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Abstract

This paper proposes a computationally efficient framework, based on interval analysis, for rigor-
ous verification of nonlinear continuous-time dynamical systems with neural network controllers.
Given a neural network, we use an existing verification algorithm to construct inclusion functions
for its input-output behavior. Inspired by mixed monotone theory, we embed the closed-loop dy-
namics into a larger system using an inclusion function of the neural network and a decomposition
function of the open-loop system. This embedding provides a scalable approach for safety analysis
of the neural control loop while preserving the nonlinear structure of the system.

We show that one can efficiently compute hyper-rectangular over-approximations of the reach-
able sets using a single trajectory of the embedding system. We design an algorithm to leverage
this computational advantage through partitioning strategies, improving our reachable set estimates
while balancing its runtime with tunable parameters. We demonstrate the performance of this algo-
rithm through two case studies. First, we demonstrate this method’s strength in complex nonlinear
environments. Then, we show that our approach matches the performance of the state-of-the art
verification algorithm for linear discretized systems.

Keywords: Reachability analysis, Neural feedback loop, Verification of neural networks, Safety
verification.

1. Introduction

Neural network components are increasingly deployed as controllers in safety-critical applications
such as self-driving vehicles and robotic systems. For example, they may be designed based on
reinforcement learning algorithms (Zhang et al., 2016) or trained to approximate some dynamic
optimization-based controllers (Chen et al., 2018). However, neural networks are known to be
vulnerable to small input perturbations (Szegedy et al., 2014); a slight disturbance in their input
can lead to a large change in their output. In many applications, these learning-based components
are interconnected with nonlinear and time-varying systems. Moreover, they are usually trained
with no safety and robustness guarantees. Their learned control policies can therefore suffer from a
significant degradation in performance when presented with uncertainties not accounted for during
training.
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Related works. There is extensive literature on verification of isolated neural networks. Rigorous
verification approaches generally fall into three different categories: (i) reachability-based methods
which focus on layer-by-layer estimation of reachable sets using interval bound propagation (Mir-
man et al., 2018; Gowal et al., 2019; Wang et al., 2018), activation function relaxation (Zhang
et al., 2018), and symbolic interval analysis (Wang et al., 2018); (ii) optimization-based meth-
ods which use linear programming (Wong and Kolter, 2018), semi-definite programming (Fazlyab
et al., 2019), or search and optimization (Katz et al., 2017) to estimate the input-output behav-
ior of the neural networks; and (iii) probabilistic methods (Cohen et al., 2019; Li et al., 2019).
We refer to the survey (Liu et al., 2021) for a review of neural network verification algorithms.
Reachability of nonlinear dynamical systems has been studied using optimization-based methods
such as the Hamilton-Jacobi approach (Bansal et al., 2017) and the level set approach (Mitchell
and Tomlin, 2000). Recently, several computationally tractable approaches including the ellipsoidal
method (Kurzhanski and Varaiya, 2000), the zonotope method (Girard, 2005), the mixed monotone
reachability approach (Coogan and Arcak, 2015) have been developed for reachability analysis.

It is well-known that, for a closed-loop system, a direct combination of state-of-the art neu-
ral network verification algorithms with the existing reachability analysis toolboxes can lead to
overly-conservative estimates of reachable sets (Dutta et al., 2019, Section 2.1). For linear systems
with neural network controllers, reachable set over-approximation has been studied using semi-
definite programming (Hu et al., 2020) and linear programming (Everett et al., 2021b). Branch-
and-Bound (Entesari et al., 2022) and suitable partitioning (Everett et al., 2021a; Xiang et al., 2021)
approaches have also been used to improve the accuracy of reachable set estimations. For nonlinear
systems with neural network controllers, Sidrane et al. (2022) establishes a mixed integer pro-
gramming framework for reachable set over-approximation using polynomial bounds of the system
dynamics. Dutta et al. (2019) uses polynomial bounding on the dynamics as well as the neural net-
work to over-approximate reachable sets. Other rigorous approaches for verification of closed-loop
neural network controllers include using finite-state abstractions (Sun et al., 2019) and structured
zonotopes integrated into Taylor models (Schilling et al., 2022).

