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Motion Planning Using Hyperproperties for Time
Window Temporal Logic

Ernest Bonnah ", Luan Nguyen

Abstract—Hyperproperties are increasingly popular in verifying
security policies and synthesis of control for dynamic systems.
Hyperproperties generalize trace properties to enable reasoning
about multiple computation traces that traditional trace proper-
ties cannot. Recent works show the effectiveness and prospect of
Hyperproperties, specifically Hyperproperties for Linear Tempo-
ral Logic (HyperLTL), in optimality-, robustness-, and privacy-
aware robotic motion planning. However, despite their rich expres-
siveness, HyperLTL cannot express tasks with time constraints.
This letter presents HyperTWTL, which extends the compact se-
mantics of Time Window Temporal Logic (TWTL) with explicit
and concurrent quantification over multiple execution traces. We
demonstrate that HyperTWTL can be used to formalize complex
robotic planning objectives. Given HyperTWTL specifications, we
also propose a symbolic approach for synthesizing optimality-,
robustness-, and privacy-aware strategies by reducing the plan-
ning problem to a first-order logic satisfiability problem. The
planning problem was then solved using two industrial-strength
SMT solvers. The feasibility of HyperTWTL and the efficiency and
scalability of the proposed strategy synthesis approach are demon-
strated by formalizing important motion planning objectives of
a surveillance mission case study and synthesizing the respective
strategies using Z3 and CVC4 SMT solvers.

Index Terms—Formal methods in robotics and automation, time
window temporal logic, hyperproperties, motion planning.

I. INTRODUCTION

OTION planning and control problems in robotic sys-
M tems are often formulated as temporal logic specifica-
tions over a discrete system representation. Temporal logic such
as Linear Temporal Logic (LTL) [1], [2], [3], [4], Metric Tem-
poral Logic (MTL) [5], [6], Signal Temporal Logic (STL) [7],
Metric Interval Temporal Logic (MITL) [8], [9], Bounded Lin-
ear Temporal Logic (BLTL) [10] and Time Window Temporal
Logic (TWTL) [11] have been extensively used to formalize
such complex requirements. In recent times, TWTL [12], [13],
[14],[15], [16], [17] has gained traction in robotics applications
for specifying time-bounded specifications more compactly and
comprehensively when compared to other bounded logics such
as Metric Temporal Logic (MTL) [18], Signal Temporal Logic

Manuscript received 5 January 2023; accepted 9 May 2023. Date of pub-
lication 29 May 2023; date of current version 14 June 2023. This letter was
recommended for publication by Associate Editor L. Biagiotti and Editor L.
Pallottino upon evaluation of the reviewers’ comments. (Corresponding author:
Khaza Anuarul Hoque.)

Ernest Bonnah and Khaza Anuarul Hoque are with the Department of
Electrical and Computer Engineering, University of Missouri, Columbia, MO
65211 USA (e-mail: ernestbonnah @ gmail.com; hoquek @missouri.edu).

Luan Nguyen is with the Department of Computer Science, University of
Dayton, OH 45469 USA (e-mail: Inguyen] @udayton.edu).

Digital Object Identifier 10.1109/LRA.2023.3280830

, and Khaza Anuarul Hoque

(STL) [19], Bounded Linear Temporal Logic (BLTL) [20]. This
is because the TWTL uses an explicit concatenation operator,
which is very useful in expressing serial tasks in robotic mission
specification and planning. For instance, let us consider a spec-
ification as “stay at P for 4-time steps within the time window
[0, 6]”. This can be expressed in TWTL as [H* P]%-5. The exact
same specification can be expressed in STL as Fg 54 Gg 4 P
where the outermost time window needs to be modified with
respect to the inner time window.

The majority of the existing works in temporal logic-based
motion planning ignore security as a part of the require-
ments for mission planning. Many security requirements (e.g.,
information-flows) and serial tasks in robotics and control appli-
cations expressed in these logics are complicated and incompre-
hensible for formal analysis. The TWTL (and other conventional
temporal logics) can only express trace properties, i.e., the spec-
ified properties involve reasoning about individual executions
or traces. This limits their application to many other domains,
which requires reasoning about multiple traces. For example,
consider a Service Level Agreement (SLA) requirement, which
specifies the percentage uptime of a system to accept service
requests. Such a property cannot be verified based on individual
executions of the system because the satisfiability of such a
requirement depends on analyzing the uptime of all system
executions. Thus, SLA is not a trace property but a hyperprop-
erty. As another example, lets us consider an observational de-
terminism requirement formalized as ¢ = Vm Vs - [H5 I, =
H° I,.,]%% = [H® O,, = H® I.,]!%%], which specifies that
given any pair of traces m; and o, if the observable inputs
are the same for 5-time units within the bound [0,5], then the
observable outputs O should be the same for 5-time units within
the same time bound. Similar to SLA, this property cannot be
verified based on individual executions of the system because
the satisfiability of such a requirement depends on analyzing all
system executions. Hence, observational determinism is also not
a trace property but a hyperproperty.

Hyperproperties [21] generalize trace properties by relating
multiple system execution traces to each other. Traditional tem-
poral logic, such as LTL, can express trace properties and reason
if they are satisfied by traces. In contrast, hyperproperties are
satisfied by sets of traces and thus hyperproperties can be more
expressive than trace properties. Hyperproperties can be used to
specify a wide range of important properties such as information-
flow security [22], [23], consistency models in concurrent com-
puting [24], [25], robustness models in cyber-physical sys-
tems [26], [27], and also service level agreements (SLA) [21].
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Motivated by the expressiveness of hyperproperties, several
hyper-temporal logics, such as HyperLTL [28], HyperSTL [29],
and HyperMTL [30], were recently proposed by extending the
conventional temporal logics such as Linear Temporal Logic
(LTL) [31], Signal Temporal Logic (STL) [19], and Metric
Temporal Logic (MTL) [18], respectively for security/privacy
policy verification [29], [32] and control synthesis [24]. Very
recently, authors in [33] used HyperLTL for robotic motion
planning. However, similar to LTL, HyperLTL also can not
express tasks with explicit time constraints, which may limit
its application to many applications. For instance, a real-world
example can be a robotic inspection mission validating the
routines in a chemical plant [34] where robots provide plant
operators the information to maximize equipment uptime and
improve safety while reducing costs.

