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Abstract. We establish linearized well-posedness of the Triple-Deck system in Gevrey—% regularity in the tangential variable,
under concavity assumptions on the background flow. Due to the recent result (Dietert and Gerard-Varet in SIAM J
Math Anal, 2021), one cannot expect a generic improvement of the result of Iyer and Vicol (Commun Pure Appl Math
74(8):1641-1684, 2021) to a weaker regularity class than real analyticity. Our approach exploits two ingredients, through
an analysis of space-time modes on the Fourier-Laplace side: (i) stability estimates at the vorticity level, that involve the
concavity assumption and a subtle iterative scheme adapted from Gerard-Varet et al. (Optimal Prandtl expansion around
concave boundary layer, 2020. arXiv:2005.05022) (ii) smoothing properties of the Benjamin—Ono like equation satisfied by
the Triple-Deck flow at infinity. Interestingly, our treatment of the vorticity equation also adapts to the so-called hydrostatic
Navier—Stokes equations: we show for this system a similar Gevrey—% linear well-posedness result for concave data, improving
at the linear level the recent work (Gérard-Varet et al. in Anal PDE 13(5):1417-1455, 2020).

1. Introduction

In this article we are concerned with the wellposedness properties of the Triple-Deck equations set on
(x,y) € R x Ry:

Owu + udyu + voyu — aju = —0up, (1.1a)
Ozu~+ Oyv =0, (1.1b)
Oyp=0 (1.1¢c)
which are supplemented with the boundary conditions
[, v]|y=0 = 0, (1.2a)
lim (u —y) = A(t, z), (1.2b)
Y—00
_lirin (u—y) =0, (1.2¢)
and an initial datum
ult=0 = Y + Uinit (7, Y). (1.3)

The key coupling inherent to the Triple-Deck system is the relation that links A(t, ) to the pressure (the
so called “pressure-displacement” relation):

1 O Az, t)
p(t,z) = —p-. /R ﬁdx = |0y A(z, t). (1.4)

The Triple-Deck equations, (1.1)—(1.3), are a refinement of the classical Prandtl system, which arise
in the study of the zero-viscosity limit of the Navier—Stokes equations in the vicinity of a boundary.
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Indeed, due to the generic mismatch between the no-slip boundary condition imposed for the Navier—
Stokes system (let U, = (uy,v,) be the Navier—Stokes velocity field with viscosity equal to v > 0) and the
no-penetration condition imposed for Euler (let Ug = (ug,vg) be the Euler velocity field), one cannot
expect the inviscid limit U, — Ug to hold, at least in sufficiently strong topologies (for instance, L> in
the variable normal to the boundary).

Due to this mismatch, characterizing the inviscid limit typically requires matched asymptotic expan-
sions, of the type first proposed by Prandtl in 1904:

U(V)(tazvy) ~ [uEva:I (t,l’,Y), Y> V1/2a
~ up, Vvup] (t,z,v™ %Y, v <uY/2 (1.5)

The leading order vector-field, [up,/vvp] appearing in the expansion above is called the Prandtl bound-
ary layer, and can be shown to obey the following limiting system:

Oup + upOyup + vpOyup + Ozpp — 3§uP = —0,pg(t,x,0), (1.6a)
Oyup + ay’Up =0, (1.6b)
aypp =0. (1.60)
with boundary conditions
[uPa 'UPHy:O = [01 0]7 (173')
lim up = ug(t,z,0), (1.7b)
y—00
together with an initial datum
uplt=0 = Up,init(T,y)- (1.8)

The Prandtl system, (1.6)—(1.8) is classical in fluid dynamics, and has been the source of intense
investigation from the mathematical fluid dynamics point of view. As the Prandtl system itself is not
the main focus of study in this article, we refer to the (non-exhaustive) list of references [3,5,8,10,13—
15,17,18,20,24,25,30].

