Logarithmically larger deletion codes of all distances

Noga Alon * Gabriela Bourla T Ben Graham ¥ Xiaoyu He ® Noah Kravitz 1

April 4, 2024

Abstract

The deletion distance between two binary words w,v € {0,1}™ is the smallest k such that u and v
share a common subsequence of length n — k. A set C of binary words of length n is called a k-deletion
code if every pair of distinct words in C' has deletion distance greater than k. In 1965, Levenshtein
initiated the study of deletion codes by showing that, for k& > 1 fixed and n going to infinity, a k-
deletion code C' C {0,1}" of maximum size satisfies Qx(2"/n?*) < |C| < Ok(2"/n*). We make the
first asymptotic improvement to these bounds by showing that there exist k-deletion codes with size
at least Qx(2"logn/n**). Our proof is inspired by Jiang and Vardy’s improvement to the classical
Gilbert—Varshamov bounds. We also establish several related results on the number of longest common
subsequences and shortest common supersequences of a pair of words with given length and deletion
distance.

1 Introduction

The main goal of coding theory is to construct schemes for efficiently and faithfully communicating messages
across a noisy channel. In this paper, we study a noise model proposed by Levenshtein [9] in which messages
are finite binary words in {0, 1}"™ and the communication channel, a “deletion channel”, deletes a fixed number
k of bits from the transmitted message; the locations of the deletions are unknown to the receiver. Deletion
errors are a special case of “synchronization errors”, which are remarkably poorly understood compared to
the better-studied noise models of bit flips and bit erasures.

Formally, for n > k > 1 a k-deletion code of length n is a collection C' C {0, 1}" of binary words with the
property that for any y € {0,1}"~*, there is at most one z € C' containing y as a subsequence. Equivalently,
C is a k-deletion code if for all distinct s,t € C, the longest common subsequence of s and ¢ has length
strictly smaller than than n — k. We would like to determine the maximum size D(n, k) of a k-deletion code
of length n. In his seminal 1965 paper [9], Levenshtein established the upper and lower bounds

o8 (jzk) < D(n, k) < Oy (i,c) | (1)

For the case k = 1, Levenshtein used a construction of Varshamov and Tenengolts [12] to show that
D(n,1) = ©(2"/n), so the upper bound in (1) is asymptotically correct in this case. In contrast, despite a

*Department of Mathematics, Princeton University, Princeton, NJ 08544, USA and Schools of Mathematical Sciences and
Computer Science, Tel Aviv University, Tel Aviv, Israel. Email: nalon@math.princeton.edu. Research supported in part by
NSF grant DMS-2154082

TDepartment of Mathematics, Princeton University, Princeton, NJ 08544. Email: gbourla@princeton.edu. Research sup-
ported by the math department’s undergraduate funding.

fDepartment of Mathematics, Princeton University, Princeton, NJ 08544. Email: bagraham@princeton.edu. Research
supported by the math department’s undergraduate funding.

$Department of Mathematics, Princeton University, Princeton, NJ 08544. Email: xiaoyuh@princeton.edu. Research sup-
ported by NSF Award DMS-2103154.

IDepartment of Mathematics, Princeton University, Princeton, NJ 08544. Email: nkravitz@princeton.edu. Research sup-
ported by NSF GRFP Award DGE-2039656.

great deal of effort and progress on many related questions (see e.g. [4, 5, 6, 7, 11]) in recent years, neither
bound in (1) has been improved for any fixed k > 2. Our main result is a logarithmic improvement on the
lower bound.

Theorem 1. Ifn >k > 2, then D(n, k) > Q,(2" logn/n?*).

We remark that Theorem 1 generalizes without difficulty to codes over fixed alphabets of arbitrary size,
although in this paper we will consider only binary words.

Our proof is nonconstructive: We reduce the problem of finding large codes to the problem of finding a
large independent set in the associated k-deletion graph T, ;. The graph I, has vertex set {0,1}", and
two words are connected by an edge if they have a common subsequence of length at least n — k. We show
that I'j, , is locally sparse, that is, contains few triangles. Theorem 1 then follows from standard lemmas
about the independence number of locally sparse graphs. A similar application of local sparsity to coding
theory appears in the work of Jiang and Vardy [8], who obtained the first asymptotic improvements on the
Gilbert—Varshamov bounds.

