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Abstract

A private learner is trained on a sample of labeled points and generates
a hypothesis that can be used for predicting the labels of newly sampled
points while protecting the privacy of the training set [Kasiviswannathan
et al., FOCS 2008]. Past research uncovered that private learners may need
to exhibit significantly higher sample complexity than non-private learners
as is the case of learning of one-dimensional threshold functions [Bun et
al., FOCS 2015, Alon et al., STOC 2019].

We explore prediction as an alternative to learning. A predictor answers a
stream of classification queries instead of outputting a hypothesis. Earlier
work has considered a private prediction model with a single classification
query [Dwork and Feldman, COLT 2018]. We observe that when answering
a stream of queries, a predictor must modify the hypothesis it uses over
time, and in a manner that cannot rely solely on the training set.

We introduce private everlasting prediction taking into account the privacy
of both the training set and the (adaptively chosen) queries made to the
predictor. We then present a generic construction of private everlasting
predictors in the PAC model. The sample complexity of the initial training
sample in our construction is quadratic (up to polylog factors) in the VC
dimension of the concept class. Our construction allows prediction for
all concept classes with finite VC dimension, and in particular threshold
functions over infinite domains, for which (traditional) private learning is
known to be impossible.

1 Introduction

A PAC learner for a concept class C is given labeled examples S = {(xi , yi )}i∈[n] drawn i.i.d.

from an unknown underlying probability distribution D over a data domain X and outputs
a hypothesis h that can be used for predicting the label of fresh points xn+1,xn+2, . . . sampled
from the same underlying probability distribution D [Valiant, 1984]. It is well known that
when points are labeled by a concept selected from a concept class C = {c : X → {0,1}} then
learning is possible with sample complexity proportional to VC(C).
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Learning often happens in settings where the underlying training data is related to individ-
uals and privacy-sensitive. For legal, ethical, or other reasons, the learner is then required,
to protect personal information from being leaked in the learned hypothesis h. Private
learning was introduced by Kasiviswanathan et al. [2011] as a theoretical model for studying
such tasks. A private learner is a PAC learner that preserves differential privacy with respect
to its training set S . That is, the learner’s distribution on outcome hypotheses must not
depend too strongly on any single example in S . Kasiviswanathan et al. showed that any
finite concept class can be learned privately and with sample complexity n =O(log |C |), a
value that is sometimes significantly higher than the VC dimension of the concept class C.

It is now understood that the gap between the sample complexity of private and non-private
learners is essential – an important example is private learning of threshold functions
(defined over an ordered domain X as Cthresh = {ct}t∈X where ct(x) = 1xgt), which requires
sample complexity that is asymptotically higher than the (constant) VC dimension of Cthresh.
In more detail, with pure differential privacy, the sample complexity of private learning is
characterized by the representation dimension of the concept class [Beimel et al., 2013a].
The representation dimension of Cthresh (hence, the sample complexity of private learning
thresholds) is Θ(log |X |) [Feldman and Xiao, 2015]. With approximate differential privacy,
the sample complexity of learning threshold functions is Θ(log∗ |X |) [Beimel et al., 2013b,
Bun et al., 2015, Alon et al., 2019, Kaplan et al., 2020, Cohen et al., 2022]. Hence, whether
with pure or with approximate differential privacy, the sample complexity of privately
learning thresholds grows with the cardinality of the domain |X | and no private learner
exists for this task over infinite domains. In contrast, non-private learning is possible with
constant sample complexity (independent of |X |).

Privacy preserving (black-box) prediction. Dwork and Feldman [2018] proposed privacy-
preserving prediction as an alternative for private learning. Noting that “[i]t is now known
that for some basic learning problems [. . .] producing an accurate private model requires
much more data than learning without privacy,” they considered a setting where “users
may be allowed to query the prediction model on their inputs only through an appropriate
interface”. That is, a setting where the learned hypothesis is not made public and may be
accessed only in a black-box manner via a privacy-preserving query-answering prediction
interface. The prediction interface is required to preserve the privacy of its training set S :

Definition 1.1 (private prediction interface [Dwork and Feldman, 2018] (rephrased)). A
prediction interface A is (ϵ,¶)-differentially private if for every interactive query generating
algorithm Q, the output of the interaction between Q andA(S) is (ϵ,¶)-differentially private
with respect to S .

Dwork and Feldman focused on the setting where the entire interaction between Q and
A(S) consists of issuing a single prediction query and answering it:

Definition 1.2 (Single query prediction [Dwork and Feldman, 2018]). LetA be an algorithm
that given a set of labeled examples S and an unlabeled point x produces a label y. A is
an (ϵ,¶)-differentially private prediction algorithm if for every x, the output A(S,x) is
(ϵ,¶)-differentially private with respect to S .

W.r.t. answering a single prediction query, Dwork and Feldman showed that the sample
complexity of such predictors is proportional to the VC dimension of the concept class.

1.1 Our contributions

We extend private prediction to answering a sequence – unlimited in length – of prediction
queries. We refer to this as private everlasting prediction (PEP). Our goal is to present a
generic private everlasting predictor with low training sample complexity |S |.

1.1.1 Private prediction interfaces when applied to a large number of queries

We begin by examining private everlasting prediction under the framework of Definition 1.1.
We prove:
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Theorem 1.3 (informal version of Theorem 3.3). Let A be a private everlasting prediction
interface for concept class C and assume A bases its predictions solely on the initial training set S ,
then there exists a private learner for concept class C with sample complexity |S |.

This means that everlasting predictors that base their prediction solely on the initial training
set S are subject to the same complexity lowerbounds as private learners. Hence, to avoid
private learning lowerbounds, private everlasting predictors need to rely on more than
the initial training sample S as a source of information about the underlying probability
distribution and the labeling concept.

In this work, we choose to allow the everlasting predictor to rely on the queries made –
which are unlabeled points from the domain X – assuming the queries are drawn from
the same distribution the initial training S is sampled from. This requires modifying the
privacy definition, as Definition 1.1 does not protect the queries issued to the predictor.

1.1.2 A definition of private everlasting predictors

Our definition of private everlasting predictors is motivated by the observations above.
Consider an algorithm A that is first fed with a training set S of labeled points and then
executes for an unlimited number of rounds, where in round i algorithmA receives as input
a query point xi and produces a label ŷi . We say that A is an everlasting predictor if, when
the (labeled) training set S and the (unlabeled) query points are coming from the same
underlying distribution, A answers each query points xi by invoking a good hypothesis
hi (i.e., hi has low generalization error), and hence the label ŷi produced by A is correct
with high probability. We say that A is a private everlasting predictor if its sequence of
predictions ŷ1, ŷ2, ŷ3, . . . protects both the privacy of the training set S and the query points
x1,x2,x3, . . . in face of any adversary that chooses the query points adaptively.

We emphasize that while private everlasting predictors need to exhibit average-case utility
– as good prediction is required only for the case where the initial training set S and the
queries x1,x2,x3, . . . are selected i.i.d. from the same underlying distribution – our privacy
requirement is worst-case, and holds in face of an adaptive adversary that chooses each
query point xi after receiving the prediction provided for (x1, . . . ,xi−1), and not necessarily
in accordance with any probability distribution.

