Published as a conference paper at ICLR 2023

LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS
WITH HARD CONSTRAINTS

Geoffrey Négiar'> Michael W. Mahoney!-23 Aditi S. Krishnapriyan'-?

1University of California, Berkeley
2Lawrence Berkeley National Laboratory
3International Computer Science Institute

ABSTRACT

We introduce a practical method to enforce partial differential equation (PDE)
constraints for functions defined by neural networks (NNs), with a high degree
of accuracy and up to a desired tolerance. We develop a differentiable PDE-
constrained layer that can be incorporated into any NN architecture. Our method
leverages differentiable optimization and the implicit function theorem to effec-
tively enforce physical constraints. Inspired by dictionary learning, our model
learns a family of functions, each of which defines a mapping from PDE parame-
ters to PDE solutions. At inference time, the model finds an optimal linear com-
bination of the functions in the learned family by solving a PDE-constrained opti-
mization problem. Our method provides continuous solutions over the domain of
interest that accurately satisfy desired physical constraints. Our results show that
incorporating hard constraints directly into the NN architecture achieves much
lower test error when compared to training on an unconstrained objective.

1 INTRODUCTION

Methods based on neural networks (NNs) have shown promise in recent years for physics-based
problems (Raissi et al., 2019; Li et al., 2020; Lu et al., 2021a; Li et al., 2021). Consider a pa-
rameterized partial differential equation (PDE), Fy(u) = 0. Fy, is a differential operator, and the
PDE parameters ¢ and solution u are functions over a domain X'. Let ® be a distribution of PDE-
parameter functions ¢. The goal is to solve the following feasibility problem by training a NN with
parameters 8 € RP, i.e., find 0 such that, for all functions ¢ sampled from ®, the NN solves the
feasibility problem,

Fo(uo(e)) = 0. (1)

Training such a model requires solving highly nonlinear feasibility problems in the NN parameter
space, even when JF, describes a linear PDE.

Current NN methods use two main training approaches to solve Equation 1. The first approach is
strictly supervised learning, and the NN is trained on PDE solution data using a regression loss (Lu
et al., 2021a; Li et al., 2020). In this case, the feasibility problem only appears through the data; it
does not appear explicitly in the training algorithm. The second approach (Raissi et al., 2019) aims
to solve the feasibility problem in Equation 1 by considering the relaxation,

min B F (g (6)) 3 2)

This second approach does not require access to any PDE solution data. These two approaches have
also been combined by having both a data fitting loss and the PDE residual loss (Li et al., 2021).

However, both of these approaches come with major challenges. The first approach requires po-
tentially large amounts of PDE solution data, which may need to be generated through expensive
numerical simulations or experimental procedures. It can also be challenging to generalize outside
the training data, as there is no guarantee that the NN model has learned the relevant physics. For
the second approach, recent work has highlighted that in the context of scientific modeling, the
relaxed feasibility problem in Equation 2 is a difficult optimization problem (Krishnapriyan et al.,

Published as a conference paper at ICLR 2023

2021; Wang et al., 2021; Edwards, 2022). There are several reasons for this, including gradient
imbalances in the loss terms (Wang et al., 2021) and ill-conditioning (Krishnapriyan et al., 2021),
as well as only approximate enforcement of physical laws. In numerous scientific domains includ-
ing fluid mechanics, physics, and materials science, systems are described by well-known physical
laws, and breaking them can often lead to nonphysical solutions. Indeed, if a physical law is only
approximately constrained (in this case, “soft-constrained,” as with popular penalty-based optimiza-
tion methods), then the system solution may behave qualitatively differently or even fail to reach an
answer.

In this work, we develop a method to overcome these challenges by solving the PDE-constrained
problem in Equation 1 directly. We only consider the data-starved regime, i.e., we do not assume
that any solution data is available on the interior of the domain (however, note that when solution
data is available, we can easily add a data fitting loss to improve training). To solve Equation 1, we
design a PDE-constrained layer for NNs that maps PDE parameters to their solutions, such that the
PDE constraints are enforced as “hard constraints.” Once our model is trained, we can take new PDE
parameters and solve for their corresponding solutions, while still enforcing the correct constraint.

In more detail, our main contributions are the following:

* We propose a method to enforce hard PDE constraints by creating a differentiable layer,
which we call PDE-Constrained-Layer or PDE-CL. We make the PDE-CL differentiable
using implicit differentiation, thereby allowing us to train our model with gradient-based
optimization methods. This layer allows us to find the optimal linear combination of func-
tions in a learned basis, given the PDE constraint.

* At inference time, our model only requires finding the optimal linear combination of the
fixed basis functions. After using a small number of sampled points to fit this linear com-
bination, we can evaluate the model on a much higher resolution grid.

* We provide empirical validation of our method on three problems representing different
types of PDEs. The 2D Darcy Flow problem is an elliptic PDE on a stationary (steady-state)
spatial domain, the 1D Burger’s problem is a non-linear PDE on a spatiotemporal domain,
and the 1D convection problem is a hyperbolic PDE on a spatiotemporal domain. We
show that our approach has lower error than the soft constraint approach when predicting
solutions for new, unseen test cases, without having access to any solution data during
training. Compared to the soft constraint approach, our approach takes fewer iterations to
converge to the correct solution, and also requires less training time.

2 BACKGROUND AND RELATED WORK

The layer we design solves a constrained optimization problem corresponding to a PDE constraint.
We outline some relevant lines of work.

Dictionary learning. The problem we study can be seen as PDE-constrained dictionary learning.
Dictionary learning (Mairal et al., 2009) aims to learn an over-complete basis that represents the
data accurately. Each datapoint is then represented by combining a sparse subset of the learned
basis. Since dictionary learning is a discrete method, it is not directly compatible with learning
solutions to PDEs, as we need to be able to compute partial derivatives for the underlying learned
functions. NNs allow us to do exactly this, as we can learn a parametric over-complete functional
basis, which is continuous and differentiable with regard to both its inputs and its parameters.