Counting triangles is harder for the graph I';, ;, than it is for the extremely symmetric setting studied by
Jiang and Vardy, where the analogous graph is just a power of the Hamming cube. In contrast, I';, ;, is not
even regular. In order to overcome these difficulties, we restrict our attention to “pseudorandom” words in
the graph that are related by “pseudorandom” sequences of insertion and deletion operations, for suitable
notions of pseudorandomness.

In this work we also prove additional results about the number of longest common subsequences and
shortest common supersequences of a pair of words, as a function of their lengths and deletion distance.
These bounds, which were necessary in earlier versions of our proof of Theorem 1, are of independent
interest and may be useful for future study of deletion codes and the structure of the graphs I';, 1.

We denote the length of a word u by |u|. We say that the word w is a subsequence of the word u if w can
be obtained from u by deleting some of the letters of u. If w is a subsequence of the words v and v, then we
say that w is a common subsequence of u and v; further, w is a longest common subsequence (or LCS) of u
and v if it is a common subsequence of maximum length. We let LCS(u, v) denote the length of an LCS of u
and v. If u and v are words of the same length |u| = |v| = n, then we define the deletion distance between
u and v to be d(u,v) :=n — LCS(u, v). One can define shortest common supersequences (or SCS’s) and the
insertion distance analogously. It is well known that LCS(u,v) + SCS(u, v) = |u| + |v| for all words wu, v, so,
in particular, deletion distance and insertion distance are identical; LCS’s and SCS’s are in this sense dual.

For words u and v, we define the LCS multiplicity mics(u,v) (respectively, SCS multiplicity mscs(u,v))
to be the number of distinct LCS’s (respectively, SCS’s) of u and v. The following simple inequality relating
LCS and SCS multiplicity is probably known to experts, but we could not locate a reference in the literature.

Proposition 2. For all words u,v, we have mycs(u,v) < mscs(u,v).
Our main result on LCS and SCS multiplicity is the following.

Theorem 3. Let n,a,b be natural numbers with n > a +b. If u and v are words with lengths n — a and
n —b (respectively) and SCS(u,v) = n (equivalently, LCS(u,v) =n —a —b), then

myics(u,v) < mscs(u,v) < <a l_ b>~

(We remark that this theorem remains true if we work over arbitrary alphabets.) The a = b case can be
phrased symmetrically as follows: If u, v are words of equal length with d(u,v) = d, then we have

2d
mucs(u,v) < mscs(u, v) < (d>,

independent of the lengths of u,v. We also prove in the appendix that this theorem is tight in that for all
choices of a and b and all sufficiently large n (in terms of a,b), there exists a pair of words u,v for which
equality is attained in both inequalities.

The paper is organized as follows. We prove the main result Theorem 1 in Section 2; we prove Proposi-
tion 2 and Theorem 3 in Section 3; finally, we describe a family of pairs of words which attain equality in
Theorem 3 in the appendix.

We use standard asymptotic notation, as follows. If f(n),g(n) : N — R are functions, then we write
f = O(g) to indicate that there is some constant C' > 0 such that |f(n)| < Cg(n) for all natural numbers
n. If g is nonnegative, then we write f = Q(g) to indicate that ¢ = O(f). We write f = ©(g) if f = O(yg)
and g = O(f). Subscripts on O, 2, © indicate that the implied constants C' may depend on the subscripted
parameters. All logarithms are base-2.

2 Proof of Theorem 1

In this section we prove Theorem 1 in two steps: We reduce the problem to counting triangles in the k-
deletion graph I';, ;, and then we approximate this triangle count. Observe that D(n, k) is by definition the
independence number of I';, ;. We need the following standard lemma of Bollobés, which states that graphs
with few triangles have large independence numbers. This lemma is a generalization of a result of Ajtai,
Komlés, and Szemerédi [1] on triangle-free graphs. See also Shearer [10] for a simpler argument and [2, pp.
336-337] for a very short proof. This line of work has led to several important developments in extremal
graph theory and Ramsey theory.

