adjust 6, of a polyimide while adjusting its T
and E. Lastly, some key substructures aforementioned like “935” that is
critical for all three properties are far away from the origin, demon-
strating their high impact on the overall performance of a polyimide.
Compared to the feature importance analysis for one property, the PCA
analysis provides a more general evaluation on how different sub-
structures are correlated with respect to different properties, which help
us gain more insights on how each substructure affects the polyimide’s
properties.

2.3. Discovery of multifunctional polyimides through Pareto frontier
analysis

Single-task ML models allow us to evaluate a specific property given
a new polyimide. When we apply the well-trained ML models on the 8
million hypothetical polyimides, we obtain estimations of their oy, E,
and T, so that we can discover better performers regarding the multi-
functionalities. As there are three properties to compete against each
other, the design space becomes three-dimensional, as illustrated in
Fig. 7. In the real polyimide dataset, some polyimides only have one or
two properties reported experimentally. However, all three properties
are needed in this 3D space. Thus, for those properties that are not
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identified in Figs. 3-5 are highlighted in different colors for both three real polyimides and three hypothetical polyimides. (For interpretation of the references to
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reported, we complement them with the ML model predictions. Using
the completed data of o, E, T, all real polyimides are positioned
accordingly in Fig. 7. Although the resultant design space is based on a
mixture of experimental values and ML predictions, we consider it well
constructed and reliable, given the good predictive performance of the
ML models (Figs. 3-5).

When examining the ML predicted o), E, and T, of all hypothetical
polyimides, some of them can be referred to as the Pareto frontier [36],
for which none of the properties can be improved without degrading
other properties. This set of Pareto frontier of hypothetical polyimides
defines an envelope boundary for the three properties (o, E, and Tg).
Among the Pareto frontier of hypothetical polyimides, the three best-
performing hypothetical polyimides (high o,, E, and T, at the same
time) are selected (see Supporting Information S4 for the 3D property
space of hypothetical polyimides). Similarly, based on the three prop-
erties of all real polyimides, a new set of Pareto frontier can be identi-
fied, which defines the property boundary of real polyimides (shown in
Fig. 7). Fig. 7 also illustrates the projections of all real polyimides on
three planes. The 2D Pareto frontier line is more straightforward on each
plane and the E -T, E - 6, and 6, -T; combinations are three special cases
from the 3D design space (see Supporting Information S4 for the indi-
vidual 2D projection figures). When the three best-performing novel
polyimides discovered from the 8 million hypothetical polyimides
(indicated by red stars) are superposed in Fig. 7, it is found that the
discovered hypothetical polyimides are beyond the Pareto frontier
boundary of real polyimides, suggesting superior performances. Their
chemical structures are shown on the right side of Fig. 7. Compared to

the chemical structures of three real polyimides near Pareto frontiers on
the left side of Fig. 7, we find common structural features such as aro-
matic rings in the backbone of the main chain and the sulfonyl func-
tional of two double bonds between the sulfur and oxygen. This
similarity suggests a successful pattern captured by our ML models
(Figs. 3-5). In addition, features like pyridine rings are hardly found in
the real polyimide structures and are observed in the discovered novel
polyimides. Pyridine rings increase the aromaticity of the polymer
structures and help to maintain mechanical properties at high temper-
atures [37-43]. The important substructures influencing the thermo-
mechanical properties of polyimides are embodied in these discovered
novel polyimides. They locate beyond the Pareto frontier boundary in
the real polyimides design space, denoting improved multi-
functionalities and, therefore, better options for experimental synthe-
sis. If based on more thermal/mechanical properties, the radar charts for
7 properties (shown in Supporting Information S5) also demonstrate a
more balanced performance of the three discovered hypothetical poly-
imides. In terms of their locations in the t-SNE chemical space, the three
novel polyimides are not far away from the real polyimides. In this
respect, they are similar to real polyimides but possess extraordinary
properties that have not been discovered (see Supporting Information S6
for the t-SNE chemical space location of the three novel polyimides).