NNs and structural constraints. Using NNs to solve scientific modeling problems has gained
interest in recent years (Willard et al., 2020). NN architectures can also be designed such that they
are tailored to a specific problem structure, e.g. local correlations in features (LeCun et al., 1998;
Bronstein et al., 2017; Hochreiter & Schmidhuber, 1997), symmetries in data (Cohen & Welling,
2016), convexity (Amos et al., 2017), or monotonicity (Sill, 1997) with regard to input. This reduces
the class of models to ones that enforce the desired structure exactly. For scientific problems, NN
generalization can be improved by incorporating domain constraints into the ML framework, in
order to respect the relevant physics. Common approaches have included adding PDE terms as part
of the optimization loss function (Raissi et al., 2019), using NNs to learn differential operators in

Published as a conference paper at ICLR 2023

PDEs such that many PDEs can be solved at inference time (Li et al., 2020; Lu et al., 2021a), and
incorporating numerical solvers within the framework of NNs (Um et al., 2020). It is sometimes
possible to directly parameterize Gaussian processes (Lange-Hegermann, 2018; Jidling et al., 2017)
or NNs (Hendriks et al., 2020) to satisfy PDEs, and fit some desired loss function. However, in the
PDEs we study, we cannot have a closed-form parameterization for solutions of the PDE. Previous
work in PDE-solving has tried to enforce hard constraints by enforcing boundary conditions (Lu
et al., 2021b). We instead enforce the PDE constraint on the interior domain.

Implicit layers. A deep learning layer is a differentiable, parametric function defined as fy : = —

y. For most deep learning layers, the two Jacobians % and % are computed using the chain rule.
For these explicit layers, fy is usually defined as the composition of elementary operations for which
the Jacobians are known. On the other hand, implicit layers create an implicit relationship between
the inputs and outputs by computing the Jacobian using the implicit function theorem (Krantz &
Parks, 2002), rather than the chain rule. Specifically, if the layer has input 2 € R%, output iy € R%u
and parameters § € RP, we suppose that y solves the following nonlinear equation g(x, y, 6) = 0 for
some g. Under mild assumptions, this defines an implicit function fy : « +— y. In our method, the
forward function solves a constrained optimization problem. When computing the Jacobian of the
layer, it is highly memory inefficient to differentiate through the optimization algorithm (i.e., all the
steps of the iterative solver). Instead, by using the implicit function theorem, a set of linear systems
can be solved to obtain the required Jacobians (see Amos & Kolter (2017); Barratt (2018); Blondel
et al. (2021); Agrawal et al. (2019); El Ghaoui et al. (2021) and the Deep Implicit Layer NeurIPS
2021 tutorial! for more details). Implicit layers have been leveraged in many applications, including
solving ordinary differential equations (ODEs) (Chen et al., 2018), optimal power flow Donti et al.
(2021), and rigid many-body physics (de Avila Belbute-Peres et al., 2018).

Differentiable physics. In a different setting, recent work has aimed to make physics simulators
differentiable. The adjoint method (Pontryagin et al., 1962) is classically used in PDE-constrained
optimization, and it has been incorporated into NN training (Chen et al., 2018; Zhang et al., 2019;
Krishnapriyan et al., 2022). In this case, the assumption is that discrete samples from a function
satisfying an unknown ODE are available. The goal is to learn the system dynamics from data. A NN
model is used to approximate the ODE, and traditional numerical integration methods are applied on
the output of the NN to get the function evaluation at the next timestep. The adjoint method is used
to compute gradients with regard to the NN parameters through the obtained solution. The adjoint
method also allows for differentiating through physics simulators (Degrave et al., 2019; Schoenholz
& Cubuk, 2020; Um et al., 2020). Our setup is different. In our case, the underlying physical law(s)
are known and the NN is used to approximate the solutions, under the assumption that there is no
observational data in the interior of the solution domain.

3 METHODS

We describe the details of our method for enforcing PDE constraints within a NN model.

3.1 PROBLEM SETUP

Our goal is to learn a mapping between a PDE parameter function ¢ : X — R and the corresponding
PDE solution u(¢) : X — R, where the domain X’ is an open subset of R? for some d. The PDE
parameters ¢ could be parameter functions such as initial condition functions, boundary condition
functions, forcing functions, and/or physical properties such as wavespeed, diffusivity, and viscosity.
We consider well-posed PDEs, following previous work exploring NNs and PDEs (Raissi et al.,
2019; Li et al., 2020; Wang et al., 2021). Let F4 be a functional operator such that for all PDE
parameter functions ¢ sampled from &, the solution u(¢) satisfies F4(u(¢)) = 0. The inputs to
our NN vary depending on the domain of interest and the PDE parameters. In the simplest case, the
input is a pair (x, ¢(x)), where € X and ¢(x) is the value of the PDE parameter at 2. The output
of the NN is the value of the corresponding approximated solution g (¢), for a given 2. We want to
learn the mapping,

G: 10) — u(e). 3)

PDE parameters PDE solutions

"http://implicit-layers-tutorial.org/

http://implicit-layers-tutorial.org/

Published as a conference paper at ICLR 2023

0014

0.012

0.010

G 0.008

_—>

0.006

! 0.004
0.002

¢ u(®)

Figure 1: Mapping PDE parameters ¢ to PDE solutions u($). The goal of our model is to
learn a mapping G : ¢ — u(¢), without access to solution data. As an example, we study the
Darcy Flow PDE, which describes the chemical engineering problem of fluid flow through a porous
medium (Darcy, 1856). The system is composed of two materials in a given spatial domain X =
(0,1)2, each with specific diffusion coefficients which depend on the position. The left figure shows
¢, which encodes the locations and diffusion properties of the two materials. The right figure shows
the corresponding solution u(¢). The function u is a solution of the Darcy Flow PDE with diffusion
coefficients ¢ if, for all (x,y) € (0,1)2, it satisfies —V - (¢(x,y)Vu(z,y)) = 1. The boundary
condition is u(z,y) = 0, ¥(z,y) € 9(0,1).

We show an example of such a mapping in Figure 1. Importantly, we consider only the unsupervised
learning setting, where solution data in the interior domain of the PDE is not available for training
the model. In this setting, the training is done by only enforcing the PDE, and the initial and/or
boundary conditions.

3.2 A DIFFERENTIABLE CONSTRAINED LAYER FOR ENFORCING PDES

There are two main components to our model. The first component is a NN parameterized by 6,
denoted by fg. The NN fj, takes the inputs described in Section 3.1 and outputs a vector in R"Y. The
output dimension NV is the number of functions in our basis, and is a hyperparameter.

The second component of our model, the PDE-constrained layer or PDE-CL, is our main design
contribution. We implement a layer that performs a linear combination of the N outputs from the
first component, such that the linear combination satisfies the PDE on all points x; in the discretized
domain. Specifically, let w be the weights in the linear combination given by the PDE-CL. The
output of our system is ug = ZZJ\;I w; fg, where fg is the ¢-th coordinate output of fy. We now
describe the forward and backward pass of the PDE-CL.

