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Abstract
We give a proof of linear inviscid damping and vorticity depletion for non-monotonic shear
flows with one critical point in a bounded periodic channel. In particular, we obtain quanti-
tative depletion rates for the vorticity function without any symmetry assumptions.
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1 Introduction

The study of stability problems inmathematical analysis of fluid dynamics has a long and dis-
tinguished history, dating back to the work of Kelvin [18], Orr [25] and Rayleigh [26] among
many others, and continuing to the present day. Hydrodynamical stability problems can be
considered in both two and three dimensions. In this paper we work with two dimensional
inviscid flows.

For the Euler equations, there is significant recent progress on the asymptotic stability of
monotonic shear flows and vortices, assuming spectral stability, see for example [3, 9, 14, 15,
17, 22, 28, 30, 34, 35] for linear results. The main mechanism of stabilization is the so called
“inviscid damping”, which refers to the transfer of energy of vorticity to higher and higher
frequencies leading to decay of the stream and velocity functions, as t → ∞. Extending

Dedicated to Carlos Kenig, on the occasion of his 70th birthday.

B Hao Jia
jia@umn.edu

Alexandru D. Ionescu
aionescu@math.princeton.edu

Sameer Iyer
sameer@math.ucdavis.edu

1 Department of Mathematics, Princeton University, Princeton, NJ, USA

2 Department of Mathematics, University of California, Davis, CA, USA

3 School of Mathematics, University of Minnesota, Minneapolis, MN, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10013-023-00661-z&domain=pdf


A.D. Ionescu et al.

the linearized stability analysis for inviscid fluid equations to the full nonlinear setting is a
challenging problem, and the only available results are on spectrally stable monotonic shear
flows [2, 10, 12, 23], and on point vortices [11]. We refer also to the recent review article [13]
for a more in-depth discussion of recent developments of both linear and nonlinear inviscid
damping.

Many physically important shear flows are not monotonic, such as the Poiseuille flow
and the Kolmogorov flows. For such flows on the linear inviscid level, there is an additional
significant physical phenomenon called “vorticity depletion” which refers to the asymptotic
vanishing of vorticity as t → ∞ near the critical point where the derivative of the shear flow
is zero, first predicted in Bouchet andMorita [5], and proved rigorously inWei–Zhang–Zhao
[31]. A similar phenomenon was proved in Bedrossian–Coti Zelati–Vicol [3] for the case of
vortices. See also [14] by the first and third author for a refined description of the dynamics
in Gevrey spaces as a step towards proving nonlinear vortex symmetrization.

In [31] by Wei–Zhang–Zhao, sharp linear inviscid damping estimates and quantitative
depletion estimates were obtained for an important class of “symmetric shear flows” in a
channel (see also [32] by Wei–Zhang–Zhao for a similar result for Kolmogorov flow). When
no symmetry is assumed, only qualitative bounds are available. Heuristically the general
case should be similar to the symmetric one, since the main vorticity depletion mechanism
is completely local and asymptotically all shear flows approach symmetric ones at the (non-
degenerate) critical points. However there are significant difficulties in using the approach of
[31] to extend the quantitative depletion bounds of [31] to the general case, as the argument in
[31] relies heavily on decomposition of functions into odd and even parts, which are specific
to symmetric shear flows.

In this paper, we prove linear inviscid damping estimates and quantitative vorticity deple-
tion estimates for a class of stable non-monotonic shear flowswith one non-degenerate critical
point. The main new features of our results are that we do not need symmetry condition on
the background shear flow, and that our formulation on quantitative depletion for vorticity
function seems to be new even for general symmetric shear flows (see however Wei–Zhang–
Zhao [32] which contains a sharp depletion rate at the critical points for Kolmogorov flow),
see Theorem 1.2 below for the precise statements. We begin with the description of our main
equations and theorem.

1.1 Main Equations

Consider the two dimensional Euler equation linearized around a shear flow (b(y), 0), in the
periodic channel (x, y, t) ∈ T × [0, 1] × [0,∞):

∂tω + b(y)∂xω − b′′(y)uy = 0,

div u = 0 and ω = −∂yu
x + ∂xu

y,

with the natural non-penetration boundary condition uy |y=0,1 = 0.
For the linearized flow,

∫
T×[0,1] u

x (x, y, t) dxdy and
∫
T×[0,1] ω(x, y, t) dxdy are con-

served quantities. In this paper, we will assume that

∫

T×[0,1]
ux0(x, y) dxdy =

∫

T×[0,1]
ω0 dxdy = 0.
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These assumptions can be dropped by adjusting b(y) with a linear shear flow C0y + C1.
Then one can see from the divergence free condition on u that there exists a stream function
ψ(t, x, y) with ψ(t, x, 0) = ψ(t, x, 1) ≡ 0, such that

ux = −∂yψ, uy = ∂xψ.

The stream function ψ can be solved through

�ψ = ω, ψ |y=0,1 = 0.

We summarize our equations as follows
⎧
⎨

⎩

∂tω + b(y)∂xω − b′′(y)∂xψ = 0,
�ψ(t, x, y) = ω(t, x, y), ψ(t, x, 0) = ψ(t, x, 1) = 0,
(ux , uy) = (−∂yψ, ∂xψ),

(1.1)

for t ≥ 0, (x, y) ∈ T × [0, 1].
Our goal is to understand the long time behavior of ω(t) as t → ∞, with Sobolev regular

initial vorticity ω0.

1.2 TheMain Results

We describe more precisely the main assumptions and our main conclusion. The main con-
ditions we shall assume on the shear flow b(y) ∈ C4([0, 1]) are as follows.
Assumption 1.1 We assume that the background flow b(y) ∈ C4([0, 1]) satisfies the follow-
ing conditions.

(1)
S := {y ∈ [0, 1] : b′(y) = 0} = {y∗} ⊂ (0, 1).

In addition, b′′(y∗) 
= 0. For the sake of concreteness, we assume that b′′(y∗) > 0 in
this paper.

(2) For k ∈ Z\{0}, the linearized operator Lk : L2(0, 1) → L2(0, 1) defined as

Lkg(y) := b(y)g(y) + b′′(y)
∫ 1

0
Gk(y, z)g(z) dz (1.2)

has no discrete eigenvalues nor generalized embedded eigenvalues. In the above Gk is

the Green’s function for k2 − d2

dy2
on the interval (0, 1) with zero Dirichlet boundary

condition, as defined in (3.1) below.

We refer to Section 2 below for the definition and more discussion about generalized
embedded eigenvalues.

Our main result is the following theorem.

Theorem 1.2 Assume that ω(t, ·) ∈ C([0,∞), H4(T × [0, 1])) with the associated stream
functionψ(t, ·) is the unique solution to (1.1), with initial dataω0 ∈ H4(T×[0, 1]) satisfying
for all y ∈ [0, 1], ∫

T

ω0(x, y) dx = 0.

Then we have the following bounds.
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(i) Inviscid damping estimates:

‖ψ(t, ·)‖L2(T×[0,1]) � 1

〈t〉2 ‖ω0‖H4(T×[0,1]), (1.3)

‖ux (t, ·)‖L2(T×[0,1]) � 1

〈t〉 ‖ω0‖H4(T×[0,1]), ‖uy(t, ·)‖L2(T×[0,1]) � 1

〈t〉2 ‖ω0‖H4(T×[0,1]). (1.4)

(ii) Vorticity depletion estimates: there exists a decomposition

ω(t, x, y) := ωloc(t, x, y) + ωnloc(t, x, y),

where for (x, y, t) ∈ T × [0, 1] × [0,∞),

|ωloc(t, x, y)| � |y− y∗|7/4‖ω0‖H4(T×[0,1]), |ωnloc(t, x, y)| � 1

〈t〉7/8 ‖ω0‖H4(T×[0,1]).
(1.5)

1.3 Remarks andMain Ideas of Proof

We have the following remarks on Theorem 1.2. Firstly, in the above theorem we have not
tracked the minimal regularity required for the bounds (1.3), (1.4) and (1.5) to hold, and a
more careful argument can probably significantly reduce the number of derivatives needed
on the initial data ω0. Secondly, we note also that the argument here can be applied to non-
monotonic shear flowswithmultiple non-degenerate points, although the presentation will be
more complicated. Thirdly, a more sophisticated analysis may yield a sharper rate of vorticity
depletion with rate

|ωloc(t, x, y)| � |y − y∗|2−, |ωnloc(t, x, y)| � 〈t〉−1+.

It is not clear to us though if one can reach the optimal rates of |y − y∗|2 and 〈t〉−1.
We briefly explain the main ideas of the proof.
By a standard spectral representation formula, see (2.4), it suffices to study the spectral

density functions and the associated Rayleigh equation (2.5). There are two main cases to
consider. When the spectral parameter λ is not close to the critical value b(y∗), the situation
is similar to monotonic shear flows and can be treated as in [15]. The main new case is when
the spectral parameter λ is close to the critical value b(y∗). In this case, the Rayleigh equation
(2.5) is very singular, and the potential term b′′(y)

b(y)−λ+iε has a quadratic singularity roughly of

the form 2
(y−y∗)2+(λ−b(y∗))+iε

for y close to y∗.

The key observation here, as in [14], is that the potential term b′′(y)
b(y)−λ+iε is critically

singular and has real part with a favorable sign for 1 � |y − y∗| � |λ − b(y∗)|1/2, which
needs to be incorporated as part of the main term. We therefore define a modified Green’s
function for the main term, see (3.6)–(3.7), which has strong vanishing conditions near
y = y∗, leading ultimately to vorticity depletion. After extracting the main terms in the
Rayleigh equation (2.5), the rest of the terms can be treated as compact perturbations, and
can be bounded using a limiting absorption principle, see Lemma 4.4, thanks to the spectral
assumption 1.1.

The limiting absorption principle provides preliminary bounds on the spectral density
functions ψι

k,ε(y, λ) with ι ∈ {±}. To obtain the desired quantitative decay rates, we take up
to two derivatives in λ of the spectral density functions, and again use the limiting absorption
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principle to estimate the resulting derivatives, after extracting the main singular terms. The
procedure is more or less straightforward but the calculations are quite lengthy. We refer to
[15] also for similar calculations in a simpler setting. Lastly, we note that there are important
cancellations between ψ+

k,ε(y, λ) and ψ−
k,ε(y, λ) in the limit ε → 0+, which is the reason

why we need two versions of the limiting absorption principle, see Lemma 4.4, with different
weighted spaces.

1.4 Notations

We summarize here some notations that are specific for this paper for the reader’s conve-
niences. For positive numbers α, β, we set α ∧ β := min{α, β}. We denote for d > 0,
�d := {b(y) : y ∈ [y∗ − d, y∗ + d]}, Sd := [y∗ − d, y∗ + d]. We also denote
� := {b(y) : y ∈ [0, 1]} and I := [0, 1]. For k ∈ Z\{0}, we define for f ∈ H1(I )
the norm ‖ f ‖H1

k (I ) := ‖ f ‖L2(I ) + |k|−1‖ f ′‖L2(I ).

2 Spectral Property and Representation Formula

Taking Fourier transform in x in the equation (1.1) for ω, we obtain that

∂tωk + ikb(y)ωk − ikb′′(y)ψk = 0, (2.1)

for k ∈ Z, t ≥ 0, y ∈ [0, 1]. In the above, ωk and ψk are the k-th Fourier coefficients of ω,
ψ in x respectively. For each k ∈ Z\{0}, recall from (1.2) that for any g ∈ L2(0, 1),

Lkg(y) = b(y)g(y) + b′′(y)
∫ 1

0
Gk(y, z)g(z)dz,

where Gk is the Green’s function for the operator k2 − d2

dy2
on (0, 1) with zero Dirichlet

boundary condition. Then (2.1) can be reformulated abstractly as

∂tωk + ikLkωk = 0. (2.2)

In contrast to the spectral property of the linearized operator around monotonic shear
flows, the spectral property of Lk is less understood, especially on the generation of discrete
eigenvalues and embedded eigenvalues. From general spectral theory, we know that the
spectrum of Lk consists of the continuous spectrum

� := {b(y) : y ∈ [0, 1]},
together with some discrete eigenvalues with nonzero imaginary part which can only accu-
mulate at the set of continuous spectrum �. Unlike the case of monotonic shear flows where
the discrete eigenvalues can accumulate only at inflection points of the background shear
flow, there appears no simple characterization of the possible accumulation points for non-
monotonic shear flows.