Lemma 4 ([3], Lemma 15, p. 296). For any graph G on N > 1 vertices with mazimum degree at most A
(A > 1), we have

N 1
> —— |(log A — =log(T/N
a(©) = o (10w - G1ow(T/)).
where T denotes the number of triangles in G.

The graph I'y, ; has N = 2" vertices and maximum degree A = Oy, (n2k), since from any given vertex
u € {0,1}", a neighbor v can be obtained by choosing k letters of u to delete in at most (Z) ways and
then k letters to insert in at most (Z) 2% ways. Thus, if we want to use Lemma 4 to prove that D(n,k) =
Qi (2" logn/n?), it suffices to show that the number of triangles in 'y, j is Og(2"n**~¢) for some ¢ > 0.

We will actually prove the sharper bound that I',, has Oy (2"n**(logn)¥) triangles. This estimate is
tight up to the logarithmic factor. It will be convenient to focus our attention on “pseudorandom” words, as
follows. If uw € {0,1}™ is a word of length n and S C n is a subset, let ug denote the subword of u indexed
by S. If I = [z,y] is an interval, then we call u; a subinterval of u. For 1 < A < n, we say that v € {0,1}" is
A-nonrepeating if u; # uy for all pairs of distinct intervals I, J C [n] of length \; u is A-repeating otherwise.
By the first moment method, if A > (2 + €)logn for some ¢ > 0, then almost all words of length n are
A-nonrepeating.

Next we introduce notation for a sequence of insertion and deletion operations. Let uw € {0,1}", t €
{del,insg,ins;} and i € [0,n], where i is not allowed to be 0 if ¢ = del (since the 0-th letter of u, which
does not exist, cannot be deleted). We write f;;(u) for the word obtained from u by deleting w;, if ¢t = del,
inserting a 0 after u;, if ¢ = insg, and inserting a 1 after w; if ¢ = ins;. Here, “inserting after ug” means
inserting before u;.

Definition 5. Fix nonnegative integers n and ¢. Let I = (ig,4¢—1,...,41) be a nonincreasing sequence of
nonnegative integers n > iy > ip_1 > ... >i; > 0, and let T = (ty,...,t;) € {del,insg,ins; }* be a sequence
of insertion/deletion types. We further require that if ¢; = del then i; # 0 (the 0-th letter of u cannot be
deleted) and that if ¢; = del, then 7,1 < i; (we do not operate on an already-deleted letter). We then call
the pair (I,T') a sequence of ¢ insertions and deletions, and we write

fI,T(u) = (fihtl © fiz,u2 0---0 fie,tz)(u)

for the composition of the operations f;, ;, through f;, ;, applied to a word u € {0,1}".

Whenever one obtains a word v from u by inserting and deleting letters, one can reorder these operations
to find a sequence (I,T') of insertions and deletions such that v = f; r(u). Note that, because the elements
of I are nonincreasing, an earlier operation cannot shift the location of a later operation. In particular, %;
is not only the position in (fi;,,;,, © - © fi,¢,)(u) at which the operation f;, ; is applied, but also the
original position in u at which the operation occurs. This lets us refer unambiguously to the “position” i;
in u of each operation f;, ;..

We say that an element ¢ of a set I C [0,n] is A-isolated if A < i < n — X and no other element j € I
satisfies |j — i| < 2. We are now ready to prove our key lemma.

Lemma 6. Let n,k,A > 1, and let u,v € {0,1}" be A-nonrepeating words such that v = frr(u) for some
sequence of operations (I,T). If the number of A-isolated elements of I is at least 2k + 1, then d(u,v) > k.

