Check for
Updates

2023 21st ACM/IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE)

Model Checking Time Window Temporal Logic for
Hyperproperties

Ernest Bonnah Luan Viet Nguyen Khaza Anuarul Hoque
University of Missouri-Columbia University of Dayton University of Missouri-Columbia
Columbia, Missouri, USA Dayton, Ohio, USA Columbia, Missouri, USA

ernest.bonnah@mail. missouri.edu Inguyenl@udayton.edu hoquek@umsystem.edu

ABSTRACT

Hyperproperties extend trace properties to express properties of
sets of traces, and they are increasingly popular in specifying vari-
ous security and performance-related properties in domains such
as cyber-physical systems, smart grids, and automotive. This paper
introduces HyperTWTL, which extends Time Window Temporal
Logic (TWTL)-a domain-specific formal specification language for
robotics, by allowing explicit and simultaneous quantification over
multiple execution traces. We propose two different semantics for
HyperTWTL, synchronous and asynchronous, based on the align-
ment of the timestamps in the traces. Consequently, we demon-
strate the application of HyperTWTL in formalizing important
information-flow security policies and concurrency for robotics ap-
plications. Furthermore, we introduce a model checking algorithm
for verifying fragments of HyperTWTL by reducing the problem
to a TWTL model checking problem.
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1 INTRODUCTION

Hyperproperties [21] extend the notion of trace properties [4]
from a set of traces to a set of sets of traces. In other words, a
hyperproperty specifies system-wide properties in contrast to the
property of just individual traces. This allows us to specify a wide
range of properties related to information-flow security [29, 49],
consistency models in concurrent computing [10, 24], robustness
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models in cyber-physical systems [12, 28], and also service level
agreements (SLA) [21]. Motivated by the expressiveness of hyper-
properties, several hyper-temporal logics, such as HyperLTL [20],
HyperSTL [38], and HyperMTL [11], were recently proposed by ex-
tending the conventional temporal logics such as Linear Temporal
Logic (LTL) [41], Signal Temporal Logic (STL) [37], and Metric Tem-
poral Logic (MTL) [33], respectively. Consequently, various model
checking techniques have been proposed for verifying HyperLTL
[20, 22, 25, 27], HyperMTL [11, 30], HyperMITL [31], HyperSTL
[38] specifications employing alternating automata, model check-
ing, strategy synthesis, and several other methods [32].

Time bounded specifications are common in many applications,
such as robotics. Such specifications with time constraints cannot
be expressed using LTL, however they can be expressed using Met-
ric Temporal Logic (MTL) [33], Signal Temporal Logic (STL)[37],
Bounded Linear Temporal Logic (BLTL)[46] and Time Window
Temporal Logic (TWTL) [48]. The TWTL has rich semantics and
is known for expressing specification more compactly when com-
pared to Metric Temporal Logic (MTL) [33], Signal Temporal Logic
(STL)[37], Bounded Linear Temporal Logic (BLTL)[46]. For instance,
let us consider a specification as “stay at Q for the first 5-time steps
within the time window [0, 10]”. This can be expressed in TWTL
as [H?Q][%19] The exact specification can be expressed in STL
as Fg,10-5]G0,51Q where the outermost time window needs to
be modified with respect to the inner time window. Furthermore,
TWTL presents an explicit concatenation operator (©), which is
very useful in expressing serial tasks in robotic mission specifica-
tion and planning. Thus, TWTL is becoming popular in different
application domains [2, 5, 6, 13, 16, 40]. However, the conventional
TWTL can only express trace properties (can reason about individ-
ual traces). This limits their application to evaluating a wide range
of security properties as evaluating them requires reasoning about
multiple traces. A straightforward extension of TWTL to a hyper-
temporal logic will result in a flawed formalism and impractical for
robotic applications. There are multiple challenges in designing a
domain-specific temporal logic for timed hyperproperties. First, the
alignment of time stamps across multiple traces of a system must be
taken into consideration. This is due to the complexity of interpret-
ing time stamps that are not aligned across traces. Additionally, the
framework of any hyper-temporal logic has to consider the speed
of time with which time-stamped traces proceed. This is because

Table 1: The representation of ¢ in HyperTWTL, HyperSTL,
HyperMTL

HyperTWTL Va¥r’ - [H® A,|1%6] © [H2 B, ][710]
HyperSTL VvV - (F O,G—S]G[O,S]Aﬂ) A (.F£7)10_2]G[0’2]B;1—')
HyperMTL VrV¥r' - \/i;()s (Gpi,i+s1Ar A li_;i:gl;(i;zG[j,j+2]Bn/)
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traces may not proceed at the same speed of time. To reason about
traces that move at different speeds of time, asynchronous semantics
need to be allowed.

A hyper-temporal logic, HyperTWTL, extends the classical se-
mantics of TWTL with trace variables and explicit existential and
universal quantifiers over multiple execution traces. HyperTWTL
can express bounded hyperproperties more compactly when com-
pared to HyperMTL and HyperSTL. For instance, consider a hy-
perproperty that requires that “for any pair of traces = and n’ of
a system, A should hold for 5-time steps in trace = within the time
bound [0, 6], afterwards B should also hold for 2-time steps in trace
s’ within the time bound [7,10]” This requirement ¢ can be ex-
pressed using HyperTWTL, HyperSTL, and HyperMTL formalisms
as shown in Table 1. The compact syntax of HyperTWTL allows for
a more succinct representation of this requirement than HyperMTL
and HyperSTL, which require nested operators, shifted time win-
dows, and the disjunction of several sub-formulae. For instance, in
Table 1, it can also be observed that the given requirement can be
formalized in HyperTWTL formula with total 5 temporal operators
(without considering the quantifiers). This same requirement can
be formalized as a HyperMTL formula using 11 temporal opera-
tors (excluding the quantifiers). This example shows the succinct
characteristics of HyperTWTL over HyperMTL. Indeed, with the
increasing complexity of requirements, the complexity of Hyper-
MTL formulae will also grow, which makes the formal analysis
of HyperMTL formulae very expensive for complicated robotic
applications.

In this paper, we describe a full version of HyperTWTL with
two semantics, synchronous and asynchronous, to represent system
behaviors as a sequence of events that can occur either at the same
or different time points respectively. In the synchronous semantics,
the operators are evaluated time-point by time-point similar to Hy-
perLTL. In contrast, asynchronous semantics allows for evaluation
over traces that proceed at different speed of time. We demonstrate
how HyperTWTL can be used to formalize important security poli-
cies such as non-interference, opacity, countermeasures to side-
channel timing attacks, and also concurrency-related properties,
such as linearizability. Such security requirement are common not
only in robotics but also in other computing domains at hardware,
software and system level. Finally, we propose a model checking
algorithm for fragments (alternation-free and k-alternations) of Hy-
perTWTL by reducing the model checking problem to the TWTL
model checking problem.