1.1.3 A generic construction of private everlasting predictors

We show a reduction from private everlasting prediction of a concept class C to non-private
PAC learning of C. Our Algorithm GenericBBL, presented in Section 6, executes in rounds.

Initialization. The input to the first round is a labeled training set S where |S | =
O

(

(VC(C))2
)

, assumed to be labeled consistently with some unknown target concept c ∈ C.
Denote S1 = S and c1 = c.

Rounds. Each round begins with a collection Si of labeled examples and ends with a
newly generated collection of labeled examples Si+1 that feeds as input for the next round.
The size of these collections grows by a constant factor at each round, to allow for the
accumulated error of the predictor to converge. The construction ensures that each labeled
set Si is consistent with some concept in ci ∈ C, which is not necessarily the original target
concept c, but has a bounded generalization error with respect to c. In more detail, the
construction ensures that Prx∼D[ci+1(x) , ci (x)] decreases by a factor of two in every round,
and hence, by the triangle inequality, Prx∼D[ci (x) , c(x)] is bounded.

We briefly describe the main computations performed in each round of GenericBBL.5

• Round initialization: At the outset of a round, the labeled set Si is partitioned into
sub-sets, each with number of samples which is proportional to the VC dimension

(so we have ≈ |Si |
VC(C) sub-sets). Each of the sub-sets is used for training a classifier

5Important details, such as privacy amplification via sampling and management of the learning
accuracy and error parameters are omitted from the description provided in this section.
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non-privately, hence creating a collection of classifiers Fi = {f : X → {0,1}} that are used
throughout the round.

• Query answering: Queries are issued to the predictor in an online manner. A query is
first labeled by each of the classifiers in Fi . Then the predicted label is computed by
applying a privacy-preserving majority vote on these intermediate labels. By standard

composition theorems for differential privacy, we could answer roughly |Fi |2 ≈
( |Si |
VC(C)

)2

queries without exhausting the privacy budget.

• Generating a labeled set for the following round: A round ends with the preparation
of a collection Si+1 of labeled samples that is to be used in the initialization of next
round. We explore alternatives for creating Si+1:

– As at the end of a round the predictor has already labeled all the queries presented
during the round’s execution, one alternative is to let Si+1 consist of these queries
and the labels provided for them. Note, however, that it is not guaranteed that
the majority vote would result in a set of labels that are consistent with some
concept in C, even if Si is consistent with some concept in C. Hence, following
this alternative would require the use of non-private agnostic learners instead.
Furthermore, the error introduced by the majority vote can be larger than the
generalization error of the classifiers in Fi by a constant factor greater than one.
This may prevent the generalization error of the classifiers used in future rounds
from converging.6

– To overcome this problem, we use Algorithm LabelBoost – a tool developed by
Beimel et al. [2021] in the context of private semi-supervised learning. LabelBoost
takes as input the sample Si (labeled by a concept ci ∈ C) and the (unlabeled)
queries made during the round. It labels them with a concept ci+1 ∈ C where the
error of ci+1 with respect to ci , i.e., Prx∼D[ci+1(x) , ci (x)] is bounded.

• Controlling the generalization error: Let Si+1 denote the (re)labeled query points

obtained in the ith round. This is a collection of size |Si+1| ≈
( |Si |
VC(C)

)2
. Hence, provided

that |Si | ≳ (VC(C))2 we get that |Si+1| > |Si |. This allows to lower the accuracy parame-
ters of the non-private learners in each round, and hence ensure that the total error
converges.

Theorem 1.4 (informal version of Theorem 6.1). For every concept class C, Algorithm
GenericBBL is a private everlasting predictor requiring an initial set of labeled examples which is
(upto polylogarithmic factors) quadratic in the VC dimension of C.

1.2 Related work

Beyond the work of Dwork and Feldman [2018] on private prediction mentioned above, our
work is related to private semi-supervised learning and joint differential privacy.

Semi-supervised private learning. As in the model of private semi-supervised learning of
Beimel et al. [2021], our predictors depend on both labeled and unlabeled samples. Beyond
the difference between outputting a hypothesis and providing black-box prediction, a major
difference between the settings is that in the work of Beimel et al. [2021] all samples –
labeled and unlabeled – are given at once at the outset of the learning process whereas
in the setting of everlasting predictors the unlabeled samples are supplied in an online
manner. Our construction of private everlasting predictors uses tools developed for the
semi-supervised setting, and in particular Algorithm LabelBoost of of Beimel et al.

Joint differential privacy. Kearns et al. [2015] introduced joint differential privacy (JDP)
as a relaxation of differential privacy applicable for mechanism design and games. For

6to see that the majority vote can increase the generalization error by a constant factor consider
three classifiers f1, f2, f3, each with generalization error ³, and let A,B,C be three disjoint subsets of
the support of the underlying distribution, each of probability weight ³/2. If the classifier f1 errs on
inputs in A∪B, the classifier f2 errs on A∪C, and f3 errs on B∪C then the majority of f1, f2, f3 errs
on inputs in A∪B∪C and hence the generalization error grows from ³ to 1.5³.
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every user u, JDP requires that the outputs jointly seen by all other users would preserve
differential privacy w.r.t. the input of u. Crucially, in JDP users select their inputs ahead of
the computation. In our settings, the inputs to a private everlasting predictor are prediction
queries which are chosen in an online manner, and hence a query can depend on previous
queries and their answers. Yet, similarly to JDP, the outputs provided to queries not
performed by a user u should jointly preserve differential privacy w.r.t. the query made by
u. Our privacy requirement hence extends JDP to an adaptive online setting.

Additional works on private prediction. Bassily et al. [2018] studied a variant of the
private prediction problem where the algorithm takes a labeled sample S and is then
required to answer m prediction queries (i.e., label a sequence of m unlabeled points
sampled from the same underlying distribution). They presented algorithms for this task
with sample complexity |S | ≳

√
m. This should be contrasted with our model and results,

where the sample complexity is independent of m. The bounds presented by Dwork and
Feldman [2018] and Bassily et al. [2018] were improved by Dagan and Feldman [2020] and
by Nandi and Bassily [2020] who presented algorithms with improved dependency on the
accuracy parameter in the agnostic setting.

1.3 Discussion and open problems

We show how to transform any (non-private) learner for the class C (with sample complexity
proportional to the VC dimension of C) to a private everlasting predictor for C. Our
construction is not polynomial time due to the use of Algorithm LabelBoost, and requires
an initial set S of labeled examples which is quadratic in the VC dimension. We leave open
the question whether |S | can be reduced to be linear in the VC dimension and whether the
construction can be made polynomial time. A few remarks are in order:

1. While our generic construction is not computationally efficient, it does result in efficient
learners for several interesting special cases. Specifically, algorithm LabelBoost can be
implemented efficiently whenever given an input sample S it is possible to efficiently
enumerate all possible dichotomies from the target class C over the points in S . In
particular, this is the case for the class of 1-dim threshold functions Cthresh, as well as
additional classes with constant VC dimension. Another notable example is the class
Cenc
thresh which intuitively is an “encrypted” version of Cthresh. Bun and Zhandry [2016]

showed that (under plausible cryptographic assumptions) the class Cenc
thresh cannot be

learned privately and efficiently, while it can be learned efficiently non-privately. Our
construction can be implemented efficiently for this class. This provides an example
where private everlasting prediction can be done efficiently, while (standard) private
learning is possible but necessarily inefficient.