Recall that λ ∈ � is called an embedded eigenvalue if there exists a nontrivial g ∈
L2(0, 1), such that

Lkg = λg.

For non-monotonic shear flows, this definition is too restrictive, as accumulation points
of discrete eigenvalues may no longer be embedded eigenvalues. To capture the discrete
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eigenvalues,we recall the following definition of “generalized embedded eigenvalues”,which
can be found already in [31], adapted to our setting.

Definition 2.1 We call λ ∈ � a generalized embedded eigenvalue, if one of the following
conditions is satisfied.

– λ is an embedded eigenvalue.
– λ 
= b(y∗) and there exists a nontrivial ψ ∈ H1

0 (0, 1) : (0, 1) → C such that in the sense
of distributions on (0, 1),

(k2 − ∂2y )ψ(y) + P.V.
b′′(y)ψ(y)

b(y) − λ
+ iπ

∑

z∈[0,1], b(z)=λ

b′′(z)ψ(z)

|b′(z)| δ(y − z) = 0. (2.3)

We remark that our assumption that the critical point y∗ of b(y) being non-degenerate
implies that the sum in (2.3) is finite, and that the spectral assumption 1.1 is satisfied if b′′ > 0
on [0, 1].
Proposition 2.2 Suppose that k ∈ Z\{0} and ωk

0 ∈ L2([0, 1]). Then the stream function
ψk(t, y) for k ∈ Z\{0}, y ∈ [0, 1], t ≥ 0 has the representation

ψk(t, y) = − 1

2π i
lim

ε→0+

∫

�

e−ikλt
[
ψ−
k,ε(y, λ) − ψ+

k,ε(y, λ)
]
dλ, (2.4)

where ψι
k,ε(y, λ) for ι ∈ {+,−}, y ∈ [0, 1], λ ∈ �, k ∈ Z\{0}, and sufficiently small

ε ∈ [−1/4, 1/4]\{0}, are the solutions to

− k2ψι
k,ε(y, λ) + d2

dy2
ψι
k,ε(y, λ) − b′′(y)

b(y) − λ + i ιε
ψι
k,ε(y, λ) = −ωk

0(y)

b(y) − λ + i ιε
, (2.5)

with zero Dirichlet boundary condition.

Proof By standard theory of spectral projection, from (2.2), we obtain that for y ∈ [0, 1],

ωk(t, y) = 1

2π i
lim

ε→0+

∫

�

eiλt
{[

(λ + kLk − iε)−1 − (λ + kLk + iε)−1]ωk
0

}
(y) dλ.

We then obtain for y ∈ [0, 1],

ψk(t, y) = − 1

2π i
lim

ε→0+

∫

�

e−ikλt
∫ 1

0
Gk(y, z)

×
{[

(−λ + Lk − iε)−1 − (−λ + Lk + iε)−1] ωk
0

}
(z) dzdλ

= − 1

2π i
lim

ε→0+

∫

�

e−ikλt
[
ψ−
k,ε(y, λ) − ψ+

k,ε(y, λ)
]
dλ.

In the above, for y ∈ [0, 1] and λ ∈ �,

ψ+
k,ε(y, λ) :=

∫ 1

0
Gk(y, z)

[
(−λ + Lk + iε)−1ωk

0

]
(z) dz,

ψ−
k,ε(y, λ) :=

∫ 1

0
Gk(y, z)

[
(−λ + Lk − iε)−1ωk

0

]
(z) dz.

Therefore for ι ∈ {+,−}, y ∈ [0, 1], λ ∈ �,
(

k2 − d2

dy2

)

ψι
k,ε(y, y0) = (−λ + Lk + i ιε)−1ωk

0(y),
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which implies

ωk
0(y) = (−λ + Lk + i ιε)

(

k2 − d2

dy2

)

ψι
k,ε(y, λ)

= (b(y) − λ + i ιε)

(

k2 − d2

dy2

)

ψι
k,ε(y, λ) + b′′(y)ψι

k,ε(y, λ). (2.6)

It follows from (2.6) that ψ+
k,ε(y, λ), ψ−

k,ε(y, λ) satisfy (2.5). The proposition is now
proved. ��
Remark 2.3 The existence of ψι

k,ε for sufficiently small ε 
= 0 follows from our spectral
assumptions, which imply the solvability of (2.5) for sufficiently small ε 
= 0, see also (4.4).

3 Bounds on the Green’s Function andModified Green’s Function

3.1 Elementary Properties of the Standard Green’s Function

For integers k ∈ Z \ {0}, recall that the Green’s function Gk(y, z) solves

− d2

dy2
Gk(y, z) + k2Gk(y, z) = δ(y − z),

with Dirichlet boundary conditions Gk(0, z) = Gk(1, z) = 0, z ∈ (0, 1). Gk has the explicit
formula

Gk(y, z) = 1

k sinh k

{
sinh(k(1 − z)) sinh(ky) if y ≤ z,
sinh(kz) sinh(k(1 − y)) if y ≥ z,

(3.1)

and the symmetry

Gk(y, z) = Gk(z, y) for k ∈ Z\{0}, y, z ∈ [0, 1].
We note the following bounds for Gk

sup
y∈[0,1],|A|≤10

[
|k|2‖Gk (y, z)(log |z − A|)m‖L1(z∈[0,1]) + |k|‖∂y,zGk (y, z)(log |z − A|)m‖L1(z∈[0,1])

]

+ sup
y∈[0,1],α∈{0,1}

[

|k|3/2−α
∥
∥
∥∂α

y,zGk (y, z)
∥
∥
∥
L2(z∈[0,1])

]

� | log 〈k〉|m for m ∈ {0, 1, 2, 3}.
(3.2)

Define

Fk(y, z) = 1

sinh k

{−k cosh (k(1 − z)) cosh (ky), 0 ≤ y ≤ z ≤ 1,
−k cosh (kz) cosh (k(1 − y)), 1 ≥ y > z ≥ 0.

We note that

∂y∂zGk(y, z) = ∂z∂yGk(y, z) = δ(y − z) + Fk(y, z) for y, z ∈ [0, 1]. (3.3)

By direct computation, we see Fk satisfies the bounds

sup
y∈[0,1],|A|≤10

[
‖Fk (y, z)(log |z − A|)m‖L1(z∈[0,1]) + |k|−1‖∂y,z Fk (y, z)(log |z − A|)m‖L1(z∈[0,1])

]

+ sup
y∈[0,1],α∈{0,1}

[

|k|−1/2−α
∥
∥
∥∂α

y,z Fk (y, z)
∥
∥
∥
L2(z∈[0,1])

]

� | log 〈k〉|m for m ∈ {0, 1, 2, 3}.
(3.4)
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The bounds (3.2) and (3.4) can be proved by explicit calculations and are useful in the
proof of Lemma 4.1 below.

3.2 Bounds on theModified Green’s Function

It follows from Assumption 1.1 that there exists a δ0 ∈ (0, 1/8) such that

inf{|y∗|, |y∗ − 1|} > 10δ0 and sup
y∈(y∗−4δ0,y∗+4δ0)

|b′′′(y)|δ0 < |b′′(y∗)|/10.

Define the set
�δ0 := {b(y) : y ∈ [y∗ − δ0, y∗ + δ0]},

and fix a standard smooth cutoff function ϕ ∈ C∞
c (−2, 2) satisfying ϕ ≡ 1 on [−3/2, 3/2].

For simplicity of notations, we denote

I := (0, 1).

To simplify notations we define also for d ∈ (0, 1/10),

Sd := [y∗ − d, y∗ + d]. (3.5)

For applications below,we also need to study the “modifiedGreen’s function”Gk(y, z; λ+
iε) for y, z ∈ [0, 1], λ ∈ �δ0 and ε ∈ [−1/8, 1/8]\{0}, which satisfies for y, z ∈ (0, 1),

(k2 − ∂2y )Gk(y, z; λ + iε)

+ b′′(y)
b(y) − λ + iε

[

ϕ

(
y − y∗

δ0

)

− ϕ

(
y − y∗
δ(λ)

)]

Gk(y, z; λ + iε) = δ(y − z), (3.6)

with the boundary condition

Gk(y, z; λ + iε)|y∈{0,1} = 0. (3.7)

In the above, we have used the notation that

δ(λ) := 8
√|λ − b(y∗)|/b′′(y∗). (3.8)

Define the weight �(y; λ + iε) for y, z ∈ [0, 1], λ ∈ �δ0 and ε ∈ [−1/8, 1/8]\{0} as
�(y; λ + iε) := |λ − b(y∗)|1/2 + |ε|1/2 + |y − y∗|.

The crucial boundsweneed for themodifiedGreen’s functionGk(y, z; λ+iε) is the following.

Lemma 3.1 Let Gk(y, z; λ + iε) for y, z ∈ [0, 1], λ ∈ �δ0 and ε ∈ [−1/8, 1/8]\{0} be
defined as in (3.6). Then we have the identity for y, z ∈ [0, 1],

Gk(y, z; λ + iε) = Gk(z, y; λ + iε), (3.9)

and the following statements hold.

(i) We have the bounds

sup
y∈[0,1], |y−z|≤min{�(z;λ+iε),1/|k|}

|Gk(y, z; λ + iε)| � min{�(z; λ + iε), 1/|k|},

sup
y∈[0,1], |y−z|≤min{�(z;λ+iε),1/|k|}

|∂yGk(y, z; λ + iε)| � 1; (3.10)

123



On the Stability of Non-monotone Shear Flows

(ii) For y1, y2 ∈ [0, 1] with y2 ∈ [min{y1, z},max{y1, z}] and �(y2; λ + iε) � 1/|k|, we
have the bounds with α ∈ {0, 1}
|∂α
y Gk (y1, z; λ + iε)|

�
[
|k| + �−1(y1; λ + iε)

]α
e−|k||y1−y2|

[

|k|
∫

[y2−1/|k|,y2+1/|k|]∩I
|Gk (y, z; λ + iε)|2 dy

]1/2

.

(3.11)

(iii) For y1, y2 ∈ [0, 1] with y2 ∈ [min{y1, z},max{y1, z}] and �(y2; λ + iε) � 1/|k|, we
have the bounds with α ∈ {0, 1}

|∂α
y Gk(y1, z; λ + iε)|

�
[|k| + �−1(y1; λ + iε)

]α
min

{
�2(y1; λ + iε)

�2(y2; λ + iε)
,

�(y2; λ + iε)

�(y1; λ + iε)

}

M, (3.12)

where

M :=
[

1

�(y2; λ + iε)

∫

[y2−�(y2;λ+iε),y2+�(y2;λ+iε)]∩I
|Gk(y, z; λ + iε)|2 dy

]1/2
.

Proof The proof is based on energy estimates and “entanglement inequalities”, as in [16].
See also the earlier work [33] where this type of inequality was used. We divide the proof
into several steps.
Step 1: the proof of (3.10).We first establish the bounds (3.10). For simplicity of notation,
we suppress the dependence on z, λ + iε and set for y ∈ [0, 1],

h(y) := Gk(y, z; λ + iε), V (y) := b′′(y)
b(y) − λ + iε

[

ϕ

(
y − y∗

δ0

)

− ϕ

(
y − y∗

δ

)]

. (3.13)

Multiplying h to (3.6) and integrating over [0, 1], we obtain that
∫ 1

0
|∂yh(y)|2 + |k|2|h(y)|2 dy +

∫ 1

0
V (y)|h(y)|2 dy = h(z). (3.14)

Note that for y ∈ [0, 1], RV (y) ≥ 0, and in addition, for y ∈ Sδ0 and

|y − y∗| > C0
(|λ − b(y∗)|1/2 + |ε|1/2)

with sufficiently large C0 � 1,

1 + RV (y) � 1

�2(y; λ + iε)
.