Contributions. In this paper, we use elements of mixed monotone system theory to develop a flex-
ible framework for safety verification of nonlinear continuous-time systems with neural network
controllers!. First, we employ CROWN—a well-established isolated neural network verification
framework (Zhang et al., 2018)—to construct an inclusion function for a pre-trained neural net-
work’s output. Then, we use this inclusion function and a decomposition function of the open-loop
system to construct suitable embedding systems for the closed-loop system using twice the number
of states. Finally, we simulate trajectories of these embedding systems to compute hyper-rectangular
over-approximations of the closed-loop reachable sets. Our framework has several advantageous
features. It is agnostic to the neural network verifier, only requiring an inclusion function for the
neural network. Additionally, our approach is fast and scalable, as only a single simulation of the
embedding system is required. This feature, combined with a clever partitioning of the state space,
is used to improve the accuracy of our reachable set over-approximations while retaining compu-
tational viability. Through several numerical experiments, we study the efficiency of our approach
for obstacle avoidance in a simple vehicle model and for perturbation analysis in a linear quadrotor
model.

1. Due to the space constraints, full proof of the results of this paper is available in the following arXiv document
https://arxiv.org/pdf/2301.07912.pdf.
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2. Notation and Mathematical Preliminaries

For every z € R™ and every r € R>( we define the closed ball Boo(x,7) = {y € R" | ||y — 2||oc <
r}. The partial order < on R" is defined by = < y if and only if z; < y;, forevery i € {1,...,n}.
For every z < y, we can define the interval [z,y] = {z € R" | # < z < y}. The partial order
< on R™ induces the southeast partial order <gp on R?" defined by [%] <sg [4] if z < y and

y

y < Z. We define the subsets 72( = {[F] € R*" | x < T} and T2 = {[F] € R*" | = > T}

and 72" = 7’228 U TSQ(’}. For every two vectors v,w € R™ and every i € {1,...,n}, we define

the vector vy, € R™ by (v[i:w])j = {Uj ‘7 7 Z . Given a matrix B € R™™ we denote the
wj j=1i.

non-negative part of B by [B]" = max(B, 0) and the nonpositive part of B by [B]~ = min(B,0).
The Metzler and non-Metzler part of square matrix A € R™*™ are denoted by [A]™# and | A M,
{Aij Aijzoori:j

. and [A|M? = A — [AIM? Consider
0 otherwise,

respectively, where ([ A] MZl)ij =
a control system
i = f(e,u) M)

with state € R", measurable disturbance u : R>o — R™. We denote the trajectory of the system
with the disturbance u starting from zo € R™ at time to by t — ¢ (¢, to, o, w). Given an initial
state set Ay C R”™ and a disturbance set YV C R, we denote the reachable set of (1) by

Ry(t,0,X0,U) = {o¢(t,0,z0,u) | x0 € Xy, u:R>9— U is piecewise cont.}

In general, computing the exact reachable sets of the system (1) is computationally intractable.
Mixed monotone theory (Smith, 2008) has recently emerged as a computationally efficient frame-
work for over-approximating the reachable sets of nonlinear systems (Coogan and Arcak, 2015).
The control system (1) is mixed monotone if there exists a locally Lipschitz decomposition function
F: 7% x T2™ — R™, satisfying
(i) Fi(z,z,u,u) = fi(x,u), for every x € R™ and every u € RP?;

(i) Fi(z,z,u,u) < Fi(y,y,u, u), for every z < y such that z; = y;, and every y < T;

(iii) Fi(z,7,u,u) < Fi(z,x,v,0), forevery u < v and every v < u.
Several different approaches have proposed in the literature for constructing the decomposition
function for the control system (1) (Meyer et al., 2019; Abate et al., 2021; Abate and Coogan,
2021). Using a decomposition function F, we construct an embedding system associated to (1):

TRE

The key result in mixed monotone reachability theory is as follows: if ¢ — [%Em is the

Y 7u7u
I 7u7u

trajectory of the embedding system (2) with disturbance [;| = [%] starting from [%8], then
R(t,0,[zg, Tol, [u,u]) C [z(t),Z(t)], for every t € R>¢ (Meyer et al., 2019, Proposition 6).