2. It is now known that some learning tasks require the produced model to memorize
parts of the training set in order to achieve good learning rates, which in particular
disallows the learning algorithm from satisfying (standard) differential privacy [Brown
et al., 2021]. Our notion of private everlasting prediction circumvents this issue, since
the model is never publicly released and hence the fact that it must memorize parts
of the sample is not of a direct privacy threat. In other words, our work puts forward
a private learning model which, in principle, allows memorization. This could have
additional applications in broader settings.

3. As mentioned above, in general, private everlasting predictors cannot base their predic-
tions solely on the initial training set, and in this work we choose to rely on the queries
presented to the algorithm (in addition to the training set). Our construction can be
easily adapted to a setting where the content of the blackbox is updated based on fresh
unlabeled samples (whose privacy would be preserved), instead of relying on the query
points themselves. This might be beneficial to avoid poisoning attacks via the queries.
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2 Preliminaries

2.1 Preliminaries from differential privacy

Definition 2.1 ((ϵ,¶)-indistinguishability). Let R0,R1 be two random variables over the
same support. We say that R0,R1 are (ϵ,¶)-indistinguishable if for every event E defined
over the support of R0,R1,

Pr[R0 ∈ E] f eϵ ·Pr[R1 ∈ E] + ¶ and Pr[R1 ∈ E] f eϵ ·Pr[R0 ∈ E] + ¶.

Definition 2.2. Let X be a data domain. Two datasets x,x′ ∈ Xn are called neighboring if
|{i : xi , x′i }| = 1.

Definition 2.3 (differential privacy [Dwork et al., 2006]). A mechanism M : Xn → Y is
(ϵ,¶)-differentially private if M(x) and M(x′) are (ϵ,¶)-indistinguishable for all neighboring
x,x′ ∈ Xn.

In our analysis, we use the post-processing and composition properties of differential
privacy, that we cite in their simplest forms.

Proposition 2.4 (post-processing). LetM1 : X
n → Y be an (ϵ,¶)-differentially private algorithm

and M2 : Y → Z be any algorithm. Then the algorithm that on input x ∈ Xn outputs M2(M1(x))
is (ϵ,¶)-differentially private.

Proposition 2.5 (composition). Let M1 be a (ϵ1,¶1)-differentially private algorithm and let
M2 be (ϵ2,¶2)-differentially private algorithm. Then the algorithm that on input x ∈ Xn outputs
(M1(x),M2(x) is (ϵ1 + ϵ2,¶1 + ¶2)-differentially private.

Theorem 2.6 (Advanced composition Dwork et al. [2010b]). Let M1, . . . ,Mk : X → Y
be (ε,¶)-differentially private algorithms. Then the algorithm that on input x ∈ X outputs

(M1(x), . . . ,Mk(x)) is (ε
′ , k¶+¶′)-differentially private, where ε′ =

√

2k ln(1/¶′) ·ε for every ¶′ > 0.

Definition 2.7 (Laplace mechanism [Dwork et al., 2006]). For f : Xn → R Let ∆f =
max(f (x)− f (x′)), where the maximum is taken over all neighboring x,x′ ∈ Xn. The Laplace
mechanis is M(x) = f (x) +Y , where Y is sampled from the laplace distribution Lap(∆f /ε).
The Laplace mechanism is (ε,0)-differentially private.

Definition 2.8 (Exponential mechanism [McSherry and Talwar, 2007]). Let q : Xn ×Y → R

be a score function defined over data domain X and output domain Y . Define ∆ =
max(|q(x,y)− q(x′ , y)|) where the maximum is taken over all y ∈ Y and all neighbouring
databases x,x′ ∈ Xn. The exponential mechanism is the (ϵ,0)-differentially private mecha-

nism which selects an output y ∈ Y with probability proportional to e
ϵq(x,y)
2∆ .

Claim 2.9 (Privacy amplification by sub-sampling [Kasiviswanathan et al., 2011]). Let A
be an (ε′ ,¶′)-differentially private algorithm operating on a database of size n. Let ε f 1 and
let t = n

ε (3 + exp(ε′)). Construct an algorithm B operating the database D = (zi )
t
i=1. Algorithm

B randomly selects a subset J ¦ {1,2, . . . , t} of size n, and executes A on DJ = (zi )i∈J . Then B is
(

ε, 4ε
3+exp(ε′)¶

′
)

-differentially private.

2.2 Preliminaries from PAC learning

A concept class C over data domain X is a set of predicates c : X → {0,1} (called concepts)
which label points of the domain X by either 0 or 1. A learner A for concept class C is
given n examples sampled i.i.d. from an unknown probability distribution D over the data
domain X and labeled according to an unknown target concept c ∈ C. The learner should
output a hypothesis h : X → [0,1] that approximates c for the distribution D. More formally,

Definition 2.10 (generalization error). The generalization error of a hypothesis h : X → [0,1]
with respect to concept c and distribution D is defined as errorD(c,h) = Expx∼D[|h(x)− c(x)|].
Definition 2.11 (PAC learning [Valiant, 1984]). Let C be a concept class over a domain X.
Algorithm A is an (³,´,n)-PAC learner for C if for all c ∈ C and all distributions D on X,

Pr[(x1, . . . ,xn) ∼ Dn ; h ∼ A((x1, c(x1)), . . . , (xn, c(xn)) ; errorD(c,h) f ³] g 1− ´,

where the probability is over the sampling of (x1, . . . ,xn) from D and the coin tosses of A.
The parameter n is the sample complexity of A.
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See Appendix A for additional preliminaries on PAC learning.

2.3 Preliminaties from private learning

Definition 2.12 (private PAC learning [Kasiviswanathan et al., 2011]). Algorithm A is
a (³,´,ϵ,¶,n)-private PAC learner if (i) A is an (³,´,n)-PAC learner and (ii) A is (ϵ,¶)
differentially private.

Kasiviswanathan et al. [2011] provided a generic private learner with O(log(|X |)) labeled
samples.7 Beimel et al. [2013a] introduced the representation dimension and showed that
any concept class C can be privately learned with Θ(RepDim(C)) samples. For the sample
complexity of (ϵ,¶)-differentially private learning of threshold functions over domain X,
Bun et al. [2015] gave a lower bound of Ω(log∗ |X |). Recently, Cohen et al. [2022] gave a
(nearly) matching upper bound of Õ(log∗ |X |).

3 Towards private everlasting prediction

In this work, we extend private prediction to answering any sequence of prediction queries
– unlimited in length. Our main goal is to present a generic private everlasting predictor
with low training sample complexity |S |.
Definition 3.1 (everlasting prediction). LetA be an algorithm with the following properties:

1. Algorithm A receives as input n labeled examples S = {(xi , yi )}ni=1 ∈ (X × {0,1})n and
selects a hypothesis h0 : X → {0,1}.

2. For round r ∈ N, algorithm A gets a query, which is an unlabeled element xn+r ∈ X,
outputs hr−1(xn+r ) and selects a hypothesis hr : X → {0,1}.

We say that A is an (³,´,n)-everlasting predictor for a concept class C over a domain X if the
following holds for every concept c ∈ C and for every distribution D over X. If x1,x2, . . . are
sampled i.i.d. from D, and the labels of the n initial samples S are correct, i.e., yi = c(xi ) for
i ∈ [n], then Pr[∃r g 0 s.t. errorD(c,hr ) > ³] f ´, where the probability is over the sampling
of x1,x2, . . . from D and the randomness of A.