It follows from (3.14) that
∫ 1

0
|∂yh(y)|2 + |k|2|h(y)|2 dy +

∫

y∈Sδ0 , |y−y∗|>C0(δ+|ε|1/2)
1

[�(y; λ + iε)]2 |h(y)|2 dy

� |h(z)|. (3.15)

Using the Sobolev type inequality

‖h‖L∞(J ) � ‖h‖L2(J∗)|J |−1/2 + ‖∂yh‖L2(J )|J |1/2, (3.16)
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for any intervals J , J∗ with J∗ ⊆ J and |J∗| � |J |, and choosing the interval J ⊂ I as
an interval containing z with length of the size C1 min{1/|k|, �(z; λ + iε)}, we obtain from
(3.15) that

∫ 1

0
|∂yh(y)|2 + |k|2|h(y)|2 dy +

∫

y∈Sδ0 , |y−y∗|>C0(δ+|ε|1/2)
1

[�(y; λ + iε)]2 |h(y)|2 dy

� min{1/|k|, �(z; λ + iε)}. (3.17)

The first inequality of (3.10) then follows from (3.17) and (3.16). To obtain the second
inequality in (3.10), we notice that the (3.6) and the first inequality in (3.10) imply pointwise
bounds on ∂2yGk for y 
= z. The desired bound in the second inequality of (3.10) then follows
from interpolation between the pointwise bounds on Gk and ∂2yGk .

Step 2: the proof of (3.11). Denote

M1 :=
[

|k|
∫

[y2−1/|k|,y2+1/|k|]∩I
|Gk(y, z; λ + iε)|2 dy

]1/2
.

For the sake of concreteness, we assume that y1 > z (so y2 ∈ [z, y1]). We shall also assume
that y1 − y2 � 1/|k| as the other case is analogous but easier. For ϕ ∈ C1

p([y2, 1]), the
space of piecewise C1 functions, with ϕ(y2) = 0, we multiply ϕ2h to (3.6) and integrate
over [y2, 1] to obtain that
∫ 1

y2
|∂yh(y)|2ϕ2(y) + 2∂yh(y)h(y)ϕ(y)∂yϕ(y) + |k|2ϕ2(y)|h(y)|2 + V (y)|h(y)|2ϕ2(y) dy = 0.

(3.18)
Taking the real part of (3.18) and using Cauchy–Schwarz inequality, we get that

∫ 1

y2

[|∂yϕ(y)|2 − |k|2|ϕ(y)|2] |h(y)|2 dy ≥ 0. (3.19)

We now choose ϕ more specifically as follows. We require that

ϕ(y2) = 0, ϕ′′(y) = 0 for y ∈ [y2, y2 + 1/|k|], ϕ(y2 + 1/|k|) = 1,

ϕ′(y) = |k|ϕ(y) for y ∈ [y2 + 1/|k|, y1 − 1/|k|], ϕ′(y) = 0 for y ∈ [y1 − 1/|k|, 1]. (3.20)

It follows from (3.19)–(3.20) that
∫ 1

y1−1/|k|
|k|2ϕ2(y)|h(y)|2 dy � |k|M2

1 , ϕ(y) ≈ e|k||y1−y2| for y ∈ [y1 − 1/|k|, y1 + 1/|k|] ∩ I .

(3.21)
The desired bounds (3.11) follow from (3.21) and (3.6).

Step 3: the the proof of (3.12). For the sake of concreteness, we assume that y1 > z (and
so y2 ∈ [z, y1]).We shall also assume that y1−y2 � �(y2; λ+iε) and that y2 > y∗+δ+|ε|1/2
as the other cases are analogous.

For ϕ ∈ C1
p([y2, 1]) with ϕ(y2) = 0, we multiply ϕ2h to (3.6) and integrate over [y2, 1]

to obtain that
∫ 1

y2
|∂yh(y)|2ϕ2(y) + 2∂yh(y)h(y)ϕ(y)∂yϕ(y) + |k|2ϕ2(y)|h(y)|2 + V (y)|h(y)|2ϕ2(y) dy = 0.

Write for y ∈ [y2, 1]
h(y) = (y − y∗)1/2h∗(y). (3.22)
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Simple calculations show that
∫ 1

y2
(y − y∗)|∂yh∗(y)|2ϕ2(y) + 2(y − y∗)∂yϕ(y)ϕ(y)∂yh

∗(y)h∗(y)

+ 1

4(y − y∗)
|h∗(y)|2ϕ2(y) + |k|2|h(y)|2ϕ2(y) + (y − y∗)V (y)ϕ2(y)|h∗(y)|2 dy = 0.

Therefore
∫ 1

y2

[
1

4(y − y∗)
+ (y − y∗)RV (y)

]

ϕ2(y)|h∗(y)|2 dy ≤
∫ 1

y2
(y− y∗)(∂yϕ)2(y)|h∗(y)|2 dy,

which implies that
∫ 1

y2

1

y − y∗

[(
(y − y∗)∂yϕ

)2
(y) − (

1/4 + (y − y∗)2RV (y)
)
ϕ2(y)

]
|h∗(y)|2 dy ≥ 0.

(3.23)
We notice the pointwise bounds for y ∈ [y2, 1],

1/4 + (y − y∗)2RV (y) ≥ max

{

0, 9/4 − C2
�2(y2; λ + iε)

(y − y∗)2
− C2|y − y∗|

}

. (3.24)

Now we choose ϕ ∈ C1
p([y2, 1]) more precisely as follows. We require that

ϕ(y2) = 0, ϕ′′(y) = 0 for y ∈ [y2, y2 + �(y2; λ + iε)], ϕ(y2 + �(y2; λ + iε)) = 1,

(y − y∗)ϕ′(y) = [
1/4 + (y − y∗)2RV (y)

]1/2
ϕ(y)

for y ∈ [y2 + �(y2; λ + iε), y1 − �(y1; λ + iε)],
and ϕ′(y) = 0 for y ∈ [y1 − �(y1; λ + iε), 1].

(3.25)

It follows from (3.23)–(3.25) that
∫ y1

y1−�(y1;λ+iε)

1

�(y1; λ + iε)
ϕ2(y)|h∗(y)|2 dy � M2/�(y2; λ + iε),

ϕ(y) ≈ (y1 − y∗)3/2

�3/2(y2; λ + iε)
for y ∈ [y1 − �(y1; λ + iε), y1].

(3.26)

The desired bounds (3.12) follow from the change of variable (3.22), the bound (3.23), (3.26)
and (3.6).

Lastly we indicate how to prove the identity (3.9). For any y, z ∈ (0, 1), using the notation
in (3.13) for V , we have by integration by parts

Gk(y, z; λ + iε) =
∫

[0,1]
(k2 − ∂2� + V (�))Gk(�, y; λ + iε)Gk(�, z; λ + iε) d�

=
∫

[0,1]
(k2 − ∂2� + V (�))Gk(�, z; λ + iε)Gk(�, y; λ + iε) d�

= Gk(z, y; λ + iε),

which completes the proof of (3.9). ��
As a corollary of Lemma 3.1, we have the following additional bounds on the modified

Green’s function.
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Lemma 3.2 Let Gk(y, z; λ + iε) for y, z ∈ [0, 1], λ ∈ �δ0 , k ∈ Z\{0} and ε ∈
[−1/8, 1/8]\{0} be defined as in (3.6). Recall the definition (3.8) for δ = δ(λ) > 0. Define

h := 10(δ + |ε|1/2),
and also for y, z ∈ [0, 1],

Hk(y, z; λ + iε) :=
[

∂z + ϕ

(
y − y∗

h

)

∂y

]

Gk(y, z; λ + iε).

Then the following statements hold for z ∈ S4δ .

(i) We have the bounds

sup
y∈[0,1], |y−z|≤min{�(z;λ+iε),1/|k|}

|Hk(y, z; λ + iε)| � 1,

sup
y∈[0,1], |y−z|≤min{�(z;λ+iε),1/|k|}

|∂yHk(y, z; λ + iε)| � 1/min{�(z; λ + iε), 1/|k|};

(ii) For y1, y2 ∈ [0, 1] with y2 ∈ [min{y1, z},max{y1, z}] and �(y2; λ + iε) � 1/|k|, we
have the bounds with α ∈ {0, 1}

[
min{�(y1; λ + iε), 1/|k|}]α |∂α

yHk(y1, z; λ + iε)|

� e−|k||y1−y2|

min{�(z; λ + iε), 1/|k|}
[

|k|
∫

[y2−1/|k|,y2+1/|k|]∩I
|Gk(y, z; λ + iε)|2 dy

]1/2
.

(iii) For y1, y2 ∈ [0, 1] with y2 ∈ [min{y1, z},max{y1, z}] and �(y2; λ + iε) � 1/|k|, we
have the bounds with α ∈ {0, 1}

[
min{�(y1; λ + iε), 1/|k|}]α |∂α

yHk(y1, z; λ + iε)|

� 1

min{�(z; λ + iε), 1/|k|} min

{
�2(y1; λ + iε)

�2(y2; λ + iε)
,

�(y2; λ + iε)

�(y1; λ + iε)

}

M,

where

M :=
[

1

�(y2; λ + iε)

∫

[y2−�(y2;λ+iε),y2+�(y2;λ+iε)]∩I
|Gk(y, z; λ + iε)|2 dy

]1/2
.

Proof Denote with a slight abuse of notation for y ∈ [0, 1],

ϕ†(y) := ϕ

(
y − y∗

h

)

, V (y) := b′′(y)
b(y) − λ + iε

[

ϕ

(
y − y∗

δ0

)

− ϕ

(
y − y∗
δ(λ)

)]

.

Then Hk, j (y, z; λ + iε) satisfies for y ∈ [0, 1], z ∈ S4δ ,

(k2 − ∂2y )Hk(y, z; λ + iε) + V (y)Hk(y, z; λ + iε)

= −∂2yϕ
†(y)∂yGk(y, z; λ + iε) − ∂yV (y)ϕ†(y)Gk(y, z; λ + iε)

−2∂yϕ
†(y)∂2yGk(y, z; λ + iε). (3.27)

The desired bounds then follow from (3.27), Lemma 3.1 and standard elliptic regularity
theory. ��

The bounds in Lemmas 3.1 and 3.2 are quite sharp, since we can exploit the decay coming

from both k2 and b′′(y)
b(y)−λ+iε

[
ϕ
( y−y∗

δ0

) − ϕ
( y−y∗

δ(λ)

)]
. It is however somewhat complicated to

formulate a concrete bound that is easy to use. Instead, the following simple bounds are more
often used.
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Corollary 3.3 Let Gk(y, z; λ + iε) for y, z ∈ [0, 1], λ ∈ �δ0 and ε ∈ [−1/8, 1/8]\{0} be
defined as in (3.6). Then we have the following bounds.

(i) For y, z ∈ [0, 1], we have the bounds with α ∈ {0, 1}
[|k| + �−1(y; λ + iε)

]−α |∂α
y Gk(y, z; λ + iε)|

� 1

|k| + �−1(z; λ + iε)
min

{

e−|k||y−z|, �2(y; λ + iε)

�2(z; λ + iε)
,

�(z; λ + iε)

�(y; λ + iε)

}

. (3.28)

(iii) For y ∈ [0, 1], z ∈ S4δ , we have the bounds with α ∈ {0, 1, 2}
[|k| + �−1(y; λ + iε)

]−α |∂α
yHk(y, z; λ + iε)|

� min

{

e−|k||y−z|, �2(y; λ + iε)

�2(z; λ + iε)
,

�(z; λ + iε)

�(y; λ + iε)

}

. (3.29)

Proof The desired bounds (3.28)–(3.29) follow directly from Lemma 3.1 and Lemma 3.2,
by choosing, if necessary, another point y′ between y and z such that �(y′; λ + iε) ≈ 1/|k|,
and applying (3.28)–(3.29) on intervals [min{z, y′},max{z, y′}] and [min{y′, y},max{y′, y}]
successively. ��

4 The Limiting Absorption Principle

In this section, we study the solvability of the main Rayleigh equations (2.5). It turns out that
the situation is very different for the spectral range λ ∈ �\�δ0/2 (the non-degenerate case)
and λ ∈ �δ0 (the degenerate case). We first consider the non-degenerate case.

