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Abstract—Thermal issue is a major concern in 3D integrated
circuit (IC) design. Thermal optimization of 3D IC often re-
quires massive expensive PDE simulations. Neural network-based
thermal prediction models can perform real-time prediction for
many unseen new designs. However, existing works either solve
2D temperature fields only or do not generalize well to new
designs with unseen design configurations (e.g., heat sources and
boundary conditions). In this paper, for the first time, we propose
DeepOHeat, a physics-aware operator learning framework to
predict the temperature field of a family of heat equations with
multiple parametric or non-parametric design configurations.
This framework learns a functional map from the function space
of multiple key PDE configurations (e.g., boundary conditions,
power maps, heat transfer coefficients) to the function space
of the corresponding solution (i.e., temperature fields), enabling
fast thermal analysis and optimization by changing key design
configurations (rather than just some parameters). We test
DeepOHeat on some industrial design cases and compare it
against Celsius 3D from Cadence Design Systems. Our results
show that, for the unseen testing cases, a well-trained DeepOHeat
can produce accurate results with 1000× to 300000× speedup.

Index Terms—3D IC, thermal simulation, operator learning,
deep learning

I. INTRODUCTION AND RELATED WORK

The increasing transistor density on a silicon chip has led to

high power and heat density. The excessive heat can affect the

normal performance, reliability, and lifespan of semiconductor

chips. Due to the multiple stacked active silicon layers, 3D

IC design suffers from much higher power density [1]–[3].

Meanwhile, the increased complexity of 3D chips introduces

extra design configurations and system parameters and hence

prolongs the design cycle. Consequently, chip thermal opti-

mization, which provides the optimal thermal-aware floorplan

at an early stage, has become an important step in the 3D IC

design flow. Detailed and fast thermal simulators are needed

in various thermal-aware design optimization tools.

Discretization-based PDE solvers, such as finite-element

and finite-difference methods, have been widely used for

3D chip thermal analysis. The finite-element method (FEM),

though computationally expensive, provides the best accuracy

and flexibility [3], and is mostly used in commercial solvers

such as Celsius, ANSYS, and COMSOL. The finite-difference

methods (FDM) are simpler to implement and are widely

used in open-source solvers [4]–[6]. These thermal simulators

provide accurate temperature estimations but cost extensive

computational resources. Once a new design is generated,

designers need to re-run many simulations to optimize the

design case, which can be unaffordable for complicated tasks.

Some surrogate models have been developed to reduce the cost

of thermal prediction. For instance, model-order reduction [7],

[8] can accelerate each time-domain simulation via reducing

the number of state variables in a dynamic system. Data-driven

regression methods [9], [10] can model the dependence on

certain design parameters in a specified range, but the training

step often needs massive high-resolution PDE simulation

data. Neither technique can capture the dependence of the

temperature field on key PDE configurations (e.g., boundary

conditions, non-parametric heat source configurations).

Neural network-based methods can perform real-time pre-

dictions for unseen data. Several data-driven [11]–[13] and

physics-informed neural network-based (PINN) methods [14],

[15] have been proposed. However, these existing works either

fail to solve 3D full-chip temperature fields, lack generaliza-

tion to different PDE configurations, or need to be combined

with traditional solvers or additional computations. For exam-

ple, the data-driven method in [11] needs to be combined with

a coarse thermal profile obtained by a traditional FEM-based

method. The ML-based transient thermal solver in [12] needs

to be combined with convolution operations. The autoencoder-

decoder-based methods in [13], [14] are not applicable to 3D

volumetric power maps. The PINN-based approach in [15]

only takes input from geometric parameters rather than general

configurations, such as boundary conditions and power maps.

Paper Contributions. We propose the DeepOHeat frame-

work, which leverages recent advances in operator learning,

as an end-to-end thermal solver for ultra-fast 3D chip thermal

prediction under various (both parametric and non-parametric)

PDE configurations. Our contributions are as follows:

• For the first time, an end-to-end operator learning-based 3D

IC thermal simulator is proposed to solve a family of heat

equations under various PDE configurations.

• We propose a modular approach that encodes the PDE con-

figurations of 3D IC designs, including arbitrarily stacked

cuboidal geometry, individually defined boundary condi-

tions, 2D/3D power maps, and full-chip flexible material

conductivity distribution.