Applying the Dwork-Feldman notion of a private prediction interface to everlasting predic-
tors we get:

Definition 3.2. An algorithm A is an (³,´,ϵ,¶,n)-everlasting differentially private predic-
tion interface if (i) A is a (ϵ,¶)-differentially private prediction interface M (as in Defini-
tion 1.1), and (ii) A is an (³,´,n)-everlasting predictor.

As a warmup, consider an (³,´,ϵ,¶,n)-everlasting differentially private prediction interface
A for concept class C over (finite) domain X (as in Definition 3.2 above). Assume thatA does
not vary its hypotheses, i.e. (in the language of Definition 3.1) hr = h0 for all r > 0.8 Note
that a computationally unlimited adversarial querying algorithm can recover the hypothesis
h0 by issuing all queries x ∈ X. Hence, in using A indefinitely we lose any potential benefits
to sample complexity of restricting access to h0 to being black-box and getting to the point
where the lower-bounds on n from private learning apply. A consequence of this simple
observation is that a generic private everlasting predictor should answer all prediction
queries with a single hypothesis – it should modify its hypothesis over time as it processes
new queries.

We now take this observation a step further, showing that a private everlasting predictor
that answers prediction queries solely based on its training sample S (and randomness,
but not on the queries) is subject to the same sample complexity lowerbounds as private
learners.

7We omit the dependency on ϵ,¶,³,´ in this brief review.
8Formally, A can be thought of as two mechanisms A = (M0,M1) where M0 is (ϵ,¶)-differentially

private. (i) On input a labeled training sample S mechanism M0 computes a hypothesis h0. (ii) On a
query x ∈ X mechanism M1 replies h0(x).
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Consider an (³,´ < 1/8,ϵ,¶,n)-everlasting differentially private prediction interface A for
concept class C over (finite) domain X that upon receiving the training set S ∈ (X × {0,1})n
selects an infinite sequence of hypotheses {hr }rg0 where hr : X → {0,1}. Formally, we
can think of A as composed of three mechanisms A = (M0,M1,M2) where M0 is (ϵ,¶)-
differentially private:

• On input a labeled training sample S ∈ (X × {0,1})n mechanism M0 computes an
initial state and an initial hypothesis (Ã0,h0) =M0(S).

• On a query xn+r mechanism M1 produces an answer M1(xn+r ) = hi (xn+r ) and mech-
anism M2 updates the hypothesis-state pair (hr+1,Ãr+1) =M2(Ãr ).

Note that as M0 and M2 do not receive the sequence {xn+r }rg0 as input, the sequence {hr }rg0
depends solely on S . Furthermore as M1 and M2 post-process the outcome of M0, i.e., the
sequence of queries and predictions {(xr ,hr (xr ))}rg0 preserves (ϵ,¶)-differential privacy with
respect to the training set S . In Appendix B we prove:

Theorem 3.3. A can be transformed into a (O(³),O(´),ϵ,¶,O(n log(1/´))-private PAC learner
for C.

4 Private everlasting prediction – definition

Theorem 3.3 requires us to seek private predictors whose prediction relies on more infor-
mation than what is provided by the initial labeled sample. Possibilities include requiring
the input of additional labeled or unlabeled examples during the lifetime of the predictor,
while protecting the privacy of these examples.

We choose to rely on the queries for updating the predictor’s internal state. This introduces
a potential privacy risk for these queries as sensitive information about a query may be
leaked in the predictions following it. Furthermore, we need take into account that a privacy
attacker may choose their queries adversarially and adaptively.

Definition 4.1 (private everlasting black-box prediction). An algorithm A is an (³,´,ε,¶,n)-
private everlasting black-box predictor for a concept class C if

1. Prediction: A is an (³,´,n)-everlasting predictor for C (as in Definition 3.1).

2. Privacy: For every adversary B and every t g 1, the random variables View0
B,t and

View1
B,t (defined in Figure 1) are (ε,¶)-indistinguishable.

5 Tools from prior works

We briefly describe tools from prior works that we use in our construction. See Appendix C
for a more detailed account.

Algorithm LabelBoost [Beimel et al., 2021]: Algorithm LabelBoost takes as input a
partially labeled database S ◦T ∈ (X × {0,1,§})∗ (where the first portion of the database, S ,
contains examples by some concept c ∈ C) and outputs a similar database where both S and
T are (re)labeled by a concept h ∈ C such that errorD(c,h) is bounded. We use the following
lemmata from Beimel et al. [2021]:

Lemma 5.1 (privacy of Algorithm LabelBoost). Let A be an (ϵ,¶)-differentially private al-
gorithm operating on labeled databases. Construct an algorithm B that on input a partially
labeled database S◦T ∈ (X × {0,1,§})∗ applies A on the outcome of LabelBoost(S◦T ). Then, B
is (ϵ +3,4e¶)-differentially private.

Lemma 5.2 (Utility of Algorithm LabelBoost). Fix ³ and ´, and let S◦T be s.t. S is labeled

by some target concept c ∈ C, and s.t. |T | f ´
eVC(C)exp(

³|S |
2VC(C) ) − |S |. Consider the execution

of LabelBoost on S◦T , and let h denote the hypothesis chosen by LabelBoost to relabel S◦T .
With probability at least (1− ´) we have that errorS (h) f ³.

8



Parameters: b ∈ {0,1}, t ∈ N.

Training Phase:

1. The adversary B chooses two sets of n labeled elements (x01, y
0
1 ), . . . , (x

0
n, y

0
n ) and

(x11, y
1
1 ), . . . , (x

1
n, y

1
n ), subject to the restriction

∣

∣

∣

∣

{

i ∈ [n] : (x0i , y
0
i ) , (x

1
i , y

1
i )

}

∣

∣

∣

∣
∈ {0,1}.

2. If ∃i s.t. (x0i , y0i ) , (x1i , y1i ) then set Flag = 1. Otherwise set Flag = 0.

3. Algorithm A gets (xb1, y
b
1), . . . , (x

b
n, y

b
n) and selects a hypothesis h0 : X → {0,1}.

\* the adversary B does not get to see the hypothesis h0 *\
Prediction phase:

4. For round r = 1,2, . . . , t:

(a) If Flag = 1 then the adversary B chooses two elements x0n+r = x1n+r ∈ X.
Otherwise, the adversary B chooses two elements x0n+r ,x

1
n+r ∈ X.

(b) If x0n+r , x
1
n+r then Flag is set to 1.

(c) If x0n+r = x1n+r then the adversary B gets hr−1(x
b
n+r ).

\* the adversary B does not get to see the label if x0n+r , x
1
n+r *\

(d) Algorithm A gets xbn+r and selects a hypothesis hr : X → {0,1}.
\* the adversary B does not get to see the hypothesis hr *\

Let Viewb
B,t be B’s view of the execution, i.e., its own randomness and the

sequence of predictions in Step 4c.

Figure 1: Definition of View0
B,t and View1

B,t .

6 A Generic Construction

Our generic construction Algorithm GenericBBL transforms a (non-private) learner for a
concept class C into a private everlasting predictor for C. The theorem below follows from
Theorem 6.2 and Claim 6.3 which are proved in Appendix E.