The rest of the paper is organized as follows: Section 2 reviews
the preliminary concepts. The syntax and semantics of HyperTWTL
are presented in Section 3. In Section 4, some applications of Hy-
perTWTL are discussed. Our model checking algorithm for Hyper-
TWTL is presented in section 5. We evaluate the feasibility of our
proposed algorithm in Section 4. Related works are discussed in
Section 7. Finally, Section 8 concludes the paper.

2 PRELIMINARIES

Let AP be a finite set of atomic propositions and 3 = 247 be the
powerset of AP. Let A = Z>( X X be the alphabet, where Z > is the
set of non-negative integers. A (time-stamped) event is a member of
the alphabet A and is of the form (7, e), where 7 € Z>p and e € 3.
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A trace t € A® denotes an infinite sequence of events over A, and
t € A* denotes a finite sequence of events over A. For a trace t,
we denote t[n].e as the event at time n, i.e. e, and by t[n].7, we
mean 7. Let ¢[i, j] denote the subtrace of trace ¢ starting from time
i up to time j. We model timed systems as Timed Kripke Structures
with the assigned time elapsed on the transitions.

Definition 1. A timed Kripke structure (TKS) is a tuple 7 =
(S, Sinit, 6, AP, L) where

S is a finite set of states;

Sinit C S is the set of initial states;

8 € SXZso XS is a set of transitions;

AP is a finite set of atomic propositions; and

L :S — ¥ is alabelling function on the states of 7

We require that for each s € S, there exists a successor that can
be reached in a finite number of transitions. Hence, all nodes with-
out any outgoing transitions are equipped with self-loops such that
(s, 1,s) € 6. A path over an TKS is an infinite sequence of states
s0s182 -+ € S, where so € Sinir and (sj, d;, Si+1) € 6, for each
i > 0. A trace over TKS is of the form: t = (70, e9) (71, 1) (72, €2) .. .,
such that there exists a path sodys1disadsy - - - € S©.

TWTL Syntax and Semantics. The set of TWTL formulae over a
finite set of atomic propositions is defined by the following syntax:

¢:=T|H|Hi~a | $1 Ago | =¢ | $10 ¢ | []177]

where T stands for true, a is an atomic proposition in AP. The oper-
ators HY, © and [ ][”,] represent the hold operator with d € Z,
concatenation operator and within operator respectively within a
discrete-time constant interval [z, 7’], where 7,7/ € Z>pand 7’ > T,
respectively and A and — are the conjunction and negation opera-
tors respectively. The disjunction operator (V) can be derived from
the negation and conjunction operators. Likewise, the implication
operator (—) can also be derived from the negation and disjunction
operators.

TWTL semantics: The satisfaction relation defined by | defines
when subtrace (i, j] of a (possibly infinite) timed-trace ¢ from po-
sition i up to and including position j, satisfies the TWTL formula.
This is denoted by t[i, j] | ¢. The formula ¢ = T always holds.
The hold operator ¢ = H%a requires that a should hold for d time
units. Likewise HY—aq, specifies that for d time units, the condi-
tion a ¢ t[n].e should hold. The trace t[i, j] satisfies the formulae
¢ = ¢1 A ¢ when both subformulae are satisfied while in —¢, ¢[i, j],
does not satisfy the given formula. A given formula in the form
¢1 © P specifies that the ¢[i, j] should satisfy the first formula first
and the second afterward with one time unit difference between the
end of execution of ¢ and start of execution of ¢. The trace [, j],
must satisfy ¢ between the time window [z, 7’] given [¢] [n7'],
Given a TWTL formula ¢ and a timed-trace, t[i, j] where the
trace starts at 7; > 0 and terminates at 7; > 7, the semantics of the
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operators is defined as:

a € tln].e,¥n e {i,...i+d}A
(t[jl.c = t[i].r) > d
aé¢t[n]e,Vne {i,...i+d}A
(tljl.c —tli]l.r) = d

iff

[Ljl Edr A iff (e[ j] F ¢1) A (i j] E ¢2)
t[i, j] E ¢ it —(¢[i, j] E )
tli, jlE 1O ¢2 iff  Fk =argmin; < ;{t[iL. k] = ¢1}A

(tlk+1, /] F ¢2)
Jk>i+71, st tlki+d]EPA

(tljl.c—tli]lo) >

tli, j] E [g1177] i

3 HYPERTWTL

A hyperproperty is a set of sets of infinite traces. HyperTWTL is
a hyper-temporal logic to specify hyperproperties for TWTL [48]
by extending the TWTL with quantification over multiple and con-
current execution traces. Hyperproperties can be specified with
HyperTWTL using two different semantics, synchronous and asyn-
chronous. Synchronous semantics requires timestamps in all quanti-
fied traces to match at each point in time. However, we can reason
about traces that proceed at different speeds with asynchronous
semantics. We first present the syntax and then the synchronous
and asynchronous semantics of HyperTWTL.

3.1 Syntax of HyperTWTL

The syntax of HyperTWTL is inductively defined by the grammar
as follows.

p:=3m-¢|Vr-p|¢

¢ =Hlaz |Hiaz | g1 A G2 | ¢ | p10 g2 | [p]177]
Ep-y|Ap-¢

Y =Hlan, | Hanp [Y1 A2 |~ | Y1 0y | [¥]5T

where a € AP, & is a trace variable from a set of trace variables
V and p is a trajectory variable from the set #. Thus, given a, p,
the proposition a € AP holds in trace & and trajectory p at a given
time point. The quantified formulae 3, and V7 are interpreted as
“there exists some trace 7” and “for all the traces n”, respectively.
The operators H?, © and | =] represent the hold operator with
d € Z>y, concatenation operator and within operator respectively
with a discrete-time constant interval [z, 7’], where 7,7/ € Zx¢
and 7’ > r, respectively and A and - are the conjunction and
negation operators respectively. Trace quantifiers 37 and V7, allow
for the simultaneous reasoning about different traces. Similarly,
trajectory quantifiers Ep and Ap allow reasoning simultaneously
about different trajectories. The quantifier E is interpreted as there
exists a trajectory that gives an interpretation of the relative passage
of time between the traces for the inner temporal formula to be
evaluated. Similarly, A means that all trajectories satisfy the inner
formula. S and T are both intervals of form [z, '] where 7,7’ € Zx¢
and 7’ > 1. The disjunction operator (V) can be derived from
the negation and conjunction operators. Likewise, the implication
operator (—) can also be derived from the negation and disjunction
operators.
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3.2 Semantics of HyperTWTL

We classify the HyperTWTL formulae into two fragments based
on the possible alternation in the HyperTWTL syntax as follows:

(1) Alternation-free HyperTWTL formulae with one type of
quantifier, and

(2) k-alternation HyperTWTL formulae that allows k-alternation
between existential and universal quantifiers.

3.2.1  Synchronous Semantics of HyperTWTL. The satisfaction rela-
tion gives the semantics of synchronous HyperTWTL = over time-
stamped traces T. We define an assignment IT : V — A X Z3 as
a partial function mapping trace variables to time-stamped traces.
Let II(xr) = (t,n) denote the time-stamped event from trace ¢ at
position n currently employed in the consideration of trace 7. We
then denote the explicit mapping of the trace variable 7 to a trace
t € T at position p as II[x — (t,n)]. Given (IT), where II is the
trace mapping, we use (IT) + k as the k" successor of (IT). We now
present the synchronous semantics of HyperTWTL in Table 2.