Given a map g : R” — R™, the function [%} D T2 — T2 is an inclusion function for g if, for

every * < 7 and every z € [z,7], we have G(x,7) < g(z) < G(x,Z). Note that our definition
of inclusion function is closely-related to the notion of inclusion interval function in the interval

analysis (Jaulin et al., 2001, Section 2.4.1).
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3. Problem Statement

We consider a nonlinear plant of the form

&= f(z,u,w) 3)

where x € R" is the state of the system, u € RP is the control input, and w € W C RY is the
disturbance. We assume that f : R™ x RP x R? — R" is a parameterized vector field and the
state feedback is parameterized by a k-layer feed-forward neural network controller N : R” — R?
defined by:

£0(z) = pO WD () 4 50D) G e {1,... k)
=60 4w =wW®F () 4 p® = N(z), %)

where n; is the number of neurons in the ith layer, W (1) € R"*™i-1 is the weight matrix of the ith
layer, b('~1) € R™ is the bias vector of the ith layer, £() (y) € R™ is the i-th layer hidden variable,

@) R s R s g i vati s o) (@) -0 v)
and ¢ : R™ — R™ is ith layer diagonal activation function satisfying 0 < ~——»— <1,

for every j € {1,...,n;}. One can show that a large class of activation function including, but
not restricted to, ReLU, leaky ReLU, sigmoid, and tanh satisfies this condition. We assume that,
the neural network (4) is trained to approximate an offline controller with the auxiliary objective of
achieving a goal set G C R"™ while remaining in a safe set S C R™. Our aim is to verify the safety
of the closed-loop system given by:

i':f(:L‘,N(:L‘),w) = fd(wi)' &)

i.e., to ensure that the closed-loop system avoids the unsafe domain R™/S. Given an initial state set
Xo C R™, our goal is to check if R fa(t,0, Xp, W) C S holds for every ¢t € R>g. Our approach
is based on constructing a computationally efficient over-approximation R fel (t,0, Xp, W) of the
reachable set of the closed-loop system. Then, avoiding the unsafe set R™/S is guaranteed when
ﬁfcl(t, 0, Xp, W) C S, for every t € R>.

4. Input-output reachability of neural networks

In order to estimate the input-output behavior of the neural network controller, we use the verifica-
tion algorithm called CROWN (Zhang et al., 2018). We first use CROWN to obtain an inclusion
function for the input-output map of the neural network. Consider the neural network (4) and let
the perturbed input vector = be in the interval [z, Z]. For every i € {1,...,k}, we define the pre-
activation input to ith layer as 2 = W®0=D () + b)) When z is perturbed in the interval
[z, Z], we assume that L(i)7 U@ e R are such that L) < 2(®) < U@ These bounds can be
obtained using a fast neural network verification algorithm such as the Interval Bound Propagation
(IBP) method (Gowal et al 2019 Equations (6) and (7)). In this case, for the jth neuron in the ith
layer, there exist an, 6UJ, aL or ﬂL such that

a(LiJ.(z + ﬁ,j’j) < ¢i(z) < aU)J(z + 6U]) for every Ly) <z<Uj. (6)

For every x € [z, 7], the output of the neural network is bounded as below:

Az, T)z + b(2,7) < N(z) < A(z,Z)x + b(z, Z), 7
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where functions A4, A : 7'223 — RPX™ and b, b : T_ﬁg — RP are defined as follows:

Az, m) =AM, b,z

k . . . .
= Z'—1 ADpD 1 diag(ADAD),

k . . . .
A2 =00 bzz)=) QY+ diag@?e) @®)

where, for every i € {1,...,k}, A® A® Q0 ©0) ¢ R™*" are as defined in (Zhang et al.,
*+T ffm)

2018, Theorem 3.2) for the input perturbation set By (=5—, =5-).