Deriving the Prandtl system from the Navier—Stokes equations requires the formal asymptotic expan-
sion (1.5), which relies itself implicitly on a few hypotheses in order to be “valid” (though, as mentioned
above, the mathematical validity has only recently been proven/disproven). One such hypothesis is the
relative smallness of tangential derivatives of U, , compared to normal derivatives. However, in the vicinity
of boundary layer separation, the flow is anticipated to form large tangential gradients which therefore
falls outside the regime of the standard Prandtl ansatz, (1.5).

To account for this, several reduced models have been derived which incorporate the small tangen-
tial scales that are inherently present near the separation point. One famous such model is the Triple-
Deck, (1.1)—(1.3). This system was introduced by Lighthill, [21], Stewartson, [29], and several other
fluid-dynamicists in the twentieth century. It is useful to keep in mind Fig. 1 which summarizes the scales
used to derive the equations. In this figure, R corresponds to the Reynolds number, »—!, in the Navier—
Stokes equations. The Triple-Deck equations (1.1)—(1.2) are formally obtained as the leading order (in v)
behavior of the “lower deck”. We refer the reader to Iyer—Vicol, [16] for a detailed derivation.

Comparing the Triple-Deck model to the classical Prandtl equation, we see several new mathematical
features that are observed to be true near the separation point. Chief among these is (1.4), which,
physically, represents the velocity at y = oo entering the fluid domain. Formally, substituting (1.4)
into the momentum equation, (1.1), we observe that the momentum equation is forced by —9,|0,|A =
—0,|0z|u(t, x,00), which is a loss of two tangential derivatives and therefore a full derivative too singular
to be consistent with even real-analytic wellposedness. Nevertheless, exploiting L? anti-symmetry of the
operator 0,|0;|, Iyer—Vicol established in [16] that the Triple-Deck system is wellposed in real-analytic
spaces. Given this result, a natural question is to weaken the regularity required for wellposedness.
However, a recent result of [4] shows that the Triple-Deck is generically illposed in any Gevrey space
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below real-analyticity, thereby rendering the real-analytic result [16] as essentially sharp. See also [2] for
ill-posedness results in the same spirit.

As is standard for many wellposedness/illposedness results, the work of [4] considers the linearized
Triple-Deck equations around a smooth shear flow, Vi = Vi(y) = y + Us(y), which reads

Owu + ViOgu + v,V — agu = —0,|0: 4], (1.9a)
Ozu+ 0yv =0, (1.9b)
and with boundary and initial conditions

[u, v]]y=0 = 0, (1.10a)
lim u = A(t,z), (1.10b)

y—oo
lim u =0, (1.10¢)

r—+oo
ult=0 = Uinit- (1.104d)

In this paper, we show that under concavity assumptions on the shear flow U,(y), the illposedness
mechanism from [4] no longer holds, and in fact the result of [16] can be improved to Gevrey-3. In
particular, we will assume the following on our background shear flow: U, is bounded, in C?(R ), and

U <0, (1.11a)
sup(y)°|UY| < oo, (1.11b)
y
U;//
s2p| 07 | < o0, (1.11¢)
U(0) = (1.11d)

Remark 1.1. Tt will be convenient to choose the normalization
Us(o0) =1, (1.12)

though this is simply to alleviate some notation and remove factors of Us(co) appearing in the analysis.
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Our main result is as follows.

Theorem 1. Assume the shear flow Vi(y) = y+Us(y) is given such that U, satisfies (1.11)~(1.12). Assume
that the initial data has Gevrey 3/2 regularity in x and Sobolev reqularity in y, namely that for some
co >0,

2/3
lee!® (1 + 4)? Oy tinie | L2 Ry ) < +00

together with the Dirichlet condition Winit|y=0 = 0. Then, system (1.9)—(1.10) has a unique local in time
solution that obeys the following estimate, for some constants 8,C,s > 0, and for all time t < %‘)

co— 2/3 c 2/3 s
||€( 0=A1)10x| (1+ y)zﬁyu(t, N irerxry) < Clle 01| (1410:])%(1 + y)Bainthm(Rng (1.13)