2.4. MD validation of thermal and mechanical properties
To validate the thermomechanical properties of the discovered novel

polyimides, we carry out all-atom MD simulations to analyze their three
properties, 6y, E, and T;. We build all-atoms models to simulate the novel
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polyimides made of two components (dianhydride + diamine/diiso-
cyanate). The polymer consistent force field (PCFF) [44-47] is used to
define interatomic interactions. It is a second-generation force field
[45,48-51], parameterized for organic compounds containing H, C, N,
O, S, P, halogen atoms, and ions. PCFF has a broad coverage of organic
polymers in calculations of cohesive energies, mechanical properties,
compressibilities, heat capacities, and elastic constants. We employ a
multi-step strategy [52] to simulate the cross-linking reactions of poly-
imide. Reactive atoms are first assigned to monomers (dianhydride) and
crosslinkers (diamine/diisocyanate), and then covalent bonds (elastic
springs) are formed between reactive atoms within a cutoff distance.
After relaxing the cross-linked network for a while, extra hydrogen
atoms are removed, and partial charges are adjusted to follow the

o
o
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charge-neutral principle. Based on the relaxed network, the second
round of cross-linking continues with an increased cutoff distance. When
the curing degree is satisfied, the cross-linking simulation stops further
bond breaking and formation [53-55]. We pack 500 of each component
within the 3D-periodic amorphous cell. The curing target is to reach
more than 90 percent of reactive atoms on monomers. The final cross-
linked polymer models contain ~ 20,000 atoms and have a box side
length of 65 A (see Supporting Information S7 for the details of cross-
linking steps). Periodic boundary conditions are set along with all
three directions. LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) package is used for MD simulations.

Before simulations of thermal or mechanical properties, polyimides
are equilibrated first through a 21-step MD equilibration protocol (see
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Supporting Information S7 for the details of the 21-step equilibration).
To obtain the Ty of the system, we carry out a cooling process simulation
by gradually decreasing the temperature from 1000 K to 100 K. The
simulated specific volume vs. temperature curves is shown in Fig. 8. The
segments at both sides of the curve have a constant slope, which rep-
resents two different phases (rubbery and glassy). The least-square fitted
lines are also plotted in Fig. 8, and their interception represents the T,
[54,56,57]. It is worth noting that the time scale of MD simulation is
around nanoseconds, so the modeled cooling rate is much faster than
that of the experiments [57-60]. Although the simulated cooling rate is
not exactly consistent with experiments, the T, estimation from MD
simulation is still proven to reasonably agree with the experimental
value [58-62]. The tensile simulation for stress—strain response is ach-
ieved by changing the simulation box with a constant strain rate. Like
the condition of high cooling rate in T, simulation, the high strain rate in
MD simulation differs from the true values in experiments. Nevertheless,
a low strain-rate sensitivity has been demonstrated with a relatively
small strain rate, for example, around 1 x 10%s7.

Since we are interested in multi-functional polyimides with high Tg,
oy, and E properties, we first select 3 real polyimides whose Tg, 6, and E
are relatively high for MD verification. To obtain reliable simulation
results, we first benchmarked our MD method by simulating ten
experimental polyimides with amorphous structures (see Supporting
Information S7 for their chemical structures, molecular structures,
SMILES, specific volume vs. temperature curves, the stress vs. strain
curves, and the extracted thermal and mechanical properties). The
resulting thermal and mechanical properties, including Tg, E, and o, are
in excellent agreement with their corresponding measurements as re-
ported in the experiments. For these selected 3 high-performance real
polyimides, they may not have all three properties reported, but we have
obtained reasonable ML estimations as approximate true values from
Section 2.2. Given the planar nature of monomers due to abundant
benzene rings, the polyimide cases in consideration are expected to be
semi-crystalline or have an ordered phase. That is to say, polymers have
different molecular states, such as amorphous, semi-crystalline, and full-
crystalline. Polymers with a high degree of crystallinity have higher