Forward pass of the differentiable constrained layer. Our layer is a differentiable root-finder for
PDEs, and we focus on both linear and non-linear PDEs. As an example, we describe a system based
on an affine PDE, where Fj is an affine operator, which depends on ¢. In our experiments, we study
an inhomogeneous linear system in Section 4.1, a homogeneous non-linear system in Section 4.2,
and a homogeneous linear system in Section 4.3. The operator G4 is linear when, for any two
functions u, v from X to R, and any scalar A\ € R, we have that,

Go(u + Av) = Gy (u) + AGg (v). @)

The operator F, is affine when there exists a function b such that the shifted operator 74 — b is
linear. Let G4 be the linear part of the operator: G, = F, — b. We define the PDE-CL to find the
optimal linear weighting w of the N 1D functions encoded by the first NN component, over the set
of sampled inputs z1, . .., z,,. The vector w € R solves the linear equation system,

N N
Vi=1,...,n, Gy (Z%fé) (z) = b(a;) <= > wiGs(fh)(x;) = b(x;). ®)
i=1

i=1
This linear system is a discretization of the PDE Fy(ug) = 0; we aim to enforce the PDE at
the sampled points z1,...,2,. The linear system has n constraints and /N variables. These are

Published as a conference paper at ICLR 2023

both hyperparameters, that can be chosen to maximize performance. Note that once N is fixed, it
cannot be changed. On the other hand, n can be changed at any time. When the PDE is non-linear,
the linear system is replaced by a non-linear least-squares system, for which efficient solvers are
available (Levenberg, 1944; Marquardt et al., 1963).

Backward pass of the differentiable constrained layer. To incorporate the PDE-CL into an end-
to-end differentiable system that can be trained by first-order optimization methods, we need to
compute the gradients of the full model using an autodiff system (Bradbury et al., 2018). To do this,
we must compute the Jacobian of the layer.

The PDE-CL solves a linear system of the form g(w, A, b) = Aw —b = 0 in the forward pass, where
A e RN e RN, b € R™. Differentiating g with respect to A and b usmg the chain rule gives
the following linear systems, which must be satisfied by the Jacobians g) and 2 T

Ow; ow
Vi,kel,...,N, Vjel,... 0=-—-—>- = + AT) 1 6
Z’ E b 9 9 je b 7n7 8Ajk (jaA) 7.]7 ()
dg; 9
Viel,...,N, Yjel,....n, 0=29 _ATZ _q, 7

ob; — tab,

where 1;—; is 1 when 7 = j and O otherwise. Given the size and conditioning of our problems,
we cannot directly solve the linear system. Thus, we use an indirect solver (such as conjugate
gradient (Hestenes & Stiefel, 1952) or GMRES (Saad & Schultz, 1986)) for both the forward system
Aw = b and the backward system given by Equation 6 and Equation 7. We use the JAX autodiff
framework (Bradbury et al., 2018; Blondel et al., 2021) to implement the full model. We include an
analysis and additional information on the enforcement of the hard constraints in D. We also include
an ablation study in E to evaluate the quality of functions in our basis.

Loss function. Our goal is to obtain a NN parameterized function which verifies the PDE over
the whole domain. The PDE-CL only guarantees that we verify the PDE over the sampled points.
In the case where N > n, the residual over the sampled points z;, ..., z,, is zero, up to numerical
error of the linear solver used in our layer. It is preferable to not use this residual for training the
NN as it may not be meaningful and an artifact of the chosen linear solver and tolerances. Instead,
we sample new points z/, ..., z}, and build the corresponding linear system A’, b’. Our loss value
is || A’w — b'||3, where w comes from the PDE-CL and depends on A and b, not A’ b'. We compute
gradients of this loss function using the Jacobian described above. Another possibility is to use
n > N. In this case, the residual ||Aw — b||3 will be non-zero, and while the “hard constraints”
will not be satisfied during training, we can minimize this residual loss directly. Let ¢/ (X) denote
the uniform distribution over our (bounded) domain X. Formally, our goal is to solve the bilevel
optimization problem,

Inei]fl E¢~<I>]E(zl,...,z,l),(x’l,...,r;’,)NU(X) ||A/(¢7x/1a"'7 L3) (¢7x1a-~-755n,) (¢7x17"’7 L3)”2

s.t.w = argmin |A(¢, 1, ..., Tn; 0w — b(P; 21, ..., 2,5 0)||3. (8)

We approximate this problem by replacing the expectations by sums over finite samples. The ma-
trices A, A’, and vectors b, b’ are built by applying the differential operator Fy to each function in
our basis f§, using the sampled gridpoints. It is straightforward to extend this method in the case
of non-linear PDEs by replacing the linear least-squares with the relevant non-linear least squares
problem.

Inference procedure. At inference, when given a new PDE parameter test point ¢, the weights 0
are fixed as our function basis is trained. In this paragraph, we discuss guarantees in the linear PDE
case. Suppose that we want the values of ug over the (new) points %™, ..., 2! If n'*' < N, we
can fit w in the PDE-CL using all of the test points. This guarantees that our model satisfies the PDE
on all test points: the linear system in the PDE-CL is underdetermined. In practice, n'** is often
larger than N. In this case, we can sample J C {1,...,n"'}, |J| < N, and fit the PDE-CL over

these points. Over the subset {z'f*,j € J}, the PDE will be satisfied. Over the other points, the

residual may be non-zero. Another option is to fit the PDE-CL usmg all the points ™, ..., 2!,
in which case the residual may be non-zero for all points, but is minimized on average over the

Published as a conference paper at ICLR 2023

0014
0012 00010 & 00010
"

0010 00005 00005

0.008
00000 0.0000
0.006
0004 -0.0005 -0.0005
0.002 i "
-0.0010 -0.0010
i

(a) Target (b) Hard-constrained difference (c) Soft-constrained difference

Figure 2: Heatmaps of Darcy Flow example test set predictions. We compare our hard-
constrained model and the baseline soft-constrained model on a test set of new diffusion coefficients
v. The NN architectures are the same except for our additional PDE-CL in the hard-constrained
model. (a) Target solutions of a subset of PDEs in the test set. (b) Difference between the predictions
of our hard-constrained PDE-CL model and the target solution. (c) Difference between the predic-
tions of the baseline soft-constrained model and the target solution. Over the test dataset, our model
achieves 1.82% = 0.04% relative error and 0.0457 & 0.0021 interior domain test loss. In con-
trast, the soft-constrained model only reaches 3.86% =+ 0.3% relative error and 1.1355 + 0.0433
interior domain test loss. Our model achieves 71% less relative error than the soft-constrained
model. While the heatmaps show a subset of the full test set, the standard deviation across the test
set for our model is very low, as shown by the box plot in Appendix C.

sampled points by our PDE-CL. Our method controls the trade-off between speed and accuracy:
choosing a larger IV results in larger linear systems, but also larger sets of points on which the PDE
is enforced. A smaller N allows for faster linear system solves. Once w is fit, we can query ug for
any point in the domain. In practice, we can choose |J| to be much smaller than n'*; here, the linear
system we need to solve is much smaller than the linear system required by a numerical solver.