This letter introduces HyperTWTL, an extension of TWTL
with explicit quantification over multiple bounded execution
traces for expressing timed hyperproperties. Leveraging the
compact semantics of TWTL and expressibility of hyperproper-
ties to reason about multiple execution trace, HyperTWTL can
be used to express bounded hyperproperties more compactly
and comprehensively compared to HyperMTL and HyperSTL.
For example, consider a hyperproperty that requires that “for
any pair of traces w1 and o, site X should be serviced for
2-time units in trace m within the time bound [0,5] and site
Y should also be serviced for 3-time steps in trace Ty within
the time bound [0,7] ”. This requirement can not be expressed
directly using TWTL formalism, but can be expressed using
the HyperTWTL formalism as ¢ = ¥,V - [H? X, ]05 A
[H? Y;,]1%7]. The exact same requirement can be expressed as
a HyperSTL formula as ¢ = Vi V7ma - (Fo,5-91G0,2) X)) A
(F(0,7-31G10,3Yx,). Similarly, using the HyperMTL formal-
ism, the exact same requirement can be expressed as Vi Vs -
\/f;gG[i,HQ] X, A \/1-7;8(}[17“3] Y., The compact semantics
of HyperTWTL allows for a more succinct representation of
this requirement than HyperMTL and HyperSTL, which require
nested operators, shifted time windows, and the disjunction of
several sub-formulae. For instance, in the specifications above
it can also be observed that the given requirement can be for-
malized in HyperTWTL formula with total 5 temporal operators
(without considering the quantifiers). This same requirement can
be formalized as a HyperMTL formula using 17 temporal opera-
tors (excluding the quantifiers). This example shows the succinct
characteristics of HyperTWTL over HyperMTL. Indeed, with
the increasing complexity of requirements, the complexity of
HyperMTL formulae will also grow, which makes the formal
analysis of HyperMTL formulae very expensive for complicated
robotic applications.

With its compact representation of specification, Hyper-
TWTL can be used to specify important planning objectives
such as privacy, optimality, and robustness in robotic planning
missions with strict time constraints. To synthesize strategies
adhering to HyperTWTL specifications, we adopt a symbolic
strategy synthesis approach by reducing the planning problem
to a first-order logic satisfiability problem which an SMT solver
then solves. To demonstrate the effectiveness and scalability
of our approach, we formalize the motion planning objectives
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(related to optimality, information-flow security, and robustness)
of a robotic surveillance mission using HyperTWTL. Then, the
feasible strategies (paths adhering to the HyperTWTL speci-
fications) are then synthesized using Z3 [35] and CVC4 [36]
SMT solvers, both known for their industrial application [37],
[38]. The results show that using the proposed approach; we can
successfully and efficiently synthesize strategies from complex
robustness, opacity, and optimality-related HyperTWTL prop-
erties for safety-critical robotic missions.

The rest of the letter is organized as follows: Section II
presents the preliminaries. The syntax and semantics of Hy-
perTWTL, as well as its application in robotic planning, are
presented in Section III. The problem formulation and strategy
synthesis are presented in Sections IV and V, respectively. We
evaluate the feasibility and scalability of our proposed logic in
Section VI. Related works are discussed in section VII. Finally,
Section VIII concludes the letter.

II. PRELIMINARIES

Let AP be a finite set of atomic propositions and ¥ = 247
be the powerset of A P. We call each element of 3 an event and
is of the form e;, where ¢ € Z>¢. A trace t € X denotes an
infinite sequence of events over X, and ¢ € X* denotes a finite
sequence of events over Y. For a trace ¢, we denote ¢[i].¢ as the
event at time ¢, i.e. e;. Let t[7, j] denote the subtrace of trace ¢
starting from time ¢ up to time j.

Time Window Temporal Logic (TWTL): The set of TWTL
formulae over a finite set of atomic propositions is inductively
generated by:

¢:=T |Ha|H'a|¢1 A do | ~¢ | d1 @ ¢ | 0]V

where T stands for true, a is an atomic proposition in AP. The
operators H?, ® and [ | represent the hold operator with d €
Z>¢, concatenation operator and within operator respectively
within a discrete-time constant interval [z, y], where z,y € Zx
and y > z, respectively and A and — are the conjunction and
negation operators respectively. The disjunction operator (V)
can be derived from the negation and conjunction operators.
Likewise, the implication operator (—) can also be derived from
the negation and disjunction operators.

TWTL semantics: The satisfaction relation defined by = de-
fines when subtrace ¢[7, j] of atimed-trace ¢ from time ¢ up to time
j, satisfies the TWTL formula. This is denoted by t[i, j] = ¢.
Given a TWTL formula ¢ and a timed-trace ¢[i, j], the semantics
of the operators is defined in Table I. With ¢ = H% and H%—a,
a is expected to be repeated or not repeated for d time units
with the condition that a € t[n].e and a ¢ t[n].e respectively.
With ¢ = ¢1 A ¢o, the trace t[i, j] satisfies both formula. The
trace t[i, j] is expected to satisfy at least one of the formulae in
¢ = ¢1 V ¢ while in —¢, the trace, t[i, j] does not satisfy the
given formula. A given formula in the form ¢; ® ¢5 specifies
that a given trace should satisfy the first formula first and the
second afterwards with one time unit difference between the
end of execution of ¢; and the start of execution of ¢o. The
trace, t[i, j] must satisfy ¢ between the time window [z, y] given

)
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TABLE I
SEMANTICS OF TWTL

AT ettt
. . actnle Vnei,...,i+dA
ti,j] = Ha iff (j¢_ ? }2 dv )
. . aé&tnle,Vnei, . .,i+dAN
tfi, 5] |E H=a iff (—i)>d
tli,jl = ¢1 Ad2iff (i, 5] = 1) A (26 5] | d2)
ti,j] = —¢ it —(tfi, 5] = ¢)
tli,j] Ed1 ©¢2 iff Ik =argmini<p;{tfi, k] E o1} A
(tk +1,4] = ¢2)
th,j] = [¢]l=¥ iff Tk >i+a st tkitylEé A
G-—i)>y

III. HYPERTWTL

A hyperproperty is a set of sets of infinite traces. Hyper-
TWTL is a hyper-temporal logic to specify hyperproperties for
TWTL [11] by extending the TWTL with quantification over
multiple and concurrent execution traces. In this section, we
present the syntax and semantics of HyperTWTL.