4.1 The Non-degenerate Case

Fix ε ∈ [−1/4, 1/4]\{0}, λ ∈ �\�δ0/2, k ∈ Z\{0}. Define for each g ∈ L2(0, 1) the
operator

Tk,λ,εg(y) :=
∫ 1

0
Gk(y, z)

b′′(z)g(z)
b(z) − λ + iε

dz. (4.1)

For applications below, we fix a smooth cutoff function � ∈ C∞
0 (y∗ − δ0/3, y∗ + δ0/3)

with � ≡ 1 on [y∗ − δ0/4, y∗ + δ0/4]. To obtain the optimal dependence on the frequency
variable k, we define

‖g‖H1
k (I ) := ‖g‖L2(I ) + |k|−1‖g′‖L2(I ).

Lemma 4.1 For ε ∈ [−1/4, 1/4]\{0}, λ ∈ �\�δ0/2, k ∈ Z\{0}, the operator Tk,λ,ε satisfies
the bound

‖Tk,λ,εg‖H1
k (I ) � |k|−1/3‖g‖H1

k (I ) for all g ∈ H1
k (I ). (4.2)

In addition, we have the more precise regularity structure
∥
∥
∥
∥∂yTk,λ,εg(y) + b′′(y)(1 − �(y))g(y)

b′(y)
log (b(y) − λ + iε)

∥
∥
∥
∥
W 1,1(R)

� 〈k〉4/3‖g‖H1
k (I ). (4.3)
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Proof We can decompose for y ∈ [0, 1],
Tk,λ,εg(y) := T 1

k,λ,εg(y) + T 2
k,λ,εg(y),

where

T 1
k,λ,εg(y) :=

∫ 1

0
Gk(y, z)

�(z)b′′(z)g(z)
b(z) − λ − iε

dz,

T 2
k,λ,εg(y) :=

∫ 1

0
Gk(y, z)

(1 − �(z))b′′(z)g(z)
b(z) − λ + iε

dz.

It follows from the definition of � that T 1
k,λ,εg(y) satisfies the bound

‖T 1
k,λ,εg(y)‖H1

k (I ) � |k|−1/3‖g‖H1
k (I ), ‖∂yT 1

k,λ,εg(y)‖W 1,1(I ) � 〈k〉4/3‖g‖H1
k (I ).

To bound T 2
k,λ,εg(y), we follow the approach in [15]. Using integration by parts, we obtain

that

T 2
k,λ,εg(y) =

∫ 1

0
Gk(y, z)

(1 − �(z))b′′(z)g(z)
b′(z)

∂z log(b(z) − λ + iε) dz

= −
∫ 1

0
∂zGk(y, z)

(1 − �(z))b′′(z)g(z)
b′(z)

log(b(z) − λ + iε) dz

−
∫ 1

0
Gk(y, z)∂z

[
(1 − �(z))b′′(z)g(z)

b′(z)

]

log(b(z) − λ + iε) dz.

The desired bounds follow from the bound (3.2), the formula (3.3) and (3.4). ��
We now prove the limiting absorption principle, using the assumption that there is no

discrete or generalized embedded eigenvalues.

Lemma 4.2 There exist ε0, κ > 0, such that the following statement holds. For all λ ∈
�\�δ0/2, k ∈ Z\{0}, 0 < |ε| < ε0 and any g ∈ H1

k (I ), we have the bound

‖g + Tk,λ,εg‖H1
k (I ) ≥ κ‖g‖H1

k (I ). (4.4)

Proof We prove (4.4) by contradiction. Assume that there exist for j ≥ 1, a sequence of
numbers k j ∈ Z\{0}, λ j ∈ �\�δ0/2, ε j ∈ R\{0} → 0 and functions g j ∈ H1

k j
(I ) with

‖g j‖H1
k j

(I ) = 1, satisfying k j → k∗ ∈ (Z\{0}) ∪ {±∞}, λ j → λ∗ ∈ �\�δ0 as j → ∞,

such that ∥
∥g j + Tk j ,λ j ,ε j g j

∥
∥
H1
k j

(I )
→ 0, as j → ∞. (4.5)

The bounds (4.2) and (4.5) imply that |k j | � 1. Thus k∗ ∈ Z\{0}. Using ‖g j‖H1
k j

(I ) = 1, the

bounds (4.3) and the compact embeddingW 1,1(I ) → L2(I ), we conclude that by passing to
a subsequence, Tk j ,λ j ,ε j g j converges in H1(I ). In view of (4.5) we can assume that g j → g
in H1(I ), where ‖g‖H1

k∗
= 1.

Using formula (4.1), we obtain from (4.5) that for y ∈ I ,

g(y) + lim
j→∞

∫ 1

0
Gk∗(y, z)

b′′(z)g(z)
b(z) − λ + iε j

dz = 0. (4.6)
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Applying k2∗ − d2

dy2
to (4.6), we get that for y ∈ I ,

k2∗g(y) − g′′(y) + lim
j→∞

(b(y) − λ∗)b′′(y)g(y)
(b(y) − λ∗)2 + ε2j

+ iπ
∑

z∈[0,1],b(z)=λ

b′′(z)g(z)
|b′(z)| δ(y − z) = 0,

in the sense of distributions for y ∈ (0, 1), which contradicts our spectral assumption that λ∗
is not a generalized embedded eigenvalue for Lk . The lemma is then proved. ��

4.2 The Degenerate Case � ∈ 6ı0

Recall the definition (3.8) for δ = δ(λ). For λ ∈ �δ0 , k ∈ Z\{0}, y ∈ I and
ε ∈ [−1/8, 1/8]\{0}, we denote

dk(λ, ε) := [|λ − b(y∗)|1/2 + |ε|1/2] ∧ 1

|k| , �k(y; λ + iε) := �(y; λ + iε) ∧ 1

|k| . (4.7)

Define the weight and the associated weighted Sobolev spaces XN ,�k and XL,�k as

‖g‖XN ,�k (I ) :=
∑

α∈{0,1}

(
δ + |ε|1/2)−1/2

∥
∥
∥[dk(λ, ε)](−7/4+α) ∂α

y g
∥
∥
∥
L2

(

S3(δ+|ε|1/2)

)

+
∑

α∈{0,1}

∥
∥
∥�

−7/4+α
k (·; λ + iε)∂α

y g
∥
∥
∥
L∞

(

I\S3(δ+|ε|1/2)

) , (4.8)

and

‖g‖XL,�k (I ) :=
∑

α∈{0,1}

(
δ + |ε|1/2)−1/2

∥
∥
∥dα

k (λ, ε)∂α
y g

∥
∥
∥
L2

(

S3(δ+|ε|1/2)

)

+
∑

α∈{0,1}

∥
∥
∥dk(λ, ε)−1�α+1

k (·; λ + iε)∂α
y g

∥
∥
∥
L∞

(

I\S3(δ+|ε|1/2)

) . (4.9)

We remark that the choice of the weights in (4.8)–(4.9) is closely related to the behavior
of the modified Green’s function Gk(y, z; λ + iε). In (4.8), we consider the case that the
“source” z is of unit distance away from the critical point y∗, where the expected decay of
Gk(y, z; λ+ iε) towards the y = y∗ is given roughly by �2

k (y; λ+ iε); similar considerations
apply in (4.9) if one considers the case that the source z is near y∗ and study the behavior
of Gk(y, z; λ + iε) away from y∗. The choice of exponent as 7/4 is somewhat arbitrary, as
long as it is less than 2. The endpoint case of exponent being 2 though results in a subtle
logarithmic divergence that seems more technical to handle.

Fix ε ∈ [−1/4, 1/4]\{0},λ ∈ �δ0 , k ∈ Z\{0}. Recall the definition (3.8) for δ = δ(λ) > 0.
Define for each g ∈ L2(0, 1) the operator

T ∗
k (λ + iε)g(y) :=

∫ 1

0
Gk(y, z; λ + iε)

[

1 − ϕ

(
y − y∗

δ0

)

+ ϕ

(
y − y∗

δ

)]
b′′(z)g(z)

b(z) − λ + iε
dz.

(4.10)

Then we have the following bounds for T ∗
k (λ + iε).

Lemma 4.3 For ε ∈ [−1/4, 1/4]\{0}, λ ∈ �δ0 , k ∈ Z\{0}, the operator T ∗
k (λ+ iε) satisfies

the bound for X ∈ {XN ,�k (I ), XL,�k (I )}
‖T ∗

k (λ + iε)g‖X �
(
1 + |k| (|λ − b(y∗)|1/2 + |ε|1/2))−1/4 ‖g‖X for all g ∈ H1

k (I ).
(4.11)

123



A.D. Ionescu et al.

Proof We provide the detailed proof only for the case X = XN ,�k (I ) as the other case is
analogous. Since k, λ, ε are fixed, for simplicity of notations, we suppress the dependence
on k, λ, ε to write T ∗ as T ∗

k (λ + iε), and decompose for y ∈ I ,

T ∗g(y) := T ∗
1 g(y) + T ∗

2 g(y),

where

T ∗
1 g(y) :=

∫ 1

0
Gk(y, z; λ + iε)

[

1 − ϕ

(
z − y∗

δ0

)]
b′′(z)g(z)

b(z) − λ + iε
dz,

T ∗
2 g(y) :=

∫ 1

0
Gk(y, z; λ + iε)ϕ

(
z − y∗

δ

)
b′′(z)g(z)

b(z) − λ + iε
dz.

It follows from the bounds on modified Green’s function Gk(y, z; λ + iε), see Lemma 3.1,
that

‖T ∗
1 g‖XN ,�k (I ) � |k|−1/2‖g‖XN ,�k (I ). (4.12)

To prove (4.11), it suffices to prove

‖T ∗
2 g‖XN ,�k (I ) �

(
1 + |k| (δ + |ε|1/2))−1/4 ‖g‖XN ,�k (I ). (4.13)

We assumemomentarily that |ε| � |λ−b(y∗)| and explain how to remove this assumption
at the end of the proof. We decompose further for y ∈ I ,

T ∗
2 g(y) =

∫ 1

0
Gk(y, z; λ + iε)ϕ

(
z − y∗

δ′

)

ϕ

(
z − y∗

δ

)
b′′(z)g(z)

b(z) − λ + iε
dz

+
∫ 1

0
Gk(y, z; λ + iε)

[

1 − ϕ

(
z − y∗

δ′

)]

ϕ

(
z − y∗

δ

)
b′′(z)g(z)

b(z) − λ + iε
dz

:= T ∗
2,Rg(y) + T ∗

2,Sg(y),

where we have chosen δ′ = δ/C3 with a large constant C3 so that |b(y) − λ| ≈ |λ − b(y∗)|
for |y − y∗| < δ′.

It suffices to prove for � ∈ {R, S}
‖T ∗

2,�g‖XN ,�k (I ) �
(
1 + |k| (|λ − b(y∗)|1/2 + |ε|1/2))−1/4 ‖g‖XN ,�k (I ). (4.14)

Step 1. We first prove (4.14) with � = R.
Case I: 1/|k| > |λ − b(y∗)|1/2 + |ε|1/2. In this case for |z − y∗| � δ and |y − y∗| � 1 we

have the bound

|Gk(y, z; λ + iε)| � δ2 + |ε|
|y − y∗| + δ + |ε|1/2 , |∂yGk(y, z; λ + iε)| � δ2 + |ε|

(|y − y∗| + δ + |ε|1/2)2 .

(4.15)
It follows from the bound (4.15) that

‖T ∗
2,Rg‖XN ,�k (I ) �

(
1 + |k| (|λ − b(y∗)|1/2 + |ε|1/2))−1/4 ‖g‖XN ,�k (I ).