In Table 2, the hold operator H9a,, states that the proposition a is
to be repeated for d time units in trace 7. Similarly He-a,, requires
that for d time units the proposition a should not be repeated in
trace 7. The trace set T satisfies both sub-formulae in ¢ = @¢1 A ¢2
while in —¢, T, does not satisfy the given formula. A given formula
with a concatenation operator in the form ¢; © ¢, specifies that
every t € T should satisfy ¢; first and then immediately ¢ must
also be satisfied with one-time unit difference between the end of
execution of ¢; and the start of execution of ¢,. The trace set, T
must satisfy ¢ between the time window within the time window
[z,7'] given [¢][77],

3.22  Asynchronous Semantics of HyperTWTL. We now introduce
the notion of a trajectory, which determines when traces move
and when they stutter, to model the different speeds with which
traces proceed in HyperTWTL. The asynchronous semantics of
HyperTWTL is the obvious choice of semantics for applications
with event-driven architectures. Let us denote V as a set of trace
variables. Given a HyperTWTL formula ¢, we denote Paths(¢)
as a set of trace variables quantified in the formula ¢. A given
HyperTWTL formula ¢ is termed asynchronous if for all proposi-
tions az,p in ¢, 7 and p are quantified in ¢. We require that for
any given formula, no trajectory or trace variable is quantified
twice. A trajectory v : vgv1vy - - - for a given HyperTWTL formula
is an infinite sequence of non-empty subsets of Paths(¢), i.e.v €
Paths(p). Essentially, in each step of the trajectory, one or more
of the traces may progress or all may stutter. A trajectory is fair
for a trace variable 7 € Paths if there are infinitely many positions
Jj such that 7 € v;. Given a trajectory v, by v;, we mean the suffix
VjVj4+10it2 - - - . For a set of traces variables V, we denote R« as the
set of all fair trajectories for indices from V. We use trace map-
ping IT as defined in the synchronous semantics of HyperTWTL.
We now define the trajectory mapping I' : Vars(¢) — Ry ange(r)s
where range(T’) C Vars(¢) for which T is defined. We then denote
the explicit mapping of the trajectory variable p to a trajectory v
asI'[p — v]. Given (IL,T) where IT and T are the trace mapping
and trajectory mapping respectively, we use (IL,T) + k as the kth
successor of (IL,T). Given a trace mapping II, a trace variable 7, a
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Table 2: Synchronous semantics of HyperTWTL

(T, 1I) =5 37 iff FeT - (T,0xr - (1,0)]) s ¢
(T, 1) k=5 V. iff VieT-(T,0[r— (£,0)]) Es ¢
(T,TI) s Ha, iff aet[n].efor (t,n) =1I(x),Vn € {n,...,n+d} A (t[n+i].t — t[n].7) > d, for some i > 0
(T,TI) s HY-a, iff a¢t[n].efor (t,n) =I(n),Vn € {n,...n+d} A (t[n+i].t - t[n].T) > d, for some i > 0
(T.I) Es g1 A gz iff ((T.ID) s ¢1) A ((TID) s ¢2)
(T,1I) ks —¢ iff  —~((T.ID) ks ¢)
(TI) s g1 © 2 iff 3k = argmin, <<, for somei € [n k] : ((T,II) |55 ¢1), for some j € [k +1,n"]: ((T,II) k5 ¢2)
(T,0) ks [¢]177] if 3k >n+r stforallie [kn+7] (TI) Es ¢ A(IL) +n’ —II) > 7’ for some n,n’ > 0
Table 3: Asynchronous semantics of HyperTWTL
(T,ILT) g 37 iff FteT-(T,I[x,p — t,0],T) g ¢ forall p

(T,ILT) |q V7@
(T.ILT) [Fq Ep.¢
(T.ILT) Fq Ap.g
(T,ILT) g Heax )

for some n,n’ > 0

VteT- (T,II[x,p — t,0],T) 4 ¢ forall p

Foe Rrange(r) (TILT[p > o]) Fa g

Yo e 7€range(l") (TILT[p —> o) Fa g

a € t[n].e for (t,n) =1I(x, p),Vn € {n,...,n+d} A (t[n+i].t — t[n].r) > d, for some i > 0
a ¢ t[n].e for (t,n) =I(x, p),Vn € {n,...,n+d} A (¢[n+i].t — t[n].7) > d, for some i >0

3k = argmin, <<, for some i € [n, k] : ((T,ILT) |4 ¢1), for some j € [k +1,n"]: ((T,ILT) Eq ¥2)
Jk>n+rt,st forallie [k,n+7']: (T,ILT) Fqa v A [(ILT) +n” — (ILT)] € SA |A(n) - A(x')| €T,

(T.ILT) Fa H%-ay,  iff

(LILD) Fa Y1 Ay iff ((TILT) Fa ¢1) A ((TILT) |q ¥2)
(TILT) Fa ~¢ iff ~(T,ILT) q ¥)

(TLILD) Fa 10y iff

(TILT) Eq [y]ST iff

trajectory variable p, a trace ¢, and a pointer n, we denote the assign-
ment that coincides with II for every pair except for (7, p) which
is mapped to (t,n) as I1[(x, p) — (t,n)]. Given a HyperTWTL for-
mula we denote A as the map from V — Z3 that returns the time
duration for each trace variable = € range(A).For all & € range(A),
we require that the following conditions be met:

o ILT)+k—-(ILT) €S

e |A(r) = A(n’)| € T, for all distinct 7, 7’ € range(A)

We, therefore, present the satisfaction of asynchronous semantics of
HyperTWTL formula ¢ over trace mapping II, trajectory mapping
T, and a set of traces T denoted as (T,II,T) |, ¢ in Table 3.

4 APPLICATIONS OF HYPERTWTL

In this section, we present a case study and illustrate some im-
portant requirements that can be expressed using HyperTWTL.
This case study is inspired by the Technical Surveillance Squadron
(TESS) of the United States Air Force Technical Applications Cen-
ter [42], which provides persistent and collaborative surveillance
of designated regions to detect, identify and locate potential nu-
clear explosions. The surveillance data is first gathered using au-
tonomous security robots augmented with intelligent video cam-
eras, onboard processors, communication modules, and navigation
systems and then forwarded to the central control station for sub-
sequent decision-making.

