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Abstract

We give a proof of linear inviscid damping and vorticity depletion for non-monotonic shear
flows with one critical point in a bounded periodic channel. In particular, we obtain quanti-
tative depletion rates for the vorticity function without any symmetry assumptions.
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1 Introduction

The study of stability problems in mathematical analysis of fluid dynamics has a long and dis-
tinguished history, dating back to the work of Kelvin [18], Orr [25] and Rayleigh [26] among
many others, and continuing to the present day. Hydrodynamical stability problems can be
considered in both two and three dimensions. In this paper we work with two dimensional
inviscid flows.

For the Euler equations, there is significant recent progress on the asymptotic stability of
monotonic shear flows and vortices, assuming spectral stability, see for example [3, 9, 14, 15,
17, 22, 28, 30, 34, 35] for linear results. The main mechanism of stabilization is the so called
“inviscid damping”, which refers to the transfer of energy of vorticity to higher and higher
frequencies leading to decay of the stream and velocity functions, as t — oco. Extending
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the linearized stability analysis for inviscid fluid equations to the full nonlinear setting is a
challenging problem, and the only available results are on spectrally stable monotonic shear
flows [2, 10, 12, 23], and on point vortices [11]. We refer also to the recent review article [13]
for a more in-depth discussion of recent developments of both linear and nonlinear inviscid
damping.

Many physically important shear flows are not monotonic, such as the Poiseuille flow
and the Kolmogorov flows. For such flows on the linear inviscid level, there is an additional
significant physical phenomenon called “vorticity depletion” which refers to the asymptotic
vanishing of vorticity as # — oo near the critical point where the derivative of the shear flow
is zero, first predicted in Bouchet and Morita [5], and proved rigorously in Wei—Zhang—Zhao
[31]. A similar phenomenon was proved in Bedrossian—Coti Zelati—Vicol [3] for the case of
vortices. See also [14] by the first and third author for a refined description of the dynamics
in Gevrey spaces as a step towards proving nonlinear vortex symmetrization.

In [31] by Wei—Zhang—Zhao, sharp linear inviscid damping estimates and quantitative
depletion estimates were obtained for an important class of “symmetric shear flows” in a
channel (see also [32] by Wei—Zhang—Zhao for a similar result for Kolmogorov flow). When
no symmetry is assumed, only qualitative bounds are available. Heuristically the general
case should be similar to the symmetric one, since the main vorticity depletion mechanism
is completely local and asymptotically all shear flows approach symmetric ones at the (non-
degenerate) critical points. However there are significant difficulties in using the approach of
[31] to extend the quantitative depletion bounds of [31] to the general case, as the argument in
[31] relies heavily on decomposition of functions into odd and even parts, which are specific
to symmetric shear flows.

In this paper, we prove linear inviscid damping estimates and quantitative vorticity deple-
tion estimates for a class of stable non-monotonic shear flows with one non-degenerate critical
point. The main new features of our results are that we do not need symmetry condition on
the background shear flow, and that our formulation on quantitative depletion for vorticity
function seems to be new even for general symmetric shear flows (see however Wei—Zhang—
Zhao [32] which contains a sharp depletion rate at the critical points for Kolmogorov flow),
see Theorem 1.2 below for the precise statements. We begin with the description of our main
equations and theorem.

1.1 Main Equations

Consider the two dimensional Euler equation linearized around a shear flow (b(y), 0), in the
periodic channel (x, y,t) € T x [0, 1] x [0, c0):

dhw +b(y)dxw — b (Mu’ =0,
divu=0 and w=—-09u"+du’,

with the natural non-penetration boundary condition u”|,—¢ 1 = 0.
For the linearized flow, f’I[‘x[O 't (x,y, ) dxdy and fo[o @, y, 1) dxdy are con-
served quantities. In this paper, we will assume that

/ up(x, y)dxdy = / wodxdy = 0.
Tx[0,1] Tx[0,1]
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On the Stability of Non-monotone Shear Flows

These assumptions can be dropped by adjusting b(y) with a linear shear flow Coy + Cj.
Then one can see from the divergence free condition on u that there exists a stream function
Y(t,x,y) with (¢, x,0) = ¥ (¢, x, 1) = 0, such that

ut = -y, u’ = 3.
The stream function ¥ can be solved through

AYy =w,  Yly=01=0.
We summarize our equations as follows

drw + b(y)dyw — b (y)dyy =0,
AY(t,x,y) =w(t, x,y), Y, x,0) =Y, x,1)=0, (1.1)
W, u’) = (=0yv¥, 0x V),

fort >0, (x,y) € T x [0, 1].

Our goal is to understand the long time behavior of w(¢) as t — oo, with Sobolev regular
initial vorticity wy.

1.2 The Main Results

We describe more precisely the main assumptions and our main conclusion. The main con-
ditions we shall assume on the shear flow b(y) € C 4([0, 1) are as follows.

Assumption 1.1 We assume that the background flow b(y) € c4([0, 11) satisfies the follow-
ing conditions.

(1
S:={yel0,1]: &'(y) =0} = {y:} C (0, 1).

In addition, b (y,) # 0. For the sake of concreteness, we assume that b”(y,) > 0 in
this paper.
(2) For k € Z\{0}, the linearized operator Ly, : L%(0,1) —> L%0, 1) defined as

1
Lig(y) :=b(y)g(y) + b”(y)/O Gr(y,2)g(z)dz (1.2

has no discrete eigenvalues nor generalized embedded eigenvalues. In the above Gy is

the Green’s function for k* — % on the interval (0, 1) with zero Dirichlet boundary

condition, as defined in (3.1) below.

We refer to Section 2 below for the definition and more discussion about generalized
embedded eigenvalues.
Our main result is the following theorem.

Theorem 1.2 Assume that w(t, -) € C([0, 00), H*(T x [0, 1])) with the associated stream
SJunction Y (t, -) is the unique solution to (1.1), with initial data wo € H*(T %[0, 1]) satisfying
forall y € [0, 1],

/ wo(x, y)dx = 0.
T

Then we have the following bounds.
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(i) Inviscid damping estimates:

1
1 @ 2 e S W”CUOHH“(TX[O,]])v (1.3)

1

1 )
flu(t, ')||1,2(']1‘><[o,1]) S a”w()”H‘l(']rx[o,l])’ llu” (2, ')||L2(”IF><[O,1]) 5 W||w0||H4(']1‘><[0,1])~ (1-4)

(ii) Vorticity depletion estimates: there exists a decomposition

w(t,x,y) = ®loc(t, X, y) + wnloc(t, X, y),
where for (x,y,t) € T x [0, 1] x [0, c0),

1
@rc(t xS 1y =yl ool snxioy. Ionioc(ts 2. 01 S oz lonllms mxio .
(1.5)

1.3 Remarks and Main Ideas of Proof

We have the following remarks on Theorem 1.2. Firstly, in the above theorem we have not
tracked the minimal regularity required for the bounds (1.3), (1.4) and (1.5) to hold, and a
more careful argument can probably significantly reduce the number of derivatives needed
on the initial data wg. Secondly, we note also that the argument here can be applied to non-
monotonic shear flows with multiple non-degenerate points, although the presentation will be
more complicated. Thirdly, a more sophisticated analysis may yield a sharper rate of vorticity
depletion with rate
|ot0c (£, X, VI S 1y = ¥l* lontoe (. x, )| S (1)1

It is not clear to us though if one can reach the optimal rates of |y — y,|? and ().

We briefly explain the main ideas of the proof.

By a standard spectral representation formula, see (2.4), it suffices to study the spectral
density functions and the associated Rayleigh equation (2.5). There are two main cases to
consider. When the spectral parameter A is not close to the critical value b(y.), the situation
is similar to monotonic shear flows and can be treated as in [15]. The main new case is when
the spectral parameter A is close to the critical value b(y.). In this case, the Rayleigh equation

(2.5) is very singular, and the potential term h(yb)/;i({)m
2

O 0—bOm)Tie for ¥ close to yy.

The key observation here, as in [14], is that the potential term b()g”_%
singular and has real part with a favorable sign for 1 > |y — y«| > |A — b(y:)|'/2, which
needs to be incorporated as part of the main term. We therefore define a modified Green’s
function for the main term, see (3.6)—(3.7), which has strong vanishing conditions near
Y = Y&, leading ultimately to vorticity depletion. After extracting the main terms in the
Rayleigh equation (2.5), the rest of the terms can be treated as compact perturbations, and
can be bounded using a limiting absorption principle, see Lemma 4.4, thanks to the spectral
assumption 1.1.

The limiting absorption principle provides preliminary bounds on the spectral density
functions w,‘(y (v, A) with ¢ € {£}. To obtain the desired quantitative decay rates, we take up
to two derivatives in A of the spectral density functions, and again use the limiting absorption

has a quadratic singularity roughly of

the form

is critically
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principle to estimate the resulting derivatives, after extracting the main singular terms. The
procedure is more or less straightforward but the calculations are quite lengthy. We refer to
[15] also for similar calculations in a simpler setting. Lastly, we note that there are important
cancellations between w,:f (¥, A) and w,: (¥, A) in the limit ¢ — O+, which is the reason
why we need two versions of the limiting absorption principle, see Lemma 4.4, with different
weighted spaces.