4 EXPERIMENTAL RESULTS AND IMPLEMENTATION

We test the performance of our model on three different scientific problems: 2D Darcy Flow (Sec-
tion 4.1), 1D Burgers’ equation (Section 4.2), and 1D convection (Section 4.3). In each case, the
model is trained without access to any solution data in the interior solution domain. The train-
ing set contains 1000 PDE parameters ¢. The model is then evaluated on a separate test set with
M = 50 PDE parameters ¢ that are not seen during training. We compare model results on the

test set using two metrics: relative Lo error ﬁ Zf\il W, and the PDE residual loss

5 Zf\il || Fs; (ug)||?, which measures how well the PDE is enforced on the interior domain. We
demonstrate that our constrained NN architecture generalizes much better on the test set than the
comparable unconstrained model for all three problems.?

4.1 2D DARcCY FLOW

We look at the steady-state 2D Darcy Flow problem, which describes, for example, fluid flow
through porous media. In this section, the PDE parameter (denoted by ¢ in the previous sections as
a general variable) is v € L>((0,1)%; R), a diffusion coefficient. The problem is formulated as
follows:

=V (v(z)Vu(z)) = f(x), Va € (0, 1)2,

9
u(x) =0, vz € 9(0,1)% &

Here, f is the forcing function (f € L?((0,1)2;R), and u(x) = 0 is the boundary condition. The
differential operator is then F,, (u) = —V - (v(z)Vu(x)). Given a set of variable coefficients v,
the goal is to predict the correct solution u. The v(x) values are generated from a Gaussian and

>We used a single Titan RTX GPU for each run in our experiments.

Published as a conference paper at ICLR 2023

T T 10t T T T T
—— Hard constraint (ours) | —— Hard constraint (ours)

Soft constraint Soft constraint
--- Lowest relative error for soft constraint

10 E

10°F E

101 \ |
102

L L L L . L . L
10° 10t 102 10° 10* 10° 10! 102 103 10%

1071F E

Interior test loss
Relative test error

Batch Batch
(a) PDE residual loss on test set (b) Relative error on test set

Figure 3: 2D Darcy Flow: Error on test set during training. We train a NN architecture with
the PDE residual loss function (“soft constraint” baseline), and the same NN architecture with our
PDE-CL (“hard constraint”). During training, we track error on the test set, which we plot on a
log-log scale. (a) PDE residual loss on the test set, during training. This loss measures how well
the PDE is enforced. (b) Relative error on the test set, during training. This metric measures the
distance between the predicted solution and the target solution obtained via finite differences. Both
measures show that our hard-constrained PDE-CL model starts at a much lower error (over an order
of magnitude lower) on the test set at the very start of training, and continues to decrease as training
proceeds. This is particularly visible when tracking the PDE residual test loss.

then mapped to two values, corresponding to the two different materials in the system (such as the
fluid and the porous medium). We follow the data generation procedure from Li et al. (2020). We
use the Fourier Neural Operator (FNO) (Li et al., 2020) architecture, trained using a PDE residual
loss as the baseline model (“soft-constrained”). Our model uses the FNO architecture and adds our
PDE-CL (“hard-constrained”). The domain (0, 1)? is discretized over n,, X n, points. For each point
on this grid, the model takes as input the coordinates, x € (0,1)2, and the corresponding values of
the diffusion coefficients, v(x). The boundary condition is satisfied by using a mollifier function (Li
et al., 2020), and so the only term in the loss function is the PDE residual. We use a constant forcing
function f equal to 1. We provide more details on our setup and implementation in Appendix C.

Results. We plot example heatmaps from the test set in Figure 2. We compare visually how close
our hard-constrained model is to the target solution (Figure 2b), and how close the soft-constrained
baseline model is to the target solution (Figure 2c). Our hard-constrained model is much closer to
the target solution, as indicated by the difference plots mostly being white (corresponding to zero
difference).

During the training procedure for both hard- and soft-constrained models, we track error on an
unseen test set of PDE solutions with different PDE parameters from the training set. We show these
error plots in Figure 3. In Figure 3a, our model starts at a PDE residual test loss value two orders of
magnitude smaller than the soft constraint baseline. The PDE residual test loss continues to decrease
as training proceeds, remaining significantly lower than the baseline. Similarly, in Figure 3b, we
show the curves corresponding to the relative error and the PDE residual loss metric on the test
dataset. Our model starts at a much smaller relative error immediately and continues to decrease,
achieving a final lower test relative error.

On the test set, our model achieves 1.82% = 0.04% relative error, versus 3.86% =+ 0.3% for the
soft-constrained baseline model. Our model also achieves 0.0457 4+ 0.0021 for the PDE residual
test loss, versus 1.1355 4+ 0.0433. Our model has almost two orders of magnitude lower PDE
residual test loss, and it has significantly lower standard deviation. On the relative error metric, our
model achieves a 71% improvement over the soft-constrained model. While the example heatmaps
show a subset of the full test set, the standard deviation across the test set for our model is very low.
This indicates that the results are consistent across test samples.

Published as a conference paper at ICLR 2023

[

" ‘ 02 002 — 002

0.1 0.01 0.01

0o 0.00 0.00
-0l -0.01 -0.01
[. ‘ o2 ~0.02 —0.02
' 2 —0.03 —0.03
o4 -0.04 -0.04

(a) Target (b) Hard-constrained difference (c) Soft-constrained difference

Figure 4: Heatmaps of 1D Burgers’ example test set predictions. We compare our hard-
constrained model and the baseline soft-constrained model on a test set of new initial conditions .
Both architectures are the same, except for our additional PDE-CL in the hard-constrained model.
(a) Target solutions of a subset of PDEs in the test set. (b) Difference between the predictions of
our hard-constrained model and the target solution. (c) Difference between the predictions of the
baseline soft-constrained model and the target solution. Over the test dataset, our model achieves
1.11 £ 0.11% relative error. The baseline soft-constrained model achieves only 4.34% + 0.33%
relative error. We use the same base network architecture (MLPs) for both the soft-constrained and
hard-constrained model. The errors in both models are concentrated around the “sharp” features in
the solution, but these errors have 4x higher magnitude in the soft-constrained model.