Fig. 1 shows the TKS of a TESS mission with different regions
of interest and multiple robots. The surveillance environment is
composed of 2 initial positions I; and I, (grey), 2 charging stations
C1 and Cy (yellow), 6 regions of interest to be surveilled Ry, ..., R
(blue), and 10 allowable states Py, ..., Pip (white). The weighted
transitions between the states represent the possible movements
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Figure 1: TKS of the TESS case study with initial states (grey),
regions of interest (blue), charging states (yellow), and allow-
able states (white).

of agents in the environment, with respective weights represent-
ing the unit of time required for the transitions. The autonomous
surveillance can be deployed with one or multiple robots start-
ing from any initial states I; or I with a fully charged battery
within time bound [0, T1]. The robot(s) then proceeds along the
desired routes to perform surveillance at the regions of interest.
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Each mission requires the surveillance of region R; within time
bound [T3, T3]. Next, the robots are required to surveil either region
R, followed by R4 or region R3 followed by Rs within time bound
[T4, T5]. Finally, a surveillance of region Rg is performed within
time bound [T, T7] before proceeding to a charging station C; or
C,, for recharging purposes within time bound [Tg, To]. Based on
this case study, we consider several instances of hyperproperties
that can be formalized as HyperTWTL formulae as follows.

Opacity: Information-flow security policies define what users
can learn about a system while (partially) observing the system. Re-
cent works show that robotic systems are prone to privacy/opacity
attacks [17, 34]. A system is opaque if it meets two requirements:
(i) there exists at least two executions of the system mapped to 1
and my with the same observations but bearing distinct secret, and
(ii) the secret of each path cannot be accurately determined only by
observing the system. Given a pair traces 1 and o, let us assume
the initial state I is the only information a system user can observe,
and the surveillance routes are the secret to be kept from enemy
forces. Then, we observe if the assigned task is performed on both
traces while having different routes but the same observations O.
This requirement can be formalized as a HyperTWTL formula ¢4
as shown in Table 4.

Non-interference: Non-interference is a security policy that
seeks to restrict the flow of information within a system. This policy
requires that low-security variables be independent of high-security
variables, i.e., one should not be able to infer information about a
high-security variable by observing low-security variables. Mali-
cious software can disrupt the communication of robotic systems
and access confidential messages exchanged on the system [35].
Given any pairs of executions from the case study above, let us
assume that the initial state I is a high variable (high security) and
paths from initial states to goal states denote a low variable (low se-
curity). The surveillance system satisfies non-interference if, there
exists another execution 7 that starts from a different high variable
(i.e., the initial states are different), for all executions in 1, and at
the end of the mission, they are in the same low variable states (i.e.,
goal states). This requirement can be formalized as a HyperTWTL
formula ¢, as shown in Table 4.

Linearizability: The principle underlying linearizability is that
the whole system operates as if executions from all robots are from
one security robot. Thus, linearizability is a correctness condition
to guarantee consistency across concurrent executions of a given
system. Concurrency policies have been used to significantly en-
hance performance of robots applications [43, 44]. Any pair of
traces must occupy the same states within the given mission time
for the surveillance mission. At the same time, it is also important
to ensure that the mission’s primary goal to surveil either region
R, followed by R4 or R followed by Rs before proceeding to the
charging state C; or Cy is not violated. This can be formalized as a
HyperTWTL formula ¢3 as shown in Table 4.

Mutation testing: Another interesting application of hyper-
property with quantifier alternation is the efficient generation of
test cases for mutation testing. Let us assume that traces from all
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robots within the surveillance system are labeled as either mu-
tated (t™) or non-mutated (™). We map t" to m; and all other
non-mutated traces t " to . This requirement guarantees that
even if 7y starts from the same initial state (I; or I2) as 1, they
eventually proceed to different charging states (C; or Cy). This can
be formalized as a HyperTWTL formula ¢4 as shown in Table 4.

Side-channel timing attacks: A side-channel timing attack
is a security threat that attempts to acquire sensitive information
from robotic applications by exploiting the execution time of the
system. Recently, the robotic system’s privacy, confidentiality, and
availability have been compromised by side-channel timing attacks
[3, 36]. To countermeasure this attack in our case study, it is re-
quired that each pair of mission execution (by a robot(s)), mapped
to a pair of traces 71 and 72, and trajectories p and p’, should end
up in the charging state within close enough time after finishing
their tasks. Let us assume that [0, To] is the given time bound for the
missions executions for 1 and sy, and the interval [0, 2] specifies
how close the mission execution times should be for 7y and ms.
This requirement can be formalized as a HyperTWTL formula ¢s
as shown in Table 4.

Observational determinism: Observational determinism is
another security policy that requires that for any given pair of
traces 71 and 7y along the trajectory p, if the low-security inputs
agree on both execution traces, then the low-security outputs must
also agree in both traces. For example, given a set of executions
from the case study presented above, let us assume that the initial
state I is a low-security input and charging state C is a low-security
output. The surveillance system then satisfies observation deter-
minism if, for every pair of traces 71 and 2, the landing states,
if the mission starts from the same initial state (I) for both traces,
should be the same at the end of the mission within time bound
[0, To] with interval [1, 3] specifying how close the execution time
between 71 and 72 should be. This requirement can be formalized
as a HyperTWTL formula ¢¢ as shown in Table 4.

Service level agreements: A service level agreement (SLA)
defines an acceptable performance of a given system. The expected
specifications usually use statistics such as mean response time,
time service factor, percentage uptime, etc. In this requirement, for
any execution with a given response time 71, we require that there
has to exist another execution iy along a trajectory p with a similar
timing behavior within the time bound [T3, To] with interval [0, 2]
specifying how close the execution time between 1 and w5 should
be. This requirement can be formalized as a HyperTWTL formula
@7 as shown in Table 4.

Note, all requirements in Table 4 are labeled as either Synchro-
nous (Sync) or Asynchronous (Async).

5 MODEL CHECKING OF HYPERTWTL

Given a TKS 7~ and a HyperTWTL formula ¢, the model checking
problem checks whether 7~ |=; ¢. In the later sections, we discuss
the decidability of the HyperTWTL model checking problem for
both the fragments, alternation-free HyperTWTL and k-alternation
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Algorithm 1: Model checking of alternation-free Hyper-
TWTL

Inputs :HyperTWTL formula ¢, TKS 7

Outputs:Verdict = L, T

1: if (is_synchronous(¢)) then

2 QP — @

3: else

4: @ < Asynch_to_Synch(¢)

5: end if

6: @rwTL < HyperTWTL_to_PlainTWTL (¢)
7: T’ « ModelGen(T, ¢)

8: B Verify(7", prwrL)

9: return S

HyperTWTL, and demonstrate the method of translating an asyn-
chronous HyperTWTL formula to a synchronous formula and trans-
lating a HyperTWTL formula into an equivalent TWTL formula.
We restrict the model checking of HyperTWTL to the decidable
alternation-free fragments (V*- or 3*-) and 1-alternation fragments
(3*V*). However, we do not allow fragments of HyperTWTL where
a nesting structure of temporal logic formulae involves different
traces.