1.4 Notations

We summarize here some notations that are specific for this paper for the reader’s conve-
niences. For positive numbers «, 8, we set « A B := min{e, 8}. We denote for d > 0,
g = {b(y) 1y € [y« —d,y« +dl}, Sa = [y« — d,y« + d]. We also denote
Y = {b(y) : y € [0,1]} and I := [0, 1]. For k € Z\{0}, we define for f € H' (D)
the norm || fll g1 gy := Il fll L2y + kI~ 2y

2 Spectral Property and Representation Formula

Taking Fourier transform in x in the equation (1.1) for @, we obtain that
dreox + ikb(y)ax — ikb" (y)yx = 0, @.1)
fork € Z,t > 0, y € [0, 1]. In the above, wy and v are the k-th Fourier coefficients of w,

¥ in x respectively. For each k € Z\ {0}, recall from (1.2) that for any g € L>(0, 1),

1
Lig(y) = b(»g(y) + () /0 Gi(y. Dg()dz,

% on (0, 1) with zero Dirichlet

boundary condition. Then (2.1) can be reformulated abstractly as

where Gy is the Green’s function for the operator k> —

dwp + ikLywy = 0. 2.2)

In contrast to the spectral property of the linearized operator around monotonic shear
flows, the spectral property of Ly is less understood, especially on the generation of discrete
eigenvalues and embedded eigenvalues. From general spectral theory, we know that the
spectrum of Ly consists of the continuous spectrum

S :={b(y): ye[0,1]},

together with some discrete eigenvalues with nonzero imaginary part which can only accu-
mulate at the set of continuous spectrum X. Unlike the case of monotonic shear flows where
the discrete eigenvalues can accumulate only at inflection points of the background shear
flow, there appears no simple characterization of the possible accumulation points for non-
monotonic shear flows.

Recall that A € X is called an embedded eigenvalue if there exists a nontrivial g €
L?(0, 1), such that

Lig = Ag.

For non-monotonic shear flows, this definition is too restrictive, as accumulation points
of discrete eigenvalues may no longer be embedded eigenvalues. To capture the discrete
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eigenvalues, we recall the following definition of “generalized embedded eigenvalues”, which
can be found already in [31], adapted to our setting.

Definition 2.1 We call » € X a generalized embedded eigenvalue, if one of the following
conditions is satisfied.

— A is an embedded eigenvalue.
— A # b(y,) and there exists a nontrivial ¥ € HO1 0, 1) : (0, 1) — C such that in the sense
of distributions on (0, 1),

" (MY (y) tim Z b ()Y (2)

k2 — 92 P.V.
E =W+ PN Q)]

8(y—z)=0. (2.3)
z€[0,1], b(z)=1r

We remark that our assumption that the critical point y, of b(y) being non-degenerate
implies that the sum in (2.3) is finite, and that the spectral assumption 1.1 is satisfied if »” > 0
on [0, 1].

Proposition 2.2 Suppose that k € Z\{0} and wS € L*([0, 1]). Then the stream function

Yi(t, y) for k € Z\{0}, y € [0, 1], ¢t > O has the representation

_ —ikat [ — +

vt = =5 dim [ ey 000 = 00 ], 2.4)

where 1//k£(y A) forv e {(+,-}, y € [0,1], A € 2, k € Z\{0}, and sufficiently small
—1/4, 1/41\{0}, are the solutions to

& b () —o0)
_ k2 L ,A‘ L , A‘ — ——————————————— t ) A. = +7
Vie W M) 4 Ve D = p e e Ve ) = 5 T e

with zero Dirichlet boundary condition.

(2.5)

Proof By standard theory of spectral projection, from (2.2), we obtain that for y € [0, 1],

_i i irt - 1 . =17k
we(t,y) = = lim | ™ [(A+kLy —ie)™ — (+kLy +ie) ' |wgi () dA.
27i >0+ Jx

We then obtain for y € [0, 1],

Vit y) = —5— lim / B / Gi(y,2)

x [+ Li =i = (=a+ Li + 07" b | ) dzdn
i /e*'“’ [w,;e(y,x)—w,jfs(y,x)] d.

27wi e—0+ Jx

In the above, for y € [0, 1]and A € X,
1
w,:s(y, A) = /0 Gr(y,2) [(—k + Ly + is)_la){‘)] (z)dz,

1
Vi = [ G [ =i o] @ e

Therefore for¢ € {+, —}, y € [0, 1], L € &,

d? .-
<k2 - d?) Vi 30) = (=h + Ly +i1e) g (y),
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which implies

) d?
“’6()’) = (=A+ Lg+ie) <k2 — Tﬂ) Ve (¥ 1)
2
dy?

=wwr¢+nw0%- )ﬁA%M+W@Wh@J) (2.6)

It follows from (2.6) that W/:S(Y»)»), Vi (v, A) satisfy (2.5). The proposition is now

proved. O

Remark 2.3 The existence of w,i, . for sufficiently small ¢ # 0 follows from our spectral
assumptions, which imply the solvability of (2.5) for sufficiently small & # 0, see also (4.4).

3 Bounds on the Green’s Function and Modified Green’s Function
3.1 Elementary Properties of the Standard Green’s Function

For integers k € Z \ {0}, recall that the Green’s function G (y, z) solves

2

dy?

with Dirichlet boundary conditions G (0, z) = Gr(1,z) =0, z € (0, 1). G has the explicit
formula

Gi(y,2) + k*Gr(y,2) = 8(y — 2),

Gi(y,2) = ! { sinh(k(1 — z)) sinh(ky) if y < z,

. . . 3.1
k sinh k | sinh(kz) sinh(k(1 — y)) ify > z, G.1

and the symmetry
Gr(y,2) = Gi(z,y) for k € Z\{0}, y,z € [0, 1].
We note the following bounds for G

sup [lklzllck(% 2)(loglz — AD™ 1 (z€[0,17) + kl19y,; Gk (y, 2)(log |z — Ap™ 1 (ze[O.l])]
yel0,1],|A]<10

+ sup [lkP/Z"’ o2 .Grr. o) ]5|log<k>|’" for m € {0,1,2,3).

L2(z€[0,1])

ye[0,1],a€{0,1}
(3.2)
Define
Fe(y.2) = —kcosh (k(1 —z))cosh (ky), 0 <y <z <1,
K22 = Gk | —k cosh (kz) cosh (k(1 — y)), 1 > y > z > 0.
We note that
3y0:G(y, 2) = 0:9,Gr(y,2) =8(y —2) + Fx(y,2)  for y,z€[0,1].  (3.3)

By direct computation, we see Fj satisfies the bounds

sup I Fr(y, 2)(og |z — AD™ Il 1, + 1k~ 8y, Fe (v, ) (log [z — AD™ || 1
ye[o,u,\Alsm[ L'Gel0.1) e L (ze[O,l])j|

3y Fr(v,2) H

, K-1/2
oo [‘ | L2zel0.1])

] < llog (k)™ for m € {0, 1,2,3}.
yel0,11,2€{0,1}

3.4
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The bounds (3.2) and (3.4) can be proved by explicit calculations and are useful in the
proof of Lemma 4.1 below.

3.2 Bounds on the Modified Green'’s Function

It follows from Assumption 1.1 that there exists a 5o € (0, 1/8) such that

inf{[y«l, [y« — 1]} > 1089 and sup 16" (¥)I80 < [b" (y+)1/10.
YE(y«—4380,y«+480)

Define the set
X5y = {b(y) 1y € [y« — 80, y« + d0l},

and fix a standard smooth cutoff function ¢ € C2°(—2, 2) satisfying ¢ = 1 on [-3/2, 3/2].
For simplicity of notations, we denote

1:=(0,1).
To simplify notations we define also for d € (0, 1/10),
Sa == [y« —d, y« +d]. (3.5)

For applications below, we also need to study the “modified Green’s function” G (y, z; A+
ie)fory,z € [0, 1], A € 5, and ¢ € [—1/8, 1/8]\{0}, which satisfies for y, z € (0, 1),

(> = 0)Gk (v, 75 A + i)

b"(y) Y = ¥« Y =V« L
b(y) — A +ie [“”( % )“”( 50) )]g"(y’z’”’s)_s(y_@’ G0

with the boundary condition
Gr(y, z; A +ig)lyeio,1y = 0. (3.7)
In the above, we have used the notation that
8() 1= 8y/IL — b(yI/b" (3. (3.8)
Define the weight o(y; A +i¢e) for y, z € [0, 1], A € X5, and ¢ € [—1/8, 1/8]\{0} as

o(y; A +ie) = A — by + 1el2 4+ |y — vl

The crucial bounds we need for the modified Green’s function Gy (v, z; A+i¢€) is the following.

Lemma3.1 Let Gi(y, z; A + ig) for y,z € [0,1],A € X5, and ¢ € [—1/8, 1/8]\{0} be
defined as in (3.6). Then we have the identity for y, z € [0, 1],

Gr(y, z; A +ig) = Gr(z, y; A +ie), (3.9)
and the following statements hold.