Table 2
Comparison of ML predictions and MD simulations of three novel polyimides.
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mechanical properties than their corresponding amorphous phase. As
described in PolyInfo dataset, these selected polyimides are semi-
crystalline structures. Likewise, molecules-based ML models are also
implicitly related to polyimides’ aggregation state through their thermal
and mechanical properties. To verify these points, we first simulate the
mechanical properties of the selected high-performance polyimides with
the amorphous state. Additionally, polymer structure predictor (PSP)
[63], as a tool proposed to predict the polymer crystal structure models,
is also employed to build extra full-crystalline and semi-crystalline
structures for these polyimides. In addition, the degree of crystalliza-
tion for semi-crystalline structures is 0.55, which is determined using the
Polymer Genome platform [63]. Results indicated that the mechanical
properties of full-crystalline structures are highest, followed by semi-
crystalline structures, and amorphous structures (see Supporting Infor-
mation S9 for the details of MD simulations and model setup for full-
crystalline and semi-crystalline structures). The results obtained in
Fig. 8b and Table 2 show the mechanical properties of semi-crystalline
structures. Obviously, when the selected polyimides are semi-
crystalline structures, Young’s modulus and yield strength of three
real polyimides (experimental measurements) and three novel poly-
imides (ML predictions) are well consistent with MD simulations. In
addition, MD simulated T, is comparable to experimental measure-
ments. In addition to the focused three properties, density as a funda-
mental intrinsic property of the material is also listed for comparison. In
short, these investigations show that the discrepancies between the MD-
estimated properties and the ML-predicted properties are within an
acceptable range, considering the uncertainties in MD simulations and
ML predictions.

In addition to MD validation before the future experimental study,
we further examine the synthesizability of these polyimides. We calcu-
late Schuffenhauer’s synthetic accessibility (SA) score of the 3 novel
polyimides’ two reacting components. The SA score of 1 ~ 10 indicates
the accessibility from easy to difficult. The highest SA score is 3.81 for
the discovered 3 polyimides, which suggests easy synthesizability (see
Supporting Information S8 for the SA score analysis).

Polyimide Property ML Diff
o # ) T, (°C) 329.72 366.7 -11.22%
‘Q\)b%\ oy (MPa) 195.6 216.68 -10.78%
: E (GPa) 10.8 11.8 -9.26%
*clccc(N2C(=0)c3ccce(S(=0)(=0)c4cecse(c 5 .
4)C(=0)N(*)C5=0)cc3C2=0)ccl p (g/cm ) 1.30 1.44 -10.77%
) #2 ) T, (°C) 409.5 383.16 6.43%
O_ 8 — o, (MPa) 220.5 205.12 6.98%
i i E (GPa) 10.5 12.02 -14.48%
*clccc(N2C(=0)c3cccdc5e(cec(c35)C2=0) R
C(=0)N(*)C4=0)ccl p (g/cm?) 1.32 1.42 -7.58%
T, (°C) 390.24 420.03 -7.63%
Oy (MPa) 218.7 205.39 6.09%
E (GPa) 8.95 9.78 -9.27%
*clcec(N2C(=0)c3cccdcS5cecbe7c(cne(c8n R
cc(c3¢48)C2=0)c75)C(=0)N(*)C6=0)ccl p (g/cm?) 1.30 1.46 -12.31%

Note: Diff = (MD - ML) / MD * 100%.



L. Tao et al.
2.5. Experimental validation of the discovered polyimide #2

Considering all the differences between MD simulation results and
ML predictions listed in Table 2, we found that the novel polyimide #2
had relatively smaller differences. Therefore, we selected the #2
candidate for further experimental synthesis and measurement. Guided
by the aforementioned reaction template and reacting components, we
purchased all required chemicals from Sigma Aldrich unless otherwise
stated. The reacting components for the discovered polyimide #2 are

Chemical Engineering Journal 465 (2023) 142949

1,4,5,8-naphthalenetetracarboxylic dianhydride (1,4,5,8 NTDA) and p-
Phenylenediamine (p-PDA). In addition, p-Cresol or p-chlorophenol was
used to improve the solubility of the reacting components (referred to as
p-Cresol reaction or p-chlorophenol reaction), as shown in Fig. 9a. p-
Cresol (99%) was supplied by Thermo Fisher Scientific. The solvents and
1,4,5,8 NTDA were used as received without further purification, while
p-PDA was sublimated at 150 °C before use. On one hand, even though
synthetic accessibilities scores indicate that the syntheses of these
promising polymers are feasible, it is still difficult to find some excellent
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Fig. 9. Experimental synthesis and measurement of the discovered polyimide #2. (a) The reaction between the two reacting components 1,4,5,8-naphthale-
netetracarboxylic dianhydride (1,4,5,8 NTDA) and p-Phenylenediamine (p-PDA). p-Cresol or p-chlorophenol was used to improve the solubility of the reacting
components. (b) The effect of molecular weight on the T, from MD simulations. Models with different molecular weights are simulated. The T, estimations and the
corresponding standard deviations are plotted in dots and error bars. The Fox and Loshaek Equation fits well with the obtained data, describing the T, dependency
with molecular weight. (c) The reacted sample of the discovered polyimide #2. The product precipitates only 20 min into the reaction, leading to a low molecular
weight of the final sample. (d) Thermogravimetric analysis (TGA) results of the samples by either p-Cresol reaction or p-chlorophenol reaction. T; = 550 °C is
obtained and in good agreement of the ML prediction of 536 °C. T, = 275 °C is obtained and lower than the ML prediction due to the low molecular weight of the
final product. (e) Differential scanning calorimetry (DSC) results of the samples by either p-Cresol reaction or p-chlorophenol reaction. When the heating rate is