A hyperproperty is a set of trace properties. HyperTWTL is
a temporal logic for specifying hyperproperties by extending
TWTL [11] with trace variables and explicit quantifiers over
multiple traces. We assume in the semantics that the timestamps
of all the quantified traces are synchronous, i.e., all the times-
tamps of traces match at each point in time. The syntax and
semantics of HyperTWTL are now described as follows.

A. Syntax and Semantics of HyperTWTL

The set of formula in HyperTWTL is inductively defined by
the following syntax:

pi=dm-p|Vr-@|¢
¢:=Hlar |H'ar [ 61 A b | =0 | ¢1 @ ¢ | [¢]"Y

The quantified HyperTWTL formula d7 and V7 are inter-
preted as “there exists some trace 7 and “for all the traces 7”
respectively. a is an atomic proposition in AP and 7 is a trace
variable in the set of trace variables V. All other operators are
interpreted as seen in Section II.

The satisfaction relation gives the semantics of synchronous
HyperTWTL = over time-stamped traces T. We define an
assignment 1I : V — 3% X Z~( as a partial function mapping
trace variables to traces. We then denote the explicit mapping of
the trace variable 7 to a trace t[i, j] € T as II[1 — t[é, j]]. We
present the semantics of HyperTWTL in Table II. From Table II,
with ¢ = H%., and H%—a., a is expected to be repeated or not
repeated for d time units with the condition that a € t[p].e and
a ¢ t[p].e respectively on the trace mapped to trace variable 7.
With ¢ = ¢1 A ¢2, the set T must satisfy both sub-formulae. The
trace set T is expected to satisfy both formulae in ¢ = ¢ A P2
while in —¢, T, does not satisfy the given formula. Given a
formula in the form ¢ ® ¢, every t[i, j] € T should satisfy
the first formula first and the second afterwards with one time
unit difference between the end of execution of ¢, and start of
execution of ¢o. The set of traces T, must satisfy ¢ between the
time window [, y] given [¢][*¥].
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B. HyperTWTL Execution Deadline

The satisfaction of a HyperTWTL formula can be verified
within bounded time. We denote the maximum time needed to
satisfy o by ||¢||, which can be recursively computed as follows:

el it  pe{3r pVr e}
d if e {H%,, H-a,}
loll = max([le1l, lo2ll) if € {p1 A2, o1V pa}
A ||901H if Y = "Y1
loull + [lall +1 if © =010 P
y if ¢ = [pa]l=¥]

(1

In the rest of the letter, we refer to this computed deadline |||

as the unrolling bound ||p||. We describe the details of unrolling

the HyperTWTL formula and the Deterministic Transition Sys-
tem (DTS) based on ||¢|| in the following sections.

IV. PROBLEM FORMULATION

We assume an agent moves in a 2D environment whose ab-
straction is given by an N x M grid. Given the environment, we
model the dynamics of each agent as a Deterministic Transition
System (DTS) whose transitions are labelled by actions.

Definition  1: (Deterministic =~ Transition System) A
deterministic transition system (DTS) is a tuple D =
(S, Sinit, A, AP, A, 1) where S is a finite set of states; $;,,;4 C S
is a set of initial states; A is a set of actions; A: S x A — S
is a partial transition function; AP is a finite set of atomic
propositions; and [ : S — 247 is a labelling function.

We assume that for each state s € .S, there exists another state
s’ € S that can be reached in a finite number of transitions. We
represent a transition on an action a; € A at time step k& from
state sy, t0 Sk41 as Sk+1 = (aq, k).

A planning strategy pol : Z>, — A is therefore given by an
infinite valid sequence of actions, A = aga; . ... However, due
to the fact that the semantics of HyperTWTL is already time
bounded, only a finite prefix of the pol is considered. Given a
strategy pol of D with initial state sg € S;pnit, apath 7 : Z59 —
S of D can be generated as 7(k + 1) = A(n(k), pol(k)) Vk €
Z>0. A path can then be defined as a sequence of states m =
S0S182 - -+ € S“. This path 7 generates a trace t = egeqeg -+ €
¢ where e; = I(s;) Vi > 0.

Problem statement: Given aDTS D = (S, sipnit, A, AP, A1)
and a HyperTWTL formula ¢ with an unrolling bound |||, the
planning task is to find a path 7 over D with a depth of ||| and a
related strategy policy pol such that the HyperTWTL objective
(p is satisfied.

V. STRATEGY SYNTHESIS

This section describes the details of the symbolic strategy
synthesis for HyperTWTL specifications which is a 3-step ap-
proach. First, we compute the unrolling bound based on (1) for
synthesizing the strategy for the given objective expressed as
a HyperTWTL specification. Second, the given HyperTWTL
objective and the constraints associated with the given DTS
model capturing the dynamics of the agent are converted into a
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TABLE II
SEMANTICS OF HYPERTWTL

T ETe W T T STl Fe
(T Evag it Vifij) € T+ (T Tr - i 1)) = ¢
(T, 1) = H, iff a € t[p].e for t[ jl=U(x), Yp € {p,....,p+d} A (j — i) > d, for some i > 0
(T, 1) = Hé=a, iff a ¢ t[p].e for t[i,j] = U(m), Vp € {p,...,p+d} A (j — i) > d, for some i > 0
(T = g1 A ff ((T,T0) 1) A ((T,TD) = 6)
(T E-¢  ift —(T.T0) |- 9)
(T,I) = ¢1 © ¢ iff Tk =argmin;<p<; ((T,I) = ¢1) for some p € [i, k], ((T,II) = ¢2) for
some p’ € [k + 1, j]
(T,T0) = [¢]l=¥]  iff Fk>i+a, st forsomepc[ki+y] (T,I)EGA (G —i)>y

first-order logic formula by ensuring the 3 and V quantification
comply with the sequence of states and actions within the
computed bound in the first step. Lastly, using an off-the-shelf
SMT solver, the converted formulae representing the DTS and
the HyperTWTL formula are then combined and solved.