Proof. We may pick 2k + 1 of the A-isolated terms of I and call them jog41 > jop > -+ > j1; let the
corresponding terms of T be togy1,...,t1. Note that since the operations of (I,T) are applied in decreasing
order of index, these operations f; : are applied in decreasing order of s as well. For each A < j <n — A,
write L(j) :=[j — A\,j — 1] and R(j) := [j + 1,7 + A] for the length-A intervals in [n] immediately to the left
and right of j. The definition of A-isolation implies that the 4k + 2 intervals

L(jl)v R(jl)’ L(jQ)v R(jQ)’ ceey L(j2k+1)a R(j2k+1)

are pairwise disjoint. Moreover, no insertion or deletion operations occur in any of the corresponding 4k + 2
subintervals of u. Since w and v are A-nonrepeating, each of these 4k + 2 words appears exactly once as a
subinterval of u and once as a subinterval of v.

The key observation is that when we apply f;, ¢,, we either insert or delete a single letter between up;,)
and upg(;,). Since no other insertion or deletion happens nearby, the number of letters in v between the
unique appearances of ur,(;) and up;,) is either 0 (if a letter was deleted) or 2 (if a letter was inserted).

Assume for the sake of contradiction that d(u,v) < k, and let (I’, T") be a sequence of at most & insertions
and at most k deletions such that v = fi/ v (w). Since |I'| < 2k, there exists some 1 < s < 2k + 1 for which
I' is disjoint from the entire length-(2X + 1) subinterval [j, — A, js + A]. It follows that u; _» j,+ appears
unaltered as a subinterval of v, and in particular the unique copy of ur(;,) in v and the unique copy of ug;,)
in v have exactly one letter between them. This contradicts the key observation in the previous paragraph,
so we conclude that d(u,v) > k, as desired. O

This lemma lets us upper-bound the number of triangles in I',, , and, more generally, the number of
triples (u,v,w) € ({0,1}™)? with prescribed values of d(u,v),d(v,w), d(w,u).

Lemma 7. Letn > a > b>c > 1. The number of triples (u,v,w) € ({0,1}")% with d(u,v) < a, d(v,w) < b,
and d(w,u) < ¢ is Oq (2" ¢(logn)vte=a).

Proof. Say that a triple (u,v,w) € ({0,1}")? is good if d(u,v) < a, d(v,w) < b, and d(w,u) < c¢. Note that
d(u,v) < d(v,w)+d(w, u) < b+c by the Triangle Inequality, so all good triples (u, v, w) satisfy d(u,v) < b+c,
and we may restrict our attention to the regime a < b+ c.

Let A = 10alogn, and observe that the probability of a uniformly random u € {0,1}" being A-repeating
is at most (g)n*ma < n78. Thus, the total number of such exceptional words is at most 2"n 8. For
each u € {0,1}", there are at most O, (n?*) words v at distance at most a and at most O,(n?¢) words w at
distance at most ¢, so there are at most O, (n?*72¢) < O,(n?*) good triples (u,v,w) for each choice of fixed
u (and likewise for each fixed choice of v or w). We find that the total number of good triples containing a
A-repeating word is 2"n 8¢ . O, (n*?) = 0(2"), which is negligible. It remains to bound the number of good
triples consisting of A-nonrepeating words.

It suffices to prove that every A-nonrepeating u lies in at most O,(n®T**¢(logn)***=¢) good triples
(u, v, w) with v,w both A-nonrepeating. Note that a good triple (u,v,w) is uniquely determined by the data

of u and sequences (I,T), (I’,T") of insertion or deletion operations for which w = fr r(u) and v = fr 1/ (w).

Since d(u, w) < ¢ and d(w,v) < b, we may choose (I, T) to have length at most 2¢ and (I’,T") to have length
at most 2b. Since fr o (frr(w)) = v, we can “combine” the insertions and deletions of (I,T) and (I',T")
to obtain a sequence (I"”,T") of insertions and deletions of length [I”| = |I| + |I'| < 2b + 2¢ such that
frr v (u) = v. Furthermore, there are only O,(1) choices of (I,T) and (I',7") that produce each such
sequence (I”,T"). Thus, for a given u, the number of good triples (u,v,w) is at most O4(1) times the
number of ways to pick a sequence (I”,T") of at most 2b + 2¢ total insertions and deletions such that
v = frr v (u) is A-nonrepeating and d(u,v) < 2a.