• The proposed DeepOHeat achieves 1000× to 300000×
speed up with satisfactory accuracy when compared against

Celsius 3D, a FEM-based commercial solver.
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II. BACKGROUND: THERMAL SIMULATION IN 3D IC

Here we provide a brief overview of thermal simulation

in the context of 3D IC design. Thermal simulation aims to

predict the temperature field of a given object (chip) S by

solving the heat conduction PDE globally. The 3D governing

PDE is written as
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where T and qV represent the temperature and the rate of inter-

nally generated energy per unit volume at any spatial-temporal

location (y1, y2, y3, t) ≡ (y, t). Here k, ρ, cp are material-

specific properties of S denoting material conductivity, mass

density, and heat capacity, respectively.

We focus on the static temperature field for isotropic materi-

als (i.e., ky1
=ky2

=ky3
=k), and simplify (1) by setting dT

dt
= 0:

k · ∇2T + qV = 0, (2)

in which ∇2 stands for the laplacian operator. We then solve

(2), with appropriately defined boundary conditions in the

context of 3D IC design, for various chip designs to find the

optimal design by thresholding the temperature field.

III. MODULAR CHIP CONFIGURATIONS FOR THERMAL

ANALYSIS

Without loss of generality, we model the geometry of a chip

as single or multiple stacked rectangular cuboid(s) as shown in

Fig. 1. For each cuboid, its temperature field depends on some

key design configurations which include, but are not limited

to, material/geometric parameters.

The first family of design configurations is the boundary

condition (BC) for each individual surface that is exposed to

the environment. We consider the following types of BCs:

• Dirichlet: the temperature field on a surface is fixed as qd:

T = qd. (3)

• Neumann: the temperature flux on a surface is fixed

−k
∂T

∂yi
= qn, (4)

where qn represents the local heat flux density at the surface.

• Adiabatic: a special case of Neumann BC when qn is 0
everywhere. This indicates a perfectly insulated surface.

• Convection: also known as Newton BC. This BC corre-

sponds to a balance between heat conduction and convection

in the same direction at the surface:

−k ·
∂T

∂yi
= h(T − Tamb). (5)

Here h and Tamb stand for the heat transfer coefficient at

the surface and the ambient temperature.

The second family of key design configurations are the

locations and intensity of external/internal heat sources. This

work considers the following two types of heat sources:

Fig. 1: Schematic figures of chip designs in thermal simulation.

The left one shows a general single cuboid chip model, of

which the right one is a concrete implementation.

• Surface/2D power: defined by the Neumann BC (4) when

qn is positive somewhere. Such qn is referred to as a

surface/2D power map.

• Volumetric/3D power: defined by the heat equation (2)

when qV is positive somewhere. Such qV is referred to as

a volumetric/3D power map.

We now present the thermal chip designs by several in-

dependent modular configurations as shown in Fig. 1. The

left figure shows a general single cuboid chip with different

BCs defined on each surface. The BC for the top surface also

defines a 2D power map. The uniform blue color for the dots

inside the cuboid indicates homogeneously distributed conduc-

tivity without any internal heat source. As a comparison, the

right figure indicates a concrete implementation. In this model,

we have volumetric power shown as the red dots in the middle

layer of the bottom cuboid with adiabatic BCs on all side

surfaces and convection BCs on the top and bottom surfaces.

The different colors applied to the convection surfaces and the

internal blue dots indicate different heat transfer coefficients

and inhomogeneously distributed conductivity.

The above design configurations can change the PDE struc-

ture and temperature field of a 3D IC significantly. Many of

them are described as functions instead of parameters, and they

cannot be handled by traditional machine learning techniques.

IV. THE DEEPOHEAT FRAMEWORK

Now we present DeepOHeat: a self-supervised operator

learning-based neural thermal solver enabling ultra-fast ther-

mal prediction. DeepOHeat takes functions that characterize

key design configurations (e.g., power maps, boundary condi-

tions, domain of interest) rather than just material or geometric

parameters as inputs to predict temperature fields in real time.

The key ideas of DeepOHeat are shown in Fig. 2.