A. Encoding the HyperTWTL Formula

Given ¢ is a HyperTWTL formula of the form ¢ =
Q171 ... Qumy - @ Where each Q; € {V,3} (i € [1,n]) and ¢
is a TWTL formula.

The unrolling of a TWTL formula on a path 7;, with bound
|[|| for all ¢ < ||| results in a first-order logic formula which
can be inductively defined as follows.

[H ax]; g ak ifi<d< llll
[H —ax]; g —ar ifi < d < g
[61 A @2] i g [o1] i gy A 1920 Gl
[[ﬂlﬂ]i,uipu TPl _
[61© @2l = 3k = argminicrqye) [é1]in)
Ab2l 1, 1)
[[4] [I’y]ﬂi,\\wl\ Fk >0+ x, st Bl 0 A
(lell =i >y)

B. Encoding Path Constraints

Given the DTS D, each path is unrolled to the depth of ||¢]|.
Thus, the path generated over the DTS D should therefore satisty
the constraints

llell-1

/\ R(S;w S?c+1)

k=0

P— I(si) A 2)

where I(s}) is the characteristic function for the boolean formula
that encodes the initial states and R(s}, s}, ;) is the function for
the boolean formula that encodes transition relation for a state
s}, and its successor s} _ ;.

From Definition 1, the transition on an action a; at time step
k from a predecessor state s to a successor state s; ,, can be
defined as s}, = A(s},a}).

We further extend our framework to capture potential obsta-
cles that can be encountered during the path synthesis process.
Our framework tracks and updates the collision set £ with all
states occupied by obstacles. A successor, state st 41 from a
predecessor state s; within the constraint P; as seen in (2) is

first checked if it is a member of the collision set £. To avoid
collisions into these obstacles, a robot does not transition into
state s}, if s, € L. This constraint can be expressed as:

/\ (s}vv_ir1 e L — —a;(k))

ke(lles ]

C;i 3)

Hence, the first-order logic formula for the SMT Solver to
solve can be expressed as follows:

where [Q,;7;] fori < n, P; is presented in (2) and C; is presented
in (3).

Remark 1: Given a DTS D = (S, sinit, A, AP,A,l) and a
HyperTWTL formula ¢ with an unrolling bound ||||, the pro-
posed strategy synthesis approach returns SAT only when a path
that satisfies  exists, otherwise returns UNSAT.

/n\]Di/\Ci

i=1

[Ql"rl] s [Qn'”n] ' ( “4)

C. Soundness and Completeness

In this section, we prove the soundness and completeness
properties of our strategy synthesis approach.

Theorem 1: The strategy synthesis approach is sound and
complete.

Proof sketch: We will first prove the soundness of our path
synthesis approach and then prove that the adopted approach is
also complete.

Soundness: The soundness of our approach follows from the
semantics and execution deadline of HyperTWTL presented in
Section III. Hence, a synthesized path is required to satisfy
the constraints as presented in the semantics of HyperTWTL
in Table II. In addition to satisfying the semantics of Hyper-
TWTL, each generated path over the states of D satisfies all
other constraints generated by the encoding of the HyperTWTL
formula ¢.

Completeness: SMT solvers integrate a modern Davis—
Putnam-Logemann—Loveland (T) (DPLL(T)) solver, a core the-
ory (T) solver that handles equalities and uninterpreted func-
tions, satellite solvers (for arithmetic, arrays, etc.), and an E-
matching abstract machine (a technique for handling quanti-
fiers) [35]. With DPLL(T) algorithm being the framework for
determining the satisfiability of our SMT problems, we conclude
that paths synthesized using our approach are complete since
they are based on the sound and complete algorithm of DPLL(T).
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Complexity: Our proposed approach converts a given DTS D
and HyperTWTL formula ¢ into first-order logic formula. An
SMT solver then combines and solves the converted first-order
logic formula. The construction of DTS D has a computational
complexity O(X.w. ), where w, is the travel time of edge e [39].
The computational complexity for translating a HyperTWTL
formula into a first-order logic formula is O(||p]| * || * m)
where || is the length of the formula and m is the number of
quantifiers in ¢. The computational complexity for solving a
first-order logic formula with SMT can be given as O(2™) in
worst case where m is the number of variables in the formula.
This is because given m variables, the final formula to be
solved will have O(2™) Boolean variables which have to be
partially assigned (some variables are assigned values, some are
left unassigned), applying the unit propagation and pure literal
rules, and then determining if the resulting formula is trivially
unsatisfiable. [40] The overall computational complexity is then
given as O(Sew, + 2lelxelmy,

VI. IMPLEMENTATION AND SIMULATIONS

In this section, we evaluate the feasibility of our proposed path
synthesis approach using a surveillance mission. In this case
study, paths for robotic planning are synthesized by unfolding
the discrete transition relations and HyperTWTL specifications
using scripts implemented in Python 3.7. The satisfiability prob-
lem of the form (4) is then solved using Z3 and CVC4. If a
path exists, the SMT solver returns the synthesized strategy,
otherwise, a violation of the formula is returned. We consider 5
different scenarios by varying the planning objective expressed
as a HyperTWTL specification. In each scenario, the synthesized
path starts from an initial state from the set I within time bound
[0, T1] and then to a service state(s) from the set P within the
time bound [T%, T3] to perform assigned surveillance mission.
Finally, the path must end in any of the landing states from the
set L within the time bound [T}, T5]. In all the transitions, all
obstacles in the grid should be avoided. Based on this case study,
the five different planning objectives considered are formalized
as HyperTWTL specifications as follows:

Requirement 1 (Shortest path): A surveillance robot is re-
quired to find the shortest route from a given initial state to a
goal state (landing state). Hence, given a set of traces, there
exists a trace 7o that reaches the landing state from the same
initial state before any other trace 1. We consider the following
time bounds for the synthesis of this requirement: 77 = 2,75 =
3,15 = 8,7y = 9,15 = 13. Thisrequirement can be formalized
as a HyperTWTL formula as:

@1 = ImVmy - [H' I, < H' [)]0T] o [H! Py,
AH! P, ]2 70 © [[HY L, ]+ AH Ly,] —
[H' L, ]+ T5]

Note that in ¢; and all subsequent formulae, “<” is not an
arithmetic operator but a notation of simplification such that
[H! I;, < H' I;,] stands for A\, ;([H" ir, AHi,]).

Requirement 2 (Robustness under initial uncertainty): The ro-
bustness under initial uncertainty guarantees that a robot reaches
the landing state regardless of the initial state it starts from. Thus,
given two paths 7; and 79 starting from different initial states,
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both reach the charging state with the same set of actions A
within the mission time. We consider the following time bounds
for the synthesis of this requirement: 77 = 25,75 =3 5,15 =
8s,Ty = 9s,Ts = 13 s. This requirement can be formalized as
a HyperTWTL formula:

o = ImVme - [H' I, # H' I, ]0T) o H! Py,

A HY Py, [0 @ [HY Py, A HY Py 215

[H! P, A H' Py, |27 © [H Ly, A H' L, T0 750 A
[HTszz Aﬂ'l * HT5-12 AWQ][T27T5].

Requirement 3 (Robustness under action uncertainty): This
form of robustness guarantees that a robot always reaches the
landing state irrespective of the uncertainties, faults or adver-
sarial factors along the synthesized path. Given a set of paths
with the same set of actions, for any path 7o, there exists a
feasible strategy for another path 7y from the initial state to
the landing state even if an action from the set A is replaced
with another arbitrary action on path m;. The following time
bounds for the synthesis of this requirement: 77 = 25,75 =
35,15 =8s,Ty =9s,T5 = 13 s. This can be formalized as a
HyperTWTL requirement as:

@3 = ImVmy - (H' I, A H' I,,]07 @ [H! Py, A
H' P, |7l o [H' L, A H' L]0 A [HY A, #
H' A,,] - [HB T A, <H T4, 7075

Requirement 4 (Initial-state opacity): Opacity is a major
security requirement in path synthesis often used to determine
whether the secrets of a path have been leaked to intruders. A
system satisfies the opacity requirement if it meets both of the
following conditions: (i) there are at least two executions of
the system mapped to 71 and mo with the same observations but
bearing different secrets; and (ii) the secret of each path cannot be
accurately determined by observing(partially) the system alone.
For this requirement, let the initial state of the paths be the secret
and observe whether both paths reach the landing states with the
same set of observations. We consider the following time bounds
for the synthesis of this requirement: 77 = 25,75 = 35,15 =
8s,Ty = 9s,Ts = 13 s. This objective can be expressed using
HyperTWTL as:

@4 = 3Im3Imy - ([H' I, # H'I,]07] © (H' Py,
A H P P70 © [HY Py, A HY Py, |1720751 A
[HT;,—TQ A7r1 ~ HT- 12 AWQ][Tl,TS]) ® [Hl Lm A
H! Lm][n,n])

Requirement 5 (Current-state opacity): For current state opac-
ity requirement, let the synthesized path be the secret and the
initial states of all paths be the only information a system user
can observe. This requirement guarantees that an intruder never
determines whether a system is currently in a secret state. Hence,
if there exists a path 71 that ended in a secret state, there exists
a non-secret path mo whose observation is the same as that of
w1 (we denote O as the set of observation). We consider the
following time bounds for the synthesis of this requirement:
Ty =2s5,Ty, =3s,T3 =8s,Ty = 95,15 = 13 5. This objec-
tive can be expressed using HyperTWTL as:

@5 = Im Im.(H I;, A H' [,]0T] © [H! Py, A
H! P, |7l © [H! Py, A H! Py, |75l 0

[H' L., A H' L, |ToTsh) A [H' Ay, £ H A 70T A
[HTS_TZ O7T1 = HT- T2 Oﬂz][Tl’TE’
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(a) (b)

Fig. 1.
(d) Strategy for initial-state opacity ¢4.

Fig. 2. Strategy for current-state opacity ¢s.

The feasible paths on a 10 x 10 grid for all the 5 objectives
above are shown in Fig. 1 where the yellow, blue, grey, red and
white colors represent the initial, landing, service, obstacles and
the allowable states respectively. For the shortest path objective,
1, the synthesized black path in Fig. 1(a) is the shortest path
from the initial state through to the service state to the land-
ing state. The feasible strategy for the initial state robustness
objective from g is shown in Fig. 1(b). The synthesized path
in black is initial-state robust as there exists a corresponding
feasible strategy in blue that reaches the goal state from any
of the initial states. In Fig. 1(c), the synthesized black path is
action robust meaning the corresponding strategy is feasible for
any single uncertain action. The synthesized path in black in
Fig. 1(d) is the feasible strategy for the initial-state opacity that
has the same observation as the path in blue. Both paths reach
the landing state despite starting from a different initial state.
Finally, from Fig. 2, the synthesized path in black is the feasible
path for the current-state opacity that yields the same observation
as the blue path but has different actions.