4.2 1D BURGERS’ EQUATION

We study a non-linear 1D PDE, Burgers’ equation, which describes transport phenomena. The
problem can be written as,

ot 5 ox =v 8:52) S (0, 1)7t € (O7 1), (10)
u(,0) = uo(z), xz € (0,1),
u($7t):u(£+1,t), Z‘ER,tE(O,l).

Here, g is the initial condition, and the system has periodic boundary conditions. We aim to map
the initial condition u to the solution u. We consider problems with a fixed viscosity parameter of
v = 0.01. We follow the data generation procedure from Li et al. (2020), which can be found here.
We use a physics-informed DeepONet baseline model (Wang et al., 2021) with regular multi-layer
perceptrons as the base NN architecture, trained using the PDE residual loss. Our hard-constrained
model is composed of stacked dense layers and our PDE-CL, which allows for a fair comparison.
Because this PDE is non-linear, our PDE-CL solves a non-linear least-squares problem, using the
PDE residual loss and the initial and boundary condition losses.

Results. We plot example heatmaps from the test set in Figure 4. We compare how close our
hard-constrained model is to the target solution (Figure 4b), and similarly for the soft-constrained
baseline model (Figure 4c). The solution found by our hard-constrained model is much closer to
the target solution than the solution found by the baseline model, and our model captures ““sharp”
features in the solution visibly better than the baseline model. Our hard-constrained model achieves
1.11 4+ 0.11% relative error after less than 5, 000 steps of training, using just dense layers and our
PDE-CL. In contrast, the soft-constrained baseline model only achieves 4.34% =+ 0.33% relative
error after many more steps of training.

During the training procedure for both hard- and soft-constrained models, we track the relative error
on a validation set of PDE solutions with different PDE parameters from the training set. We show
the error plot in Figure 5. The target solution was obtained using the Chebfun package (Driscoll
et al., 2014), following Wang et al. (2021). Our model achieves lower error much earlier in training.
The large fluctuations are due to the log-log plotting, and small batches used by our method for
memory reasons.

https://github.com/neuraloperator/neuraloperator/tree/master/data_generation/burgers

Published as a conference paper at ICLR 2023

T
= Hard constraint (ours)
Soft constraint

== Lowest relative error for soft constraint

Relative error

Steps

Figure 5: 1D Burgers’ equation: Error on validation set during training. We train a NN with
the PDE residual loss function (“soft constraint” baseline) and the same NN architecture with our
PDE-CL (“hard constraint”). Both architectures are MLPs. During training, we track relative error
on the test set, which we plot on a log-log scale. Our hard-constrained model learns low error
predictions much earlier in training. The hard constrained model achieves lower relative error than
the soft-constrained method.

4.3 1D CONVECTION

We study a 1D convection problem, describing transport phenomena. The problem can be formu-
lated as follows:

%—I—ﬁ(m)%:& € (0,1),t € (0,1),
h(z) = sin(rz), x € (0,1), (11)
g(t) =sin (gt) , te(0,1).

Here, h(z) is the initial condition (at t = 0), g(t) is the boundary condition (at x = 0), and 3(z)
represents the variable coefficients (denoted by ¢ in Section 3). Given a set of variable coefficients,
B(z), and spatiotemporal points (x;, t;), the goal is to predict the correct solution u(x, t). We provide
results and more details in Appendix A.

5 CONCLUSIONS

We have considered the problem of mapping PDEs to their corresponding solutions, in particular
in the unsupervised setting, where no solution data is available on the interior of the domain during
training. For this situation, we have developed a method to enforce hard PDE constraints, when
training NN, by designing a differentiable PDE-constrained layer (PDE-CL). We can add our layer
to any NN architecture to enforce PDE constraints accurately, and then train the whole system end-
to-end. Our method provides a means to control the trade-off between speed and accuracy through
two hyperparameters. We evaluate our proposed method on three problems representing different
physical settings: a 2D Darcy Flow problem, which describes fluid flow through a porous medium; a
1D Burger’s problem, which describes viscous fluids and a dissipative system; and a 1D convection
problem, which describes transport phenomena. Compared to the baseline soft-constrained model,
our model can be trained in fewer iterations, achieves lower PDE residual error (measuring how well
the PDE is enforced on the interior domain), and achieves lower relative error with respect to target
solutions generated by numerical solvers.

Acknowledgements. The authors would like to thank Quentin Berthet, David Duvenaud, Romain
Lopez, Dmitriy Morozov, Parth Nobel, Daniel Rothchild, Hector Roux de Bézieux, and Alice Schoe-
nauer Sebag for helpful comments on previous drafts. MWM would like to acknowledge the DOE,
NSF, and ONR for providing partial support of this work. This material is based in part upon work

Published as a conference paper at ICLR 2023

supported by the Intelligence Advanced Research Projects Agency (IARPA) and Army Research Of-
fice (ARO) under Contract No. W911NF-20-C-0035. ASK and MWM would like to acknowledge
the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Re-
search, Scientific Discovery through Advanced Computing (SciDAC) program under contract No.
DE-AC02-05CH11231.

10

Published as a conference paper at ICLR 2023

REFERENCES

Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, and J. Zico
Kolter. Differentiable convex optimization layers. In NeurIPS, 2019. 3

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In ICML, 2017. 3

Brandon Amos, Lei Xu, and J. Zico Kolter. Input convex neural networks. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,

volume 70 of Proceedings of Machine Learning Research, pp. 146—-155. PMLR, 06-11 Aug 2017.
URL https://proceedings.mlr.press/v70/amosl7b.html. 2

Shane T. Barratt. On the differentiability of the solution to convex optimization problems. arXiv:
Optimization and Control, 2018. 3

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
Lopez, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
ArXiv, abs/2105.15183, 2021. 3, 5

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax. 5

18-42,2017. 2

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur D. Szlam, and Pierre Vandergheynst. Ge-
ometric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34:

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Kristjanson Duvenaud. Neural ordi-
nary differential equations. ArXiv, abs/1806.07366, 2018. 3

Taco Cohen and Max Welling. Group equivariant convolutional networks. In ICML, 2016. 2

4

Henry Darcy. Les fontaines publiques de la ville de Dijon : exposition et application des principes a
suivre et des formules a employer dans les questions de distribution d’eau. Victor Dalmont, 1856.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter. End-
to-end differentiable physics for learning and control. Advances in neural information processing
systems, 31:7178-7189, 2018. 3

Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. A differentiable physics engine

for deep learning in robotics. Frontiers in Neurorobotics, 13, 2019. ISSN 1662-5218. doi: 10.
3389/fnbot.2019.00006. URL https://www.frontiersin.org/article/10.3389/
fnbot.2019.00006. 3

Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with
hard constraints. arXiv preprint arXiv:2104.12225, 2021. 3

T. A Driscoll, N. Hale, and L. N. Trefethen. Chebfun Guide. Pafnuty Publications, 2014. URL
http://www.chebfun.org/docs/guide/. 8

Chris Edwards. Neural networks learn to speed up simulations. Communications of the ACM, 65
(5):27-29, 2022. 2

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, and Armin Askari. Implicit deep learning. STAM
J. Math. Data Sci., 3:930-958, 2021. 3

neural networks. ArXiv, abs/2002.01600, 2020. 3

Johannes N. Hendriks, Carl Jidling, Adrian G. Wills, and Thomas Bo Schon. Linearly constrained

Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49:409-435, 1952. 5

11

https://proceedings.mlr.press/v70/amos17b.html
http://github.com/google/jax
http://github.com/google/jax
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
http://www.chebfun.org/docs/guide/

Published as a conference paper at ICLR 2023

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735—
1780, 1997. 2

Carl Jidling, Niklas Wahlstrom, Adrian G. Wills, and Thomas Bo Schon. Linearly constrained
gaussian processes. In NIPS, 2017. 3

Steven George Krantz and Harold R Parks. The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2002. 3

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021. 1, 2

Aditi S Krishnapriyan, Alejandro F Queiruga, N Benjamin Erichson, and Michael W Mahoney.
Learning continuous models for continuous physics. arXiv preprint arXiv:2202.08494, 2022. 3

Markus Lange-Hegermann. Algorithmic linearly constrained gaussian processes. In NeurIPS, 2018.
3

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, 86:2278-2324, 1998. 2

Kenneth Levenberg. A method for the solution of certain non — linear problems in least squares.
Quarterly of Applied Mathematics, 2:164-168, 1944. 5

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020. 1, 3,7, 8

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021. 1, 17

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat.
Mach. Intell., 3:218-229, 2021a. 1, 3

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105-B1132, 2021b. 3

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse
coding. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pp. 689-696, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605585161. doi: 10.1145/1553374.1553463. URL https://doi.org/10.1145/
1553374.1553463. 2

Donald W. Marquardt, E. I. duPont, Bennett R, and George C Burrell. An algorithm for least-squares
estimation of nonlinear parameters. 1963. 5

Lev Semenovich Pontryagin, EF Mishchenko, VG Boltyanskii, and RV Gamkrelidze. The mathe-
matical theory of optimal processes. 1962. 3

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686—707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.1,2,3

Youcef Saad and Martin H. Schultz. Gmres: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. Siam Journal on Scientific and Statistical Computing, 7:856-869,
1986. 5, 16

12

https://doi.org/10.1145/1553374.1553463
https://doi.org/10.1145/1553374.1553463
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125

Published as a conference paper at ICLR 2023

Samuel S. Schoenholz and Ekin D. Cubuk. Jax m.d. a framework for differentiable
physics. In Advances in Neural Information Processing Systems, volume 33. Cur-
ran Associates, Inc., 2020. URL https://papers.nips.cc/paper/2020/file/
83d3d4b6c9579515el167%aca8cbc8033—-Paper.pdf. 3

Joseph Sill. Monotonic networks. In M. Jordan, M. Kearns, and S. Solla (eds.),
Advances in Neural Information Processing Systems, volume 10. MIT Press,
1997. URL https://proceedings.neurips.cc/paper/1997/file/
83adc9225e4deb67d7ced2d58fe5157c-Paper.pdf. 2

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural

Information Processing Systems, 33:6111-6122, 2020. 3

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric
partial differential equations with physics-informed deeponets. Science Advances, 7(40), 2021.
2,3,8, 14

Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating
physics-based modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919,
1(1):1-34, 2020. 2

T. Zhang, Z. Yao, A. Gholami, K. Keutzer, J. Gonzalez, G. Biros, and M. W. Mahoney. ANODEV?2:
A coupled Neural ODE evolution framework. Technical Report Preprint: arXiv:1906.04596,
2019. 3

13

https://papers.nips.cc/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf
https://papers.nips.cc/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf

Published as a conference paper at ICLR 2023

@

SN : UNINE
WS - \ |-
NN N AN W =

(a) Target (b) Hard-constrained difference (c) Soft-constrained difference

@
=
>
=
=1

-

o

Figure A.1: Heatmaps of 1D convection example test set predictions. We compare our hard-
constrained model and the baseline soft-constrained model on a test set of new wavespeed parame-
ters 5. Both architectures are the same, except for our additional PDE-CL in the hard-constrained
model. (a) Target solutions of a subset of PDEs in the test set. (b) Difference between the predic-
tions of our hard-constrained model and the target solution. (c) Difference between the predictions
of the baseline soft-constrained model and the target solution. Over the test dataset, our model
achieves 1.32% =+ 0.02% relative error and 9.84 4+ 2.15 PDE residual test loss. In contrast, the
soft-constrained model only reaches 2.59% =+ 0.15% relative error and 774 + 1.2 PDE residual
test loss. Our model achieves 49% less relative error than the soft-constrained model. The errors
in both models are concentrated around the “sharp” features in the solution, but these errors have
higher magnitude in the soft-constrained model.

A 1D CONVECTION

We study a 1D convection problem, describing transport phenomena. The problem can be formu-
lated as follows:

8“;? 2 (x)a“é? D _o, z€(0,1),t € (0,1),
h(x) = sin(rx), z € (0,1) (12)
g(t) = sin (gt) te(0,1).

Here, h(z) is the initial condition (at t = 0), g(t) is the boundary condition (at x = 0), and 3(z)
represents the variable coefficients (denoted by ¢ in Section 3). Given a set of variable coefficients,
B(z), and spatiotemporal points (z;, t;), the goal is to predict the correct solution u(x, t). The 3(x)
values are generated in the same manner as in Wang et al. (2021) via 8(z) = v(x) — min, v(z) +1,
where v(x) is generated from a Gaussian random field with a length scale of 0.2. We use a physics-
informed DeepONet baseline model (Wang et al., 2021), trained with the PDE residual loss. Our
hard-constrained model is composed of stacked dense layers and our PDE-CL, which allows for a
fair comparison. We provide more details on our setup and experiments in Appendix B.