A. Learning the Solution Dependence on Multiple PDE Con-

figurations via a Multi-input DeepONet

For succinct notations, we denote the heat equation of

interest (2) in the following general format

N (s(u1,u2, . . . ,uk)(y)) = 0. (6)

Here N is a symbolic representation of the simplified heat

equation (2). We denote the temperature field, i.e., the solution
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Fig. 2: The proposed DeepOHeat framework.

function of this PDE, as s. A concrete temperature field is de-

termined by a certain chip design specified by various config-

urations such as a power map and BCs. We present in general

k design configurations of interest (i.e., PDE configurations),

both parametric and non-parametric, as u1,u2, . . . ,uk. Given

specific PDE configurations {ui}
k
i=1, the temperature field on

the domain of interest is then evaluated on the corresponding

spatial coordinates y, yielding the final formal representation

as s(u1,u2, . . . ,uk)(y).
To avoid any potential confusion, we emphasize that each

ui, i = 1, 2, . . . , k, no matter which representation form it

uses, is represented as a function instead of a parameter

in DeepOHeat. Therefore, DeepOHeat is designed to learn a

functional map Gθ (θ denote all the neural network parameters

in DeepOHeat, i.e., weights and bias) that maps the function

space spanned by the PDE configurations {ui}
k
i=1, denoted by

U : U1 × U2 × · · · × Uk, to the corresponding function space

S spanned by its temperature field s(u1,u2, . . . ,uk)(y), i.e.,

Gθ : U → S. (7)

Such a map means that, a well-trained DeepOHeat is capable

of accurately predicting the temperature field given any unseen

design drawn from the same PDE configurations space U . To

learn this functional map, we leverage recent works in operator

learning, DeepONets [16] and multi-input DeepONets [17].

Encoding Design Configurations as Input Functions

of DeepOHeat. We consider the general case that k PDE

configurations are considered. Correspondingly, we will have k
different input functions. For the ith configuration, we consider

a random sample u
(j)
i drawn from its function space Ui. This

function (e.g., a 2D power map) is identified by its values

on fixed locations (x1,x2, . . . ,xm) (e.g., some grid points of

a surface), and is then fed as an m-dimensional vector into

the ith sub-network block, namely the ith “branch net” [16].

Repeating this process for all k design configurations, we

then have k different input functions and the corresponding

branch nets. All these configurations are from a certain design

thus share the same domain of interest. we then input all the

coordinates sampled from this simulation domain into another

sub-network, namely the ”trunk net”. To effectively learn the

high-frequency information of the temperature field, we also

apply a Fourier features mapping [18] to the first layer of the

trunk net, which is shown inside the dashed red box in the

trunk net part of Fig. 2.

Example. We consider the example shown in the left part

of Fig. 2. We see that for this single-cuboid chip, we define

a 2D power map on the top surface. The power map that can

have an arbitrary layout of heat sources, is with no doubt a

non-parametric function. We identify this 2D power map by its

values on equispaced grid points, which naturally form a two-

dimensional matrix as shown in Fig. 2. We then flatten this

matrix to a vector and feed it into the first branch net. If we

consider a 3D power map, everything will be exactly the same

except it will be identified by its values on three-dimensional

equispaced grid points. Meanwhile, we define a convection

BC on the bottom surface of the chip with a uniform HTC

distribution of value hb. In this case, the HTC on the bottom

surface can be seen as a constant function therefore only one

grid point is needed to identify this configuration. We then

input hb into the second branch net. Note that hb should still

be regarded as a function that has a parametric format instead

of a parameter. If the surface has an inhomogeneous HTC

distribution, one can simply encode it similarly as we encode a

2D power map. For the side surfaces of the chip, other BCs are

defined accordingly and encoded as other DeepOHeat inputs

or just fixed invariant configurations.

With k defined PDE configuration inputs and the domain

coordinates, we have in total k branch nets and one trunk net,

each of which outputs a q-dimensional feature vector. We then

follow the ideas in [17] to combine all these output features

via Hadamard (element-wise) product and then sum up the
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resulting vector to a scalar output that represents the predicted

temperature field, denoted as T = Gθ(u1,u2, . . . ,uk)(y).