By Lemma 6, the assumption d(u,v) < 2a implies that at most 2a of the elements of I" are A-isolated.
We claim that the total number of ways to pick such an I” is at most O, (n®***¢(logn)®**=?). Indeed, we
can define an equivalence relation ~ on the elements of I” by setting ¢ ~ j if | — j| < 2X and then taking
the transitive closure. Let @ denote the number of equivalence classes. There are at most 2a equivalence
classes of size 1, and hence Q < 2a + (2b+2c —2a)/2 = a + b+ c. There are at most n? ways to choose the
minimal elements of the equivalence classes and then O, (A\2°+2¢~@Q) ways to choose the remaining elements
of I". The quantity n®@\2*+2¢=Q is at most n®+b+e b+e=a and multiplying by a + b + ¢ = O, (1) (for the
possible values of Q) establishes the claim. Finally, there are at most 320+2¢ = O, (1) ways to pick 7", and
this completes the proof. O

The proof of Theorem 1 is now immediate.

Proof of Theorem 1. By Lemma 7 with a = b = ¢ = k, the number T of triangles in I'j, ; satisfies T =
Or(2"n**(logn)*). Applying Lemma 4 with N = 2" and A = O (n?"), we find that

D(n, k) = Qp(2" log n/n*),

as desired. O

3 LCS and SCS Multiplicity

In this section, we prove Proposition 2 and Theorem 3. Before proving Proposition 2, which says that the
LCS multiplicity is always smaller than or equal to the SCS multiplicity, we set up one piece of notation.
Suppose u is a word of length n which contains the word w of length ¢ as a subsequence. Then there is
at least one subset S C [n] of size ¢ such that ug = w, and there may be several such subsets. We define
left(u, w) to be the smallest of these subsets according to the lexicographic ordering; that is, we choose S
to have the smallest possible smallest element, and we break ties by looking at the second-smallest element,
and so on. We can think of left(u,w) as describing the position of the “left-most” copy of w in w.

Proof of Proposition 2. Let |u| = m, |v| = n, and LCS(u,v) = ¢, and note that SCS(u,v) =m+n — . We
define an injective map ¢ from the set of LCS’s of u, v to the set of SCS’s of u, v, as follows. Fix an LCS w
of u,v. We now construct an SCS y of u,v one letter at a time. To begin, initialize two indices i = j = 1
to track our current index in w and v, respectively. For each 1 < k < m 4 n — £, define y; according to the
following algorithm:

(i) If i ¢ left(u,w) U {m + 1}, then let yx = u; and increment i.
(ii) If ¢ € left(u,w) U {m + 1} and j ¢ left(v, w) U {n + 1}, then let y; = v; and increment j.

(iii) If ¢ € left(u,w) and j € left(v, w), then let y; = u; (which is also equal to v;), and increment both ¢ and
j. (An easy induction shows that the r-th time this third possibility occurs, we have u; = v; = w,.)

The number of times the algorithm falls into cases (i), (ii), (iii) above are (respectively) m—¥¢, n—¥¢, and ¢, so
the algorithm terminates at exactly i = m+1, j = n+ 1, with m 4+n — £ well-defined letters y1,. .., Ymin—e-
Define y := 192 * - * Ym4n—¢. We have |y| = m + n — £ and y contains u, v as subsequences, so y is in fact an
SCS of u,v. Finally, let p(w) = y.

It remains to show that ¢ is injective, i.e., that w can be recovered from ¢(w). Note that item (iii) occurs
if and only if u; = v;, so, working from k =1 to K = m +n — £, we can determine the set K of indices k’s
for which item (iii) occurs. By the parenthetical remark in item (iii), we get w = @(w)x, as needed. O

As promised, we now prove Theorem 3 on the sharp upper bound for SCS multiplicity (and by extension
LCS multiplicity). In fact, we establish a more general upper bound. If u and v are words, then we can order
all of the common supersequences of v and v by inclusion and study the minimal common supersequences
under this partial ordering. Note that the SCS’s of u, v are always minimal common supersequences of u, v.
The converse, however, is not always true: For instance, if « = 1000 and v = 0001, then the unique SCS of
u, v is 10001, and the common supersequence 0001000 does not contain any proper subsequence containing
u and v.