Theorem 6.1. Given ³,´,¶ < 1/16,ϵ < 1, Algorithm GenericBBL is a (4³,4´,ϵ,¶,n)-private
everlasting predictor, where n is set as in Algorithm GenericBBL.

Theorem 6.2 (accuracy of algorithm GenericBBL). Given ³,´,¶ < 1/16, ε < 1, for any con-
cept c and any round r, algorithm GenericBBL can predict the label of xr as hr(xr ), such that
Pr[errorD(c(xr ) , hr (xr )) f 4³] g 1− 4´.

Claim 6.3 (privacy of algorithm GenericBBL). GenericBBL is (ε,¶)-differentially private.

Remark 6.4. For simplicity, we analyzed GenericBBL in the realizable setting, i.e., under the
assumption that the training set S is consistent with the target class C. Our construction carries
over to the agnostic setting via standard arguments (ignoring computational efficiency). We
refer the reader to [Beimel et al., 2021] and [Alon et al., 2020] for generic agnostic-to-realizable
reductions in the context of private learning.

6.1 Improving the sample complexity dependency on accuracy

We briefly sketch how to improve the sample complexity of Algorithm GenericBBL from n =

Θ̃

(

VC2(C)
³2ϵ2

)

to n = Θ̃

(

VC2(C)
³ϵ2

)

by modifying steps 3(d)ii and 3(d)iii of Algorithm GenericBBL.

To simplify the description, we consider a constant ϵ, we ignore the privacy amplification by
subsampling occurring in steps 2 and 3f and illustrate how the modified algorithm would
execute by considering round i = 1 of Algorithm GenericBBL.

Note that S1 = S where n = |S1| = T1 · ¼1 and ¼1 = Θ̃(VC(C)/³1) is the sample complexity
needed such that each of the hypotheses computed in Step 3b has error ³1 except for

9



Algorithm GenericBBL

Initial input: A labeled database S ∈ (X × {0,1})n where n = 8Ä
³2ε2

·
(

8VC(C) log(26³ ) + 4log( 4´ )
)2 · log(1¶ ) · log

2

(

64VC(C) log( 26³ )+32log( 4´ )

ε³2´¶

)

· (3 + exp(ε +4)) .

1. Let Ä > 50. Set ³1 = ³/2, ´1 = ´/2. Define ¼i =
8VC(C) log( 13³i

)+4log( 2
´i
)

³i
.

/* by Theorem A.2 ¼i samples suffice for PAC learning C with parameters ³i ,´i */

2. Let S1 ¦ S be a random subset of size n · ε
3+exp(ε+4) =

Ä·¼2
i ·log(

1
¶ )·log

2(
¼i

ε³i ´i ¶
)

ε .

3. Repeat for i = 1,2,3, . . .

(a) Divide Si into Ti =
Ä·¼i ·log( 1¶ )·log

2(
¼i

ε³i ´i ¶
)

ε disjoint databases Si,1, . . . ,Si,Ti of size ¼i .

(b) For t ∈ [Ti ] let ft ∈ C be a hypothesis minimizing errorSi,t (·). Define Fi = (f1, . . . , fTi ).

(c) Set Ri =
12800|Si |

ε . Set the privacy parameters ε′i =
1

3
√

Ri ln(
2
¶ )

and ¶′i =
¶

2Ri
. Instantiate

noises ¸1, . . . ,¸Ri
∼ Lap(1/Tiε

′
i ).

(d) For ℓ = 1 to Ri :

i. Receive as input a prediction query xi,ℓ ∈ X.

ii. Compute qxi,ℓ (Fi ) =
1
Ti

∑

t∈[Ti ] ft(xi,ℓ), and let yi,ℓ = qxi,ℓ (Fi ) + ¸ℓ.

iii. Respond with the label 0 if yi,ℓ < 1/2 and 1 if yi,ℓ g 1/2.
(e) Denote Di = (xi,1, . . . ,xi,Ri

).

(f) Let Ŝi ¦ Si and D̂i ¦Di be random subsets of size ε|Si |
3+exp(ε+4) and

ε|Di |
3+exp(ε+4) respec-

tively, and let Ŝ ′
i◦D̂′

i ← LabelBoost(Ŝi◦D̂i ). Let Si+1 ¦ D̂′
i be a random subset of

size ¼i+1Ti+1.
(g) Set ³i+1 ← ³i /2 and ´i+1 ← ´i /2.

probability ´i . Applying advanced composition, we get that Θ̃(T 2
1 ) noisy majority queries

implemented in steps steps 3(d)ii and 3(d)iii can be performed, i.e., R1 = Θ̃(T 2
1 ). Finally,

to feed the next phase with |S2| = Θ(|S1|) labeled samples, we need that R1 = Θ(T1 ·¼1) =
Θ̃(T1 ·VC(C)/³) and hence T1 = Θ̃(VC(C)/³) resulting in n = Θ̃(VC2(C)/³2).

However, when queries are made from the same underlying distribution S was selected,
we expect that most of them would exhibit a clear majority in steps 3(d)ii and 3(d)iii,
except for a fraction of O(³). Hence a natural way to improve on the number of majority
queries that can be performed is to replace steps 3(d)ii and 3(d)iii with a decision based
on the sparse vector technique of Dwork et al. [2009]. In particular, we can use the
BetweenThresholds mechanism of Bun et al. [2016] to get an improved R1 = Θ̃(T 2

1 /³) and
hence get T1 = Θ̃(VC(C)) and n = Θ̃(VC2/³).

A final important wrinkle is that the above calculation is based on the queries coming from
the same underlying distribution S was selected, while our worst-case privacy require-
ment allows for an adversarial choice of queries that may in turn cause the execution of
BetweenThresholds to halt too often and hence exhaust the privacy budget for the phase.
It is hence important to estimate the number of times BetweenThresholds halts within
a phase and to stop the execution of Algorithm GenericBBL when the estimate crosses a
threshold. This estimate needs to be done in an online manner and should preserve differ-
ential privacy with respect to the queries.9 This can be done, e.g., using the private counter
algorithm of Dwork et al. [2010a], which preserves differential privacy under continual
observation.

9For example, stopping GenericBBL after the count of halts crosses a precise threshold would
reveal that the last query caused BetweenThresholds to halt, and hence breach differential privacy.
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A Additional Preliminaries from PAC Learning

It is well know that that a sample of size Θ(VC(C)) is necessary and sufficient for the PAC
learning of a concept class C, where the Vapnik-Chervonenkis (VC) dimension of a class C
is defined as follows:

Definition A.1 (VC-Dimension [Vapnik and Chervonenkis, 1971]). Let C be a concept class
over a domain X. For a set B = {b1, . . . , bℓ} ¦ X of ℓ points, letΠC (B) = {(c(b1), . . . , c(bℓ)) : c ∈ C}
be the set of all dichotomies that are realized by C on B. We say that the set B ¦ X is shattered

by C if C realizes all possible dichotomies over B, in which case we have |ΠC (B)| = 2|B|.

The VC dimension of the class C, denoted VC(C), is the cardinality of the largest set B ¦ X
shattered by C.