changed from 10 °C to 50° G/min, T, response at 275 °C becomes more obvious.
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solvents to dissolve the reactants; on the other hand, mechanical tests
require more samples and further processing of the sample into a dog-
bone specimen. Therefore, in this experimental part, we focus on
measuring the Tj.

In a typical reaction, 1.00 g (3.73 mmol) of 1,4,5,8 NTDA, 0.403 g
(3.73 mmol) of p-PDA, and 50.0 g of p-chlorophenol were charged into
an oven-dried two-neck round bottom flask equipped with a magnetic
stirrer. The flask was fitted with a Dean-Stark trap and a reflux tube, and
then transferred to an oil bath heated to 240 °C. The color of the solution
changed from brown to crimson and eventually dark purple as the re-
action progressed. To ensure inert conditions throughout the polymer-
ization, the reaction was refluxed under a slow stream of nitrogen (10
mL min~Y). After 15 h, the reaction mixture was allowed to cool to room
temperature and centrifuged at 8000 rpm to isolate the polymer pre-
cipitates. Subsequently, the residue was stirred in p-chlorophenol (20 g
x 3) at 50 °C and centrifuged again to remove any unreacted monomers.
Finally, the polymer was dried in a vacuum oven at 240 °C for 24 h. A
similar procedure was followed for the polymerization reaction in p-
cresol. Yield: 34.0 % for the p-chlorophenol reaction and 31.8 % for the
p-cresol reaction. Fig. 9c shows the obtained sample of the polyimide
#2. The product precipitates ~ 20 min into the reaction, leading to a low
molecular weight of the final sample.

To measure the thermal properties of the final product, differential
scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were
performed. DSC was performed on a Discovery DSC2500 (TA In-
struments) between 20 and 400 °C at a heating rate of 10 °C min~! or
50 °C min~'. TGA was performed on a Discovery TGA5500 thermog-
ravimetric analyzer (TA Instruments) between 30 and 1000 °C at a
heating rate of 10 °C min ™. Fig. 9d shows the TGA results, giving T; =
550 °C which is in good agreement with the ML prediction of 536 °C. T
= 275 °C is obtained which is lower than the ML prediction of 383 °C
due to the low molecular weight of the final product. The Fox and
Loshaek Equation develops an empirical formula for the prediction of
the molecular weight dependence of the T, [64]. It describes that at a
lower molecular weight or degree of crosslinking, a lower Tj is resulted.
With further MD simulations for models with different molecular
weights, the T, performance of the sample is well-fitted according to the
Fox and Loshaek Equation, as shown in Fig. 9b. When the ML model
predicts the limiting value of the glass transition temperature at a very
high molecular weight, the actual molecular weight or degree of cross-
linking of the obtained sample affects its T, in a significant way. One
limitation of our ML model is that the experimental related parameters
(e.g., molecular weight) are difficult to incorporate in the ML model
training because it was reported for only a few of the ~ 1800 datasets.
Fig. 9e is for the further experimental measurement of T, from DSC
results. It demonstrates a similar T, response at 275 °C. It is also
observed that when the heating rate is changed from 10 °C to 50° C/min,
the T, response at 275 °C becomes more obvious, which is a typical
situation for measuring the glass transition of rigid polymers like poly-
mers with intrinsic microporosity (PIMs) [65].