Lemma 8. Let n,a,b be natural numbers with n > a+b. If u and v are words with length n —a and n — b

(respectively) and SCS(u,v) = n, then the number of minimal common supersequences of u and v is at most
+b

(aa)

Proof. We proceed by induction on a + b. The base case a = b = 0 is trivial. We now perform the induction

step. If u, v have a common prefix, then every minimal supersequence of u, v must also share this prefix. By

removing any common prefix of u, v, we may assume that u, v have different first letters. The key observation
is that every minimal common supersequence of u,v is of the form

u1T Oor V1Y,

where z is a minimal common supersequence of u[z ,,_,) and v and y is a minimal common supersequence of
u and vy ,_p). The result now follows from Pascal’s Identity for binomial coefficients. O

As mentioned above, Theorem 3 follows immediately from the observation that every SCS is a minimal
common supersequence. We remark that the methods in Section 2 can be used to prove that most words
u,v € {0,1}™ at a given distance have a unique SCS and LCS.

Proposition 9. If n > k > 1, then the number of pairs u,v € {0,1}" with d(u,v) = k and mscs(u,v) > 1
is Op(2" - n?*~1logn).

We do not include a full proof, but the idea is to exploit the fact that, typically, words u,v € {0,1}" at
distance k£ will be A-nonrepeating and related by 2k operations, all of whose positions are A-isolated, where
A = 0O(logn). As a result, every individual insertion or deletion operation can be reconstructed from short
intervals around it in » and v.

Acknowledgments. We are grateful to Venkatesan Guruswami for helpful conversations.

References

[1] Ajtai, M., Komlds, J. and Szemerédi, E. (1980). A note on Ramsey numbers, J. Combinatorial Theory,
Ser. A 29, 354-360.

[2] Alon, N. and Spencer, J. H. (2016). The Probabilistic Method, Fourth edition, Wiley Series in Discrete
Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ.

[3] Bollobés, B. (1985). Random graphs. Academic Press, Inc., Harcourt Brace Jovanovich, Publishers,
London.

[4] Brakensiek, J., Guruswami, V., and Zbarsky, S. (2016). Efficient low-redundancy codes for correcting
multiple deletions. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), STAM, 1884-1892.

[5] Bukh, B., Guruswami, V. and Hastad, J. (2017). An improved bound on the fraction of correctable
deletions. IEEFE Trans. Inform. Theory 63, 93—103.

[6] Guruswami, V. and Hastad, J. (2021). Explicit two-deletion codes with redundancy matching the exis-
tential bound. IEEFE Trans. Inform. Theory 67, 6384-6394.

[7] Guruswami, V., He, X., and Li, R. (2021). The zero-rate threshold for adversarial bit-deletions is less than
1/2. In Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS),
727-738.

[8] Jiang, T. and Vardy, A. (2004). Asymptotic improvement of the Gilbert-Varshamov bound on the size
of binary codes. IEFE Trans. Inform. Theory 50, 1655—1664.

[9] Levenshtein, V. (1965). I. Binary codes capable of correcting deletions, insertions, and reversals. Dokl.
Akad. Nauk SSSR 163 845-848; translated as Soviet Physics Dokl. 10, 707-710. (In Russian.)

[10] Shearer, J. B. (1983). A note on the independence number of triangle-free graphs, Discrete Math. 46,
83-87.

[11] Sima, J. and Bruck, J. (2019). Optimal k-deletion correcting codes. In 2019 IEEFE International Sym-
posium on Information Theory (ISIT), 847-851.

[12] Varshamov, R. R., and Tenengolts, G. M. (1965). A code which corrects single asymmetric errors,
Automatika i Telemkhanika 161, 288-292. (In Russian.)