Theorem 1 (Inclusion functions for Neural Networks) Consider the k-layer feed-forward neu-
ral network u = N(x) given by (4). Then,

G _
(i) for every input perturbation interval [z, T, the mapping [%[@j] 7:2 — ’7'>g defined by
Gpm(@ 7) = [Alz,7)] "= + [A(z, 7)) "7 + b(z, 7),
G (@, 7) = [A(z,7)] "7 + [A(z, 7)) + b, 7) ©)
is an inclusion function for the neural network N on [z, T];
(ii) the mapping { TQn — T> defined by H(z,7) = Gy, 5 (7, ) and H(z, %) = G, 7(z, T)

is an inclusion functlon for the neural network N on R™.

5. Interval reachability of closed-loop system

In this section, inspired by mixed monotone reachability, we present a system-level approach for
over-approximating the reachable set of the closed-loop system (5) with the neural network con-
S T20 % T2 — R™ and use it to
construct the following embedding system associated to the closed—loSp syste_m 5):

i z|  |E(z,Z,w, )
dt |z|  |E@,z,0,w)
Then, one can use the embedding system (10) to study the propagation of the state and disturbance

bounds with time. Suppose that the initial condition set is given by Xy C [z, Zo| and the disturbance

set is given by W C [w, w]. Let F be a decomposition function for the open-loop system (3) and

[9} and [%} be the inclusion functions of the neural network (4) established in Theorem 1. We

troller (4). The key idea is to design a suitable function £ = [%

(10)

G
introduce “global” function £, “hybrid” function E™, and “local” function E™ as follows:

Ef (z,2,w,@) | _ [Fi(z, 7, H(z,7), H(z,7), w, D)
By (2,7,w,@)|  |Fi(@ ,H(z,7),H(z, 7), &, w)
E?(xv&\?w?@)- _Fi(xa‘%ag[x E](xax[z z])7C[x x](wvx[i:x})awaﬁ)\)}
“u, R =" o RS (11)
B (2,7, w, W) Fi(@, 2, G 3 (T3] T), Gp 31 (T)i3), X), W, w
By (2, %w,®)| _ [Fi(2, 2, H(@, Tp), A&, T, 0, @)]
By (2, 3w,@)|  |Fi@ 2, @y, 2), H@)pe, 7), 0, w
forevery i € {1,...,n}.
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Theorem 2 (Interval over-approximation of reachable sets) Consider the control system (3)
with the neural network controller (4). Suppose that the initial condition xo belongs to Xy C [z, To|
and the disturbance w belongs to W C [w, ). Let F : T?" x T? x T2 — R"™ be a decomposi-
tion function for the open-loop system (3). Given s € {G, L, H}, consider EG, EY EY as defined
in (11) and let t — [gg” be the trajectory of the embedding system (10) with & = E°® and

disturbance | §] = =] starting from [%2 |. Then, the following statements hold:

(i) forevery s € {G,L,H} and every t € R>q, we have

Rfcl (t,O, Xo,W) - [Es(t)’fs(t)h

(ii) If all the activation functions of the neural network (4) are ReLU, then, for every t € R>,

Rya(t,0, X, W) C [z"(), 74(1)] € [ (1), 2" ()] € [2°(2),7°(1)].

When the open-loop system (3) is linear with f(z,u,w) = Az + Bu + Cw where A € R"*",
B € R"™P and C' € R™*4, one can find another embedding function for the closed-loop system (5):

Ling,. =, = _ | [A+R@2)M" [A+R(2,2) M ] 12 ct o |w
E (QT,ZL',’[U,’[U) - |:LA+S(:E,EMMZ1 [A+S(m,§)]MZl:| [f]_{_ |:Cf C+:| [ﬁ}]’ (12)

where R(z,7) = BY[A(x,7)] + B~ [A(x,2)] and S(z,7) = B*[A(x,2)] + B~ [A(z,7)]. The
next theorem compares reachable set over-approximation using £ and hybrid function E*.

Theorem 3 (Linear systems) Consider the control system (3) with f(x,u,w) = Ax + Bu + Cw
with A € R™", B € R"*P, and C € R"*? and with the neural network controller (4). Suppose
that the initial set satisfies Xo C [z, To| and the disturbance set satisfies W C [w, w|. Then,

(i) We recover all the results of Theorem (2) with the following “hybrid” function:
~ ~ Mzl =\ Mzl Mzl =) | Mzl _
FEWY(z, 2, w,®) = { [ATM 4 [R(z,2) M |AJM + | R(,7)] } (2] + {C+ C } [].