Theorem A.2 (VC bound). Let C be a concept class over a domain X. For ³,´ < 1/2, there exists

an (³,´,n)-PAC learner for C, where n =
8VC(C) log( 13³ )+4log( 2´ )

³ .

B Proof of Theorem 3.3

The proof of Theorem 3.3 follows from algorithms HypothesisLearner, AccuracyBoost
and claims B.1, B.2, all described below.

In Algorithm HypothesisLearner we assume that the everlasting differentially private
prediction interfaceAwas fed with n i.i.d. samples taken from some (unknown) distribution
D and labeled by an unknown concept c ∈ C. Assumning the sequence of hypotheses {hr }rg0
produced by A satisfies

∀r errorD(c,hr ) f ³ (1)

we use it to construct – with constant probability – a hypothesis h with error bounded by
O(³).

Algorithm HypothesisLearner

Parameters: 0 < ´ f 1/8, R = |X | · log(|X |) · log(1/´)
Input: hypothesis sequence {hr }rg0

1. for all x ∈ X let Lx = ∅
2. for r = 0,1,2, . . . ,R

(a) select x uniformly at random from X and let Lx = Lx ∪ {hr (x)}
3. if Lx = ∅ for some x ∈ X then fail, output an arbitrary hypothesis, and halt

/* Pr[∃x such that Lx = ∅] f |X |(1− 1
|X | )

R ≈ |X |e−R/ |X | = ´ */

4. for all x ∈ X let rx be sampled uniformly at random from Lx
5. construct the hypothesis h, where h(x) = rx

Claim B.1. If executed on a hypothesis sequence satisfying Equation 1 then with probability at
least 3/4 Algorithm HypothesisLearner outputs a hypothesis h satisfying errorD(c,h) f 8³.

Proof. Having D, c ∈ C fixed, and given a hypothesis h, we define eh(x) to be 1 if h(x) , c(x)
and 0 otherwise. Thus, we can write errorD(c,h) = Ex∼D[eh(x)].

Observe that when Algorithm HypothesisLearner does not fail, rx (and hence h(x)) is cho-
sen with equal probability among (h1(x),h2(x), . . . ,hR(x)) and hence E¹[eh(x)] = Ei∈R[R][ehi (x)]
where ¹ denotes the randomness of HypothesisLearner. We get:

E¹[errorD(c,h)] = E¹Ex∼D[eh(x)] = Ex∼DE¹[eh(x)]

= Ex∼DEi∈R[R][ehi (x)] = Ei∈R[R]Ex∼D[ehi (x)]

f Ei∼R[³] = ³.

By Markov inequality, we have Pr¹[errorD(c,h) g 8³] f 1/8. The claim follows noting that
Algorithm HypothesisLearner fails with probability at most ´ f 1/8.
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The second part of the transformation is Algorithm AccuracyBoost that applies Algorithm
HypothesisLearner O(log(1/´)) times to obtain with high probability a hypothesis with
O(³) error.

Algorithm AccuracyBoost

Parameters: ´, R = 104ln 1
´

Input: R labeled samples with n examples each (S1, . . . ,SR) where Si ∈ (X × {0,1})n

1. for i = 1,2 . . .R
(a) execute A(Si ) to obtain a hypothesis sequence {hir }rg0
(b) execute Algorithm WeakHypothesisLearner on {hir }rg0 to obtain hypothesis

hi

2. construct the hypothesis ĥ, where ĥ(x) = maj(h1(x), . . . ,hR(x)).

Claim B.2. With probability 1− ´, Algorithm AccuracyBoost output a 24³-good hypothesis
over distribution D.

Proof. Define Bi to be the event where the sequence of hypotheses {hir }rg0 produced in
Step 1a of AccuracyBoost does not satisfy Equation 1. We have,

Pr[errorD(c,hi ) > 8³] f Pr[B] + (1−Pr[B]) ·Pr[errorD(c,h) > 8³] f ´ +1/4 < 3/8.

Hence, by the Chernoff bound, when R g 104ln 1
´ , we have at least 7R/8 hypotheses are

8³-good over distribution D. Consider the worst case, in which R/8 hypotheses always
output wrong labels. To output a wrong label of x, we require at least 3R/8 hypotheses to
output wrong labels. Thus h is 24³-good over distribution D.

C Tools from Prior Works

C.1 Algorithm LabelBoost [Beimel et al., 2021]

Algorithm LabelBoost [Beimel et al., 2021]

Parameters: A concept class C.
Input: A partially labeled database S◦T ∈ (X × {0,1,§})∗.
% We assume that the first portion of the database (denoted S) contains labeled examples.

The algorithm outputs a similar database where both S and T are (re)labeled.
1. Initialize H = ∅.
2. Let P = {p1, . . . ,pℓ} be the set of all points p ∈ X appearing at least once in S◦T .

Let ΠC (P) = {(c(p1), . . . , c(pℓ)) : c ∈ C} be the set of all dichotomies generated by C
on P.

3. For every (z1, . . . , zℓ) ∈ΠC (P), add to H an arbitrary concept c ∈ C s.t. c(pi ) = zi for
every 1 f i f ℓ.

4. Choose h ∈ H using the exponential mechanism with privacy parameter ϵ=1,
solution set H , and the database S .

5. (Re)label S◦T using h, and denote the resulting database (S◦T )h, that is, if

S◦T = (xi , yi )
t
i=1 then (S◦T )h = (xi , y

′
i )
t
i=1 where y′i = h(xi ).

6. Output (S◦T )h.

Lemma C.1 (privacy of Algorithm LabelBoost [Beimel et al., 2021]). Let A be an (ϵ,¶)-
differentially private algorithm operating on partially labeled databases. Construct an algorithm
B that on input a partially labeled database S◦T ∈ (X × {0,1,§})∗ applies A on the outcome of
LabelBoos(S◦T ). Then, B is (ϵ +3,4e¶)-differentially private.
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Consider an execution of LabelBoost on a database S◦T , and assume that the examples in
S are labeled by some target concept c ∈ C. Recall that for every possible labeling z⃗ of the
elements in S and in T , algorithm LabelBoost adds to H a hypothesis from C that agrees
with z⃗. In particular, H contains a hypothesis that agrees with the target concept c on S
(and on T ). That is, ∃f ∈H s.t. errorS (f ) = 0. Hence, the exponential mechanism (on Step 4)
chooses (w.h.p.) a hypothesis h ∈H s.t. errorS (h) is small, provided that |S | is roughly log |H |,
which is roughly VC(C) · log(|S |+ |T |) by Sauer’s lemma. So, algorithm LabelBoost takes an
input database where only a small portion of it is labeled, and returns a similar database in
which the labeled portion grows exponentially.

Lemma C.2 (utility of Algorithm LabelBoost [Beimel et al., 2021]). Fix ³ and ´, and let S◦T
be s.t. S is labeled by some target concept c ∈ C, and s.t.

|T | f ´

e
VC(C)exp(

³|S |
2VC(C)

)− |S |.

Consider the execution of LabelBoost on S◦T , and let h denote the hypothesis chosen on Step 4.
With probability at least (1− ´) we have that errorS (h) f ³.

D Some Technical Facts

We refer to the execution of steps 3a-3g of algorithm GenericBBL as a phase of the algorithm,
indexed by i = 1,2,3, . . . .

In GenericBBL, we require that the set of all predictions in the phase i is (1,¶)-differentially
private.