Self-composition. Let ¢ = Q.¢ be a HyperTWTL formula which de-
scribes a TKS 77, where Q is a block of quantifiers and ¢ is the inner
TWTL formula. To assert that 7~ = ¢, we generate the system 7~
which has n copies of the system 7~ running in parallel consisting of
traces over A. Thus, given a 2-fold parallel self-composition of 77,
wedefine 7" as: 7/ = T1xT2 = {(to, 1)), (t1.1]) -+ | t € TAt' € T}

Proposition 1. Given a HyperTWTL formula ¢, if there exists an
equivalent TWTL formula g7y, then T Es ¢ © T Es oTWTL-

Proof. Let T be a set of traces generated over the model 7, and
T’ be a set of traces generated over the model 7”7, so 7 contains
n copies of 7. Thus, for any set of traces IT C T that satisfies the
HyperTWTL formula ¢, there exists a set of traces I’ € T’ such
that IT” satisfies the equivalent TWTL formula g1y 7L, where all
traces in IT are in IT’, with unique fresh names from 7.

5.1 Model checking alteration-free HyperTWTL

We present Algorithm 1 illustrating the overall model checking ap-
proach given a TKS 7~ and an alternation-free HyperTWTL formula.
The steps are described as follows.

a) First, our model checking algorithm checks if the input Hy-
perTWTL formula ¢ is synchronous or not. (Line 1)

b) If ¢ is an asynchronous formula, we translate the asynchro-
nous HyperTWTL formula to an equivalent synchronous Hy-
perTWTL formula using the function Asynch_to_Synch()
in (Line 4), explained in detail in the next paragraph.

c) Then, we transform the synchronous HyperTWTL formula ¢
into an equivalent TWTL formula ¢7y 7 using the function
HyperTWTL_to_PlainTWTL() (Line 6).

d) Using a function Mode1Gen(), we generate a new model that
contains copies of the original model through the process
of self-composition [7]. The number of copies equals the
number of quantifiers of the formula ¢ or ¢ (Line 7).
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e) Next, the Verify() function takes as inputs the new model
7" and the equivalent TWTL formula ¢y 1L, and then uti-
lizes the verification approach from [48] to solve the model
checking problem (Line 8).

f) Finally, we return the verdict in case of satisfaction/violation
(T/L) (Line 9).

5.2 Asynchronous HyperTWTL to Synchronous
HyperTWTL

The process to convert a given asynchronous HyperTWTL formula
to a synchronous HyperTWTL formula has two parts. First, we
generate invariant set of traces inv(T) for the corresponding trace
set T generated over model 7. This allows for the synchronization
of interleaving traces while reconciling the synchronous and asyn-
chronous semantics of HyperTWTL. Secondly, we construct an
equivalent synchronous formula ¢ from an asynchronous formula
¢ such that T |5, ¢ if and only if inv(T) |=s ¢. These steps are
described as follows.

5.2.1 Invariant Trace Generation. To construct an equivalent Hy-
perTWTL synchronous formula ¢ from a given asynchronous Hy-
perTWTL formula ¢, we require that HyperTWTL be stutter insen-
sitive[39]. To achieve this, we define the variable y- needed for the
evaluation of the atomic propositions across traces. Thus, given a
pair of traces 7r; and 73, y© ensures that all propositions in both
traces exhibit the identical sequence at all timestamps. However,
since timestamps proceed at different speeds in different traces
such as 1 and mp, a trajectory p is used to determine which trace
moves and which trace stutters at any time point. In an attempt
to synchronize traces once non-aligned timestamps are identified
by a trajectory, silent events () are introduced between the time
stamps of the trace. For all t € T, we denote inv(T) as the maximal
set of traces defined over A¢ where A = A U e. Consider a trace
t=(3,{b})(6,{a})(8,{b}) - -. The trace t’ € inv(T) can be gener-
ated as inv(t) = eeebeeaeb - - - . We now construct the synchronous
HyperTWTL formula to reason about the trace set ino(T).

5.2.2  Synchronous HyperTWTL Formula Construction. We now
construct a synchronous formula ¢ that is equivalent to the asyn-
chronous HyperTWTL ¢. Intuitively, the asynchronous formula of
HyperTWTL ¢ depends on a finite interval of a timed trace. Thus,
we can replace the asynchronous formula ¢ with a synchronous for-
mula ¢ that encapsulates the interval patterns in the asynchronous
formula ¢. Given a bounded asynchronous formula ¢, we define f,
as the projected time period required to satisfy the asynchronous
formula. Inductively, B, can be defined as: fya , = d for the H
operator; fp, np, = max(fy,, fyp,) for the A operator; f-, = By
for the — operator; By 09, = By, + Py, + 1 for the © operator;
ﬂ[q)]s,T = up(S) + up(T) for the [ ] operator, where up — Zxo
returns the upper bound of a predefined time bound. We then con-
struct a synchronous formula ¢ from an asynchronous formula ¢
by replacing the time required for the satisfaction of ¢ with the

appropriate p.

Proposition 2. Given a set of traces T and an alternation-free asyn-
chronous HyperTWTL formula ¢ over A, T [ ¢ iff inw(T) |5 .
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Given T is a set of traces generated over TKS, let inv(T) denote the
extended set of traces for T where € has been introduced between
occurrences of events to synchronize events of each t’ € inv(T).
The trace ¢ can be constructed from ¢’ by deleting the e-events in
t’. Given the synchronous HyperTWTL formula ¢ does not violate
the interval patterns of the associated asynchronous formula i, we
can conclude that, if T = ¢, then inv(T) |5 ¢.

5.3 Converting HyperTWTL to TWTL formula

We verify the HyperTWTL specifications by creating a new model
that contains copies of the original system, where the number of
copies is equal to the number of quantifiers in the HyperTWTL for-
mula. The new model is then verified against a given HyperTWTL
specification. Given a HyperTWTL formula ¢, let ¢; ... ¢nez,,
be the sub-formulae of ¢, where the same proposition is observed
on any pair of traces. We denote M?, as an instance of ¢; where
i < Nandj € Zy is the index of the copy of the original model.
For example, consider the HyperTWTL formula ¢ in Table 4. The
following sub-formulae of ¢ analyze the same proposition on
the given pair of traces ; and my: ¢y = [H! Lo, A H! Ir,] [0.T:]
¢2 = [H' Riz, A H' Rir )51, g5 = [H' Ror, A H' Ror, ) U677,
and ¢4 = AT O, = HI -T2 O,TZ][TZ’T” We obtain an equiv-
alent TWTL formula by removing the quantifier prefix and in-
troducing fresh atomic propositions that capture the notion of
occurrences of the observation of the same proposition on any
pair of traces. In the case where different propositions are to be
observed on a given pair of traces, we maintain the proposition
while introducing a superscript j € Zx for the same purpose as
described above. Given ¢; has two quantifiers, two copies of the
original model will be needed to verify the equivalent TWTL for-
mula. Thus, we denote M;sl and Mq251 as instances of ¢ for the first

and second copies of the model. Similarly, M 13 and M 23 are the first

and second copies of the model for the instance of ¢3. The Hyper-

TWTL formula ¢; can then be translated as an equivalent TWTL as

61 = ((H'M} 1101 o [H'M) 1125) o ([H'Rjo H'R}] 1T ] v
1 2

[HlRé 1oy HlRé][Tz;sTs]) 10 [Hqulﬁ ][Te,T7] /\[1_17"7—72[\/[(]15 ][77,72]) A
3 4
(M 11T oM 1175] o([H'RS oH' R+ TV [H Rjo
1 2
Hle] [T4,T5]) o} [HIM;B] [T6.T7] A [HT7—T2M;4] [T7,T2]).