(1) We have the bounds

sup |Gk (v, z; A +ie)| S minfo(z; A +ie), 1/]k]},
vel0.1], ly—z|<min{o(z: A+ie), 1/]k]} . (3.10)
sup [0yGk(y, z: A +ie)| S 1

yel0,1], [y—z|=minfo(z;A+ie),1/]k[}
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(i) For yi,y2 € [0, 1] with y> € [min{y1, z}, max{y1, z}] and o(y2; A +ie) Z 1/Ikl|, we
have the bounds with o € {0, 1}

105 Gr (v1, 23 & + ie)]
12

<[+ e ona o] ekt g [ (v z: 2+ o) dy
[y2—=1/1kl,y2+1/1kl1N1

(3.11)

(i) For y1, y2 € [0, 1] with y» € [min{yy, z}, max{yy, z}] and o(y2; A +ie) K 1/k|, we
have the bounds with o € {0, 1}

105 Gk (y1, 23 A +ie)

2 . .
_ . . A +ie sAtie
<[kl +o 1<y1;x+ze>]"mm{g2(y‘ ©) ol .)}M, (3.12)
0 (s A +ie) o(y1; A+ie)
where
1 1/2
M = [7 |gk(y» Z,)\+18)|2dy:| .
0(y2; A i) Jiyy—o(vaintie),va+o(yair+ie) N

Proof The proof is based on energy estimates and “entanglement inequalities”, as in [16].
See also the earlier work [33] where this type of inequality was used. We divide the proof
into several steps.

Step 1: the proof of (3.10). We first establish the bounds (3.10). For simplicity of notation,
we suppress the dependence on z, A + ie and set for y € [0, 1],

b// - Jx — Ok
hOY = Gy 22k i), V)= 5 _?HE [so(yaoy )w(%)] (3.13)

Multiplying £ to (3.6) and integrating over [0, 1], we obtain that

1 1
fo 1y ()] + |k|2|h(y)|2dy+/0 V)IhO)I* dy = h(z). (3.14)
Note that for y € [0, 1], RV (y) > 0, and in addition, for y € S5, and
Iy = yul > Co (1A — by /% + le]'/?)

with sufficiently large Co > 1,

1+RV(y) > ——— .
W 0% (y; A+ ie)

It follows from (3.14) that

1
[ayh (N> + kPR () [* dy +/ —————— |h(y) P dy
/0 Y veSsys ly—yil>Co(+le1/2) [@(¥5 A +ie)]?
S1h@). (3.15)
Using the Sobolev type inequality

Il ooy S WAl 2| T2+ 18yl 20 112, (3.16)
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for any intervals J, J, with J, € J and |J,| = |J|, and choosing the interval J C I as
an interval containing z with length of the size C; min{1/|k|, o(z; A + i¢)}, we obtain from
(3.15) that

1
19y (> + k2R dy +/ ——— |h(»)*dy
/0 ’ VESy. y—yal=Coé+lel12) [0(y3 A +i€)]2

< min{l/[k|, o(z; A +ie)}. (3.17)

The first inequality of (3.10) then follows from (3.17) and (3.16). To obtain the second
inequality in (3.10), we notice that the (3.6) and the first inequality in (3.10) imply pointwise
bounds on 83(_}1( for y # z. The desired bound in the second inequality of (3.10) then follows

from interpolation between the pointwise bounds on Gy and 33(]1(.
Step 2: the proof of (3.11). Denote

1/2
M = [IkI/ ng(y,z;)»+i8)|2dy] .
[y2—1/Ikl,y2+1/1kINI

For the sake of concreteness, we assume that y; > z (so y2 € [z, y1]). We shall also assume
that y; — yo > 1/|k| as the other case is analogous but easier. For ¢ € Cll, ([y2, 1]), the
space of piecewise C! functions, with ¢(y2) = 0, we multiply @& to (3.6) and integrate
over [y2, 1] to obtain that

1 —
19y (P (0) + 20, A (DR (M0 (Y) + k[P @> MR + V()R Pe*(v) dy = 0.
2

(3.18)
Taking the real part of (3.18) and using Cauchy—Schwarz inequality, we get that
1
f [1350I* = kPleWIP] 1AM dy = 0. (3.19)
2
We now choose ¢ more specifically as follows. We require that
=0, ¢"(») =0 f ,vo + 1/1k|], + 1/lk]) =1,
P(¥2) 0] or y € [y2, y2 + 1/1k[l, ¢(y2 + 1/1k) (3.20)

@' (y) = lklo(y) for y € [ya+1/Ikl, y1 — 1/Ikl], ¢'(y) =0 for y € [y1 — 1/Ik|, 1].

It follows from (3.19)—(3.20) that

1
/ . kP@*WDIR > dy S KIMT,  @(y) ~ =21 for y e [y1 — 1/1k], y1 + 1/IKI N 1.
yi—1/lk| 321)

The desired bounds (3.11) follow from (3.21) and (3.6).

Step 3: the the proof of (3.12). For the sake of concreteness, we assume that y; > z (and
S0 y2 € [z, y1])- We shall also assume that y; —y> > 0(y2; A+i¢) and that y, > y*—l—S—i—l(’3|1/2
as the other cases are analogous.

For ¢ € C; ([y2, 1]) with ¢(y2) = 0, we multiply @*h to (3.6) and integrate over [y;, 1]
to obtain that

] —_
[ 19y () P@* () + 28,k (MEe(N By () + kPG> WGP + VD)) Pe*(v) dy = 0.

Write for y € [y2, 1]
h(y) = (v — yo)'2h* (y). (3.22)
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On the Stability of Non-monotone Shear Flows

Simple calculations show that
1
/ (v = yIE* PP () + 2(y — y)dye (M@ dyh* (1h*(y)
y2

1
+m|h*(y)|2<p2<y> +HIKP RO () + (0 = 3V (e* IR ()P dy = 0.

Therefore

1 1 1
/ [7+(y—y*>mvm] P> (I*dy < / O =y @) MIR* () dy,
w L40 — o) "

2

which implies that

Lo
f o L0 =2020) 00 = (174 + 0 =3 PRV ) ) | I )P dy 2 0.
y2 *
(3.23)

We notice the pointwise bounds for y € [y2, 1],

0%(y2; A +ie)
y— )’*)2

Now we choose ¢ € C 117([ v2, 1]) more precisely as follows. We require that

1/4 4+ (y — y0)* RV (y) > max {0, 9/4 - C - Caly — y*l} . (324

e(y2) =0, ¢"(y) =0 for y € [y2, y2+ 002 2 +ie)l, o2 +0(2r+ie)) =1,

(5 =9’ ) = [1/4+ (v — 0’7V ] 0(y)
for y € [y2+o0(y2; A +ig), y1 —o(y1; A +ie)l,
and ¢'(y) =0 for y € [y1 —o(y1; A +ie), 1].

(3.25)
It follows from (3.23)—(3.25) that
Y1 1
/ 2P dy < Mol + i),
yi—o(y1:A+ie) o(yi; A +ie)
(1 = y)¥? (320
1= .
p(y) ~ u for y € [y1 —o(y1; A +ie), y1l.

032 (y2; A + i)

The desired bounds (3.12) follow from the change of variable (3.22), the bound (3.23), (3.26)
and (3.6).

Lastly we indicate how to prove the identity (3.9). For any y, z € (0, 1), using the notation
in (3.13) for V, we have by integration by parts

Gh(y. 1 4 + i) :/ (K2 = 82+ V()G (0, v : +ie) Grlo, 7 A +ie) do
[0,1]

:/ (K2 = 92 + V()Ge(0, 23  + &) Ge (0, v A + i) do
[0,1]

= Gk(z, y; A +ie),

which completes the proof of (3.9). O

As a corollary of Lemma 3.1, we have the following additional bounds on the modified
Green’s function.
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Lemma3.2 Let Gi(y,z; A + ie) for y,z € [0,1], A € X5, k € Z\{0} and ¢ €
[—1/8, 1/8]\{0} be defined as in (3.6). Recall the definition (3.8) for § = (1) > 0. Define

h =100 + |]'/?),
and also for y, z € [0, 1],

Hi(y,zs A +ig) = [8z + @ <y —hy*> By} Gi(y, z; A +ie).
Then the following statements hold for 7 € Sas.
(i) We have the bounds
sup He(y, 2 2 +ie)| S 1,
yel0,1], [y—z|<min{o(z:A+ie), 1/|k[}
sup 10yHr(y, 23 A +ie)| S 1/minfo(z; A +ie), 1/[k[};

y€l0,1], [y—zl=min{o(z; A+i¢),1/lk|}

(i) For yi, y2 € [0, 1] with y, € [min{y1, z}, max{yi, z}] and o(y2; A + ie) 2 1/|k|, we
have the bounds with a € {0, 1}

[min{o(y1: & +ie), 1/[k1}] 109 Ha (y1, 23 A + ie)]

- e~ Iklly1—=y2] |: 5 172
N - Iklf Gk (v, z; A +i€)] dy} .
min{o(z; A +i¢), 1/]k[} [ya—1/Ikl,y2+1/1k1INT