Claim D.1. For ¶ < 1, the composited Laplace mechanism used in step 3c in the i-th iteration, is
(1,¶)-differentially private.

Proof. Let ε′i ,¶
′
i be as in Step 3c. Since eε

′
i − 1 < 2ε′i for 0 < ε′i < 1, we have

√

2Ri ln(
1

Ri¶
′
i
) · ε′i +Riε

′
i (e

ε′i − 1) f
√

2Ri ln(
2

¶
) · ε′i +2Riε

′
i
2 =

√
2

3
+

2

9ln(2¶ )
f 1.

The proof is concluded by using advanced composition (Theorem 2.6).

In step 3f, GenericBBL takes a random subset of size ¼i+1Tt+1 from D̂′
i . We show that the

size of D̂′
i is at least ¼i+1Tt+1.

Claim D.2. When ε f 1, for any i g 1, we always have |D̂′
i | g ¼i+1Ti+1.

Proof. Letm = 3+exp(ε+4) < 200. By the step 3c, step 3e and step 3f, |D̂j | =
ε|Dj |
m =

12800|Sj |
m g

64|Sj | = 64¼jTj . Then it is sufficient to verify 128¼jTj g ¼j+1Tj+1

We can verify that

4¼j = 4 ·
8VC(C) log(13³i

) + 4log( 2´i )

³i
= 4 ·

8VC(C)(log( 13
³j+1

)− 1) + 4(log( 2
´j+1

)− 1)

2³j+1
g ¼j+1

and

16Tj =
16Ä ·¼i · log(1¶ ) · log

2( ¼i
ε³i´i¶

)

ε
g

4Ä ·¼i+1 · log(1¶ ) · log
2( ¼i+1

16ε³i+1´i+1¶
)

ε
g Tj+1.

The last inequalitu holds because ¼j g 4 and ³j ,´j f 1/2.

To apply the privacy and accuracy of LabelBoost, the sizes of the databases need to satisfy
the inequalities in lemma C.2. We verify that in each phase, the sizes of the databases always
satisfy the requirement.

15



Claim D.3. When ε f 1, for any i g 1, we have |D̂i | f ´i
e VC(C)exp

(

³i |Ŝi |
2VC(C)

)

− |Ŝi |.

Proof. By claim D.2, step 3c and step 3f,

|D̂i | =
ε|Di |
m

=O (¼iTi ) =O

(

VC(C) log2(VC(C)) ·poly
(

1

³i
, log(

1

´i
),
1

ε
, log(

1

¶
)

))

and

|Ŝi | =
ε|Si |
m

=O (ε¼iTi ) =O (¼iTi )

=O

(

VC(C) log2(VC(C)) ·poly
(

1

³i
, log(

1

´i
),
1

ε
, log(

1

¶
)

))

.

(2)

Note that

´i
e
VC(C)exp

(

³i |Ŝi |
2VC(C)

)

=Ω

(

VC2(C) · exp
(

poly

(

1

³i
, log(

1

´i
),
1

ε
, log(

1

¶
)

)))

,

for Ti =
Ä·¼i ·log( 1¶ )·log

2(
¼i

ε³i ´i ¶
)

ε , the inequality holds when Ä g 50.

E Accuracy of Algorithm GenericBBL – proof of Theorem 6.2

We refer to the execution of steps 3a-3g of algorithm GenericBBL as a phase of the algorithm,
indexed by i = 1,2,3, . . . .

We give some technical facts in Appendix D. In Claim E.1, we show that in each phase,
samples are labeled with high accuracy. In Claim E.3, we prove that algorithm GenericBBL
fails with low probability. In Claim E.4, we prove that algorithm GenericBBL predict the
labels with high accuracy.

Claim E.1. For each phase i we have

Pr

















∃gi ∈ C s.t. errorSi (g) = 0 and errorD(gi , c) f
i

∑

j=1

³j

















g 1− 2

i
∑

j=0

´j .

Proof. The proof is by induction on i. The base case for i = 1 is trivial, with g1 = c. As-
sume the claim holds for all j f i. By the properties of LabelBoost (Lemma C.2) and
Claim D.3, with probability at least 1− ´i we have that Si is labeled by a hypothesis gi ∈ C
s.t. errorSi−1(gi−1, gi ) f ³i . Observe that the points in Si (without their labels) are chosen i.i.d.
from D, and hence, By Theorem A.2 (VC bounds) and |Si−1| g 128¼i−1 g ¼i , with probability
at least 1 − ´i we have that errorD(gi , gi−1) f ³i . Hence, with probability 1 − 2´i , we have

errorD(gi , gi−1) f ³i . Finally, by the triangle inequality, errorD(gi , c) f
∑i

j=1³j , except with

probability 2
∑i

j=1 ´j

Combining claims E.1 union bound, we get:

Claim E.2. Let D be an underlying distribution and let c ∈ C be a target concept. Then

Pr[∀i ∃gi ∈ C s.t. errorSi (gi ) = 0 and errorD(gi , c) f ³] g 1− 2´.

For each phase i, if there exists a noise ¸j g 1/16 in step 3c, we say the phase i fails. Define
the following good event.

Event E1: Phase i doesn’t fail for all i g 1.
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Claim E.3. When ¼ g 1, ε f 1,³ f 1/2,´ f 1/2,¶ f 1/2, event E1 occurs with probability at
least 1− ´.

Proof. In each phase i, For each ¸j , by the property of Laplace distribution, we have

Pr[|¸ | g 1/16] = e−Tiε
′
i /16 = e

− Ti
48
√
Ri ln(2/¶) f ´i /Ri . This inequality holds when Ä g 1. By union

bound, we have Pr[phase i fails] f ´i .

Using to union bound,
Pr[Event E1 occurs] g 1− ´.

Notations. Consider the ith phase of Algorithm GenericBBL, and focus on the j-th it-
eration of Step 3. Fix all of the randomness of noises. Now observe that the output on
step 3(d)iii is a deterministic function of the input xi,j . This defines a hypothesis which we
denote as hi,j .

Figure 2: Hypothesis hi,j

Claim E.4. For ´ < 1/16, with probability at least 1− 4´, all of the hypotheses defined above are
4³-good w.r.t. D and c.

Proof. In the phase i, by Claim E.2, with probability at least 1−2´ we have that Si is labeled
by a hypothesis gi ∈ C satisfying errorD(gi , c) f ³. We continue with the analysis assuming
that this is the case.

On step 3a of the ith phase we divide Si into Ti subsamples of size ¼i each, identify
a consistent hypothesis ft ∈ C for every subsample Si,t , and denote Fi = (f1, . . . , fT ). By
Theorem A.2 (VC bounds), every hypothesis in Fi satisfies errorD(ft , gi ) f ³ with probability
1− ´i , in which case, by the triangle inequality we have that errorD(ft , c) f 2³.

Set Ti g
512(1−4´i ) ln( 1

´i
)

(1−64´i )2
, using Chernoff bound, it holds that for at least 15Ti /16 of the

hypotheses in Fi have error errorD(ft , c) f 2³ with probability at least 1− ´i .