Case II: 1/|k| � |λ − b(y∗)|1/2 + |ε|1/2. In this case, we have for |z − y∗| � δ and
|y − y∗| � 1 that

|Gk(y, z; λ + iε)| + |k|−1|∂yGk(y, z; λ + iε)| � |k|−1e−|k||y−z|. (4.16)

The desired bound

‖T ∗
2,Rg‖XN ,�k (I ) �

(
1 + |k| (|λ − b(y∗)|1/2 + |ε|1/2))−1/4 ‖g‖XN ,�k (I )
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follows from (4.16).
Step 2. We now turn to the proof of (4.14) with � = S and still consider two cases.
Case I: 1/|k| > |λ − b(y∗)|1/2 + |ε|1/2. Denoting for y ∈ I ,

ϕ∗
(
y − y∗

δ

)

:=
[

1 − ϕ

(
z − y∗

δ′

)]

ϕ

(
z − y∗

δ

)

,

we can rewrite

T ∗
2,Sg(y) =

∫ 1

0
Gk(y, z; λ + iε)ϕ∗

(
z − y∗

δ

)
b′′(z)g(z)
b′(z)

∂z log
b(z) − λ + iε

δ2

= −
∫ 1

0
∂z

[

Gk(y, z; λ + iε)ϕ∗
(
z − y∗

δ

)
b′′(z)g(z)
b′(z)

]

log
b(z) − λ + iε

δ2
dz. (4.17)

As a consequence of (4.17), we also have

∂y

[
T ∗
2,Sg(y)

]
= ∂y

∫ 1

0
Gk (y, z; λ + iε)ϕ∗

(
z − y∗

δ

)
b′′(z)g(z)
b′(z) ∂z log

b(z) − λ + iε

δ2
dz

= −
∫ 1

0

[

∂y(∂z + ∂y)Gk (y, z; λ, ε)ϕ∗
(
z − y∗

δ

)
b′′(z)g(z)
b′(z)

]

log
b(z) − λ + iε

δ2
dz

+
∫ 1

0

[

∂2yGk (y, z; λ + iε)ϕ∗
(
z − y∗

δ

)
b′′(z)g(z)
b′(z)

]

log
b(z) − λ + iε

δ2
dz

−
∫ 1

0
∂yGk (y, z; λ + iε)∂z

[

ϕ∗
(
z − y∗

δ

)
b′′(z)g(z)
b′(z)

]

log
b(z) − λ + iε

δ2
dz.

(4.18)

Note that on the support of ϕ∗( z−y∗
δ

), we have

|b′(z)| ≈ δ, �(z; λ + iε) ≈ δ.

The desired bound (4.14) for � = S follows from (4.17)–(4.18) and Corollary 3.3, and we
have, in addition,

(δ + |ε|1/2)−1/2
∥
∥
∥
∥∂y

{

∂yT
∗
2,Sg(y) + ϕ∗

(
y − y∗

δ

)
b′′(y)g(y)

b′(y) log
b(y) − λ + iε

δ2

}∥
∥
∥
∥
L2(S

3(δ+|ε|1/2)
)

� δ−1/4
[
1 + |k|

(
|λ − b(y∗)|1/2 + |ε|1/2

)]−1/4 ‖g‖XN ,�k
(I ). (4.19)

Case II: 1/|k| � |λ−b(y∗)|1/2+|ε|1/2. This case is analogous toCase I, usingLemma3.1
and Lemma 3.2.

Finally we turn to the assumption that |ε|1/2 � δ. Suppose |ε|1/2 � δ, then the factor
1

b(z)−λ+iε is not truly singular, and the desired bounds (4.13) follow directly from the bounds
on the modified Green’s function Gk(y, z; λ + iε) from Lemma 3.1 and Lemma 3.2. Indeed,
we have the stronger bound

‖T ∗
2 g‖XN ,�k (I ) � δ√|ε| ‖g‖XN ,�k (I ), (4.20)

which will be useful below. ��
The following limiting absorption principle plays an essential role in establishing the

vorticity depletion phenomenon.

Lemma 4.4 There exist positive numbers ε0, κ such that the following statement holds.
For ε ∈ [−ε0, ε0]\{0}, λ ∈ �δ0 , k ∈ Z\{0}, and X ∈ {XN ,�k (I ), XL,�k (I )},

‖(I + T ∗
k (λ + iε))g‖X ≥ κ‖g‖X for all g ∈ H1

k (I ). (4.21)
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Proof We only consider the case X = XN ,�k (I ) as the other case is analogous. We prove
(4.21) by a contradiction argument. Assume (4.21) does not hold for any ε0 > 0. Then there
exist for � ∈ Z ∩ [1,∞),

λ� → λ∗ ∈ �δ0 , ε� 
= 0 with ε� → 0, k� → k∗ ∈ (Z\{0}) ∪ {±∞},
and functions g� satisfying

‖g�‖XN ,�k�
(I ) = 1 (4.22)

such that ∥
∥(

I + T ∗
k�

(λ� + iε�)
)
g�

∥
∥
XN ,�k�

(I )
→ 0. (4.23)

We can assume that λ∗ = b(y∗), otherwise the proof follows from the argument in the
non-degenerate case. We consider several cases.

Case I: lim sup�→∞ ‖g�‖H1(I\Sδ0 ) > 0. By the bound (4.12), we can assume that k∗ ∈
Z\{0}. By the bounds (4.22) and (4.23),we can assume (passing to a subsequence if necessary)
that

g� → g in H1
loc(I\{y∗}) as � → ∞, g(0) = g(1) = 0.

Then it follows from (4.22) and (4.23) that g satisfies

|g(y)| � |y − y∗|7/4,
and for y ∈ (0, 1),

(k2∗ − ∂2y )g(y) + b′′(y)
b(y) − b(y∗)

g(y) = 0,

which imply that b(y∗) is an embedded eigenvalue for Lk , a contradiction to the spectral
assumption.

Case II: lim sup�→∞ ‖g�‖H1(I\Sδ0 ) = 0. By the bound (4.11) we can assume that |k�|(δ�+
|ε�|1/2) � 1. In this case, using (4.23), we obtain that (passing to a subsequence if necessary)

∥
∥(|λ� − b(y∗)| + |ε|)−9/8g�

∥
∥
L2([y∗−δ�−|ε�|1/2, y∗+δ�+|ε�|1/2])

+
∥
∥
∥(|λ� − b(y∗)| + |ε|)−5/8∂yg�

∥
∥
∥
L2([y∗−δ�−|ε�|1/2, y∗+δ�+|ε�|1/2])

≥ σ > 0,

where we recall from (3.8) that

δ� ≈ |λ� − b(y∗)|1/2.
We divide into several subcases.
Subcase II.1: |ε�|1/2 ≈ δ� for a subsequence.
Define the change of variables for � ≥ 1, y ∈ I ,

y − y∗ = δ�Y , g�(y) := (|λ� − b(y∗)| + |ε�|)7/8H�(Y ). (4.24)

It follows from (4.19) that we can extract a nontrivial limit H ∈ H1(R) of H� satisfying for
Y ∈ R,

(β2 − ∂2Y )H(Y ) + b′′(y∗)
b′′(y∗)Y 2/2 + γ + iα

H(Y ) = 0,

where β ∈ R, α, γ ∈ R\{0}. This is impossible since the shear flow (b′′(y∗)Y 2/2, 0), Y ∈ R

is spectrally stable, thanks to Rayleigh’s inflection point criteria.
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Subcase II.2: |ε�|1/2 = o(δ�) for a subsequence. Passing to a subsequence and using
rescaling as in (4.24) we can extract a nontrivial limit H ∈ H1(R), such that

(β2 − ∂2Y )H(Y ) + lim
ε→0

b′′(y∗)
b′′(y∗)Y 2/2 + γ + iε

H(Y ) = 0.

This is again impossible since the shear flow (b′′(y∗)Y 2/2, 0), Y ∈ R is spectrally stable.
Subcase II.3: δ� = o(|ε�|1/2) for a subsequence. This case is not possible thanks to the

bound (4.20). The lemma is now proved. ��

5 Bounds on Ã�
k,": The Non-degenerate Case

In this section we obtain bounds on ψι
k,ε(y, λ) in the non-degenerate case, i.e. when λ ∈

�\�δ0/2. Since the arguments are analogous to those in [15], we will be brief in the proofs,
and provide only comments on the main ideas involved.

We begin with the following preliminary bounds.

Lemma 5.1 For λ ∈ �\�δ0/2, k ∈ Z\{0}, ι ∈ {±} and 0 < ε < ε0, we have the bounds

‖ψι
k,ε(·, λ)‖H1

k (I ) � |k|−1/2‖ω0k‖H1
k (I ). (5.1)

Proof The desired bounds (5.1) follow directly from the Rayleigh equation (2.5) and
Lemma 4.2, once we use the Green’s function Gk to invert k2 − ∂2y and formulate (2.5)
as an integral equation. ��

To obtain control on ∂λψ
ι
k,ε(·, λ) for λ ∈ �\�δ0/2, we take derivative in (2.5), and obtain

that

(k2 − ∂2y )∂λψι
k,ε(y, λ) + b′′(y)∂λψι

k,ε(y, λ)

b(y) − λ + i ιε
= ωk

0(y)

(b(y) − λ + i ιε)2
− b′′(y)ψι

k,ε(z, λ)

(b(y) − λ + i ιε)2
(5.2)

for y ∈ I with zero boundary value at y ∈ {0, 1}. Reformulating (5.2) as an integral equation,
we obtain that

∂λψ
ι
k,ε(y, λ) +

∫ 1

0
Gk(y, z)

b′′(z)∂λψ
ι
k,ε(z, λ)

b(z) − λ + i ιε
dz

=
∫ 1

0
Gk(y, z)

ωk
0(z)

(b(z) − λ + i ιε)2
dz −

∫ 1

0
Gk(y, z)

b′′(z)ψι
k,ε(z, λ)

(b(z) − λ + i ιε)2
dz. (5.3)

Recall the definition of the smooth cutoff function � below (4.1). We have the following
bounds for ∂λψ

ι
k,ε(y, λ) when λ ∈ �\�δ0 .

Lemma 5.2 For λ ∈ �\�δ0/2, k ∈ Z\{0}, ι ∈ {±} and 0 < ε < ε0, ∂λψ
ι
k,ε(y, λ) satisfies

the following decomposition

∂λψ
ι
k,ε(y, λ) =

[
b′(y0)ωk

0(y)

|b′(y)|2 − b′′(y)ψι
k,ε(y, λ)

|b′(y)|2
]

(1 − �(y)) log (b(y) − λ + i ιε)

+
∑

σ=0,1

ωk
0(σ )�ι

k,σ,ε(y, λ) log (b(σ ) − λ + i ιε) + Rι
σ,k,y0,ε(y).

In the above for σ ∈ {0, 1}, ι ∈ {±}, 0 < ε < ε0, and λ ∈ �\�δ0/2,
∥
∥
∥Rι

σ,k,y0,ε

∥
∥
∥
H1
k (I )

� |k|1/2‖ω0k‖H2
k (I ),

∥
∥�ι

k,σ,ε(·, λ)
∥
∥
H1
k (I )

� |k|−1/2.
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Proof The basic idea is to expand the right hand side of (5.3) using integration by parts, and
apply Lemma 4.2 after removing the most singular parts. Indeed, denoting schematically,

U :=
∫ 1

0
Gk(y, z)

ωk
0(z)

(b(z) − λ + i ιε)2
dz −

∫ 1

0
Gk(y, z)

b′′(z)ψι
k,ιε(z, λ)

(b(z) − λ + i ιε)2
dz,

we note that ∂λψ
ι
k,ε(y, λ) − U satisfies the equation (recalling (4.1) for the definition of

Tk,λ,ιε),
(I + Tk,λ,ιε)

[
∂λψ

ι
k,ε(y, λ) − U] = −Tk,λ,ιεU . (5.4)

The term Tk,λ,ιεU ∈ H1
k (I ) (noting however that for the boundary terms we need to track the

singular coefficient log (b(σ ) − λ + i ιε), σ ∈ {0, 1}), and we can apply Lemma 4.2 to (5.4)
in order to obtain the desired conclusions. We refer to [15] for the detailed proof. ��

To obtain bounds on ∂2λψι
k,ε(y, λ) for λ ∈ �\�δ0/2, we take two derivatives in (2.5) and

obtain that

(k2 − ∂2y )∂
2
λψι

k,ε(y, λ) + b′′(y)∂2λψι
k,ε(y, λ)

b(y) − λ + i ιε

= 2
ωk
0(y)

(b(y) − λ + i ιε)3
− 2

b′′(y)ψι
k,ε(z, λ)

(b(y) − λ + i ιε)3
+ b′′(y)∂λψ

ι
k,ε(z, λ)

(b(y) − λ + i ιε)2
(5.5)

for y ∈ I with zero boundary value at y ∈ {0, 1}. We can reformulate (5.5) in the integral
form for y ∈ I , as

∂2λψι
k,ε(y, λ) +

∫ 1

0
Gk (y, z)

b′′(z)∂2λψι
k,ε(z, λ)

b(z) − λ + i ιε
dz

=
∫ 1

0
Gk (y, z)

[

2
ωk
0(z)

(b(z) − λ + i ιε)3
− 2

b′′(z)ψι
k,ε(z, λ)

(b(z) − λ + i ιε)3
+ b′′(z)∂λψι

k,ε(z, λ)

(b(z) − λ + i ιε)2

]

dz. (5.6)

We have the following bounds on ∂2λψι
k,ε(y, λ) for λ ∈ �\�δ0/2.