The proof will be outlined in the next section. It relies on delicate estimates on the couple (w, A),
where w = Jyu is an analogue of the vorticity adapted to this anistropic model. One key aspect is the
derivation of estimates on w, given A. This is where the concavity assumption plays a role. The stabilizing
effect of concavity in inviscid flows has been well-known since the pioneering works of Lord Rayleigh,
and has been exploited in the proof of various mathematical stability results [1,11,24]. But associated
mathematical techniques do not easily transfer to viscous flows, due to vorticity creation at the boundary,
which is a potential source of other instabilities. To overcome this problem in the context of the linearized
Triple-Deck model, we derive estimates using an iterative scheme inspired from the work [7] on stability
of Prandtl solutions of the Navier—Stokes equations. The main ideas behind this scheme are explained in
Paragraph 2.2. Tts convergence requires Gevrey 3/2 regularity. Once the estimate for w is obtained, we
turn to the horizontal velocity at infinity A = A(¢, x). Here, we make a crucial use of the Benjamin-Ono
like equation satisfied by A. Distinguishing between several regions of the spectral plane (A, k) (after
Laplace transform in time, Fourier transform in ), we manage to obtain good resolvent estimates for the
linearized Triple-Deck model, from which Gevrey stability estimates follow.

Our scheme for the derivation of vorticity estimates has applications beyond the Triple-Deck model.
It notably applies to the study of the so-called hydrostatic Navier—Stokes equation, which stems from the
analysis of the usual Navier—Stokes equation in a narrow channel of width e:

i+ U -Vi—vAi+Vp=0, ze€R,z€(0,¢),
V-i=0, ze€T,ze(0,¢),

U] 5=0,e = 0.

In the case where v ~ €2, approximation

U~ (u(t,x,z/e),ev(t,x,z/e))
yields to the reduced model:

Ot + udzu + voyu — 8§u +0.,p=0, zeR,ye(0,1),
Oyp=0, xzeR,ye(0,1),
Ou+dyv=0, zeTye(0,1),

uly=0,1 = V|y=0,1 = 0. (1.14)

This model shares features with the Triple-Deck model. For general data, one can not expect more
than local analytic well-posedness, due to a strong inviscid instability mechanism identified in [27]. On
the contrary, under concavity (or convexity) of the initial data, it is known that the hydrostatic Euler
equation is well-posed in Sobolev regularity [23]. It is then natural to ask what remains of this improved
stability in the presence of diffusion, namely for system (1.14). A partial answer was brought very recently
in [9], where a local well-posedness result was achieved in Gevrey regularity, but with an exponent 8/7
close to 1 for technical reasons. See also [22,26] for related works.
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It turns out that adapting the methodology of the present paper, one can improve such result at the
linear level, by establishing Gevrey 3/2 well-posedness for the problem:
Ou + UgOpu + vU., —3§u—|—awp: 0, zeR,ye(0,1),
Oyp=0, zeR,ye(0,1),
Ou+0,v=0, zeR,ye(0,1),
Uly=0,1 = V|y=0,1 = 0. (1.15)

where Us = U, (y) is again a concave shear flow (convex shear flow would work as well). Namely, we have
the following result, very similar to Theorem 1:

Theorem 2. Assume that the shear flow Uy is smooth and strictly concave on [0,1]. Assume that the
initial data has Gevrey 3/2 reqularity in x and Sobolev regularity in y, namely that for some ¢y > 0,
2/3
eco12! Oyinit|| L2 ®x[0,1)) < +00
together with the conditions winit|y—o0,1 = 0, fol OzUinitdy = 0. Then, system (1.15) has a unique local in
time solution with initial data uin, that obeys the following estimate, for some constants 3,C,s > 0,
and for all time t < %’

co— 2/3 c 2/3 s
o BNTT0 u(t, ) L2 oy < Clle® ™ (1 4 10:])*Oythinie || 2 @ xjo.1) (1.16)

The proof of this theorem will be quickly explained in the last Sect. 7. It is very similar in spirit with
the analysis carried for the Triple-Deck, without difficulties coming from the coupling with the unknown

A.

We make a few remarks regarding the above results.

Remark 1.2. We focus in this article on the problem of local existence in Gevrey regularity. We leave the
study of global existence and asymptotic in time dynamics for future study. This is a very interesting
problem even the analytic context (see the long-time existence works [14], [25] in the Prandtl setting.)