By Claim E.3, with probability 1− ´, all Laplace noises added in step 3d is less than Ti
16 . Let

m : X → {0,1} defined as m(x) = majft∈Fi (ft(x)). For m to err on a point x (w.r.t. the target

concept c), it must be that at least 3/8-fraction of the 2³-good hypotheses in F̂i err on x.
Consider the worst case in Figure 3, based on Claim E.3, we have errorD(m,c) f 4³ with
probability 1− ´.
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Figure 3: The horizontal represents the input point. The vertical represents the hypothesis.

The red parts represent the incorrect prediction. We let Ti
16 hypothesis predict all labels

incorrectly and let Laplace noises to be as large as Ti
16 . To output an incorrect label, there

must exist 3Ti
8 hypothesis output the incorrect label. In the worst case, at most 4³ of points

are incorrectly classified.

Conclude all above, with probability 1− 4´, all the hypotheses are 4³-good.

E.1 Privacy analysis – proof of Claim 6.3

Fix t ∈ N and the adversary B. We need to show that View0
B,t and View1

B,t (defined in

Figure 1) are (ε,¶) − indistinguishable. We will consider separately the case where the
executions differ in the training phase (Claim E.5) and the case where the difference occurs
during the prediction phase (Claim E.6).

Privacy of the initial training set S . Let S0,S1 ∈ (X × {0,1})n be neighboring datasets of

labeled examples and let View0
B,t and View1

B,t be as in Figure 1 where
(

(x01, y
0
1 ), . . . , (x

0
n, y

0
n )

)

=

S0 and
(

(x11, y
1
1 ), . . . , (x

1
n, y

1
n )

)

= S1.

Claim E.5. For all adversaries B, for all t > 0, and for any two neighbouring database S0 and S1

selected by B, View0
B,t and View1

B,t are (ε,¶)-indistinguishable.

Proof. Let R′
1 = min(t,R1). Note that Viewb

B,R′
1
is a prefix of Viewb

B,t which includes the

labels Algorithm GenericBBL produces in Step 3(d)iii for the R′
1 first unlabeled points

selected by B. Let Sb
2 be the result of the first application of algorithm LabelBoost in Step 3f

of GenericBBL (if t < R1 we set Sb
2 as §). The creation of these random variables is depicted

in Figure 4, where DL
1 denotes the labels Algorithm GenericBBL produces for the unlabeled

points D1.

Observe that Viewb
B,t results from a post-processing (jointly by the adversary B and Algo-

rithm GenericBBL) of the random variable
(

Viewb
B,R′

1
,Sb

2

)

, and hence it suffices to show that
(

View0
B,R′

1
,S0

2

)

and
(

View1
B,R′

1
,S1

2

)

are (ε,¶)-indistinguishable.

We follow the processes creating Viewb
B,t and Sb

2 in Figure 4: (i) The mechanism M1 cor-

responds to the loop in Step 3d of GenericBBL where labels are produced for the adver-
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Figure 4: Privacy of the labeled sample S

sarially chosen points Db
1 . By application of claim D.1, M1 is (1,¶)-differentially private.

(ii) The mechanism M2, corresponds to the subsampling of Ŝb
1 from Sb

1 and the applica-
tion of procedure LabelBoost on the subsample in Step 3f of GenericBBL resulting in

Sb
2 . By application of Claim 2.9 and Lemma C.1, M2 is (ε,0)-differentially private. Thus

(M1,M2) is (ε + 1,¶)-differentially private. (iii) The mechanism M3 with input of Sb and

output
(

Db,L
1 ,Sb

2

)

=
(

Viewb
B,R′

1
,Sb

2

)

applies (M1,M2) on the sub-sample Sb
1 obtained from

Sb in Step 2 of GenericBBL. By application of Claim 2.9 M3 is (ε,
4ε¶

3+exp(ε+1) )-differentially

private. Since 4ε¶
3+exp(ε+1) f ¶ for any ε, hence

(

View0
B,R′

1
,S0

2

)

and
(

View1
B,R′

1
,S1

2

)

are (ε,¶)-

indistinguishable

Privacy of the unlabeled points D. Let D0,D1 ∈ Xt be neighboring datasets of unla-

beled examples and let View0
B,t and View1

B,t be as in Figure 1 where
(

x01, . . . ,x
0
t

)

= D0 and
(

x11, . . . ,x
1
t

)

=D1.

Claim E.6. For all adversaries B, for all t > 0, and for any two neighbouring databases D0 and

D1 selected by B, View0
B,t and View1

B,t are (ε,¶)-indistinguishable.

Figure 5: Privacy leakage of Di

Proof. Let D0
1 ,D

0
2 , . . . ,D

0
k and D1

1 ,D
1
2 , . . . ,D

1
k be the set of unlabeled databases in step 3e of

GenericBBL. Without loss of generality, we assume D0
i and D1

i differ on one entry. When
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i = k, View0
B,t = View1

B,t because all selected hypothesis are the same. When i < k, let

R′ =min
(

∑i+1
j=1Rj , t

)

.

Similar to the analysis if Claim E.5, Viewb
B,t results from a post-processing of the ran-

dom variable (Viewb
B,R′ ,Sb

i+2) (if t <
∑i+1

j=1Rj we set Sb
i+2 as §). Note that Viewb

B,R′
1
=

(Db,L
1 , . . . ,Db,L∗

i ,Db,L
i+1), and (Db,L

1 , . . . ,Db,L
i−1,D

b,L∗
i ) follow the same distribution for b ∈ {0,1},

where Db,L∗
i is the labels of points in Db

i expect the different point. So that it suffices to show

that
(

D0,L
i+1,S

0
2

)

and
(

D1,L
i+1,S

1
2

)

are (ε,¶)-indistinguishable.

We follow the processes creating Db,L
i+1 and Sb

i+2 in Figure 5: (i) The mechanism M1 corre-
sponds to the loop in Step 3d of GenericBBL where labels are produced for the adversarially

chosen points Db
i+1. By application of claim D.1, M1 is (1,¶)-differentially private. (ii)

The mechanism M2, corresponds to the subsampling of Ŝb
i+1 from Sb

i+1 and the applica-
tion of procedure LabelBoost on the subsample in Step 3f of GenericBBL resulting in

Sb
i+2. By application of Claim 2.9 and Lemma C.1, M2 is (ε,0)-differentially private. Thus

(M1,M2) is (ε + 1,¶)-differentially private. (iii) The mechanism M3 with input of D̂b
i and

output
(

Db,L
i+1,S

b
i+2

)

applies (M2,M3) on Si+1, which is generated from D̂b
i and in Step 3f

of GenericBBL. By application of Claim C.1, M3 is (ε + 4,4ε¶)-differentially private. (iv)

The mechanism M4, corresponds to the subsampling D̂b
i from Db

i and the application of

M4 on D̂b
i . By application of Claim 2.9, M4 is (ε, 16eε¶

3+exp(ε+4) )-differentially private. Since

16eε
3+exp(ε+4) f 1 for any ε,

(

D0,L
i+1,S

0
2

)

and
(

D1,L
i+1,S

1
2

)

are (ε,¶)-indistinguishable.

Remark E.7. The above proofs work on the adversarially selected D because: (i) Lemma ?? works
on the adaptively selected queries. (We treat the hypothesis class Fi as the database, the unlabelled
points xi,ℓ as the query parameters.) (ii) LabelBoost generates labels by applying one private
hypothesis on points. The labels are differentially private by post-processing.
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