In the case of @5 (since it is an asynchronous formula), we first
translate the formula into an equivalent synchronous HyperTWTL
formula using the method we described in Section 5(B). The re-
sulting synchronous formula is then translated into an equivalent
TWTL formula using the same method described in the previous
example of ¢; and is shown in Table 5. Compared to ¢; and ¢s,
the translation of @2, ¢3, ¢4, @6, and ¢7 to equivalent TWTL for-
mulae is not straightforward. This is because the model checking
problem of HyperTWTL approaches undecidability when only a
single quantifier alternation is allowed [30]. However, model check-
ing of HyperTWTL formulae of the form 3*V* is decidable when
the universal quantifier is flattened. For instance, consider the Hy-
perTWTL formula ¢3 in Table 4. To solve this formula, we flat-
ten the literals associated with 2 by enumerating all the possible
interactions between 77 and my, thus reducing the problem to a
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3*3* problem. Let us denote ¥1 ... ¥nez,, as sub-formulae of ¢3
which encapsulates all the possible interactions between 71 and
2. Thus, the first sub-formula of ¢s, [Hllﬂ1 = HII,ZZ] [0.71] yields
Y1 = [H' iz, A H'Lg, 10T v [HLy, A H', 11971] We then
denote B/ ~as an instance of ¢; where i < N and j € Zx is the

index of the copy of the original model. Once the alternation is
eliminated, 3 and @4 can be converted to equivalent TWTL formu-
lae using the same approach described for ¢ and ¢ as shown in
Table 5.

5.4 Model checking k-alternation HyperTWTL

Model checking k-alternations formulae are generally complex as
all given executions have to be examined. For instance, consider the
HyperTWTL formula ¢ = 371.Vry - ¢. To verify this formula, it re-
quires that for all traces t € T, there exists a trace ¢ that the formula
¢ is violated. The situation is dire in specifications with more than
one alternation of quantifiers. Model checking such specifications
may lead to potential state explosion, even with a finite set of traces.
Consistent with the general notion of undecidability of a model
checking problem, 3*V* and V*3* fragments of HyperTWTL are
undecidable in both the synchronous and asynchronous seman-
tics. Despite the difficulty and complexity of model checking of
HyperTWTL beyond the alternation-free fragments, k-alternation
fragment of HyperTWTL can be decided within a bounded time
domain as follows.

The model checking for HyperTWTL becomes decidable when
there is an a priori bound kj;;,, on the variability of the traces.
The variability of a timed trace is the maximum possible num-
ber of events in any open unit interval. Hence, given the bound
kiim € Z>0, the number of events in a timed trace is less than or
equal to kj;p,. Therefore, the verification of synchronous Hyper-
TWTL (at least for the 3*V*-fragment) can be decided with any tool
that works with TWTL. With asynchronous HyperTWTL y, given
a set of traces T and a variability bound ky;,,,, we only evaluate
traces whose timestamps are less than ky;p,. Let T[q,, ) denote
the set of all such traces in T, i.e. T[q,,,.) S T. We can now reduce
the model checking problem to T, ) Es V.

Proposition 3. Model checking HyperTWTL can be decided when
all traces have constrained variability k;;,,, where k;j;p,, € Z>.

5.5 Complexity

In this section, we review the complexity of Algorithm 1 for the
model checking of alternation-free HyperTWTL formulae. The
time complexity of translating an asynchronous HyperTWTL to
synchronous HyperTWTL formula is based on the structure of the
formula. Translating the asynchronous formula to a synchronous
formula in Algorithm 1 takes O(|¢|) at most. The time complexity
of translating HyperTWTL to TWTL is upper-bounded to O(|¢| -
21AP| ). The model generation function in Algorithm 1 depends on
the structure of the formula and the number of quantifiers in the
given formula. The time complexity of the model generation is
O(]Q|™), where n is the number of copies of the original model. The
satisfiability problem of HyperTWTL can be solved similarly as for
HyperLTL, i.e., satisfiability is decidable for HyperTWTL fragments
not containing V3 irrespective of the semantics used. Hence, the
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Table 4: Requirements expressed in HyperT'WTL

No. | Description Type HyperTWTL Specification
@1 =3m3my - [H Iy, A H'I ][OTI] © ([H1 Riz, A H! Ry ][TZ’T3] © ([H1 Roz, ©
1 Opacity Synch. | H' Ryr, ]IT#5B1 A [H' Ry, © H1 Rsr, )10 B1y o [H! Rep, A H1 Rer, )T Ty A
[HT7—T2 O, = - On,z][Tz,Tﬂ
Non- g2 =3mVmy - [H I, # H I, |71 — ([H' Rip, A B Ry, |25 0 ([H Remy ©
2 | nterference | SYnehe | H' R 11551 A [H! Ryz, © H' Rs, ]T#B]) © [H! Ren, A H Ror |07 0 [H Cp
= H! Cp, |51
N @3 =3mVmy - [H I, = H I,]1%1T o ([H' Ry, A H Rip, ]IBBT 0 ([H' Ry, ©
Lineariz 1 [ToTs] 1 q [ToTs] 1 [T.T]
3 bilit Synch. | H' Ry, |17 5] A [H! Rs;, © H! Rsy, ] 51) 0 [H! Ry, A H! Ry, |1T0T71 A
ability [HT7—T2 Pzrl — HT7—T2 Pnz][TZ’T7]) 1) [Hl C71'1 -yl cnz][TS’TQ]
Mutation ¢4 =3mVmy - [HY 11 A HE 17 I0BT A [H! I, = H! [, ]1%T T o ([H! Rip, A
4| esting | Syneh | H' Rig)lBBl o ([H! Ry © H! R ITRBIA [H! Ryry © HY Ror ]1T)) ©
[H! Rer, A H! R, 16771 © [H' Cp, # H! Cpp |51, where d = Ty
Side-Channel @5 =VmVmy - ApEp’ - [H' I , A H! I,rz’p/][o’TI] — ([H' Rip,p A H! Rmz,p,][TZ:Tﬂ@
5 Timing Asynch. | ([H' Ryr,p © H' Ryp, p] 7651 A [H! Ray, o © H! Rsp, o 11T951) © [H! Repy p A
Attacks H! R6ﬂ2,p’][T6’T7]) © [H' Cpp A H! Cﬂz,Pg [T, ].[0,2] .
, 06 = 3mVm - Ap - [H Iy, , = H' I, ,]I%TT = ([H Ryy, p A HI Rigy 12510
Observational 1 1 (1T 1 1 [T 1
6 Determinism Asynch. ([H RZm,p ® H R47f1,p] BT A [H R3ﬂ—2,p ® H RSnz,p] 475 )O [H R67r1,p A
H! Ren, p]1177)) © [H! Cp,p = H' Cp, ] [T D1113]
Service Level
7| agreement | ASYnch- | 97 =3mVm - Bp- [H! Lz p A H! L pl %] — [H! Cpy p A HY Cp, ] (BT 1102]