In the first set of experiments, we compare the performance
of the proposed path planning approach for HyperTWTL ob-
jectives to a similar approach proposed for HyperLTL objec-
tives in [33]. We formalized the shortest path requirement as
HyperLTL and HyperTWTL specifications. We acknowledge
the structural differences in the HyperLTL and HyperTWTL
specifications since the latter can handle explicit time con-
straints. However, since there is no publicly available tool for
verifying/synthesis of HyperSTL and HyperMTL specifications,
we chose the implementation of HyperLTL in [33] as an arbitrary
tool to compare our results. Using the computed bound in Hy-
perTWTL as the unrolling bound for the HyperL'TL, we compare
the performance of the proposed approach for synthesizing

(©) (d

(a) Strategy for shortest path 1. (b) Strategy for robustness under initial uncertainty 2. (c) Strategy for robustness under action uncertainty 3.

TABLE III
COMPARISON OF SYNTHESIS TIMES FOR OBJECTIVES EXPRESSED AS
HYPERTWTL AND HYPERLTL SPECIFICATIONS

Grid Unrolling bound | HyperTWTL time | HyperLTL time
size (lelD (seconds) (seconds)
10x10 20 2.77 5.04
20x20 40 9.81 14.13
40x40 60 44.36 63.75
60x60 80 285.55 359.32

requirements captured as HyperLTL and HyperTWTL specifica-
tions. The unrolling bounds ranging from ||| = 20to ||¢|| = 80
were used against varying grid sizes ranging from 10 x 10 to
60 x 60 to synthesize paths for the formalized HyperLTL and
HyperTWTL specifications. The experiments are performed on
an Windows 10 system with 64 GB RAM and Intel Core(TM)
i9-10900 CPU (3.70 GHz). The two specifications that capture
the robustness under initial uncertainty requirement as used in
these experiments are as follows.

HyperTWTL: © = 3ImVmy - [H' I;, #H'I,]|07] o
[H'P ., AH'P, 2750 © [H! Py, A HY Py, |1275] ©
[H! P, A H! P |25 © [HY Ly, A HY L, [T 550 A
[HT5—T2 A7r1 = HT5- T2 Aﬂ_Q][Tst]

HyperLTL: ¢ = 3mVma - (In; # Iny) A (Pix, A Pipy) A
(P2Tr1 A P27T2) A (P37T1 A P371'2) A (Lﬂl A Lﬂz) A

DT(Aﬂ 1 = Aﬂ' 1)

We considered the upper bounds k = 10, k = 30, k = 50,
and k = 70 for the computation of the unrolling bounds in
HyperTWTL specification. The respective synthesis time for this
experiment is shown in Table III. We observe from Table III that
for each HyperTWTL and HyperLTL formula, the computation
time for the path synthesis increases with an increase in grid
size as well as unrolling bound. However, the results shown in
Table III suggest that it takes less time to synthesize policies
for any planning objective expressed using HyperTWTL than
HyperLTL. For instance, for a grid size of 10 x 10 with an
unrolling bound of 20, it takes 2.77 seconds to synthesize a
feasible strategy from the initial state to the landing state for the
objective expressed as a HyperTWTL specification. However, it
takes 5.04 seconds to synthesize a strategy for the same planning
objective expressed as a HyperLTL specification. When the grid
size and the unrolling bound are increased to 40 x 40 and 60
respectively, it takes 44.36 seconds to synthesize a strategy for
an objective expressed as HyperTWTL specification while it
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Fig. 3. Comparison of synthesis times for HyperTWTL objectives using Z3
and CVC4 Solvers.
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Fig. 4. Comparison of memory consumed for HyperTWTL objectives using
73 and CVC4 Solvers.

takes 63.75 seconds to synthesize a feasible strategy for a path
objective expressed as a HyperLTL specification. A similar trend
is observed for the rest of the grid sizes and unrolling bounds.

In the second set of experiments, we evaluate the scalability
and performance of the proposed path synthesis tool with Z3
and CVC4 solvers. While keeping the grid size constant to 10 x
10, we vary unrolling bounds from ||¢ = 25]| to ||¢ = 100 to
synthesize paths for HyperTWTL objectives ¢1 — ¢5. We then
analyze the impact of ||¢|| on the performance of the proposed
tool. The respective synthesis time and memory consumed are
shown in Figs. 3 and 4.

We observe from Fig. 3 CVC4 synthesizes paths within a
shorter time than Z3. For instance, while synthesizing a feasible
strategy for 4 for ||| = 25, Z3 takes 3.91 seconds. In contrast,
CV (4 takes 2.34 seconds while synthesizing a feasible strategy
for the same objective for || || = 25. Similarly, while synthesiz-
ing a feasible strategy for ¢4 for ||| = 75, Z3 takes 18.56 sec-
onds whereas CVC4 takes 15.57. A similar trend is observed for
the rest of the HyperTWTL objectives. From the results shown,
we also observe a linear trend between SMT solvers’ synthesis
time and unrolling bounds. For instance, Z3 takes 3.91 seconds,
8.64 seconds, 12.52 seconds, and 17.53 seconds to synthesize
paths for objective o1 for ||| = 25, ||¢|| = 50, ||¢|| = 75, and
Il = 100 respectively. Similarly, CVC4 takes 2.34 seconds,
6.98 seconds, 10.72 seconds and 15.23 seconds to synthesize
paths for objective o1 for ||| = 25, ||¢]| = 50, ||¢| = 75, and
ll]l = 100, respectively. Consequently, as shown in Fig. 4,

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 8, AUGUST 2023

we observe that Z3 consumes less memory than CVC4 for
synthesizing paths for HyperTWTL objectives. For instance,
while synthesizing a path for the objective @9 for ||¢]| = 50,
CVC4 consumes 48.17 MB. In contrast, the memory consumed
for synthesizing a path with the same property for ||| = 50
using Z3 consumes 45.98 MB. Similarly, while synthesizing
a path for ¢4 for ||| =100, CVC4 consumes 118.25 MB
whereas Z3 consumes only 116.25 MB. Again, a similar trend of
memory consumption is observed for the rest of the HyperTWTL
objectives. Once again, We observe a linear trend between
SMT solvers’ memory consumption and unrolling bounds.
For instance, Z3 consumes 31.55 MB, 59.78 MB, 80.15 MB
and 116.25 MB, respectively for verifying ¢4 for ||¢|| = 25,
llell = 50, ||l = 75, and ||¢|| = 100. However, the memory
consumption increases to 33.00 MB, 61.62 MB, 83.06 MB and
118.25 MB respectively for verifying the same property for
llell = 25, ||¢l|l = 50, ||¢|| = 75, and ||| = 100 using CVC4.