B. Training DeepOHeat via Physics-Informed Loss

Now we explain how to train the DeepOHeat network.

According to [16], a DeepONet is generally trained via a data-

driven approach, in which data triplets (y, {ui}
k
i=1, s) need

to be collected via massive runs of numerical simulation. For

relatively complicated chip designs, a single FEM simulation

might cost hours or even days to complete. Therefore, large-

scale data collection is practically prohibitive in this context.

Instead, we follow the idea from a recent approach [19], which

leveraged the ideas from physics-informed neural networks

(PINNs) [20] to train a single-input DeepONet for solving

parametric PDEs. We extend their work to handle multi-input

scenarios as shown on the right of Fig. 2.

Again we consider the aforementioned general case where

k chip design configurations are considered. For the ith

configuration ui, we first index all the coordinates that are

located in its designated regions, such as a boundary surface,

denoted as yi. Then on yi, we impose a physics constraint

Li. If ui represents a power map, we denote Li as

Li = ‖P (Gθ(u1,u2, . . . ,uk)(yi))‖ . (8)

For a 2D power map, P is a symbolic representation of the

Neumann BC (4). For a 3D power map, P will represent the

heat equation (2) with non-zero qV . If ui represents a general

BC, such as convection or Dirichlet BC, we denote Li as

Li = ‖Bi (Gθ(u1,u2, . . . ,uk)(yi))‖ , (9)

where Bi denotes the formulation of the corresponding BC.

For the entire domain of interest, we impose the PDE con-

straint, except for the region where a 3D power map is

imposed, as

Lr = ‖N (Gθ(u1,u2, . . . ,uk)(y))‖ . (10)

We then obtain the total loss as

Ltotal = Lr +

k
∑

i=1

Li. (11)

We train DeepOHeat by minimizing the total loss via gradient

descent based on automatic differentiation algorithms [21].

V. EXPERIMENTS

In this section, we present two implementations of the pro-

posed DeepOHeat and compare our results with Celsius 3D, a

state-of-the-art numerical solver for 3D chip thermal analysis

from Cadence Design Systems. Our results demonstrate that,

for any unseen designs, a well-trained DeepOHeat is capable

of producing satisfactory results with at least 1000× speedup.

A. 2D Power Map Configuration on The Top Surface

As the power map controls the heat generation in a certain

chip design, the prediction performance of DeepOHeat on

unseen new power maps are of major interest. For illustration,

here we focus solely on optimizing a 2D power map by

training a single-input DeepOHeat.

1) Problem setup: We consider a 21 × 21 × 11 mesh

grid-based single-cuboid geometry which represents a 1mm×
1mm × 0.5mm chip in practice. This geometry is similar to

the one shown in the left of Fig. 1 and has in total of 4851

grid points. We define a 2D power map on the top surface,

in which a one-unit power corresponds to a 0.00625(mW )
power in real-world settings. We define Adiabatic BC on all

side surfaces and convection BC on the bottom surface with

HTC = 500W/(m2K) and Tamb = 298.15(K). A homoge-

neous thermal conductivity k = 0.1W/(mK) is assigned to

the entire domain and no volumetric power is applied.

2) Generating training power maps: We sample all the

training power maps from a two-dimensional standard Gaus-

sian random field (GRF) with the length scale parameter equal

to 0.3. The length scale controls the smoothness of the sampled

functions. We choose 0.3 in this example to generate relatively

smooth power maps as shown on the left of Fig. 4. One

can also tune this parameter to generate training power maps

similar to those in specific optimization tasks. Corresponding

to our 21×21 mesh grids on the top surface, we identify each

power map by its values on these coordinates formatted as

a matrix of the same size. We then flatten these matrices to

vectors of length 441 as the input of the branch net.

3) DeepOHeat settings: In this example, we use a 9-layer

branch net with 256 neurons per layer combined with a 6-

layer trunk net with 128 neurons per layer. The first layer

of the trunk net is a Fourier features mapping [18] where

its coefficients are sampled from a normal distribution with

zero mean and 2π standard deviation. The input dimensions

of the branch net and the trunk net are 441 and 3, which

correspond to the dimensions of the encoded power map and

the 3D spatial coordinates, respectively. The output dimensions

of the two sub-networks are both 128. We set all the activation

functions as the ”Swish” function proposed by Ramachandra

et al. [22]. We find in experiments that Swish yields relatively

better results compared to other popular activation functions

used in PINNs, such as Sine and Tanh.