Table 5: Equivalent TWTL formulae of HyperTWTL in Table 4

No. TWTL Specifications
= (M 10T o [HIM} 15T o ([H'R; o HIRITHET v [HIR] 0 HIRJITHED) o [HIM] 17771
1 [HT2 Ty TR A (M 1101 o (1M 1725] o ([H'R o H'R] B v [H1RS o H'RE] (T )) o
[H!M2 TeT] A [HT-Tepg2 (T2 T7])
¢3 [
) 0y = ([Hlj‘/lll][O,Tl] — [HlBlll/Z][Tz,Ta] 1) ([HlR% o HlRi][T“’Tﬂ v [HIR% ) HIR;][H,TS]) o[H 1311# ][Té Tlg [HIB‘I//4][T8sT9])
([ 132¢ lonl [HIBZZ][Tz,Tsl o ([H'R? @HIRE][T%TS] v [H'RZ @Hle][T4,Ts]) o[H 1321// 1176171 o [H1324][T3,T9])
= ('8}, 17T o [H'B, 1125 o ([H'Ry 0 HIR}] BT v [H'R] o HIR]TWET) o [H'B), 16T o [H'B) [T7]
1 2 3 4
3 [HT7 gy, ) v ((H'BE 1101 o [H'B] 11751 o ('R, o H'RE]TWB] v [H'RS © H'RZ]TPE]) o
[H!B2 |TeT1] o [H1B2 [T D] A [HT-T2p2 IT2T7])
3 4
03 = ([H'Bj, TIOTT A [HlBlz][TzTﬂ o ([H! Rsl oH'R{]IWBTv [HIR) o H'RI W) o [H'B), 11T o [H1B), 1T-FT)v
4 ([HIB;][OTJ o[H 133/2][Tz 5] o ([H 1R§ oH Ri][T4Ts] v [H 1R§ ®H1R§] T4T5]) o [H IB;][T() Tl [H1B2¢4] Ts,Te])
05 = ([H'M} 11T — [H'M) 1TBBT o ([H'R) 0 HIRITBT v [H'R] 0 H'R]TTBT) 0 [HIM;S3][T‘)’T7] o [H'M] [P
5 /\([Hlel] 0T] _, [HIMZZ] T, T3] o ([HlR% 1oy HlRi][T4,T5] v [Hle o Hle][T4,775]) o) [HlMZS][Ts,Tﬂ 1) [H1M24] Tg,Tg])
. 06 = ([HlB}h][O’Tﬂ - [HlB;/Z][TZ’Tﬂ o ([H'R] 0 HIRII BT v [HIR] 0 HIRITTTT) o [HIB‘}IS][T&T”@ [HlBllh][TS’T‘)])
A (H'B] ] on] _, [H'B] | [213] o ([H'R2 0 H'RZ] T v [H'RZ 0 H'RZ] T T5]) [H'B], ] 1T o [H'B], ] (D1
7| 6= (M 10T ' TR A (A 1100 — [H'ag D)

complexity results for the various fragments of HyperTWTL will 6 IMPLEMENTATION AND RESULTS

then be similar to that of HyperLTL, i.e., the satisfiability problem To illustrate the effectiveness of our proposed methods, in this
for the alternz.atlon-free fragment and bounded 3*V* fragments of section, we present the evaluation of the TESS case study described
HyperTWTL is thus PSPACE-complete. in Section 4 using Algorithm 1. The HyperTWTL specifications
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Table 6: Experimental results for model checking TWTL
formulae in Table 5

TWTL Verdict Time Memory
Specification (Seconds) (MB)
01 SAT 16.30 15.21
02 UNSAT 19.05 15.33
03 UNSAT 22.24 17.25
04 UNSAT 24.52 16.27
05 SAT 25.19 16.04
O UNSAT 23.83 16.39
07 SAT 22.24 17.48

for this case study are presented in Table 4 where ¢1 — @4 are
synchronous formulae and ¢s — @7 are asynchronous formulae.
All formulae were converted into equivalent TWTL formulae (see
Section 5) as shown in Table 5. For verifying the formulae in Table 5,
we use the PYTWTL tool [47], a Python 2.7 implementation of the
TWTL verification algorithms proposed in [48]. All the experiments
are performed on a Windows 10 system with 64 GB RAM and Intel
Core(TM) i9-10900 CPU (3.70 GHz). The following time bounds
are considered for the verification of all the equivalent flat TWTL
propertiesin Table 5: Ty =2, T, =5, T3 =6, Tu =7, Ts =12, Ty =
13, T; = 19, Tg = 20 and Ty = 30. The obtained verification results
are shown in Table 6. We observe that the case study satisfies the
specification TWTL specification 61, 05, and 67. However, the rest
of the formulae 60, 03, 64, and 0¢ were unsatisfied. This means
that not all the runs over 7 satisfy those formulae. For instance,
let us consider the case of 6,. In 7, there exists atleast at least
one path, suchas (I > P3 > Ps > R —» P4 —> Ry — P4 —
Ps — Ry = Ps = Rs > Py > C)AN(I; > P = Py > R —
Ps - R3 - Ps —» P; — Rs — P; — Ry — Py — (2) over
7 that violates 0. We observe that if the aforementioned path is
mapped to the trace variables 7; and m respectively, the pair of
traces also violate the HyperTWTL specification ¢z. This shows
that a trace over 7 that violates TWTL formula is equivalent to a
pair of traces over 7 that violates the corresponding HyperTWTL
formula. We also observe that the execution time for verifying
the TWTL specifications 61, 02, 83, 04, 05, 06, and 07 are 16.30, 19.05,
22.24, 24.52, 25.19, 23.83, and 22.24 seconds, respectively. Similarly,
the memory consumed for verifying these specifications are 15.21,
15.33, 17.25, 16.27, 16.04, 16.39, and 17.48 MB, respectively.

In addition to model checking of HyperTWTL, our proposed
approach can be applied to other applications. One such applica-
tion is motion planning in robotics. Let us assume a given 2-D grid
representation where the green, red, grey, blue, and white colors
represent the initial, goal, region of interest, obstacles, and the al-
lowable states respectively. We formalize two planning objectives
using HyperTWTL on the 2-D grid as follows.