(i) For y1, y2 € [0, 1] with y> € [min{yy, z}, max{yi, z}] and o(y2; A +ie) < 1/|k|, we
have the bounds with a € {0, 1}

[miH{Q(yl; AH1ie), 1/|k|}]a 105 Hie(y1, 23 A +ie)l
- 1 . {92(y1;k+ie) Q(yz;)»-i-iS)}
n

™~ min{o(z; A +i€), 1/]k[} 0*(y2s A +ie)” o(yis A +ie)
where
1 12
M= [7 Gk (v, 2 &+ ie)|2dy] .
0(y2; A +i€) Jiy,—o(yaintie),vato(yatie) Nl

Proof Denote with a slight abuse of notation for y € [0, 1],

N A by [(y—y*)_ <y—y*)]
w(y).—¢< 3 ) V(y).—b(y)_wrigw % %oy )|

Then Hy,j(y, z; A + i¢) satisfies for y € [0, 1], z € Sas,

(K* — 33)Hk(y, zA+ie) + VO Hr(y, 2 A +ig)
= =00 (MG, 23 A +i8) — 0,V (e (NG (y, 25 1 + i)

—20,0" ()7 Gk (y. 21 A +ie). (3.27)
The desired bounds then follow from (3.27), Lemma 3.1 and standard elliptic regularity
theory. O

The bounds in Lemmas 3.1 and 3.2 are quite sharp, since we can exploit the decay coming

from both k2 and b(;;//—i(i)m [ga(y ) — (56 )] It is however somewhat complicated to
formulate a concrete bound that is easy to use. Instead, the following simple bounds are more

often used.
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Corollary 3.3 Let Gy (y,z; A + ig) for y,z € [0, 1], A € X5, and ¢ € [—1/8, 1/8]1\{0} be
defined as in (3.6). Then we have the following bounds.

(i) Fory,z € [0, 1], we have the bounds with o € {0, 1}

[kl + 07 (i A +ie)] " [0 Gi(y. 22 A+ ie)]

S 1 iy QA tie) oz A+ ie)
- Nz o T 2 —, :
Klreantio 0*(z A +ie)” o(y;h+ie)

] .(3.28)
(iii) Fory € [0, 1], z € Sy45, we have the bounds with o € {0, 1, 2}

[kl + 07 i a+ie)] 09 Hu (v, 23 A + i)

e QOiAtie) oz A +ie) }
"2z atie) oyiatie) ]’

< min {e (3.29)
Proof The desired bounds (3.28)—(3.29) follow directly from Lemma 3.1 and Lemma 3.2,
by choosing, if necessary, another point y’ between y and z such that o(y’; A +ig) ~ 1/|k|,
and applying (3.28)—(3.29) on intervals [min{z, y'}, max{z, y'}] and [min{y’, y}, max{y’, y}]
successively. O

4 The Limiting Absorption Principle

In this section, we study the solvability of the main Rayleigh equations (2.5). It turns out that
the situation is very different for the spectral range A € X\ X5, /> (the non-degenerate case)
and A € X, (the degenerate case). We first consider the non-degenerate case.

4.1 The Non-degenerate Case

Fix ¢ € [—1/4,1/4]\{0}, L € X\X;,2,k € Z\{0}. Define for each g € L%(0, 1) the
operator
! b"(2)g(2)
T; = Gi(y, 1) ———=2"—dz. 4.1
ke8(Y) /0 k(¥ Z)b(z) R 4.1
For applications below, we fix a smooth cutoff function ® € C§°(y« — 80/3, y« + 80/3)
with @ = 1 on [y« — d0/4, y« + 80/4]. To obtain the optimal dependence on the frequency
variable k, we define

18l = Nglzzcry + kI 18 N 20r)-

Lemma4.1l Fore € [—1/4,1/4]\{0}, L € E\Zs,/2, k € Z\{0}, the operator Ty ;. ¢ satisfies
the bound
W Tiseglligrry S K172 N8l gy forall g € HY(D). (4.2)

In addition, we have the more precise regularity structure

b'(y)(1—®
0, Tieg(y) + ()( - ()g) log (b(y) — A + ie)
(Y) WI*I(R)

S <k>4/3||g||11k1(1)- 4.3)
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Proof We can decompose for y € [0, 1],

Tie8(Y) =T}, .8 + T2 .8,
where
@ (2)b"(2)g(2) d
b(z) — A —ie
1- q>(z))b”(z)g(z)dz
b(z) — A+ is

1
T}, .8(y) = /0 Gi(y,2)

)

1
72,80 == /0 Ge(y. )"

It follows from the definition of & that Tkl’ 5..e8(y) satisfies the bound

1/3

1T e 8D p ey S KT U8l 18T 8D lwiaay S K8l g -

To bound Tk2 5..&(y), we follow the approach in [15]. Using integration by parts, we obtain
that

d; log(b(z) — A +ie)dz

! 1—® b
12, .80 /Oc;k(y,z)< ()b (2)g(2)

b'(2)

1 _ ”
- [ a6, o U2 1002y 1 tis) a:
0 (2)

1 _ /"
- f G (3, 200, [(1 2P (Z)g(Z)]logaa(z)—A+ie)dz.
0 (2)

The desired bounds follow from the bound (3.2), the formula (3.3) and (3.4). ]

We now prove the limiting absorption principle, using the assumption that there is no
discrete or generalized embedded eigenvalues.

Lemma 4.2 There exist gy, k > 0, such that the following statement holds. For all ) €
2\ X502, k € Z\{0}, 0 < |e| < g9 and any g € Hk1 (I), we have the bound

llg + Tk,)\,sg”Hkl(I) > K”g”Hkl(I)‘ (4.4)

Proof We prove (4.4) by contradiction. Assume that there exist for j > 1, a sequence of
numbers k; € Z\{0}, A; € X\Zs,/2, &; € R\{0} — 0 and functions g; € Hklj(l) with

||gf||Hk'.(1) = 1, satisfying k; — ks € (Z\{0}) U {£o0}, A; — Ay € X\Xs, as j — o0,
such théit
ng + Tk aj.e,8) ||Hkl n 0, as j — oo. (4.5)
j

The bounds (4.2) and (4.5) imply that |k;| < 1. Thus k. € Z\{0}. Using ||g; ”Hkl o= 1, the
j
bounds (4.3) and the compact embedding w1y - L%(I), we conclude that by passing to
a subsequence, Tkj, Aj,e;&j converges in H'(I). In view of (4.5) we can assume that gi—~ &
in HY(I), where gl =1.
Using formula (4.1),* we obtain from (4.5) that for y € I,

b"(2)g(z)

_ 28 g o, 4.6
b(x) —A+ie; *+6)

1
gy + .lim/ G, (v, 2)
J—=>00 Jo
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Applying k2 — j—;z to (4.6), we get that for y € I,

8y —2)=0,

o) — ') + fim LRI DRO) g P @8G)
e z€[0,1],b(z

() =12 + ¢ o D@

in the sense of distributions for y € (0, 1), which contradicts our spectral assumption that A,
is not a generalized embedded eigenvalue for L. The lemma is then proved. O

4.2 The Degenerate Case A € X5,

Recall the definition (3.8) for § = &(A). For A € X5, k € Z\{0}, y € I and
e € [—1/8, 1/8]\{0}, we denote

172 172 1 . . 1
di(h, &) =[x — b(y)I'* + |¢] ]Am, ok(y; A +ie) :=Q(y;k+18)Am- .7

Define the weight and the associated weighted Sobolev spaces Xy o, and X, ,, as

—1/2 _
”g”XN,gk(I) = Z (8+ |8|1/2) / H[dk()"?g)]( 7/44+a) 8glg

ae{0,1} ’ L2<S3(5+‘8‘1/2))

+ ) H.Q,:7/4+a(-;)»+i5)8;‘g‘ . , (4.8)
aef0,1} L <I\S3(5+Is|'/2)>

and
—1/2
gl g = > (+1el"?) " |, easg) |

aef0,1} L (53(3“8‘1/2))

+ 3 oo o] . 4o)
ae(0.1} ' L°°<1\S3(5+|5|'/2)>

We remark that the choice of the weights in (4.8)—(4.9) is closely related to the behavior
of the modified Green’s function Gy (y, z; A + ie). In (4.8), we consider the case that the
“source” z is of unit distance away from the critical point y,, where the expected decay of
Gk (v, z; A+i¢e) towards the y = y, is given roughly by Q,%(y; A +ie); similar considerations
apply in (4.9) if one considers the case that the source z is near y, and study the behavior
of Gk (v, z; A + ie) away from y.. The choice of exponent as 7/4 is somewhat arbitrary, as
long as it is less than 2. The endpoint case of exponent being 2 though results in a subtle
logarithmic divergence that seems more technical to handle.

Fixe € [-1/4, 1/4]\{0}, 1 € Z5,,k € Z\{0}. Recall the definition (3.8) for 6 = (1) > 0.
Define for each g € L?(0, 1) the operator

1 7"
% . . . . (Y Y= Y« b"(2)g(z)
Ty (A +ie)g(y) ~—/0 gk(yyz’)“‘i'w)[] f/’( 8o >+¢( B )] b(z) — A +ie <
(4.10)

Then we have the following bounds for Tk* (A +ie).