Appendix

In this appendix, we construct a family of pairs of words achieving equality in Theorem 3. It is easy to
find pairs of words achieving equality for the SCS bound. For instance, we can take u = 0%, v = 1°; then
SCS(u,v) = a+b and mscs(u,v) = (“:b) since the SCS’s of u, v are precisely the words containing a 0’s and
b 1’s. To find longer words achieving equality with the same values of a,b, simply append a fixed word w
(for instance, w = 0°) to the right of both u, v.

It seems that there is no similarly simple example achieving equality for the LCS bound, and our con-
struction requires a delicate induction. If u is a (nonempty) word of length n and m is a natural number,
then we define u{™ to be the prefix of length m of the infinite word wuw - - -. For instance, (01)(") = 0101010
and (0110)® = 011. Our extremal example is as follows.

Proposition 10. For every ¢ > 1, the words u = (10)%¢=2) v = (0110)*¢~2) satisfy d(u,v) = ¢ and
mLcs(u,’U) = (ZCC).

Let us explain why Proposition 10 provides equality cases for Theorem 3 for all choices of a,b. Suppose
ag, by are given, and consider the words u,v produced by the ¢ = ag + by case of Proposition 10. Since
equality in Theorem 3 is achieved for (a,b) = (¢,¢) by u,v, we see that equality is also achieved for all
of the other pairs of words considered in the inductive argument of Theorem 3 (which can easily be run
directly with LCS’s rather than passing through SCS’s). For instance, the words u[z ,,_q), v are an equality
case of Theorem 3 for (a,b) = (c¢,c — 1), and the words u, v}y ,_p are an equality case of Theorem 3 for
(a,b) = (¢ — 1,¢). Continuing in this manner, we eventually reach an equality case for (a,b) = (ag,bo), as
needed.

To prove Proposition 10, we recursively compute LCS(u,v) and mycs(u,v) for all words u = (10)¢®,
v = (0110)() with b even. We introduce the notation £(a,b) := LCS((10){?),(0110)*?) and m(a,b) =
mics((10)((0110)*)). We begin by computing £(a, b).

Lemma 11. For a,b > 0 with b even, we have

a ifa<b/2
o) =4 b+ (2] ih<as?
b if a > 3b/2.

Proof. The pairs (a,b) with a < 2 or b = 0 can be checked by hand, so we restrict our attention to a > 3
and b > 2. Note that every LCS of u,v is, according to its first letter, of the form

lz or Oly,

where z is an LCS of (01)(@=1 (1001)®~2) and y is an LCS of (01){=% (1001){*~2). Exchanging the roles
of 0 and 1, we find that

LCS((01)%=1 (1001)=2) = LCS((10)¢*~ Y, (0110)°=2) = ¢(a — 1,b - 2),
and likewise LCS((01)(*=3),(1001)®=2)) = ¢(a — 3,b — 2). Tt follows that
£(a,b) = max{l+£L(a—1,b—2),2+ l(a — 3,b—2)},

and it is not difficult to check that the function defined in the lemma statement is the unique function
satisfying this recurrence and the same initial conditions. O

It remains to compute m(a,b).
Lemma 12. For a,b > 0 with b even, we have

m(a,b) = {((zab_/g)/él) if2a=0b (mod 4)

((2ab—/§:21)/4) if2a=0b+2 (mod 4).

Proof. As in Lemma 11, we deal separately with the small cases where a = 0 or b < 2. Otherwise, following
the same case distinction as in Lemma 11, we find that

m(a, b) =m(a—1,b— 2) :]l1+Z(a71,b72)22+2(a73,b72) + m(a —3,b— 2) :]l1+Z(af1,b72)§2+2(a73,b72)7

where 1 is the 0-1 indicator function of its argument. Using the exact values of ¢ from Lemma 11, we can
rewrite this equation as

m(a—1,b—2) ifa<b/2
m(a,b) = ¢m(a—1,b—2)+m(a—3,b-2) ifb/2<a< 2
m(a—3,b—2) if a >3,
and the lemma follows from induction and Pascal’s Identity. O

Taking a = b = 4c — 2 in the previous two lemmas gives Proposition 10.