Lemma 5.3 For k ∈ Z\{0}, ι ∈ {±} and 0 < ε < ε0, we have the following bound
∥
∥
∥
∥
∥
∂2λψι

k,ε(y, λ) − ωk
0(1)�

1ι
k,ε(y, λ)

b(1) − λ + i ιε
− ωk

0(0)�
0ι
k,ε(y, λ)

b(0) − λ + i ιε

−b′′(y)ψι
k,ε(y, λ) − ωk

0(y)

|b′(y)|2(b(y) − λ + i ιε)

∥
∥
∥
∥
∥
L2

(
y∈I ,λ∈�\�δ0/2

)

� |k|3/2‖ω0k‖H3
k (I ).

In the above the functions �σι
k,ε, σ ∈ {0, 1} satisfy the equation for y ∈ I

(
I + Tk,λ,ιε

)
�1ι

k,ε = sinh (ky)

|b′(1)|2 sinh k ,

(
I + Tk,λ,ιε

)
�0ι

k,ε = sinh (k(1 − y))

|b′(0)|2 sinh k .

Proof The main idea of the proof is to expand the right-hand side of (5.6) and apply
Lemma 4.2 after removing the most singular terms. Indeed, denoting schematically,

U∗ :=
∫ 1

0
Gk(y, z)

[

2
ωk
0(z)

(b(z)−λ + i ιε)3
− 2

b′′(z)ψι
k,ιε(z, λ)

(b(z) − λ + i ιε)3
+ b′′(z)∂λψ

ι
k,ιε(z, λ)

(b(z) − λ + i ιε)2

]

dz,
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we have (
I + Tk,λ,ιε

) [
∂2λψι

k,ε(y, λ) − U∗ + Tk,λ,ιεU∗] = [
Tk,λ,ιε

]2 U∗.

We note that ∂2λψι
k,ε(y, λ) − U∗ + Tk,λ,ιεU∗ ∈ H1

k (I ) (however we again need to track the
singularities in λ in the boundary terms, involving log(b(σ )−λ+ i ιε) and 1/(b(σ )−λ+ i ιε)
for σ ∈ {0, 1}), and we can apply Lemma 4.2 in order to obtain the desired conclusions. We
refer to [15] for the detailed proof. ��

6 Bounds on Ã�
k,": The Degenerate Case

In this section, we use the limiting absorption principle to study the Rayleigh equation (2.5)
for λ ∈ �δ0 . More precisely, write for k ∈ Z\{0}, ι ∈ {±}, λ ∈ �δ0 , 0 < ε < ε0 (recall the
definition of ε0 from Lemma 4.4),

ψι
k,ε(y, λ) = φι

k,ε(y, λ) + �(y)
1

b′′(y)
ω0k(y), (6.1)

where � ∈ C∞
c (S3δ0) and � ≡ 1 on S2δ0 . Recall that Sd = [y∗ − d, y∗ + d] for d > 0 from

(3.5). Then φι
k,ε(y, λ) satisfies for y ∈ I ,

(
k2 − ∂2y

)
φι
k,ε(y, λ) + b′′(y)

b(y) − λ + i ιε
φι
k,ε(y, λ) = gι

k,ε(y, λ), (6.2)

where for k ∈ Z\{0}, ι ∈ {±}, λ ∈ �δ0 , 0 < ε < ε0

gι
k,ε(y, λ) := 1 − �(y)

b(y) − λ + i ιε
ω0k(y) − (k2 − ∂2y )

[
�(y)

b′′(y)
ω0k(y)

]

. (6.3)

Our main results are bounds for the functions φι
k,ε(y, λ). We begin with the following

preliminary bounds.

Lemma 6.1 Assume that k ∈ Z\{0}, λ ∈ �δ0 and let φι
k,ε(y, λ) with ι ∈ {±}, ε ∈ (0, ε0) be

as defined in (6.1)–(6.2). Recall from (3.8) and (4.7) that

δ := δ(λ) = 8
√|λ − b(y∗)|/|b′′(y∗)|, dk = dk(λ, ε) := [|λ − b(y∗)|1/2 + |ε|1/2] ∧ 1

|k| .

We have the bounds for k ∈ Z\{0}, ε ∈ (0, ε0), ι ∈ {±}, λ ∈ �δ0 ,

∑

α∈{0,1}

∥
∥
∥d

−7/4+α
k ∂α

y φι
k,ε(y, λ)

∥
∥
∥
L2([y∗−3(δ+|ε|1/2),y∗+3(δ+|ε|1/2)])

(
δ + |ε|1/2)−1/2

+
∑

α∈{0,1}

∥
∥
∥(|y − y∗| ∧ dk)

−7/4+α∂α
y φι

k,ε(y, λ)

∥
∥
∥
L∞([0,1]\[y∗−3(δ+|ε|1/2),y∗+3(δ+|ε|1/2)])

� |k|5/2‖ω0k‖H3
k (I ). (6.4)

Define for y ∈ [0, 1], k ∈ Z\{0}, λ ∈ �δ0\{b(y∗)},

ψk(y, λ) := lim
ε→0+

[
ψ+
k,ε(y, λ) − ψ−

k,ε(y, λ)
]

= lim
ε→0+

[
φ+
k,ε(y, λ) − φ−

k,ε(y, λ)
]
.
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Then we have the bounds for λ ∈ �δ0\{b(y∗)},
∑

α∈{0,1}

∥
∥
∥(δ ∧ |k|−1)−7/4+α∂α

y ψk(y, λ)

∥
∥
∥
L2([y∗−3δ,y∗+3δ]) δ−1/2

+
∑

α∈{0,1}

∥
∥
∥
∥
∥
(δ ∧ |k|−1)−11/4

(

|y − y∗| ∧ 1

|k|
)1+α

∂α
y ψk(y, λ)

∥
∥
∥
∥
∥
L∞([0,1]\[y∗−3δ,y∗+3δ]))

� |k|5/2‖ω0k‖H3
k (I ). (6.5)

Proof It follows from (6.3) and our assumptions on the initial data ω0k that we have the
bound for k ∈ Z\{0}, ι ∈ {±}, 0 < ε < ε0 and λ ∈ �δ0 ,

∥
∥gι

k,ε(y, λ)
∥
∥
C(I )

� |k|5/2‖ω0k‖H3
k (I ).

We can reformulate (6.2) in the integral form as (recall the definition of T ∗(λ + iε) from
(4.10))

φι
k,ε(y, λ) + T ∗

k (λ + i ιε)φι
k,ε(y, λ) =

∫ 1

0
Gk(y, z; λ + i ιε)gι

k,ε(z, λ)dz

for y ∈ I . By Lemma 4.4, we obtain the bound

∥
∥φι

k,ε(·, λ)
∥
∥
XN ,�k (I )

�
∥
∥
∥
∥

∫ 1

0
Gk(y, z; λ + i ιε)gι

k,ε(z, λ)dz

∥
∥
∥
∥
XN ,�k

� |k|5/2‖ω0k‖H3
k (I ),

which, by the definition of the space XN ,�k , see (4.8), implies the desired bounds (6.4).
For applications below on isolating the singularity at λ = b(y), we fix ϕδ(y) ∈ C∞

c (S2δ)
as

ϕδ(y) := ϕ
( y

δ

) [
1 − ϕ

( y

δ′
)]

(6.6)

for y ∈ I , with δ′ := δ/M and an M � 1 sufficiently large such that |b(y)−λ| ≈ |λ−b(y∗)|
for |y − y∗| < δ/M .

To prove (6.5), we note from (6.2) that φ+
k,ε(y, λ) − φ−

k,ε(y, λ) satisfies the equation for
y ∈ I .

(k2 − ∂2y )
[
φ+
k,ε(y, λ) − φ−

k,ε(y, λ)
]

+ b′′(y)
b(y) − λ + iε

[
φ+
k,ε(y, λ) − φ−

k,ε(y, λ)
]

= g+
k,ε(y, λ) − g−

k,ε(y, λ) −
[

b′′(y)
b(y) − λ + iε

− b′′(y)
b(y) − λ − iε

]

φ−
k,ε(y, λ).

Denote for λ ∈ �δ0\{b(y∗)}, ε ∈ (0, ε0) and y ∈ I the function hk,ε(y, λ) as the solution to

(k2 − ∂2y )hk,ε(y, λ) + b′′(y)
b(y) − λ + iε

hk,ε(y, λ)

= ϕδ(y)

[
b′′(y)

b(y) − λ − iε
− b′′(y)

b(y) − λ + iε

]

φ−
k,ε(y, λ), (6.7)

with zero Dirichlet boundary condition. Then it is clear that for λ ∈ �δ0\{b(y∗)}, y ∈ I ,

ψk(y, λ) = lim
ε→0+ hk,ε(y, λ).
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We can reformulate (6.7) as the following integral equation for λ ∈ �δ0\{b(y∗)}, y ∈ I ,

hk,ε(y, λ) + T ∗
k (λ + iε)hk,ε(y, λ)

= −
∫ 1

0
Gk(y, z; λ + iε)ϕδ(z)

[
b′′(z)

b(z) − λ + iε
− b′′(z)

b(z) − λ − iε

]

φ−
k,ε(z, λ) dz.

It follows from the bound (6.4) that for |ε| � (δ ∧ 1
|k| )

4,

∥
∥
∥
∥

∫ 1

0
Gk(y, z; λ + iε)ϕδ(z)

[
b′′(z)

b(z) − λ + iε
− b′′(z)

b(z) − λ − iε

]

φ−
k,ε(z, λ) dz

∥
∥
∥
∥
XL,�k

�
(

δ ∧ 1

|k|
)7/4

.

The desired bound (6.5) then follows from Lemma 4.4 with X = XL,�k . ��

To obtain higher order regularity bounds (in λ) of φι
k,ε(·, λ), we take the derivative ∂λ in

(6.2). It follows that ∂λφ
ι
k,ε(y, λ) satisfies for y ∈ I ,

[

k2 − ∂2y + b′′(y)
b(y) − λ + i ιε

]

∂λφ
ι
k,ε(y, λ) = − b′′(y)

(b(y) − λ + i ιε)2
φι
k,ε(y, λ)+∂λg

ι
k,ε(y, λ),

(6.8)
with zero Dirichlet boundary condition.

Recall the definition of ϕδ from (6.6). We have the following bounds on ∂λφ
ι
k,ε(y, λ).

Lemma 6.2 Assume that k ∈ Z\{0}, λ ∈ �δ0\{b(y∗)}. Let ψι
k,ε(y, λ) and φι

k,ε(y, λ) with
ι ∈ {±}, 0 < ε < min{|λ − b(y∗)|, ε0} be as defined in (2.5) and (6.1) respectively. Recall
from (3.8) that

δ := δ(λ) = 8
√|λ − b(y∗)|/b′′(y∗).

Denote for y ∈ [0, 1], ι ∈ {±}, λ ∈ �δ0\{b(y∗)}, 0 < ε < min{|λ − b(y∗)|, ε0},

�ι
1,ε(y, λ) := φι

k,ε(y, λ)ϕδ(y)
b′′(y)

(b′(y))2
log

b(y) − λ + i ιε

δ2
,

�1(y, λ) := ψk(y, λ)ϕδ(y)
b′′(y)

(b′(y))2
log

b(y) − λ

δ2
.