Lemma4.3 Fore € [—1/4,1/4]\{0}, A € Zs,, k € Z\{0}, the operator T\ (A + i¢) satisfies
the bound for X € (X o, (1), X1 o, (1)}

. —1/4
1T+ iodglx S (14 1kl (1% — b2+ 121"2)) Hliglix forall g e HE(D).
4.11)
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Proof We provide the detailed proof only for the case X = Xy o, (1) as the other case is
analogous. Since k, A, ¢ are fixed, for simplicity of notations, we suppress the dependence
onk, A, & to write T* as T;*(A + ie), and decompose for y € I,

T*g(y) :==T7¢(y) + T5g(y),

where

1 — b
Tig(y) ;=f0 Gy, 2 A+ ig) [1—¢(Z soy )] b(z)(f)f(figdz,

b"(2)g(z)
b(z) — A+ ie

It follows from the bounds on modified Green’s function G (y, z; A + i€), see Lemma 3.1,
that

* : . T = Yx
Ty g(y) 3=f0 gk(y,z;)»—l—lg)(p( 5 >

1T g N o () S I 2 llg o, - (4.12)

To prove (4.11), it suffices to prove

—1/4
1758l xy o5y S (14 1KL(S +161'2)) " llgllxy o (1)- (4.13)

We assume momentarily that |¢] < |A—b(y,)| and explain how to remove this assumption
at the end of the proof. We decompose further for y € 7,

! — V& — Yy b// , '
T;8(y) =/0 Gy, A +ig)g (Z a/y >¢<Z sy )b(z)(i)i(j—)ig .

! ) . 7= Vs z—y\ b'(2)g[)
—l—/o gk()’,z,k—i-zs)[l—(p( 5 )](p( 5 >b(z)—)\+isd2

=T r8 () + T3 58 (1),

where we have chosen §' = §/C3 with a large constant C3 so that |b(y) — A| & |A — b(ys)|
for |y — y«| < §'.
It suffices to prove for ¢ € {R, S}

—1/4
175 o8l () S (14 KL (12 = 5O 4 1612) ™ llglxn, - (4.14)

Step 1. We first prove (4.14) with ¢ = R.
Case I: 1/|k| > |A — b(y)|"/? + |&|'/%. In this case for |z — y.| < 8and |y — y«| < 1 we
have the bound
82+ le| 82 + le|
, |0 oA +ie)| S .
bl a e (OO A HIONS G Ty
(4.15)

Gk (v, z; A +ie)| S

It follows from the bound (4.15) that

—1/4
175 k8 1) S (1 1L (12 = B2 4+ 161'2) " lgllxy o )-

Case II: 1/|k| < |» — b(y:)|'/? + |¢|'/%. In this case, we have for |z — y,| < & and
[y =yl < 1 that

Gk (v, 23 A+ ie)| + kI 7H8,Gi(y, 23 h +ie)| S k|~ e Kb =2l, (4.16)
The desired bound

—1/4
175 R8N g (1) S (1 1K (I8 = BG4 1e1'2)) ™ llgllxy o, (1)
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follows from (4.16).
Step 2. We now turn to the proof of (4.14) with ¢ = § and still consider two cases.
Case I 1/]k| > |» — b(ys)|"/? + |¢|'/2. Denoting for y € I,

o (55) = [-e ()] (57)

! (= \P'@e@) . b —r+ie
fogk(y,z,wrle)q:( 3 ) () 9, log 5

: i (2 V()8 (@) b(z) =k +ie
= [ o ooz (5) 5D o PO s @)

Wwe can rewrite

Tifsg(y)

As a consequence of (4.17), we also have

1 _ " o .
oy [15560] = 0y [ Gerzon +ipygr (122 ) L0E@, 4 PO Z 2 i,
) 0 6

b'(2) 52

. , L (2= e\ D (D8], b() —A+ie
—/0 |:‘))'(az+ay)gk(ysza)w€)<ﬂ( 5 ) e ]bg R

1 Vi .
2 ) w2 ye\ P (g b(z) — A +ie
+[0 |:3),gk(y, Zh+ie)e ( 5 ) b ] log 52 dz

1 _ 7 _ .
_/0 dy G (v, 23 A +ie)d; |:go* (Z By*> b (Z)g(z)]log 5@ k+l£dz.

b'(z) 82
(4.18)

Note that on the support of ¢*(*5™*), we have

b/ (2)| ~ 8, olz:A+is)~34.

The desired bound (4.14) for ¢ = S follows from (4.17)—(4.18) and Corollary 3.3, and we
have, in addition,

6+ |8|1/2)71/2

y—y\b"Me) | b(y) —r+ie
5, {ayT;Sg(y) +<p*( g *) o oy T
Y 36+1el1/2))

_ —1/4
SOV K (1= b2+ 112) ] gl o ) (4.19)

L2(S

Casell: 1/|k| < |A—b(y:)|"/?+|e|'/2. This case is analogous to Case I, using Lemma 3.1
and Lemma 3.2.

Finally we turn to the assumption that |¢|'/> < 8. Suppose |¢|'/> >> §, then the factor
m is not truly singular, and the desired bounds (4.13) follow directly from the bounds
on the modified Green’s function G (y, z; A + i¢) from Lemma 3.1 and Lemma 3.2. Indeed,
we have the stronger bound

)
1758l xy o () S ﬁ”gﬂxmk ) (4.20)
which will be useful below. ]

The following limiting absorption principle plays an essential role in establishing the
vorticity depletion phenomenon.

Lemma 4.4 There exist positive numbers o, k such that the following statement holds.
For e € [—¢q, 0]\{0}, A € X5y, k € Z\{0}, and X € {Xn o, (1), XL o, (1)},

I+ T +ie)glx = «liglx  forall g € H (D). (4.21)
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Proof We only consider the case X = Xy ,, (/) as the other case is analogous. We prove
(4.21) by a contradiction argument. Assume (4.21) does not hold for any &g > 0. Then there
existfor ¢ € ZN |1, 00),

Ao —> hy € gy, £ £ 0 with £ — 0, kg — ky € (Z\{0}) U {00},

and functions g, satisfying
lgelxn,gp ) =1 (4.22)

such that

(1 + T (e +ige)) ge — 0. (4.23)

”XN,% 1)

We can assume that A, = b(y,), otherwise the proof follows from the argument in the
non-degenerate case. We consider several cases.

Case I: limsup,_, .. Ilg¢ ”H'(I\Sao) > (. By the bound (4.12), we can assume that k, €
7Z\{0}. By the bounds (4.22) and (4.23), we can assume (passing to a subsequence if necessary)
that

ge— g in Higo(I\[y:}) as £ — 00, g(0) =g(1) =0.

Then it follows from (4.22) and (4.23) that g satisfies

18I S 1y — vl 4,
and fory € (0, 1),
b"(y)
k2 — 92 +———  _g(y) =0,
(ki —95)8(y) b0o) _b(y*)g(y)

which imply that b(y,) is an embedded eigenvalue for Ly, a contradiction to the spectral
assumption.
Case II: limsup,_, o [l g¢ll g1 (\S5) = 0. By the bound (4.11) we can assume that |k |(5¢ +

lee] 1/2y < 1.1In this case, using (4.23), we obtain that (passing to a subsequence if necessary)
—-9/8
[Gre =BG+ 16D 8e | 21y, s, —tegi2, yoctsisie 21

+ |G = b1+ 1eD ™o, >0,

>0
L2([yx—8¢—lee|'/2, yit-8e+lecl'/2])

where we recall from (3.8) that
8¢ ~ Jhe — b(ya)'2.

We divide into several subcases.
Subcase IL1: |g¢|1/? ~ &, for a subsequence.
Define the change of variables for £ > 1,y € I,

Y=y =8Y, () = (Ihe — b(y)| + lee))”/® Ho(Y). 4.24)

It follows from (4.19) that we can extract a nontrivial limit H € H'(R) of H, satisfying for
Y e R,
b (ys)

b'(y)Y?/2+y +ia

where 8 € R, «, y € R\{0}. This is impossible since the shear flow (b”(y4)¥?/2,0),Y € R
is spectrally stable, thanks to Rayleigh’s inflection point criteria.

(B*—dHH®Y) + H(®Y) =0,
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Subcase 11.2: |g¢|'/* = 0(8¢) for a subsequence. Passing to a subsequence and using
rescaling as in (4.24) we can extract a nontrivial limit H € H I(R), such that

b//
(B2 — 92)H(Y) + lim O
e—0 b (y) Y22+ y +is

HY)=0.

This is again impossible since the shear flow (b” (v4)Y2/2,0), Y € R is spectrally stable.
Subcase 11.3: 8o = o(|e¢|'/?) for a subsequence. This case is not possible thanks to the
bound (4.20). The lemma is now proved. ]

5 Bounds on 'I’;( ¢ The Non-degenerate Case

In this section we obtain bounds on W/l(, .(», A) in the non-degenerate case, i.e. when A €
¥\ Zs,/2- Since the arguments are analogous to those in [15], we will be brief in the proofs,
and provide only comments on the main ideas involved.