Results. We plot example heatmaps from the test set in Figure A.1. We compare how close our
hard-constrained model is to the target solution (Figure A.1b), and similarly for the soft-constrained
baseline model (Figure A.1c). The solution found by our hard-constrained model is much closer to
the target solution than the solution found by the baseline model, and our model captures ““sharp”
features in the solution visibly better than the baseline model.

During the training procedure for both hard- and soft-constrained models, we track error on an
unseen test set of PDE solutions with different PDE parameters from the training set. We show
these error plots in Figure A.2. In Figure A.2a, the PDE residual loss for the hard-constrained model
starts close to six orders of magnitude lower than for the soft-constrained model, and it continues to
remain low. In Figure A.2b, we track the relative error with respect to the target solution obtained
via a Lax-Wendroff scheme. Similarly, we see that our model starts at much smaller relative error
immediately and also continues to decrease. Our model achieves 1.32% + 0.02% relative error and
9.84 + 2.15 PDE residual test loss, versus 2.59% = 0.15% and 774 + 1.2 for the soft-constrained
baseline model. On the relative error metric, our model achieves a 49% improvement over the soft-

14

Published as a conference paper at ICLR 2023

) 101F T T T T
107¢ — Hard CQ"‘S”?'M (ours) —— Hard constraint (ours)
ns Soft constraint 1 Soft constraint
10 --- Lowest relative error for soft constraint
w 105% 1 o
8 £ 1000
= a
7 10%¢ E
g]
- =
8 10%; 2
2 ®
£ 10%¢ E]
o
10'F 3
109 -
. . . . " L L L 1
10° 10t 10? 103 104 10° 10t 102 10° 104 10°

Batch

(a) PDE residual loss on test set

Batch

(b) Relative error on test set

Figure A.2: 1D convection: Error on test set during training. We train a NN with the PDE
residual loss function (“soft constraint” baseline) and the same NN architecture with our PDE-CL
(“hard constraint”). During training, we track error on the test set, which we plot on a log-log scale.
(a) PDE residual loss on the test set, during training. We observe that the NN starts by fitting the
initial and boundary condition regression loss during training, which explains why the PDE residual
loss seems to go up initially. (b) Relative error on the test set, during training. Both measures
show that our hard-constrained model starts at a much lower error on the test set at the very start
of training. The grey, dashed line shows that the hard-constrained model achieves the same relative
error as the soft-constrained model in over 100x fewer iterations, and ultimately achieves lower
relative error. Wall-time comparison figures are given in Appendix B.

T T e
—— Hard constraint (ours) + 10

Soft constraint
108F 4

T
—— Hard constraint (ours)

Soft constraint
=== Lowest relative error for soft constraint

10°) E

Interior test loss
Relative test error

10° 10t

Runtime (h)

107t

I L
10° 10!

Runtime (h)

I
107t

(a) PDE residual loss on test set (b) Relative error on test set

Figure B.1: Walltime plots for 1D convection. During the training procedure, we track error on an
unseen test set. Our hard- constrained model reaches the optimal accuracy of the soft-constrained
model in 10x less time.

constrained model. The standard deviation of our model for the relative error metric over the test
dataset is also small. Our model trains faster than the soft-constrained method, due to much higher
gains in accuracy per batch, even though each batch is slower (see Figure B.1).

B DETAILS ON THE 1D CONVECTION PROBLEM

Experiment setup and implementation details. In this setting, the inputs to the models are
two sets of ((x1,t1),...,(zn,tn)), and ((21,t}),..., (2, t),)) sampled points within the do-
main X (interior points) and the corresponding [(x) values. We use the former for fitting
the PDE-CL, and the latter for computing the residual loss function. We also require a set
((Tnt1stnt1),- -5 (Tngns, tryns)) of sampled points on the initial condition (¢ = 0) and boundary

15

Published as a conference paper at ICLR 2023

0.045
0.040 o
0.035
0.030

o]
0.025 =]

0.020
0.015
0.010 |f

0.005

Soft constraint Hard constraint {ours)

Figure B.2: 1D convection: Box plots showing error over test set. We show the distribution of
errors over the test set, at the end of training. Our hard-constrained model has both a lower error and
a lower standard deviation as compared to the soft-constrained model.

condition (z = 0). The training optimization problem is formulated as follows:

mein Zﬁg(wg) + | Fs(ug; o, 2|3 st VB, Falug; ..., x,) =0, (13)
B

with,
1
Ls(ug) = B Z(uﬁ(ﬂvmrH»iathri) — (B, Tnris tnii))?,
i—1
Folugiar,. .. an) = (8719(55:’1%1) +ﬁ(x1)8ue(%x$1,t1) auo(ﬁéfn,tn) +B($n)8u(9(ﬁ7xn,tn

where 6 corresponds to parameters of the NN, u(z, t) is the solution at the initial and boundary con-
ditions, and F (ug) is the PDE constraint that must be satisfied. The loss term L(uyg) is a regression
loss over the initial and boundary conditions. The forward pass of the PDE-CL solves the following
equality constrained problem,

min L(f) w) st Fs(fe) w=0, (14)

where fy refers to the outputs of the base NN, on which we stack the PDE-CL. Since the ini-
tial/boundary condition regression loss uses a quadratic penalty, this equality constrained problem is
in fact a convex equality constrained quadratic problem (EqQP), which is equivalent to a linear sys-
tem. We solve this linear system using GMRES (Saad & Schultz, 1986). We compute the Jacobian
via implicit differentiation with respect to Equation 14.

In practice, we sample 750 points for the PDE-CL, and sample a separate 250 points for computing
the residual in the loss function. To ensure fairness, we sample 1000 points for the soft-constrained
method, which are all used to compute the residual in the loss function. We use N=600 for the
number of basis functions in the PDE-CL.

We show plots against wall time in Figure B.1, and the distributions of errors over the test set in
Figure B.2.

C DETAILS ON THE DARCY FLOW PROBLEM

Experiment setup and implementation details. Our goal is to find parameters 6, which solve,
min Y |7, (ug) = £ ()3

s.t. Yy, Fo(ug) = f(x).

15)

16

))T,

Published as a conference paper at ICLR 2023

T of T T
10t} —— Hard constraint (ours) | 10 —— Hard constraint (ours)

Soft constraint Soft constraint
--- Lowest relative error for soft constraint

1000 E

10-1F \

I I I L I I
107t 10° 10t 107t 10° 10t

Interior test loss
Relative test error

Runtime (h) Runtime (h)
(a) PDE residual loss on test set (b) Relative error on test set

Figure C.1: Walltime plots for Darcy Flow. During the training procedure, we track error on an
unseen test set. Our hard- constrained model achieves higher accuracy much more quickly than the
soft-constrained model.