We have the bounds for 0 < ε < min{|λ − b(y∗)|, ε0}, ι ∈ {±}, and λ ∈ �δ0 that

∑

α∈{0,1}

∥
∥
∥(δ ∧ |k|−1)1/4+α∂α

y

[
∂λφ

ι
k,ε(y, λ) − �ι

1,ε(y, λ)
]∥∥
∥
L2([y∗−3δ,y∗+3δ]) δ−1/2

+
∑

α∈{0,1}

∥
∥
∥
∥
∥
(δ ∧ |k|−1)2

(

|y − y∗| ∧ 1

|k|
)−7/4+α

∂α
y ∂λφ

ι
k,ε(y, λ)

∥
∥
∥
∥
∥
L∞([0,1]\[y∗−3δ,y∗+3δ]))

� |k|5/2‖ω0k‖H3
k (I ). (6.9)
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In addition, we have the bounds for λ ∈ �δ0\{b(y∗)} and k ∈ Z\{0},
∑

α∈{0,1}

∥
∥
∥(δ ∧ |k|−1)1/4+α∂α

y [∂λψk(y, λ) − �1(y, λ)]
∥
∥
∥
L2([y∗−3δ,y∗+3δ]) δ−1/2

+
∑

α∈{0,1}

∥
∥
∥
∥
∥
(δ ∧ |k|−1)−3/4

(

|y − y∗| ∧ 1

|k|
)1+α

∂α
y ∂λψk(y, λ)

∥
∥
∥
∥
∥
L∞([0,1]\[y∗−3δ,y∗+3δ]))

� |k|5/2‖ω0k‖H3
k (I ). (6.10)

Proof Define for k ∈ Z\{0}, ι ∈ {±}, λ ∈ �δ0\{b(y∗)}, 0 < ε < min{|λ − b(y∗)|, ε0},
y ∈ I ,

∂λφ
ι
k,ε(y, λ) := φι

k,ε(y, λ; 1) (6.11)

+
∫ 1

0
Gk(y, z; λ + i ιε)

[ −b′′(z)
(b(z) − λ + i ιε)2

φι
k,ε(z, λ) + ∂λg

ι
k,ε(z, λ)

]

dz.

It follows from (6.8) that φι
k,ε(y, λ; 1) satisfies for y ∈ I ,

φι
k,ε(y, λ; 1)+T ∗

k (λ + i ιε)φι
k,ε(y, λ; 1)

= −T ∗
k (λ+i ιε)

∫ 1

0
Gk(y, z; λ+i ιε)

[

− b′′(z)
(b(z) − λ+i ιε)2

φι
k,ε(z, λ) + ∂λg

ι
k,ε(z, λ)

]

dz.

Denote for k ∈ Z\{0}, ι ∈ {±}, λ ∈ �δ0\{b(y∗)}, 0 < ε < min{|λ − b(y∗)|, ε0}, z ∈ I ,

hι
k,ε(z, λ; 1) := b′′(z)

(b(z) − λ + i ιε)2
ϕδ(z)φ

ι
k,ε(z, λ),

hι
k,ε(z, λ; 2) := b′′(z)

(b(z) − λ + i ιε)2
(1 − ϕδ(z))φ

ι
k,ε(z, λ), hι

k,ε(z, λ; 3) := ∂λg
ι
k,ε(z, λ).

It follows from the bound (6.4) and Lemma 3.1 that for j ∈ {2, 3}
∥
∥
∥
∥T

∗
k (λ + i ιε)

∫ 1

0
Gk(y, z; λ + i ιε)hι

k,ε(z, λ; j) dz
∥
∥
∥
∥
XN ,�k

� (δ ∧ |k|−1)−2|k|5/2‖ω0k‖H3
k (I ).

(6.12)
Using integration by parts argument similar to (4.17)–(4.18), we have also
∥
∥
∥
∥T

∗
k (λ + i ιε)

∫ 1

0
Gk(y, z; λ + i ιε)hι

k,ε(z, λ; 1) dz
∥
∥
∥
∥
XN ,�k

� (δ ∧ |k|−1)−2|k|5/2‖ω0k‖H3
k (I ).

(6.13)
It follows from (6.12)–(6.13) and Lemma 4.4 that for λ\{b(y∗)},

∥
∥φι

k,ε(y, λ; 1)∥∥
XN ,�k

� (δ ∧ |k|−1)−2|k|5/2‖ω0k‖H3
k (I ). (6.14)

The desired bound (6.9) follows, as a consequence of (6.14) and (6.11).
Using (6.8), we get that for y ∈ I ,
[

k2 − ∂2y + b′′(y)
b(y) − λ + iε

] [
∂λφ

+
k,ε(y, λ) − ∂λφ

−
k,ε(y, λ)

]

= −
[

b′′(y)
(b(y) − λ + iε)2

φ+
k,ε(y, λ) − b′′(y)

(b(y) − λ − iε)2
φ−
k,ε(y, λ)

]

+
[
∂λg

+
k,ε(y, λ) − ∂λg

−
k,ε(y, λ)

]
−

[
b′′(y)

b(y) − λ + iε
− b′′(y)

b(y) − λ − iε

]

∂λφ
−
k,ε(y, λ),
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with zero Dirichlet boundary condition.
Denoting for λ ∈ �δ0\{b(y∗)} and y ∈ I , Dφk,ε(y, λ) as the solution to

[

k2 − ∂2y + b′′(y)
b(y) − λ + i ιε

]

Dφk,ε(y, λ)

= −ϕδ(y)

[
b′′(y)

(b(y) − λ + iε)2
φ+
k,ε(y, λ) − b′′(y)

(b(y) − λ − iε)2
φ−
k,ε(y, λ)

]

−ϕδ(y)

[
b′′(y)

b(y) − λ + i ιε
− b′′(y)

b(y) − λ − i ιε

]

∂λφ
−
k,ε(y, λ), (6.15)

for y ∈ I with zero Dirichlet boundary condition.
We notice the identity that for y ∈ I , λ ∈ �δ0\{b(y∗)},

∂λψk(y, λ) = lim
ε→0+ Dφk,ε(y, λ).

We can reformulate (6.15) as the integral equation for y ∈ I ,

Dφk,ε(y, λ) + T ∗
k (λ + iε)Dφk,ε(y, λ)

= −
∫ 1

0
Gk(y, z; λ + iε)ϕδ(z)

[
b′′(z)

(b(z) − λ + iε)2
φ+
k,ε(z, λ) − b′′(z)

(b(z) − λ − iε)2
φ−
k,ε(z, λ)

]

dz

−
∫ 1

0
Gk(y, z; λ + iε)ϕδ(z)

[
b′′(z)

b(z) − λ + iε
− b′′(z)

b(z) − λ − i ιε

]

∂λφ−
k,ε(z, λ) dz

:= Rk,ε(y, λ). (6.16)

We can write for y ∈ I , λ ∈ �δ0\{b(y∗)}, 0 < ε < min{|λ − b(y∗)|, ε0},
Dφk,ε(y, λ) := Rk,ε(y, λ) + Dφk,ε(y, λ; 1). (6.17)

Then Dφk,ε(y, λ; 1) satisfies for y ∈ I , λ ∈ �δ0\{b(y∗)}, 0 < ε < min{|λ − b(y∗)|, ε0}, the
equation

Dφk,ε(y, λ; 1) + T ∗
k (λ + iε)Dφk,ε(y, λ; 1) = −T ∗

k (λ + iε)Rk,ε(y, λ). (6.18)

The desired bounds (6.21) follow from (6.16)–(6.18), and Lemma 3.2 with X = XL,�k . ��

Lastly we turn to the highest order derivative ∂2λψι
k,ε(y, λ) that we need to control. To

study ∂2λψι
k,ε(y, λ), we take the derivative ∂λ in (6.8) and obtain that

[

k2 − ∂2y + b′′(y)
b(y) − λ + i ιε

]

∂2λφι
k,ε(·, λ) = − 2b′′(y)

(b(y) − λ + i ιε)2
∂λφ

ι
k,ε(·, λ)

− 2b′′(y)
(b(y) − λ + i ιε)3

φι
k,ε(y, λ)

+∂2λg
ι
k,ε(y, λ). (6.19)

Lemma 6.3 Assume that k ∈ Z\{0}, λ ∈ �δ0\{b(y∗)} and let φι
k,ε(y, λ) with ι ∈ {±},

0 < ε < min{|λ − b(y∗)|, ε0} be as defined in (6.2). Recall that

δ := δ(λ) = 8
√|λ − b(y∗)|/b′′(y∗). (6.20)
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Denoting for y ∈ [0, 1], λ ∈ �δ0\{b(y∗)},

�2(y, λ) := −ψk(y, λ)ϕδ(y)
b′′(y)

(b′(y))2
lim

ε→0+
1

b(y) − λ + iε

−ϕδ(y)
b′′(y)

(b′(y))2
lim

ε→0+

[
1

b(y) − λ + iε
− 1

b(y) − λ − iε

]

φ−
k,ε(y, λ),

then we have the bounds for λ ∈ �δ0\{b(y∗)},
∑

α∈{0,1}

∥
∥(δ ∧ |k|−1)9/4

[
∂2λψk(y, λ) − �2(y, λ)

]∥∥
L2([y∗−3δ,y∗+3δ]) δ−1/2

+
∑

α∈{0,1}

∥
∥
∥
∥(δ ∧ |k|−1)5/4

(

|y − y∗| ∧ 1

|k|
)

∂2λψk(y, λ)

∥
∥
∥
∥
L∞([0,1]\[y∗−3δ,y∗+3δ]))

� |k|5/2∥∥ω0k
∥
∥
H3
k (I ). (6.21)

Proof Denote for k ∈ Z\{0}, λ ∈ �δ0\{b(y∗)}, ι ∈ {±}, 0 < ε < min{|λ − b(y∗)|, ε0} and
y ∈ I ,

hι
k,ε(z, λ; 4) := − 2b′′(z)

(b(z) − λ − i ιε)2
ϕδ(z)∂λφ

ι
k,ε(z, λ),

hι
k,ε(z, λ; 5) = − 2b′′(z)

(b(z) − λ − i ιε)3
ϕδ(z)φ

ι
k,ε(z, λ),

hι
k,ε(z, λ; 6) := − b′′(z)

(b(z) − λ − i ιε)2
(1 − ϕδ(z))∂λφ

ι
k,ε(z, λ), (6.22)

hι
k,ε(z, λ; 7) = − 2b′′(z)

(b(z) − λ − i ιε)3
(1 − ϕδ(z))φ

ι
k,ε(z, λ),

hι
k,ε(z, λ; 8) := ∂2λg

ι
k,ε(z, λ).

Define for k ∈ Z\{0}, λ ∈ �δ0\{b(y∗)}, ι ∈ {±}, 0 < ε < min{|λ − b(y∗)|, ε0} and z ∈ I ,

∂2λφι
k,ε(y, λ) := φι

k,ε(y, λ; 2) +
8∑

j=4

∫ 1

0
Gk(y, z; λ + i ιε)hι

k,ε(z, λ; j) dz

−
8∑

j=4

T ∗
k (λ + i ιε)

∫ 1

0
Gk(y, z; λ + i ιε)hι

k,ε(z, λ; j) dz. (6.23)

It follows from (6.19) that φι
k,ε(y, λ; 2) satisfies for y ∈ I ,

φι
k,ε(y, λ; 2) + T ∗

k (λ + i ιε)φι
k,ε(y, λ; 2)

=
8∑

j=4

[
T ∗
k (λ + i ιε)

]2
∫ 1

0
Gk(y, z; λ + i ιε)hι

k,ε(z, λ; j) dz. (6.24)

It follows from Lemma 6.2 and Lemma 3.1 that for j ∈ {6, 7, 8}
∥
∥
∥
∥
[
T ∗
k (λ + iε)

]2
∫ 1

0
Gk(y, z; λ + i ιε)hι

k,ε(z, λ; j) dz
∥
∥
∥
∥
XN ,�k

� (δ ∧ |k|−1)−4|k|5/2‖ω0k‖H3
k (I ).

(6.25)
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Using integration by parts argument similar to (4.17)–(4.18), we have also for j ∈ {4, 5},
∥
∥
∥
∥
[
T ∗
k (λ + iε)

]2
∫ 1

0
Gk(y, z; λ + i ιε)hι

k,ε(z, λ; j) dz
∥
∥
∥
∥
XN ,�k

� (δ ∧ |k|−1)−4|k|5/2‖ω0k‖H3
k (I ).

(6.26)
It follows from (6.22)–(6.26) and Lemma 4.4 that for λ ∈ �δ0\{b(y∗)}, ι ∈ {±}, 0 < ε <

min{|λ − b(y∗)|, ε0},
∥
∥φι

k,ε(y, λ; 2)∥∥
XN ,�k

� (δ ∧ |k|−1)−4|k|5/2 ‖ω0k‖H1
k (I ) .