3. Conclusion

Multi-functional polyimide is a key technology enabler for diverse
applications, such as high-temperature fuel cells, polymer composites,
and membranes. However, successful products of polyimides are limited
to a few of them, like Kapton™. To discover more promising polyimides
with better performance, we build a large hypothetical polyimide
dataset for high-throughput screening. 8 million possible polyimides are
obtained computationally based on the polycondensation of existing
dianhydride and diamine/diisocyanate molecules. This hypothetical
dataset significantly expands the chemical space of existing polyimides,
offering a great opportunity for materials discovery and design. How-
ever, it is infeasible to synthesize all of them for experimental analysis.
To this end, we establish structure—property relationships through
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predictive ML models to do the high throughput screening of these 8
million hypothetical polyimides. Among the collected 7 properties (p,
Ty, Tm, Ty, E, oy, and o), we focus on 3 properties, Ty, E, and oy, and find
single-task ML model outperforms the multi-task ML model. With the
help of explainable ML models, we identify the key substructures
influencing the thermal and mechanical properties of polyimides, such
as aromatic rings and oxygen linkages. Applying the well-trained ML
models to the 8 million hypothetical polyimides, we identify 3 best-
performing novel polyimides with simultaneous high values of Tg, E,
and o,. Consistent key substructures are also present in the discovered
novel polyimides contributing to the high performances. Their ther-
momechanical properties are found beyond the Pareto frontier of
existing polyimides, further confirmed by MD simulations. Although
their chemical structures have not been reported experimentally, their
polymerization route is well established, and corresponding reacting
components are found easy to synthesize with a low synthetic accessi-
bility score. Using the ML-guided reaction template and reacting com-
ponents, we synthesize the discovered polyimide #2 successfully and
measure its thermal properties. Due to the low molecular weight of the
sample obtained, its measured T follows the Fox and Loshaek Equation
and the experimentally obtained value of thermal decomposition tem-
perature 550 °C demonstrates excellent thermal stability. Our study has
successfully identified several novel polyimides with exceptional ther-
momechanical properties, offering promising directions for the synthe-
sis of innovative materials with a wide range of potential applications.
Through the use of advanced ML techniques and a carefully designed
workflow, we were able to rapidly screen a large number of potential
candidates and identify those with the most desirable properties. These
novel polyimides demonstrate excellent mechanical strength, thermal
stability, and other important characteristics, making them highly
attractive candidates for use in a variety of fields, including aerospace,
electronics, and automotive industries. We believe our findings will
make a significant contribution to the development of new materials and
inspire further research in this exciting and rapidly evolving field.

This study discovers novel polyimides with promising thermo-
mechanical properties and guides the further experimental synthesis of
innovative polyimides. More importantly, our method of utilizing
explainable ML techniques and high-fidelity MD simulations demon-
strates an efficient way to deal with a daunting number of chemical
structures. It is important to note that our proposed method is designed
specifically to provide guidance for the selection of promising candi-
dates and corresponding raw materials, rather than to evaluate the
entire experimental synthesis process. While factors such as solvent se-
lection, reaction time, temperature control, toxicity, and other condi-
tions are undoubtedly critical aspects of the experimental synthesis
process, they are outside the scope of this study. Nonetheless, we believe
that our ML-assisted workflow represents a significant step forward in
the field of polymer informatics and offers exciting possibilities for
future research. By leveraging the power of advanced ML techniques and
carefully designed workflows, we can rapidly identify promising can-
didates for further development and enhance the efficiency and effec-
tiveness of materials discovery efforts. Looking ahead, we believe that
similar workflows could be established to evaluate the entire experi-
mental synthesis process and further enhance the reproducibility and
reliability of materials discovery research. Additionally, our method
could be further applied to the high throughput screening for other
polymeric material problems, such as organic photovoltaics, polymer
membranes, and dielectrics.

4. Data and code availability

Data and code are available at https://github.com/figotj/Polyimide
_explorer. Based on our hardware specifications (12th Gen Intel(R)
Core(TM) i7-12700 K 3.60 GHz, 32 GB DDR5 RAM) and NVIDIA RTX
A4000 Graphics Card, the training of the machine learning model takes
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less than 1 h to finish. To process and screen the 8 million hypothetical
polyimides, it takes ~ 10 h to complete. And we develop an online
interactive platform https://polyimide-explorer.herokuapp.com/ for
better visualization of more than 77,000 high-performing hypothetical
polyimides. Detailed information is illustrated in the platform including
polyimide’s molecular structures, properties, polymerization route, and
the corresponding reacting components that are commercially available.
The developed machine learning model is also embedded in the platform
for easy application.
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