LAJMZl"FI.S(%ZU\)JI\M fA]NIZl+fS(ac,§:\)]k1Z1 c- Cct

where R(z,7) = BY[A(z,Z)] + B~ [A(z,%)] and S(z,%) = BY[A(z,7)] + B [A(z, 2)).

gllg

]

(ii) if t — [mLin(t)} is the trajectory of the embedding system (12) with disturbance [ 3] = |

%Lin (t)

starting from [%0] then, for every t € R>,

zo

R per(,0, Xo, W) C [V (1), 2°(1)] € [2™(1), 7 (8)].

Remark 4 The following remarks are in order.

(i) (Comparison with the literature) Theorem 3 can be used to show that the forward Euler
integration of the embedding system (10) with E = E™™ and with a small enough time-
step will lead to the identical over-approximation sets as (Everett et al., 2021b, Lemma IV.3)
applied to the forward Euler discretization of the linear system.
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(ii) (Generality of the approach) Theorem 2 proposes a general embedding-based framework
for verification of the closed-loop system (5) which is based on combining mixed monotone
reachability of the open-loop system with interval analysis of the neural network. Using this
perspective, our approach can be applied to arbitrary neural network verification algorithms
as long as one can construct an inclusion function for the neural network. This is in contrast
with most of the existing approaches which are heavily dependent on the neural network
verification algorithm (see for instance (Everett et al., 2021b) and (Sidrane et al., 2022)).

(iii) (Computational complexity) From a computational perspective, the framework presented in
Theorem 2 consists of two main ingredients: (i) evaluating CROWN to compute the inclusion
function of the neural network as in Theorem 1, and (ii) integrating the embedding dynamical
system (10). For a neural network with k-layer and N neuron per layer, the complexity of
CROWN is O(kzN?’) (Zhang et al., 2018). Moreover, the functions ES and E™ call CROWN
once per integration step, while the function E calls CROWN 2n times per integration step.
The run time of the integration process depends on the open-loop decomposition function F.

6. Efficient reachability analysis via partitioning

In this section, we develop a suitable partitioning of the state space and combine it with Theorem (2)
to obtain a computationally efficient algorithm for generating reachable set over-approximations
of the closed-loop system (5). Our partitioning strategy consists of two main components: (i) a
uniform division of the state space of the embedding system (10) to compute the neural network
inclusion functions using CROWN, and (ii) a uniform subdivision to implement the integration on
the embedding system (10). We first pick an s € {G, H, L} and start with the initial perturbation
set Xp. In the first step, we find the smallest hyper-rectangle containing X by computing (Zo); =
maxgex, ¢; and (zy); = mingex, x;, forevery ¢ € {1,...,n}. We then divide the hyper-rectangle
[z, To] into D, partitions and obtain the set {[z!,Z"], ..., [zP+,7P]}. Forevery k € {1,..., D},
we compute the trajectory of the embedding system (10) with £ = E® and the initial condition [;IZ ]

at time At as in Theorem 2. Forevery k € {1,..., D,}, we divide each states of the hyper-rectangle
[z¥,Z"] into Dy partitions, obtaining the subpartitions {[z*!, 1], ... [z*Ps, z%DPs]}. For every
ke {l,...,D,}andl € {1,..., Dy}, we compute the trajectory of the embedding system (10)
with E = EPBS defined by

E?s (:‘Ua /*73\7 w, {0) . Fi (ZL‘, 53\7 g[ikjk] ($, i"\[zx})v C[gk@k] (f[zx] ) fL‘), w, ﬂ;) (13)
EZBS(.I, /l‘\, w, ﬂ}\) N Fi(f, x,Q[Ek,Ek] (:E[i:gg],/x\), C[£k7§k](f/ﬁ\, m[m\]), ’fl), ’LU) ’

and with the initial condition [%k l} at time At as in Theorem 2. We then set X} =
Zk,