Requirement 8 (Shortest path): The shortest path exists if
there exists a trace w2 that starts from the initial state through
the region of interest and reaches the goal state before any other
trace 1. We consider the following time bounds for the synthesis
of this requirement: Ty = 2,1, = 3,13 = 8,T4 = 9,15 = 13. This
requirement can be formalized as a HyperTWTL formula as:
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Figure 2: Strategy for shortest path ¢s

Figure 3: Strategy for initial-state opacity ¢¢

ps = AmVm - [H' s, = H' 50, 1101 o [H! 1y A
H! rm][Tz’TS] ® ([Hl gm][n,Ts] A [ngm] N [ngm][n,Ts])

Requirement 9 (Initial-state opacity): The opacity require-
ment is satisfied when at least two traces m; and 73 meet the fol-
lowing conditions : (i) both traces of the system mapped to 7; and
12 have the same observations but bear different secrets; and (ii)
the secret of each path cannot be accurately determined by observ-
ing(partially) the system alone. For initial-state opacity requirement,
let the initial state of the paths (sp € Sinir) be secret and observe
whether both paths reach the goal states with the same set of obser-
vations. We consider the following time bounds for the synthesis
of this requirement: Ty = 2s, T = 3s, T3 = 8s, Ty = 9s, T5 = 13s. This
objective can be expressed using HyperTWTL as:

@9 = dm3Imy - [H1 S0, F H! sonz][O’Tl] ® [H1 Tmy A
H! rnz][Tz,TS] ® [Hl gm A H! gm]m,Ts]

The 2-D grid environment is first converted into an equivalent
TKS, and then fed to Algorithm 1 with each planning objective
formalized as g and ¢9. For this, we make use of the Synthesis()
function from [48] instead of the Verify() function in Algorithm 1
(Line 8) to solve the planning problem using the PyTWTL tool. For
the shortest path objective, ¢g, the synthesized black path in Figure
2 is the shortest path from the initial state through to the region of
interest to the goal state. In Figure 3, the synthesized path in black
is the feasible strategy for the initial-state opacity objective that
has the same observation as the path in blue. Both paths reach the
goal state despite starting from a different initial state.

Next, we evaluate the scalability and performance of the pro-
posed approach for path synthesis. We used varying grid sizes



MEMOCODE ’23, September 21-22, 2023, Hamburg, Germany

Table 7: Comparison of synthesis times and memory con-
sumed for HyperTWTL planning objectives @3 and @9

HyperTWTL | Grid Time Memory
Specification | size | (Seconds) (MB)
] 190 s
47.94 19.11
ZZ 20220 ——1%3 18.96
72.40 28.84
ZZ 30x30 551 23.73
103.05 39.50
ZZ 4040 7 25.35
161.17 52.11
ZZ S0X30 5779 31.96

ranging from 10 X 10 to 50 X 50 to synthesize paths for the for-
malized HyperTWTL specifications ¢g and ¢9. We then analyze
the impact of the increasing sizes on the performance of the pro-
posed tool. The respective synthesis time and memory consumed
are shown in Table 7. We observe from Table 7 that the time taken
for our algorithm to synthesize a path increases with an increase in
the size of the grid. For instance, the algorithm takes 23.08 seconds
to synthesize a path for g on a 10x10 grid. However, while synthe-
sizing a feasible path for the same planning objective on a grid size
of 20x20, the synthesis time increases to 47.94 seconds. Similarly,
the synthesis time increases to 72.40 seconds, 103.05 seconds, and
161.17 seconds while synthesizing ¢g on 30%x30, 40x40, and 50Xx50
grid sizes respectively. Again, while synthesizing a feasible path for
@9 on a 10x10 grid size, our algorithm takes 17.43 seconds. The syn-
thesis time increases to 21.63 seconds while synthesizing a feasible
path for the same objective on a grid size 20x20. Once again, the
synthesis time increases to 28.61 seconds, 36.72 seconds, and 56.49
seconds while synthesizing @3 on 30x30, 40x40, and 50x50 grid
sizes respectively. Consequently, as shown in Table 7, we observe
that the memory consumed by our algorithm increases with an
increase in the grid size. For instance, the algorithm consumes 15.53
MB to synthesize a path for ¢g on a 10x10 grid size. Again, while
synthesizing a feasible path for the same specification on a grid
size of 20x20, the memory consumed increases to 19.11 MB. Simi-
larly, the memory consumed increases to 28.84 MB, 39.50 MB, and
52.11 seconds while synthesizing ¢ on 30x30, 40x40 and 50x50
grid sizes respectively. Again, our algorithm consumes 15.21 MB
while synthesizing a feasible path for g9 on a 10x10 grid size. While
synthesizing a feasible path for the same objective on a grid size
20%20, the memory consumed increases to 18.96 MB. Once again,
the memory consumed increases to 23.73 MB, 27.35 MB, and 31.96
MB while synthesizing ¢g on 30x30, 40X40, and 50%50 grid sizes,
respectively.

7 RELATED WORKS

HyperLTL and HyperCTL* which were first introduced in [20]
extend the temporal logics LTL, CTL, and CTL* with explicit and
concurrent quantifications over trace executions of a system. In
recent times, multiple techniques have been proposed to monitor
[1, 12, 15, 45] and verify [22, 23, 26] hyperproperties expressed
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as HyperLTL and HyperCTL* specifications. Similarly, other tech-
niques have been proposed to monitor other hyper-temporal log-
ics. HyperSTL is a bounded hyper-temporal logic for specifying
hyperproperties over real-valued signals. A testing technique for
verifying HyperSTL properties in cyber-physical systems is pro-
posed in [38]. This testing technique allows for the falsification
or checking of bounded hyperproperties in CPS models. Hyper-
MTL, a hyper-temporal logic that addresses some limitations of
HyperLTL in formalizing bounded hyperproperties, is proposed in
[8]. In [30], the authors presented an alternate formalization and
model checking approach for HyperMTL. These two works are
quite similar in synchronous semantics; however, the formalization
of asynchronous semantics was presented differently. While the
asynchronous semantics in [11] is based on the the existence of
an infinite sequence of timestamps and allows trace to proceed at
different speeds, the asynchronous semantics of [30] keeps a global
clock in its analysis of traces and proceeds in order. Model checking
[19] has extensively been used to verify hyperproperties of models
abstracted as transition systems by examining their related state
transition graphs [18]. In [27], the first model checking algorithms
for HyperLTL and HyperCTL* employing alternating automata
were proposed, which was also adopted in [11, 30] to verify Hyper-
MTL properties. An extensive study on the complexity of verifying
hyperproperties with model checking is presented in [9]. Our for-
mulation of HyperTWTL is closely related to the HyperMTL [11]
proposed to express timed hyperproperties in discrete-time systems.
However, as previously mentioned in introduction, classical TWTL
formalism has several advantages including compactness obtained
through the use of concatenation operator (®) which is very useful
in robotic applications. A security-aware robotic motion planning
approach was recently proposed using synchronous HyperTWTL
specification and SMT solvers [14]. In contrast to[14], this paper
presents an adequate version of HyperTWTL and addresses the
model checking problem for both synchronous and asynchronous

HyperTWTL.

8 CONCLUSION

This paper introduced a model checking algorithm for a hyper-
temporal logic, HyperTWTL, with synchronous and asynchronous
semantics. Using a Technical Surveillance Squadron (TESS) case
study, we showed that HyperTWTL can express important proper-
ties related to information-flow security policies and concurrency
in complex robotic systems. Our proposed model checking algo-
rithm verifies fragments of HyperTWTL by reducing the problem
to a TWTL model checking problem. In the future, we plan to pro-
pose methods and algorithms for monitoring and synthesizing the
alternation-free and k-alternations fragments of HyperTWTL.
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