Remark 1.8. The decay of the second derivative of the background shear flow, Us, (1.11b), and on 9yu;n
in Theorem 1 is assumed to be algebraic and is a fairly mild assumption. These appear to be required,
at least using our methodology, to control the several nonlocal operators that occur in our analysis (see
for example below, (2.1), (2.2)).

Remark 1.4. As for the algebraic loss (1+]0,|)® of the tangential derivative in Theorems 1 and 2, a close
look at our proof provides the upper bound s = 5. This value is certainly not optimal, while we do not
even know whether this additional loss of tangential derivative is essential or not.

2. Outline of the Proof

We explain here the main steps in the proof of Theorem 1. Due to the several averaging operators we
have in our analysis, we will introduce the following notations:

U= [Tw Ul / o (2.1)

vilim [ e = [ e vl - /ym /mw (22)
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2.1. (w, A) Decomposition

Our starting point is to decompose (1.9) into two coupled equations: one governing the vorticity, w := 9yu,
and one governing the trace at infinity A(¢,x). To derive the evolution governing A, we evaluate (1.9)
at y = oo, whereas to obtain the evolution governing w, we differentiate (1.9) with respect to y. In both
cases, we use the identity

Yy y oo y oo
v = —/ Uy = —/ (Am — / wz) = —yAz +/ / Wy = —yAz — Vy[ww] (23)
0 0 y’ 0 y’

We thus obtain the vorticity-Benjamin—Ono equation

Op A+ 0, A+ 0,10:|A = V]w,], (2.4a)
Ow + Vibpw — UlVywy] — 0w = yUl Ay, (2.4b)
Uw] = A. (2.4c)
Conversely, starting from a solution (w, A) of (2.4) with (w, A)|t=0 = (OyUinit, Uinit(x, 00)), it is easy to
check that the triplet (u,v, A), where u := foy w, v = — foy O, u satisfies (1.9)—(1.10). We insert here a

proof of this fact.
Lemma 2.1. Assume the tuple (w, A) satisfies (2.4). Then u := [ w satisfies (1.9)~(1.10).
Proof. The velocity u := foy w automatically satisfies u|y=9 = 0. By using the identity

Ay {0+ ViOyu + vV, — Opu} = Oy + ViOyw + 0V, — Ojw,
coupled with the identity (2.3), the equations (2.4b) and (2.4c) implies

Oyu+ ViOyu — (yAy + Vylwa)V] — 02u = C(t, z), (2.5a)

uly=o = 0, Uly=co = A (2.5b)

for an undetermined function C(¢, x). To determine C(t, z), we evaluate (2.5a) at y = oo, which produces
A+ 0, A = Vw,] = C(t,z) (2.6)

Upon invoking (2.4a), we deduce C(t,z) = —0,|0,|A. Inserting into (2.5a), we obtain (1.9a). O

In particular, evaluating equation (1.9a) at y = 0, we find
8yw|y:O = aw|81|A (27)

One can further remark that (2.4a)-(2.4b)—(2.7) is equivalent to (2.4). Indeed, we have just seen that
(2.4) implies the Neumann condition (2.7). Conversely, if (w, A) satisfies (2.4a)—(2.4b)—(2.7), then, still
defining u := foy w, we obtain easily (1.9a), and evaluating this equation at y = oco:

U [w] + OxUw] + 05|05 A = V]wy]

so that combining with (2.4a), we find 0;(U[w] — A) + 9, (U[w] — A) = 0. This implies (2.4c) thanks to
the compatibility condition on the initial data for (w, A4).