UkDgl lD:Sl [zF!(At), T8 (At)] and repeat this procedure on the initial set X;. We keep repeat-
ing this algorithm until we get to the final time 7". Note that our partitioning approach is different
from (Everett et al., 2021a) and (Xiang et al., 2021) in that we re-partition the state-space at every
time step. A summary of the above procedure is presented in Algorithm 1.
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Algorithm 1 Over-approximation of reachable sets of (5)

Input: s € {G,H, L}, the initial set X, the final time 7', the actuation step At, divisions Dy,
subdivision Dy

Output: the over-approximation of the reachable set ﬁ(T, 0, Xo, W)

1. 70

2: while j < | 1| do

3: Z; < mingey; x;, for every i € {1,...,n}

4: Tj ¢ maxgex; T, foreveryi € {1,...,n}

5: {[z,7'],..., [z, 7P4]} < uniform_partition([z, Z], D,)

6: fork={1,...,D,} do

7: Compute A(z*, z%), A(z*,Z%), b(2*,Z*), and b(2*, T¥) using CROWN and (8).
8: {[zFt,zR1), .. [2FPs T8 Ps]} < uniform_partition([z¥, Z¥], D;)

9: fori ={1,...,Ds} do

10: Compute [*k ZE A t;] for system (10) with £ = E® and initial condition [;:i ]
11: end for
12: end for
130 X = U Uy 28 (An), 2 (A1)

14: end whﬂe
15: return R (7,0, Xy, W) + XLLJ
At

7. Numerical Simulations

In this section, we show the efficiency of our reachability analysis using numerical experiments on
a nonlinear vehicle model and a linear quadrotor model?.

7.1. Nonlinear Vehicle model

We consider the dynamics of a vehicle adopted from (Polack et al., 2017) satisfying the following
nonlinear ordinary differential equation:

P = veos(p + Bluz)), ¢ = %sin(ﬁ(m)), p, =wvsin(¢+ Buz)), v=u+w, (14)

where [p;, p,] " € R? is the displacement of the center of mass, ¢ € [—, 7) is the heading angle in
the plane, v € R™ is the speed of the center of mass. Control input u; is the applied force subject to
disturbance w, input us is the angle of the front wheels, and 3(ug2) = arctan (Zfo& tan(uQ)) is the

slip slide angle. We set x = [py, py, &, v] " and u = [u1, uz] . We use the following decomposition
function for the open-loop system:

@102 ([v,d*%(6 + Bluz), & + B(a2))] [ dc°s(¢+5(“2) ¢+5(“2))]T>

~

F(z,2,u, 0, w, D) = dht <[U & (¢ + 5(U2), ¢+ B(uz

2. All the code is available at
https://github.com/gtfactslab/L4DC2023_NNControllerReachability
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where db1b2, d°°s and @ are defined in (Cao et al., 2022). We designed an offline nonlinear

ES D,=16,D;=1 EYD,=16,Ds=1 EY, D;=16,Ds=1

s runtime: s/ runtime: s runtime: 81
0.350%0.017 0.368 = 0.003 4.088 = 0.024
61 61 61 *
o
Py | ; Py, | i Py, | ; Py
27 24 24
L7 E] 7]
- - - 04
01 04 [j 01

st a0t ot E e e e e

Figure 1: Performance of the three different functions ES, EM and EY in Theorem (2) for over-
approximation of the reachable set of the system (14) with neural network © = N(x)
trained to approximate an offline model predictive controller. The p, — p, plot of the mo-
tion of the vehicle is shown starting from an initial set [7.9,8.1]% x [—%“ —0.01, —%“ +
0.01] x [1.99,2.01]. The size of the over-approximations obtained using the functions
EY and EU are close to each other, but are much smaller than the size of the over-
approximations obtained using the function £¢. On the other hand, finding the over-
approximations using the functions E¢ and E™ take about the same amount of time and
are much faster than finding the over-approximations using the functions E*. The run-
times are averaged over 10 instances and mean and standard deviation are reported.