Using (6.19), we get that for y ∈ I ,

[

k2 − ∂2y + b′′(y)
b(y) − λ + iε

] (
∂2λφ+

k,ε(y, λ) − ∂2λφ−
k,ε(y, λ)

)

=
8∑

j=4

[
h+
k,ε(y, λ; j) − h−

k,ε(y, λ; j)
]
.

Denoting D2φk,ε(y, λ), h ∈ I , λ ∈ �δ0\{b(y∗)}, as the solution to

[

k2 − ∂2y + b′′(y)
b(y) − λ + i ιε

]

D2φk,ε(y, λ) =
5∑

j=4

[
h+
k,ε(y, λ; j) − h−

k,ε(y, λ; j)
]

(6.27)

for y ∈ I with zero Dirichlet boundary condition.
We note the identity that for y ∈ I , λ ∈ �δ0\{b(y∗)},

∂2λψk(y, λ) = lim
ε→0+ D2φk,ε(y, λ).

We can reformulate (6.27) as the integral equation for y ∈ I

D2φk,ε(y, λ) + T ∗
k (λ + iε)D2φk,ε(y, λ)

=
∫ 1

0
Gk(y, z; λ + iε)ϕδ(z)

5∑

j=4

[
h+
k,ε(z, λ; j) − h−

k,ε(z, λ; j)
]
dz := R∗

k,ε(y, λ). (6.28)

We can write for λ ∈ �δ0\{b(y∗)}, 0 < ε < min{|λ − b(y∗)|, ε0}, y ∈ I ,

D2φk,ε(y, λ) := D2φk,ε(y, λ; 2) + R∗
k,ε(y, λ) − T ∗

k (λ + iε)R∗
k,ε(y, λ). (6.29)

Then D2φk,ε(y, λ; 2) satisfies for y ∈ I , λ ∈ �δ0\{b(y∗)},

D2φk,ε(y, λ; 2) + T ∗
k (λ + iε)D2φk,ε(y, λ; 2) = [

T ∗
k (λ + iε)

]2
R∗
k,ε(y, λ). (6.30)

The desired bounds (6.21) follow from (6.28)–(6.30), and Lemma 3.2 with X = XL,�k , using
also the bound

∥
∥
∥
[
T ∗
k (λ + iε)

]2
R∗
k,ε(·, λ)

∥
∥
∥
XL,�k

�
(

δ ∧ 1

|k|
)−4

|k|5/2‖ω0k‖H3
k (I ).

��
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7 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We can assume that t ≥ 1. We first give the proof of
(1.3)–(1.4). Using the representation formula (2.4), we have

ψk(t, y) = 1

2π i
lim

ε→0+

∫

�

e−ikλt
[
ψ+
k,ε(y, λ) − ψ−

k,ε(y, λ)
]
dλ

= − 1

2π ik2t2
lim

ε→0+

∫

�

e−ikλt
[
∂2λψ+

k,ε(y, λ) − ∂2λψ−
k,ε(y, λ)

]
dλ.

Fix �∗ ∈ C∞
0 (�δ0) with �∗ ≡ 1 on �2δ0/3. We can decompose for t ≥ 1, y ∈ [0, 1],

ψk(t, y) := ψ1
k (t, y) + ψ2

k (t, y),

where

ψ1
k (t, y) := − 1

2π ik2t2
lim

ε→0+

∫

�

e−ikλt (1 − �∗(λ))
[
∂2λψι

k,ε(y, λ) − ∂2λψ−
k,ε(y, λ)

]
dλ,

ψ2
k (t, y) := − 1

2π ik2t2
lim

ε→0+

∫

�

e−ikλt�∗(λ)
[
∂2λψι

k,ε(y, λ) − ∂2λψ−
k,ε(y, λ)

]
dλ.

For (1.3), it suffices to prove that for σ ∈ {1, 2}, k ∈ Z\{0} and t ≥ 1,

∥
∥ψσ

k (t, ·)∥∥L2([0,1]) � |k|3
t2

‖ω0k‖H3
k ([0,1]). (7.1)

The case σ = 1 in (7.1) corresponding to the non-degenerate case is analogous to the case
of monotonic shear flows, see [15], and follow from Lemmas 5.1–5.3. We focus on the main
new case σ = 2 in (7.1). Denote for k ∈ Z\{0},

Mk := |k|5/2‖ω0k‖H3
k ([0,1]).

Ourmain tools are Lemmas 6.1, 6.2, and 6.3,which imply the following bounds for y ∈ [0, 1],
λ ∈ �δ0 .

– If |λ − b(y∗)|1/2 < |y − y∗|/20, then
|ψk(y, λ)| �

(
min

{|λ − b(y∗)|1/2, |k|−1})11/4 (|y − y∗|−1 + |k|)Mk,

|∂2λψk(y, λ)| �
(
min

{|λ − b(y∗)|1/2, |k|−1})−5/4
(|y − y∗|−1 + |k|)Mk;

(7.2)

– If |y − y∗|/20 < |λ − b(y∗)|1/2 < 20|y − y∗|, then
|ψk(y, λ)| �

(
min

{|λ − b(y∗)|1/2, |k|−1})5/4 |λ − b(y∗)|1/4Mk,

|ψk(y, λ) − ψk(y, b(y))| � |λ − b(y)|1/2|λ − b(y∗)|3/8Mk,
∥
∥∂2λψk(·, λ) − �2(·, λ)

∥
∥
L2(|y−y∗|≈|λ−b(y∗)|1/2)

� (|λ − b(y∗)|−1/2 + |k|)9/4|λ − b(y∗)|1/4Mk;

(7.3)

– If |λ − b(y∗)|1/2 > 20|y − y∗|, then
|ψk(y, λ)| � |λ − b(y∗)|1/4

(
min

{|λ − b(y∗)|1/2, |k|−1})5/4 Mk,
∥
∥∂2λψk(·, λ) − �2(·, λ)

∥
∥
L2(|y−y∗|<|λ−b(y∗)|1/2/20)

� (|λ − b(y∗)|−1/2 + |k|)9/4|λ − b(y∗)|1/4Mk .

(7.4)
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It follows from (7.2)–(7.4) that for y ∈ [0, 1], t ≥ 1,
∣
∣
∣
∣

∫

R

e−ikλt�∗(λ)�2(y, λ)dλ

∣
∣
∣
∣ � |y − y∗|−1/4 max

{
1, |k|1/2|y − y∗|1/2

}
Mk, (7.5)

and, by considering the cases |λ − b(y∗)| � |y − y∗|2, |λ − b(y∗)| ≈ |y − y∗|2 and
|λ − b(y∗)| � |y − y∗|2, also that for y ∈ [0, 1], t ≥ 1,

∥
∥
∥
∥

∫

R

e−ikλt�∗(λ)
[
∂2λψk(y, λ) − �2(y, λ)

]
dλ

∥
∥
∥
∥
L2([0,1])

� |k|9/4Mk . (7.6)

The desired bound (7.1) for σ = 2 follows from (7.5)–(7.6).
The proof of (1.4) is similar to the proof of (1.3), using Lemma 6.1 and Lemma 6.2.
We now turn to the proof of the depletion bounds (1.5). Assume that k ∈ Z\{0}. Applying

−k2 + ∂2y to ψk(t, y) in (2.4), and using (2.5), we get that for y ∈ [0, 1], t ≥ 1,

ωk(t, y) = ω∗
k (t, y) + ω∗∗

k (t, y),

where

ω∗
k (t, y) := 1

2π i
lim

ε→0+

∫

�

e−ikλt (1 − �∗(y))

×
[
b′′(y)ψ+

k,ε(y, λ) − ω0k(y)

b(y) − λ + iε
− b′′(y)ψ−

k,ε(y, λ) − ω0k(y)

b(y) − λ − iε

]

dλ,

ω∗∗
k (t, y) := 1

2π i
lim

ε→0+

∫

�

e−ikλt�∗(y)

×
[
b′′(y)ψ+

k,ε(y, λ) − ω0k(y)

b(y) − λ + iε
− b′′(y)ψ−

k,ε(y, λ) − ω0k(y)

b(y) − λ − iε

]

dλ.

We have the bound for t ≥ 1,
∥
∥ω∗

k (t, y)
∥
∥
L∞([0,1]) � |k|2Mk .

For |y − y∗| < δ0/10, t ≥ 1, since (b(y) − λ + i ιε) with ι ∈ {±} is not singular in this case,
we have in addition by integration by parts that

|ω∗
k (t, y)| � |k|2 1

t
Mk .

We now turn to ω∗∗
k (t, y). Using (6.1), we can write for y ∈ [0, 1], t ≥ 1,

2π i ω∗∗
k (t, y) = lim

ε→0+

∫

R

e−ikλt�∗(λ)

×
[

φ+
k,ε(y, λ) − (1 − �(y))ω0k(y)

b(y) − λ + iε
− φ−

k,ε(y, λ) − (1 − �(y))ω0k(y)

b(y) − λ − iε

]

dλ

= lim
ε→0+

∫

R

e−ikλt�∗(λ)

[
φ+
k,ε(y, λ)

b(y) − λ + iε
− φ−

k,ε(y, λ)

b(y) − λ − iε

]

dλ + Wk(t, y),

where Wk(t, y) satisfies the bound for t ≥ 1,

‖Wk(t, ·)‖L∞([0,1]) � t−1Mk, (7.7)
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which follows from simple integration by parts argument.We decompose for y ∈ [0, 1]\{y∗},

ω∗∗
k (t, y) − Wk(t, y)

2π i

= 1

2π i
lim

ε→0+

∫

R

e−ikλt�∗(λ)

[
ψk(y, λ)

b(y) − λ + iε

]

dλ

+ 1

2π i
lim

ε→0+

∫

R

e−ikλt�∗(λ)φ−
k,ε(y, λ)

[
1

b(y) − λ + iε
− 1

b(y) − λ − iε

]

dλ.

It follows from (7.2)–(7.4) that
∣
∣
∣
∣
1

2π i
lim

ε→0+

∫

R

e−ikλt�∗(λ)φ−
k,ε(y, λ)

[
1

b(y) − λ + iε
− 1

b(y) − λ − iε

]

dλ

∣
∣
∣
∣ � |y − y∗|7/4Mk .

(7.8)
For γ ∈ (1,∞) to be fixed below, by considering the three ranges (I) |λ−b(y∗)| � |y− y∗|2,
(II) |λ − b(y∗)| ≥ γ |y − y∗|2, and (III) |y − y∗|2 � |λ − b(y∗)| < γ |y − y∗|2, and using
Lemma 6.2 and Lemma 6.3, we get that

∣
∣
∣
∣
1

2π i
lim

ε→0+

∫

R

e−ikλt�∗(y)
[

ψk(y, λ)

b(y) − λ + iε

]

dλ

∣
∣
∣
∣

�
[|y − y∗|7/4

(
1 + |k|1/2|y − y∗|1/2

)

+ 1

|k|t
(|k|1/2 + γ −1/8|y − y∗|−1/4) + γ 7/8|y − y∗|7/4

]

Mk .

In the above, we used integration by part to get decay in t in range (II). Optimizing in γ , we
get that for t ≥ 1,

(i) if t |y − y∗|2 � 1,
∣
∣
∣
∣
1

2π i
lim

ε→0+

∫

R

e−ikλt�∗(y)
[

ψk(y, λ)

b(y) − λ + iε

]

dλ

∣
∣
∣
∣

�
[
t−1 + |k|1/2|y − y∗|7/4 + t−7/8] . (7.9)

(ii) if t |y − y∗|2 � 1,
∣
∣
∣
∣
1

2π i
lim

ε→0+

∫

R

e−ikλt�∗(y)
[

ψk(y, λ)

b(y) − λ + iε

]

dλ

∣
∣
∣
∣

�
[

|y − y∗|7/4
(
1 + |k|1/2|y − y∗|1/2

) + 1

|k|1/2t7/8 + |y − y∗|7/4
]

Mk . (7.10)

The desired bounds (7.7), (7.8), (7.9)–(7.10). Theorem 1.2 is now proved.
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