012 o

010 a

0.08

0.06

0.04

% -

002 —/

_
Soft constraint Hard constraint (ours)

Figure C.2: 2D Darcy Flow: Box plots showing error over test set. We show the distribution of
errors over the test set, at the end of training. Our hard-constrained model has both a lower error, as
well as a significantly lower standard deviation as compared to the soft-constrained model.

By design, the objective function for feasible parameters 6 is zero. While numerical issues may
prevent exact feasibility, solving the equality constrained problem by additionally minimizing the
PDE residual helps the training procedure. The soft-constrained training method is trained only by
minimizing the PDE residual. We train the FNO model using the same hyperparameters as Li et al.
(2021). We denote the FNO model part of the architecture as fy. The PDE-CL constrains the output
of the FNO model by solving the linear system,

Yo, fu(fg)—rw = f(z). (16)

To train our model, we compute the Jacobian of this layer via implicit differentiation, with respect
to this linear system equation.

We sample 3721 points for the PDE-CL. We also sample 3721 points for the soft-constrained
method, which are all used to compute the residual in the loss function. We use N=4000 for the
number of basis functions in the PDE-CL.

We show plots against wall time in Figure C.1, and the distributions of errors over the test set in
Figure C.2.

D HARD CONSTRAINTS BOUND

To provide an evaluation of how hard the hard constraints are, we conduct an additional study where
we look at the error in prediction for points sampled and used to fit the PDE-CL against points that

17

Published as a conference paper at ICLR 2023

100 1 Error for points used in PDE-CL
Errer for points NOT used in PDE-CL
ED .
m .
-q.l:l .
20 4
D T T T T T T
—0.10 —0.05 0.00 0.05 0.10 0.15

Figure D.1: Histogram of errors: Error for points sampled by the PDE-CL, versus error for
points not sampled. We consider a trained model, and perform inference on a random PDE instance.
In this plot, we consider the 1D convection setting. The histogram shows that the error for points
used in the PDE-CL (1000 points) is about the same as error for points not used for the PDE-CL
(9000 points). This demonstrates that we do not need to fit the PDE-CL on all points of the grid.

were not sampled. With a trained hard-constrained model for 1D convection, we sample a batch of
points and create a density plot showing the error as a function of points used for fitting the PDE-CL
and points not used for fitting the PDE-CL. The histogram in Figure D.1 shows that the errors are
qualitatively the same between points used for fitting the PDE-CL and those not used. There are
1000 points used for fitting the PDE-CL, and 9000 points not used. Our results show that our model
achieves low error, even outside of the points used for fitting the PDE-CL.

E ABLATION: EVALUATING THE QUALITY OF THE LEARNED BASIS
FUNCTIONS

We implement an experiment to evaluate the quality (and the advantage) of our learned basis func-
tions, compared to cubic interpolation. This experiment aims to understand whether our learned
functions are useful outside of the points used for the constrained problem.

Problem setup. We start with a model trained on the 1D convection problem. The model was
trained by sampling 750 points for fitting the PDE-CL, and 250 different points for the residual in
the objective functions. The points were sampled from a 100x100 grid (10,000 points total). We
sample 750 points from the grid, and solve the corresponding PDE-CL, which gives us a candidate
PDE solution. For our baseline, We interpolate the solution we find on these 750 points to the 10,000
points using scipy.optimize’s cubic interpolation. We also interpolate to a 1000x1000 grid to
see how our model’s performance scales with resolution.

Results. We compare the above results with the output of our trained hard-constrained model.
Once the linear combination weights are fit (same as the baseline), we now use our learned basis
functions to perform inference over all 10,000 (or 1 million) points. We plot our results over the
test dataset in Figure E.la. The figure shows that using our model reduces the error, as compared to
using a standard interpolation on the hard-constrained points.

18

Published as a conference paper at ICLR 2023

Relative error
Relative error

8 -
= 00 g .

Learned model Interpolated

Learned model Interpolated

(a) 100x100 grid (b) 1000x1000 grid

Figure E.1: Quality of learned basis functions. We compare the interpolation from the hard-
constrained points against our model’s learned prediction. Our learned basis functions have lower
error, as compared to the baseline interpolation. The error gap increases with higher resolution on
the grid of interest (i.e., a finer discretization). Our learned basis functions are 36% more accu-
rate than the baseline interpolation for the 100x100 grid, and 37% more accurate than the baseline
interpolation for the 1000x1000 grid.

F COMPARISON TO NUMERICAL SOLVERS
We compare the complexity of our PDE-CL framework against numerical methods.

Problem setup. We define a n, x n; grid over a 1D domain with with n, samples. We have a time
horizon of [0, T, with n; samples. In this case, we assume that the PDE is linear. Let us suppose
that we set the number of basis functions to IV and the number of sampled points for solving the
PDE-CL to n = njnterior + Nrc + npc. The PDE-CL will then solve a (n + nye + npe) X N
linear system. Our method currently results in a dense linear system. Solving this linear system
has complexity O(max(n;nterior + n1c +npc, N)? x min(n + nrc + npc, N)). This is added
to a forward pass using the NN on the whole grid, once the optimal linear combination has been
computed. Fortunately, this forward pass is embarrassingly parallel.

On the other hand, a finite difference method such as Crank-Nicolson or Lax-Wendroff requires solv-
ing a tri-diagonal system of size n, at each ¢ step. This yields an overall complexity of O(n,, X ng).
Comparing the complexity of both methods, the PDE-CL is asymptotically faster than numerical
methods when,

max(n, N)? x min(n, N) < ng X n. 17

In our current framework, inference is marginally slower or on par with numerical solvers. How-
ever, as we increase the resolution of our grid (finer discretization), our method compares favorably
to the numerical solver—our computational cost increases more slowly than the numerical solver.
Additionally, the operations in our PDE-CL are poorly optimized for current hardware, i.e., GPU uti-
lization is low. Our method will greatly benefit from future improvements in hardware acceleration,
which is still a nascent field in the context of linear solvers on GPUs.

19

	Introduction
	Background and Related work
	Methods
	Problem setup
	A differentiable constrained layer for enforcing PDEs

	Experimental results and implementation
	2D Darcy Flow
	1D Burgers' equation
	1D convection

	Conclusions
	1D convection
	Details on the 1d Convection problem
	Details on the Darcy Flow problem
	Hard constraints bound
	Ablation: Evaluating the quality of the learned basis functions
	Comparison to numerical solvers