4) Training settings: We train this DeepOHeat by 10000

iterations to guarantee convergence, which takes 10 hours on

a single Tesla V100 GPU. In each iteration, 50 input functions

are sampled from the given GRF and fed into the branch net.

For each function, the 4851 mesh grid points of the entire

simulation domain are fed into the trunk net. We therefore

have a 242550×441 input for the branch net and a 242550×3
input for the trunk net. We choose the initial learning rate as

1e-3 and decay the learning rate by 0.9× every 500 iterations.

5) Test settings: We aim to compare the predicted temper-

ature fields with Celsius 3D element-wisely on unseen new

power maps. There exists a minor discrepancy between the

power maps of Celsius 3D and DeepOHeat. As shown in

the middle of Fig. 4, the power maps in Celsius 3D are tile-

based, different from the grid-based ones in DeepOHeat. To

accommodate these realistic power maps used in Celsius 3D,

we interpolate the 20× 20 tile-based power maps to 21× 21
grid-based power maps, as shown in the middle and right of

Fig. 4. Such a transformation not only enables DeepOHeat
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sampled inside (on) the entire domain. We don’t use mesh

because we don’t have mesh-based encoding for this example.

We define convection BCs for both top and bottom surfaces

and assume HTCs are constantly distributed. We define a

single-layer uniform volumetric power with a thickness of

0.05mm and the value of 0.000625(W ). The settings for side

surfaces and thermal conductivity are the same as before.

In each iteration, we sample 20 i.i.d samples uniformly from

a squared area [333.33, 1000] × [333.33, 1000] (W/m2K),
corresponding to 20 different HTCs for both two surfaces.

For each sampled HTC tuple, we randomly draw a new set

of coordinates from the simulation domain. Combining these,

we have two 140000× 1 inputs for the two branch nets and a

140000× 3 input for the trunk net.

In this example, we use relatively simpler networks for the

two branch nets, each of which contains 5 fully-connected

layers with only 20 neurons per layer. The trunk net still has

6 layers with 128 neurons per layer and a Fourier features

mapping defined in the first layer with a π standard deviation

this time. The output dimensions for all sub-networks are 50.

After training DeepOHeat for 5000 iterations (about 2

hours), we evaluate its performance on some unseen values

sampled from the same 2D region. For example, we pick

two sets of HTCs, (1000, 333.33) and (500, 500), as the test

cases and show the corresponding results in each row of

Fig. 5. Although different HTCs make only slight differences,

DeepOHeat still yields accurate predictions in both cases. As

shown by the color bars in Fig. 5, the differences in the

predicted maximal and minimal temperatures between Celsius

3D and DeepOHeat are within 0.1(K). In the first case where

HTC = 1000 on the top surface and HTC = 333.33 on the

bottom surface (first row in Fig. 5), the MAPE and PAPE of

DeepOHeat are 0.032% and 0.043%. In the second case where

HTC = 500 on both two surfaces (second row in Fig. 5), the

MAPE and PAPE of DeepOHeat are 0.011% and 0.025%.

Celsius 3D costs around 2min for a single simulation on

the aforementioned CPU. The runtime for DeepOHeat remains

unchanged. Therefore the speed up in this example is 1200×
and 120000× on CPU and GPU, respectively.

VI. CONCLUSION

In this work, for the first time, we have introduced a physics-

aware operator learning framework, named DeepOHeat, to

perform ultra-fast 3D chip thermal prediction under multiple

chip design configurations. We have proposed a modular chip

thermal model to encode various chip geometries, power maps,

and boundary conditions. We have applied a physics-informed

multi-input DeepONet to seamlessly solve a family of heat

equations that take multiple BCs and the power map as

input configurations with no data supervision required. The

experiments on two specific tasks show that a well-trained

DeepOHeat can predict the temperature fields on unseen

new chip designs with high accuracy while no noticeable

simulation time is required. In the future, we will further

investigate how DeepOHeat performs in more complicated

geometries and in optimizing 3D power maps.
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