We begin with the following preliminary bounds.

Lemma5.1 For A € X\Xs,/2, k € Z\{0}, 1 € {£} and 0 < & < &y, we have the bounds

Wk G D gy S K llwokll g1 - (5.1)

Proof The desired bounds (5.1) follow directly from the Rayleigh equation (2.5) and
Lemma 4.2, once we use the Green’s function Gy to invert k2 — 33 and formulate (2.5)
as an integral equation. O

To obtain control on 9;, w}i, (s A) for A € X\ Zs 2, we take derivative in (2.5), and obtain
that

b ()85 ¥p (v, 1) _ w’g(y) b (MY} (2 2)

b(y) —A+ite  (b(y)—i+ie)2  (b(y) — A +ite)?

(2 = 000k (v, 1) + (5.2)

for y € I with zero boundary value at y € {0, 1}. Reformulating (5.2) as an integral equation,
we obtain that
b @ (2 2)
b(z) — A +ite
‘ () ! b (@)Y (2, 1)
= G » < 0— dz —/ G » < —E
/0 KO )(b(z)—k+zts)2 K )(b(z)—k—kue)2

Recall the definition of the smooth cutoff function ® below (4.1). We have the following
bounds for 3,up,‘(,5(y, A) when A € X\ Xs,.

Lemma5.2 For A € X\Xs,2, k € Z\{0}, t € {£} and 0 < ¢ < &y, 3“”/@ (v, A) satisfies
the following decomposition

Y (yo)wp(y) DY (3 4)

1
Bl () + /0 Gi(3, 2)

dz. (5.3)

Y (v, A) = [ } (I = @) log(b(y) — 1 +ite)

o' (y)]? 1b'(y)1?
k L . t
+ Y 0f(@)¥ , (v, M log (b(0) — A+ ite) + Ry ().
o=0,1

In the above for o € {0, 1}, 1 € {£}, 0 < & < g9, and A € X\ X5, /2,

1/2 -1/2
[Renc |y S M08l 1y ¥ P gy S 7
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Proof The basic idea is to expand the right hand side of (5.3) using integration by parts, and
apply Lemma 4.2 after removing the most singular parts. Indeed, denoting schematically,

! v (2) ! b (Y} (2, 2)
Uu:.= G ,zo—_dz—/G )z,
/0 KO D G Tt ey L OO D T T ey
we note that 8,\1/02’ (v, A) — U satisfies the equation (recalling (4.1) for the definition of

Tk,)L,Ls),
(I + Tk,)»,té‘) [31%2,8(% )\) - u] = _Tk,)u,LSZ/L (5-4)

The term T 5 .U € H, kl (1) (noting however that for the boundary terms we need to track the
singular coefficient log (b(c) — A +ite), o € {0, 1}), and we can apply Lemma 4.2 to (5.4)
in order to obtain the desired conclusions. We refer to [15] for the detailed proof. ]

To obtain bounds on 3)%1/1;6’6()7, L) for A € X\ Xs, /2, we take two derivatives in (2.5) and
obtain that

B (»)d2yt (v, A)
kz _ 82 82 L , A ATke
S D Y S S

k b// L Z’ )\' b// 8 L Z, )\.
_5 ws(y) ' 5 My ( ' ) N ) mﬁk,g(' ) (5.5
(b(y) — A +ite)3 (b(y) —A+ite)d  (b(y) — A +ite)?
for y € I with zero boundary value at y € {0, 1}. We can reformulate (5.5) in the integral
form for y € I, as

b (7Y (2 1)

b0 —ntie
1 k b L A b (2)95 Ut A
:/ Gr(y,2) |:2 w()(z) — (Z)lﬂkyg(z. )g n (z) )‘l//k,s('z 2)
0 (b(z) — 1 +ie) (b(@) —Ar+ie)’  (b(@) —Ar+ie)

1
020l (v, 1) + /0 Gr(3.2)

:| dz. (5.6)

We have the following bounds on 8% w,‘m (v, A) for A € X\ X, /2.
Lemma5.3 Fork € Z\{0}, 1 € {£} and 0 < & < &g, we have the following bound
gD (7, 1) (0D (v, 2)
b(1) — A +ite b(0) — A +ite
POV (6 ) — 0f ()
Ib' ()2 (b(y) — & +ite)

afw]i,s(yv )\‘) -

Lz(yEI,XEE\ESO/z)
32
< Ikl ”ka”HL?([)-
In the above the functions @,‘ng, o € {0, 1} satisfy the equation for 'y € I
sinh (ky)
|6'(1)|2 sinh k
sinh (k(1 — y))
|b'(0)|2 sinh k
Proof The main idea of the proof is to expand the right-hand side of (5.6) and apply
Lemma 4.2 after removing the most singular terms. Indeed, denoting schematically,

1 k b’ Lo(z, A ' (2)ony; (2, A
e / G [2 ok (2) LG CLRVANE )} i
0

(I + Tjee) @4, =

(I + Tige) O, =

(b(2)—=X +ite)’ (b)) —r+ie)d  (b(z) — A +ie)?
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we have

(I + Tk,k,ta) [8}%1//2@()’: )L) - u* + Tk,A,Lau*] = [Tk,k,ts]zu*-
We note that 3%1#,;8(% A) = U 4+ Ty U™ € Hk1 (I) (however we again need to track the
singularities in X in the boundary terms, involving log(b(c) —A+ite) and 1/(b(0) — AL +ite)
for o € {0, 1}), and we can apply Lemma 4.2 in order to obtain the desired conclusions. We
refer to [15] for the detailed proof. O

6 Bounds on l[l;( ¢ The Degenerate Case

In this section, we use the limiting absorption principle to study the Rayleigh equation (2.5)
for A € Xs,. More precisely, write for k € Z\{0}, ¢ € {£}, A € Xs,, 0 < & < gg (recall the
definition of gy from Lemma 4.4),

Ve (2 = 90002 + 90 )w0k<y> 6.1)

where W € C2°(S3s,) and W = 1 on Sy5,. Recall that Sy = [y, — d, y« +d] ford > 0 from
(3.5). Then ¢y (v, A) satisfies for y € 1,

b"(y)

2 _ a2 L
(k 8Y) P 0 M)+ o e

B (. 2) = gk, (. 1), (6.2)

where for k € Z\{0}, 1 € {£}, 1 € X5,,0 < & < &

- W(y)
b(y) — A +ite

Our main results are bounds for the functions ¢; .(y, »). We begin with the following
preliminary bounds.

)
b//( )

ey, 2) = woi (y) — (k* = 97) [ ka(y)] . (6.3)

Lemma 6.1 Assume that k € Z\{0}, A € X5, and let qbk (y, M) with 1 € {£}, € € (0, g9) be
as defined in (6.1)—(6.2). Recall from (3.8) and (4.7) that

§:=80) =8/ —bl/Ib" ()|, di = dk(h. €)= [IA — by + [e]2] A ik

We have the bounds for k € Z\{0}, € € (0, &), t € {£}, A € Zs,,

—7/4 —1/2
| " ae gt 0.0 (5 +1e1"2) "
aef{0,1}

+ 3 |y = vl ndo e 0,

aef0,1)

L2([yx=3(@+lel'/2), 438 +1el/2)])

Lo°([0, I\[yx—3(+1e]1/2), yu+3@+el/2)])

< kP2 ool g2 (6.4)

-
Define for y € [0, 1], k € Z\{0}, A € Z5,)\{b(y:)},

Y1) = dim (v 000 v, 000 = tim (9,000 = @00 0]
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Then we have the bounds for A € L5, \{b(y+)},

s—1/2

S Ak —1 —7/4+aaa A
|6 A SACS]

aef{0,1}
I4a
+ > |G Ak “/4<|y y*|A|k|> 0% Yy, 1)
ae{0,1} L([0, 11\ [y —38, yx+381)
S kP ol g3 - 6.5)

Proof 1t follows from (6.3) and our assumptions on the initial data wq; that we have the
bound for k € Z\{0},t € {£},0 <& < gpand A € Zs,,

”g/[(,s(y’ )‘) ”C(I) 5 |k|5/2”w0k”1.1£(1)-

We can reformulate (6.2) in the integral form as (recall the definition of 7*(A + ig) from
(4.10))

1
Gpe(V, 1) + T+ i)y (v, 2) = / Gr(y, 2 A +ite) g (2, Mdz
0
for y € I. By Lemma 4.4, we obtain the bound

5/2
< kP ookl g

1
||¢IL<,£('7 1) ||XN,gk () S H/(.) Gl @i 24 iw)g;ﬁg(z, Pz X a
N.o

which, by the definition of the space X o, , see (4.8), implies the desired bounds (6.4).
For applications below on isolating the singularity at A = b(y), we fix ¢s(y) € C°(S2s)

o= ()[1-v ()

fory € I,withé’ := §/M and an M > 1 sufficiently large such that |b(y) — 1| & |A —b(yy)|
for |y — y«| < 8/M.