model predictive controller in Python using Casadi (Andersson et al., 2019) to steer the vehicle to
the origin while avoiding obstacles. We use a fixed horizon of 20 with an actuation step of 0.25
seconds, and a quadratic cost function with @ = diag(1,1,0,0), Qror = diag(100,100,0,1),
and other regularizing terms tuned empirically. Additionally, we add circular obstacles with 25%
padding as hard constraints with slack variables; in Figures 1 and 2, we consider one centered at
(4,4) with a radius of 2.4. We simulated 65000 real trajectories (5s, 20 control actions) with initial
conditions uniformly sampled from a specified region, and aggregated the data into a set of 1.3M
training pairs (z,u) € R* x R2. A neural network v = N(x) with 2 hidden layers with 100 neurons
per layer and ReLU activation was trained in Pytorch to approximate the model predictive controller
under a scaled Mean Squared Error loss. We use Algorithm 1 with D, = 16 and Ds; = 1 to provide
over-approximations for the reachable sets of the vehicle model (14), comparing functions ES, BT,
and EM from Theorem 2. Algorithm 1 line 7 is computed using auto_LiRPA (Xu et al., 2020). The
results are shown in Figure 1.

7.2. Linear 6D quadrotor model

We use the linear 6D quadrotor model adopted from (Ivanov et al., 2019) with the dynamics & =
Ax+ Bu+cwhere A, B, ¢, u are as define in (Everett et al., 2021b) and © = [ps, Py, Dz, Ve, Ly, v] "
is the state of the system with p,, py, and p, being the linear displacement in the x, y, and z direc-
tions, respectively and v,, vy, and v, the velocity in the x,y, and z directions respectively. The
neural network controller v = N(z) consists of 2 layers with 32 neurons in each layer and is iden-
tical to (Everett et al., 2021b, Section H). We use Theorem 2 with the embedding function Ef to
over-approximate the reachable sets of the closed-loop system. The results are shown in Figure 3.
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ENpD,=1,D.=1

EYM p,=16,D,=1

EY D,=16,Ds=16

EY, D, =256, D=1

g{ runtime:
0.025 +£0.001

1 runtime:

0.370+0.004

1 runtime:

2.360+0.066

g4 runtime:

N

5.634 £ 0.005
61 61 6
Py, | i Py, | / Py, | /
7 /) /4
24 24 24
2
| | : | (=

ks
R
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Figure 2: Performance of the Algorithm (1) with s = H for different partitions Ds and sub-

partitions D, for over-approximation of the reachable set of the system (14) with neural
network u = N(x) trained to approximate an offline model predictive controller. All four
figures show the p, — py, plot of the motion of the vehicle. The runtimes are averaged
over 10 instances and the mean and standard deviation are reported.

integration: RK45
runtime: 0.170 = 0.006

integration: euler (0.01)
runtime: 0.125 +0.001

integration: euler (0.1)
runtime: 0.047 £ 0.001

Figure 3: The time evolution of the reachable sets of the 6D quadrotor with the neural network

controller v = N(z) is shown in p,,p,,p. coordinate starting from the initial set
[4.65,4.75]2 x [2.95, 3.05] x [0.94, 0.96] x [—0.01,0.01]2. The blue hyper-rectangles are
the over-approximations of the reachable sets of the system computed using the function
E™" in Theorem 3. Left plot: The ODEs are integrated using a Runge-Kutta method.
Middle plot: The ODEs are integrated using forward Euler method with time step 0.01.
Right plot: The ODE:s are integrated using forward Euler method with time step 0.1 to
match the actuation time step. Note that the reachable set estimates of this plot are very
similar to those in (Everett et al., 2021b, Figure 10(a)), which takes 0.113 £ 0.004 sec-
onds on the same computer. The runtimes are averaged over 10 instances and mean and
standard deviation are reported.

8. Conclusions

We presented a fast and scalable method, based on mixed monotone theory, to over-approximate
the reachable sets of nonlinear systems coupled with neural network controllers. We introduce three
methods to intertwine neural network inclusion functions from CROWN (Zhang et al., 2018) and
open-loop decomposition functions with varying empirical results. For future research, we plan to
study the role of the neural network verification algorithms in the tightness of our approximations.
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