VII. RELATED WORKS

Following the introduction of the concept of hyperproper-
ties by Clarkson and Schneider [21], various hyperproperties
formalisms have been proposed. These logics have been used
in formalizing complex requirements in different applications.
Very recently, control/strategy synthesis from hyperproperties
has received a great attention from researchers. Interestingly
the majority of these control/strategy synthesis literature are
focused on HyperLTL. In [24], the authors studied the controller
synthesis problem of finite-state systems for HyperLTL speci-
fications. They demonstrated through a comprehensive analysis
of the controller syntheis problem for various fragments of
HyperLTL that the problem can be decided for HyperLTL spec-
ifications and finite-state plants. A reactive synthesis problem
for hyperproperties expressed as HyperLTL specifications was
also investigated in [41]. The authors also studied the bounded
version of the synthesis problem for V* fragment of HyperLTL
and presented a semi-decision procedure that constructs coun-
terexamples of a given system up to a given bound. In [42],
a bounded model checking (BMC) approach for HyperLTL is
presented. The proposed approach reduces the BMC problem to
a Quantified Boolean Formula (QBF) solving problem and then
solves it using HyperQube tool. The authors demonstrated the
HyperQube tool can be used for path planning in robotic sys-
tems. Probablistic hyperproperties was investigated in [43]. The
authors extended the syntax and semantics of HyperPCTL with
the notion of rewards to express the accumulated reward relation
among different computations. Among the many applications,
the authors demonstrated that the extended logic can be used
to formalize path planning objectives in robotic applications.
In [33], the authors presented a symbolic approach for synthe-
sizing robotic planning strategies on discrete transition systems
HyperLTL. Indeed, this work is the most relevant to our work.
However, HyperLTL cannot express tasks with explicit time
constraints which is addressed by introducing the HyperTWTL
in this letter.
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VIII. CONCLUSION

In this letter, we proposed HyperTWTL, which extends the
semantics of TWTL with quantifiers and trace variables for
specifying timed hyperproperties. Furthermore, given Hyper-
TWTL specifications, we propose a symbolic strategy syn-
thesis approach for robustness-, optimality- and privacy-aware
robotic motion planning. This was achieved by reducing the
planning problem to a first-order logic satisfiability problem.
The proposed approach’s feasibility, efficiency, and scalability
were demonstrated using a surveillance mission case study and
two industrial-strength SMT solvers. In the future, we plan to
propose areal-time strategy synthesis approach and implement it
on real robots to show the on-field effectiveness of our proposed
methods.

[1]

[2]

[3]

[4

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

M. Cai, H. Peng, Z. Li, and Z. Kan, “Learning-based probabilistic LTL
motion planning with environment and motion uncertainties,” /[EEE Trans.
Autom. Control, vol. 66, no. 5, pp. 2386-2392, May 2021.

M. Cai, H. Peng, Z. Li, and Z. Kan, “Receding horizon control-based
motion planning with partially infeasible LTL constraints,” IEEE Control
Syst. Lett., vol. 5, no. 4, pp. 1279-1284, Oct. 2021.

M. Cai, S. Xiao, Z. Li, and Z. Kan, “Optimal probabilistic motion planning
with potential infeasible LTL constraints,” IEEE Trans. Autom. Control,
vol. 68, no. 1, pp. 301-316, Jan. 2023.

D. Tianetal., “Decentralized motion planning for multiagent collaboration
under coupled LTL task specifications,” IEEE Trans. Syst., Man, Cybern.
Syst., vol. 52, no. 6, pp. 3602-3611, Jun. 2022.

C. K. Verginis, C. Vrohidis, C. P. Bechlioulis, K. J. Kyriakopoulos, and D.
V. Dimarogonas, “Reconfigurable motion planning and control in obstacle
cluttered environments under timed temporal tasks,” in Proc. IEEE Int.
Conf. Robot. Automat., 2019, pp. 951-957.

S. Saha and A. A. Julius, “Task and motion planning for manipulator arms
with metric temporal logic specifications,” IEEE Robot. Automat. Lett.,
vol. 3, no. 1, pp. 379-386, Jan. 2018.

Z.Linetal., “Optimization-based motion planning and runtime monitoring
for robotic agent with space and time tolerances,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 1874-1879, 2020.

Y. Zhou, D. Maity, and J. S. Baras, “Timed automata approach for motion
planning using metric interval temporal logic,” in Proc. IEEE Eur. Control
Conf., 2016, pp. 690-695.

F. S. Barbosa et al., “Formal methods for robot motion planning with time
and space constraints,” in Proc. FORMATS. Berlin, Germany: Springer,
2021, pp. 1-14.

K. Leahy et al., “Persistent surveillance for unmanned aerial vehicles
subject to charging and temporal logic constraints,” Auton. Robots, vol. 40,
no. 8, pp. 1363-1378, 2016.

C. I. Vasile et al., “Time window temporal logic,” Theor. Comput. Sci.,
vol. 691, pp. 27-54, 2017.

E. Bonnah and K. A. Hoque, “Runtime monitoring of time window
temporal logic,” IEEE Robot. Automat. Lett., vol. 7, no. 3, pp. 5888-5895,
Jul. 2022.

A. S. Asarkaya, D. Aksaray, and Y. Yazicioglu, “Temporal-logic-
constrained hybrid reinforcement learning to perform optimal aerial mon-
itoring with delivery drones,” in Proc. IEEE Int. Conf. Unmanned Aircr.
Syst., 2021, pp. 285-294.