To prove (6.5), we note from (6.2) that ¢k+£ (¥, A) — ¢ (v, A) satisfies the equation for
yel.

as

b(y) —r+ie [‘ﬁkve(y’ A) = ¢ (v A)]

b”(Y) b”(y) _
b(y) — A +ie h b(y) — A — ie] ¢k,e(y7 A).

K = 03 [, 0.2 = 9, 0] +

Denote for A € 35, \{b(y+)}, € € (0, &9) and y € I the function Ay ¢(y, 1) as the solution to

2 a2 b"(y)
(k™ = 0 hi,s(y, 2) + b)) —Atie l.ghk,g(y, A)
b'y) by

=@s5(y) [ ] G (¥ 1), (6.7)

b(y) —A—ie  b(y) — A +ic

with zero Dirichlet boundary condition. Then it is clear that for A € £5,\{b(y«)}, y € I,

Wk(y» )‘) = hm hk,s(ya )")
e—0+
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We can reformulate (6.7) as the following integral equation for A € Z5,\{b(y+)}, y € I,

he e, 2) + TE A+ ie)hg (v, A)

1 b// b//
= —/0 Gr(y, z; A+i8)<pa(z)[ @) )

b(z) —A+ie b(z) — h—ic

]d),:a(z, r)dz.

It follows from the bound (6.4) that for || < (§ A ﬁ)“,

b//(z) 3 b//(z)
b(z) —A+ie bx)—A—ie

}dhze(z,)\)dz

1
H/o Gr(y, zs A+ i8)ps(2) [

1\7/4
< <6 A —) .
Ik

The desired bound (6.5) then follows from Lemma 4.4 with X = Xy ,,. ]

XL.gk

To obtain higher order regularity bounds (in 1) of ¢,‘(’ < (» 1), we take the derivative 9, in
(6.2). It follows that 8,\¢,‘{yg(y, A) satisfies for y € I,

b"(y)

b"(y)
m zd);(,g(y, W) +0x8p (v, ),

Y _ v
|:k 9+ b)) — A +ie)
(6.8)

} 0l (3. 1) =
with zero Dirichlet boundary condition.
Recall the definition of @5 from (6.6). We have the following bounds on 9;.¢; ,(y, A).

Lemma 6.2 Assume that k € Z\{0}, A € Xs5,\{b(y+)}. Let 1//,2’8()), X) and qb,‘w(y, ) with
t € {£}, 0 < ¢ < min{|A — b(y4)|, €0} be as defined in (2.5) and (6.1) respectively. Recall
from (3.8) that

8 :=8() = 8V|r — b(y)l/b" (y:).

Denote for y € [0, 1], 1 € {£}, L € Zs)\{b(y+)}, 0 < & < min{|A — b(y.)], €0},

. o b’ (y) b(y) — A +ite
AN A) = ¢ (v, Vs (y) 0)) log 52 ,
. b" (y) b(y) — A
Ay, 2) = Yy, Mes(y) 0 log —7—

We have the bounds for 0 < ¢ < min{|A — b(ys)|, €0}, t € {£}, and A € X, that

S [ A [0y 0,0 — AL 0] R e
aef{0,1}
—7/4+«a
+ ) GAKTH? <|y—y*| Am) 0. (v 1)
aef0,1} Lo ([0, 1]\[y«—38, y«+351))
S P2 llwokll g3 - (6.9)
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In addition, we have the bounds for A € Xs)\{b(y+)} and k € Z\{0},

> e amh g mn e — s, s
aef{0,1}
14«
+ Y |AkTHTA <|y—y*|Am) 3% 0,k (v, 1)
ae{0,1} L([0,1\[y«—38, y«+351))

S P2 llwokll 13- (6.10)

Proof Define for k € Z\{0}, ¢ € {&}, A € Z5,\{P(y:)}, 0 < & < min{|]A — b(y:)|, g0},
yel,

NP (v, A) = P (v, 45 1) (6.11)

+/]g< m+m)[¢¢‘
) e B — h + ite)? ke

It follows from (6.8) that ¢,‘C’E(y, A; 1) satisfies for y € I,
Gp.e (Vs 2 DHTE A+ ite)dy (v, 25 1)

(2. 1) + 0x8} (2. A)} dz.

" . 1 ) b//( ) . .
=-T; (k+zt8)/0 Gr(y, z; A+ite) [—mw,g(ak) + 018;. (2. A)] dz.
Denote for k € Z\{0}, ¢ € {£}, A € Z5)\{b(y+)}, 0 < ¢ < min{|A — b(ys)|, e0}, 2 € 1,
h ( )ul)'—A (D) py (2, 1)
e = @) —a e PPt
L b//(z) l L L
hkyg(Z7 Ay 2) = m(l - ¢6(Z))¢kyg(17 A), hk,g(Z’ A;3) = algk,g(l’ A).

It follows from the bound (6.4) and Lemma 3.1 that for j € {2, 3}

1
TE +ite) / Gr(y, z; A +ite)hy (z,4; j)dz
0

S G ALK ook g3 -
XN,Qk

(6.12)
Using integration by parts argument similar to (4.17)—(4.18), we have also

S G AIKITH 2P okl 3.1y
XN.o

1
Tk*()»—i-its)/ Gr(y, 23 A +ite)hy (z,4; 1) dz
0

(6.13)
It follows from (6.12)—(6.13) and Lemma 4.4 that for A\ {b(y+)},

l#io0: 2 DIy, S G AKITD 2K ookl (6.14)

The desired bound (6.9) follows, as a consequence of (6.14) and (6.11).
Using (6.8), we get that for y € I,

b//
[18 L b(y)_%} [0:07.0. ) — 03970, 2]
b"(y) ]

-2 R N
L) —r+ie)? (b(y) — h — ig)2 ke s

b"(y) _ b’ (y)
b(y)—r+ie b(y)—Ar—i

D2

+ [Ehgkfg(y, A) = 028k (), k)] - [ ‘J NPy o (v, A),
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with zero Dirichlet boundary condition.
Denoting for A € Xs,\{b(yx)} and y € I, D¢y ¢(y, 1) as the solution to

[kz a2y &} Depr.c(v. %)

b(y) —A+ite
_ b"(y) + B b"(y) _
= —¢s(y) [—(b(y) Era— i8)2¢k,g(y, A) GO =i —ieR is)zcbk,g(y, k)]
b"(y) b"(y) _
—@5(y) [b(y) i bO)—h— l.w] 0B (v, ), (6.15)

for y € I with zero Dirichlet boundary condition.
We notice the identity that for y € I, A € X5, \{b(yx)},

3)\1/’1{()’,)&): lim D¢k,8(y7)")'
e—>0+

We can reformulate (6.15) as the integral equation for y € I,

Doj e (y, 1) + T (A + i) Dy o (v, 1)

! o b"(2) + b’ (2) -
= _A Gi(y, 23 A +ie)gs(2) [m@ng(zs A) — md)’”(z’ A)] dz
! L b (2) b (2) -
_/o Gr(y, 23 1 +ie)ps(2) [b(z) el v ns} htyp 2. M) dz
= Ri (¥, 1). (6.16)

We can write for y € I, A € Z5)\{b(y+)}, 0 < & < min{|A — b(y«)], €0},
Doy e(y,2) = R e (y, 1) + Dy e (y, 25 1). (6.17)

Then D¢y ¢ (y, A; 1) satisfies for y € I, A € s \{b(y+)}, 0 < & < min{|A — b(y+)I, €0}, the
equation

Dope(y, 2 D)+ T7(h +ie) Doy e (v, 23 1) = =T (A + ie) Ree (v, 1) (6.18)

The desired bounds (6.21) follow from (6.16)—(6.18), and Lemma 3.2 with X = X; ,,. O

Lastly we turn to the highest order derivative 3%1#,‘( .(y, A) that we need to control. To
study Bftp,i, (¥, A), we take the derivative 9y in (6.8) and obtain that

e PO T W
[k _8y+b(y)—Hiw}W’”(’”_ B0 — 2+ 102 WOk
20" (y) .
T B0 =+ ey ke Y
0784 (v, 1), (6.19)

Lemma 6.3 Assume that k € Z\{0}, A € As,\{b(yx)} and let ¢]‘<’g(y, A) with « € {£},
0 < & < min{|A — b(y4)|, €0} be as defined in (6.2). Recall that

8:=80) = 8V/Ih = b(y)I/b" (y). (6.20)
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Denoting for y € [0, 1], € Asy\{b(y)},

Ao ) = — (3 s () e g !
7 7 (b'(y))? =0+ b(y) — A +ie
b"(y) . 1 1 _
OO G |:b(y) “atie b(y)—i- ie] Puey )

then we have the bounds for A € As)\{b(y+)},

Yo @AY [y ) = Ao W] 2y —35yes30y 8
ae{0,1}

+ 2
ae{0,1}
< kP2 o |

1
(6 A k|74 (|y — el A W) RYr(y, 1)

Lo°([0,1]\[yx—38.y++381))

- 6.21)

Proof Denote for k € Z\{0}, A € A5y \{b(y«)}, ¢ € {£}, 0 < & < min{|x — b(y.)|, €0} and
yel,

Zb//
h;c,g(zs A d) = _(b(z)—%iw)z% (Z)a)\@i,g(Z’ r),
. 2b"(z) .
kqg(z5 A5) = —m%(z)d’k,a(z, A)s
. b//(z) .
hk’g(zi A 6) = —m(l - (Ps(Z))akd’k,g(Za A, (6.22)
2b"(z
by (2, 057) = ¢(1 — 05(2))Pp (2, ),

C(b(x) — A —ite)}
Rl (2,25 8) = 378k (2, A).

Define for k € Z\{0}, A € Agy\{b(y:)} L € {£},0 < & < min{|x — b(y:)], g0} and z € 1,
8 1
K (.0 = (. A12) + Z/ Gk (y. 25 A+ ite)hp (2. A: j)dz
j=470
8

1
S TG i) / Gy, zi A+ ity (2,05 j)dz.  (6.23)
j=4 0

It follows from (6.19) that q),‘{’g(y, X; 2) satisfies for y € 1,

G (s 23 2) + TP (A +ite) gy (v, 43 2)

8 1
= Z [TEO+ its)]Q/ Gr(y, z; A+ ite)hy (z,2; j)dz. (6.24)
j=4 0

It follows from Lemma 6.2 and Lemma 3.1 that for j € {6, 7, 8}

S G ALK TR okl 3 -
XN,gk

1
H [T+ is)]zf Gr(y, z; A+ ite)hy (z,4; j)dz
0

(6.25)
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Using integration by parts argument similar to (4.17)—(4.18), we have also for j € {4, 5},

1
” [Tk*()» + is)]Z/ Gr(y, z; A+ ite)hy (z,4; j)dz
0

S G A KD TR okl 3 -
XNva

(6.26)
It follows from (6.22)—-(6.26) and Lemma 4.4 that for A € As;)\{b(yx)},t € {£},0 < e <
min{|A — b(y:)l, €0},

e 00225, S @ AR oo -

Using (6.19), we get that for y € I,

b//
9+ e ) (0200~ 207,0)

8
S [t r i) = g 003 D).
=4

Denoting D2¢k,3(y, M), h eI, e Asy\{b(y+)}, as the solution to
5

2 a2 b”()’) 2 _ + DN - L.
[k Bt b r e +,¢JD ¢k,s(y,x)—;[hk,g(y,x,n heen ki D] 627

for y € I with zero Dirichlet boundary condition.
We note the identity that for y € I, A € X5, \{b(y+)},

V(. 1) = lim Dy e(y. 1),

We can reformulate (6.27) as the integral equation for y € [

D?re(y. ) + TF (L + ie) D ¢y e (v, 2)
] 5
=/0 Ge(v. 0+ 18950 Y [ (22 ) = B (@ 3 )] dz = R (v ). (628)
j=4
We can write for A € Zg,\{p(y4)}, 0 < & < min{|A — b(yx)l, €0}, y € 1,
D’¢ie(y, 1) 1= D s (v, 452) + RE (v, 1) — TE( + ie) R}, (v, 1). (6.29)
Then D2¢k,£(y, A; 2) satisfies for y € I, A € L5, \{b(y+)},

D>ic(y, 45 2) + T O A+ i) D2y (v, 352) = [TF O +i0)] RE, (v, 2). (6.30)

The desired bounds (6.21) follow from (6.28)—(6.30), and Lemma 3.2 with X = X ,,, using
also the bound

1\~
LG+ R G| s (sao) kP2 .
|mo+iof Rien] s (5ag) W loul

[}
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7 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We can assume that # > 1. We first give the proof of
(1.3)—(1.4). Using the representation formula (2.4), we have

1 )
V(. y) = =— lim /Z el AR SER R P23

27l e—0+

/ emikM [afw,js(y, 2 = 2. x)] da.

=———— lim
2mwik?t? e—0+ [

Fix ®* € C;°(X5,) with ®* = 1 on Xs,/3. We can decompose fort > 1, y € [0, 1],

Vi, y) = i, y) + Y, y),

where
L . _

Vit y) = =5y lim /E M1 — @700 [07 W}, 0. ) = 2y, (v 1) | i
1 . — -

VP y) = oy lim /E 1) [0 (v, ) — B, (v, 0| i

For (1.3), it suffices to prove that for o € {1, 2}, k € Z\{0} and t > 1,

C S P 7.1
[ @ 9 2o,y S =7 Nookll o,y 7.0

The case o0 = 1 in (7.1) corresponding to the non-degenerate case is analogous to the case
of monotonic shear flows, see [15], and follow from Lemmas 5.1-5.3. We focus on the main
new case o = 2 in (7.1). Denote for k € Z\{0},

M, = |k|5/2||a)0k||Hk3([o,1])-

Our main tools are Lemmas 6.1, 6.2, and 6.3, which imply the following bounds for y € [0, 1],
A€ X,

— If [ — b(y:)['/? < |y — y:/20, then

W (s M1 S (min {12 = b2 kD (y =yl ™ kD My,

2 . 12 1\ —5/4 1 (7.2)
1929k (v, VI S (min {JA — GO KT T Uy — vl ™1 kD My
— If [y — y«1/20 < [» — b(y:)['/? < 20|y — y4l, then
. _1\5/4
Wi (s M1 S (min {12 = b V2, k) I8 = bl A My,
1Yk (y, 1) — (v, OIS I — b)Y 0 — b(yo) P8 My, %)

2
” R A) = Ao, ) ”L2<\y—y*|~|x—b(y*>\1/2>
S (= b2+ kDA — by My;
— If A — b(y)[/2 > 20|y — y,], then
. _ 5/4
Wy, D1 S 1 = by V4 (min {13 — b2, k1) g,
2
192G ) = A2 G M| L2y <ia—biny 172200 (7.4)
S (r = b2+ KD A — by My
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It follows from (7.2)—(7.4) that for y € [0, 1], > 1,

/ eiik}\t(b*()»)AQ(y, )»)d}» 5 |y _ y*|71/4 max {], |k|l/2|y — y*|1/2} Mk, (75)
R

and, by considering the cases |A — b(y.)| < |y — y*|2, X =bO)| = |y — y*|2 and
X =by)| > |y — y*|2, also that for y € [0, 1], ¢ > 1,

< k7 M. (7.6)

H / e O () [0y (y. 1) — Aa(y. W)]d
R L2([0,1])

The desired bound (7.1) for o = 2 follows from (7.5)—(7.6).

The proof of (1.4) is similar to the proof of (1.3), using Lemma 6.1 and Lemma 6.2.

‘We now turn to the proof of the depletion bounds (1.5). Assume that k € Z\{0}. Applying
—k2+ 83 to Y (¢, y) in (2.4), and using (2.5), we get that for y € [0, 1], 7 > 1,

wr(t, y) = wp(t, y) + of* (1, y),

where
1 . _ "
@f(ty) =5 lim | T - 0" (G)
D" DY (1) — oo (y) B DY (3, A) — w0k () ] "
X - s
b(y) — A +is b(y) — A —ie
1 .
ok — li —lk)»tq)*
o (1, ) T em 2e )
y D" DY (1) — o) B DY (v, 4) — w0k () ] "
b(y) — A +ie b(y) — 1 —is ‘

We have the bound for ¢ > 1,

2
||(l)7;(t, ») ||L°O([071]) S |k|* M.
For |y — y«| < 80/10, ¢t > 1, since (b(y) — X + ite) with ¢ € {£} is not singular in this case,
we have in addition by integration by parts that

1
HEIPS |k|2;Mk.

We now turn to w* (¢, y). Using (6.1), we can write for y € [0, 1], > 1,

i ¥ (t, y) = S£%1+ Re*’“’cp*(;\)

B0 W)~ (=¥ on0) 9,000 =1 —¥eenm]
x b(y) — A+ ic - b(y) — A —ie

. B (v 1) Pre(y: 2)
o —ikAt g% k.e _ k.e
slir&/Re ® (M[b(y)—wris b(y)—x—is:| A Wt ),

where Wi (¢, y) satisfies the bound for t > 1,

Wi, )lzeqoapy St My, (7.7)
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which follows from simple integration by parts argument. We decompose for y € [0, 11\ {y«},

Wi (2, y)
2mi

o (t,y) —

=L im / ek [ D
2mi e—0+ JR b(y) —A+ie
1

! _}dx.
b(y)—A+ie b(y)—Xr—ie

2mi SEI(I;I+ R e e My e (v, 1) |:

It follows from (7.2)—(7.4) that
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Fory € (1, o0) to be fixed below, by considering the three ranges (I) |A —b(y:)| < |y — y«|%,
() |2 = b(y)| = yly — y«I?, and (D) |y — yu|* < [& — ()| < y]y — ys|>, and using
Lemma 6.2 and Lemma 6.3, we get that
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In the above, we used integration by part to get decay in ¢ in range (II). Optimizing in y, we
get that fort > 1,

() ifrly — > S 1,
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(i) if tly — y«|*> > 1,

L im [ ety [ YD
2mi e—0+ Jp b(y) —Ar+ie

1
< [|y =Pl = 3a') + e 1y = y*|7/4] M. (7.10)

The desired bounds (7.7), (7.8), (7.9)—-(7.10). Theorem 1.2 is now proved.
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