R. Peterson et al., “Distributed safe planning for satisfying minimal tem-
poral relaxations of TWTL specifications,” Robot. Auton. Syst., vol. 142,
2021, Art. no. 103801.

D. Aksaray et al., “Probabilistically guaranteed satisfaction of temporal
logic constraints during reinforcement learning,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2021, pp. 6531-6537.

A.T.Biiyiikkogak, D. Aksaray, and Y. Yazicioglu, “Distributed planning of
multi-agent systems with coupled temporal logic specifications,” in Proc.
AIAA Scitech Forum, 2021, p. 1123.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]
[38]

(39]

[40]

[41]

[42]

[43]

4393

A.S. Asarkaya, D. Aksaray, and Y. Yazicioglu, “Persistent aerial monitor-
ing under unknown stochastic dynamics in pick-up and delivery missions,”
in Proc. AIAA Scitech Forum, 2021, p. 1125.

R. Koymans, “Specifying real-time properties with metric temporal logic,”
Real-Time Syst., vol. 2, no. 4, pp. 255-299, 1990.

O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Proc. Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems. Berlin, Germany: Springer, 2004,
pp. 152-166.

I. Tkachev and A. Abate, “Formula-free finite abstractions for linear
temporal verification of stochastic hybrid systems,” in Proc. 16th Int. Conf.
Hybrid Syst.: Computation Control, 2013, pp. 283-292.

M. R. Clarkson et al., “Hyperproperties,” J. Comput. Secur., vol. 18, no. 6,
pp. 1157-1210, 2010.

S.Zdancewic and A. C. Myers, “Observational determinism for concurrent
program security,” in Proc. IEEE 16th Comput. Secur. Found. Workshop,
2003, pp. 29-43.

J. A. Goguen and J. Meseguer, “Security policies and security models,” in
Proc. IEEE Symp. Secur. Privacy, 1982, pp. 11-11.

B. Bonakdarpour and B. Finkbeiner, “Controller synthesis for hyper-
properties,” in Proc. IEEE 33rd Comput. Secur. Found. Symp., 2020,
pp. 366-379.

B. Finkbeiner et al., “EAHyper: Satisfiability, implication, and equiva-
lence checking of hyperproperties,” in Proc. Computer Aided Verification.
Berlin, Germany: Springer, 2017, pp. 564-570.

B. Bonakdarpour et al., “Monitoring hyperproperties by combining static
analysis and runtime verification,” in Proc. Int. Symp. Leveraging Appl.
Formal Methods, 2018, pp. 8-27.

M. R. Garey et al., “Computers and intractability,” in A Guide to the Theory
of np-Completeness, New York, NY, USA: W. H. Freeman & Co., 1979.
M. R. Clarkson et al., “Temporal logics for hyperproperties,” in Proc.
POST. Berlin, Germany: Springer, 2014, pp. 265-284.

L. V. Nguyen et al., “Hyperproperties of real-valued signals,” in Proc.
IEEE/ACM 15th Int. Conf. Formal Methods Models Syst. Des., 2017,
pp- 104-113.

B. Bonakdarpour et al., “Model checking timed hyperproperties in
discrete-time systems,” in Proc. NASA Formal Methods. Berlin, Germany:
Springer, 2020, pp. 311-328.

A. Pnueli, “The temporal logic of programs,” in Proc. IEEE 18th Annu.
Symp. Found. Comput. Sci., 1977, pp. 46-57.

H.M. Ho, R. Zhou, and T. M. Jones, “On verifying timed hyperproperties,”
in Proc. 26th Int. Symp. Temporal Representation Reasoning (TIME),
2018, pp. 20:1-20:18.

Y. Wang et al., “Hyperproperties for robotics: Planning via HyperLTL,” in
Proc. IEEFE Int. Conf. Robot. Automat., 2020, pp. 8462-8468.
ANYbotics, “Automation & digitalization at scale: ANYmal makes the
case at BASF.” Accessed: May 16, 2023. [Online]. Available: https://www.
anybotics.com/anymal-makes-the-case-at-basf-chemical-plant/

L. Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in Proc. Int.
Conf. Tools Algorithms Construction Anal. Syst., 2008, pp. 337-340.

M. Deters, A. Reynolds, T. King, C. Barrett, and C. Tinelli, “A tour of
CVC4: How it works, and how to use it,” in Proc. IEEE Formal Methods
Comput.-Aided Des., 2014, pp. 7-7.

N. Rungta, “A billion SMT queries a day,” in Proc. Computer Aided
Verification. Berlin, Germany: Springer, 2022, pp. 3—18.

N. Bjgrner, “Z3 and SMT in industrial R&D,” in Proc. FM. Berlin,
Germany: Springer, 2018, pp. 675-678.

D. Aksaray et al., “Dynamic routing of energy-aware vehicles with tem-
poral logic constraints,” in Proc. IEEE Int. Conf. Robot. Automat., 2016,
pp. 3141-3146.

P. Liberatore, “Complexity results on DPLL and resolution,” ACM Trans.
Comput. Logic, vol. 7, no. 1, pp. 84—-107, 2006.

B. Finkbeiner et al., “Synthesizing reactive systems from hyperproperties,”
in Proc. Computer Aided Verification. Berlin, Germany: Springer, 2018,
pp. 289-306.

T. Hsu et al., “Bounded model checking for hyperproperties,” in Proc.
Tools and Algorithms for the Construction and Analysis of Systems. Berlin,
Germany: Springer, 2021, pp. 94-112.

O. Dobe, L. Wilke, E. Abrahém, E. Bartocci, and B. Bonakdarpour, “Prob-
abilistic hyperproperties with rewards,” in Proc. NASA Formal Methods.
Berlin, Germany: Springer, 2022, pp. 656-673.

Authorized licensed use limited to: University of Dayton Libraries. Downloaded on April 08,2024 at 14:01:36 UTC from IEEE Xplore. Restrictions apply.


https://www.anybotics.com/anymal-makes-the-case-at-basf-chemical-plant/
https://www.anybotics.com/anymal-makes-the-case-at-basf-chemical-plant/