We now take formally the Laplace transform in time and Fourier transform in z of system (2.4). We
find

(A + ik + ik|k) A = ik VO] + Aiir, (2.8a)
A+ iRV — kU V(@] — 050 = ikUY (y)y A + Qin, (2.8b)
U] = A, (2.8¢)

involving

(dju A) = (dj(y)a A) = Et—»)\]:a:ﬁk(w(ﬁy)a A)7
(Dinits Ainit) = @Qinit (), Ainit) 1= FokWinits Ainit)

) Birkhauser
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We denote

H:

{(@,4) € IRy, (1 4+ y)*dy) x R, |, (2.9)

equipped with the norm
5 A 3112 112\ /2
1@ Al = (I +9)°203ea,y +AP)
Our key result will be the following:

Proposition 1. There exists absolute positive constants K., ko and M, such that for all |k| > ko, all A
with R(N) > K. |k|*/3, and all data (Giie, Ainit) € H, system (2.8a)~(2.8b)~(2.8¢) has a unique solution
satisfying

1@, Dllzr < 1R A @imies Ainie) -

Most of the paper is devoted to the proof of this proposition. The main steps of this proof, involving
an iteration scheme inspired from [7], will be given in the next two paragraphs. Well-posedness of the
systems involved at each step of the iteration is shown in Sects. 3 and 4. Checking the convergence of the
iteration is done in Sect. 5. Eventually, we will explain in Sect. 6 how to complete Proposition 1 to obtain
Theorem 1.

2.2. Hydrostatic & Boundary Layer Iteration

Here, as well as in Sects. 3, 4 and 5, we will focus on the system (2.8a)-(2.8b)—(2.8c). For a significant part
of the analysis, we will rely on the observation that (2.8a) on one hand and (2.8b)—(2.8¢) on the other

hand can be essentially decoupled. Indeed, for any given A € C the solution & = L:J[A} to the system
(2.8b)—(2.8¢) is splitted as follows:

w [A} = A(D + Winhom, (210)
where

A+ ikVy)w — ikUV, @] — 0w = ikU. (y)y,

and
(/\ + Z.k"/s)‘/Uinhom - ZkU;/Vy [winhom] - 8§winhom = Winit,
Z/l[wmhom] =0. (2.12)

The point here is that the system (2.11)~(2.12) is independent of A. Therefore, once this system is
uniquely solved, the complex number A is determined by solving the equation

(>\ + Zk + lk‘k| - ZkV[(D])A - ikv[winhmn] + Ainib (213)

Since each of A+ ik + ik|k| — ikV[®], ikV|[winhom]| + At is independent of fl, in order to show the unique
solvability of A we only need to consider the a priori estimate for the solution to (2.13), by using the
fact that (@, Winhom) solves the system (2.11)-(2.12). The derivation of the a priori estimate of A is given
later in Proposition 3.

T Birkhauser
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2.2.1. Iteration for w. In this section, we explain the main strategy for the construction of the normalized
quantity @, solution of (2.11). This construction will work for R()) large enough, that is for () >
K. |k|?/3, |k| > ko, for some absolute constants K, kg. We plan to construct @ in two pieces. The first one
accounts for the (singular in k) forcing ikU” (y)y, but has a homogeneous Neumann condition instead of
mean 1. It is called the hydrostatic part and denoted wy, as stability estimates for this part take their
inspiration from works on hydrostatic Euler: see [1,23], as well as [11]. The second piece has (essentially)
no forcing, but corrects the mean. This piece is called the boundary layer part, and denoted wpr. Actually,
as will be seen below, we will not be able to correct the mean condition at once without creating some
error source term. This will require in turn to add an hydrostatic term, which will create an error in the
mean, and so on. Hence, both the hydrostatic and boundary layer parts will be given as infinite sums.
This idea of solving a fluid equation through an iteration has revealed fruitful in several recent papers,
notably around the analysis of Orr-Sommerfeld equations: see the pioneering work [12], as well as [6].
Our main source of inspiration here is [7]. More precisely, the idea is to construct @ under the form:

W =wy + wpL (2.14)
Y+ 3 w)
§=0 §=0
wH er(oz + Zw(]) + Z
=@+, 4+ wgm” ggﬂ). (2.15)

where the “tail” of both the expansions will be shown to be higher order. We delineate here the various

systems satisfied formally by w(] ) and wgz, j=0.

The first idea is to initialize the construction by solving the Neumann problem:
A+ ikV)wlD — kU, [0 — 02 = ikU? (y)y,
Byw W], = 0. (2.16)

This system will be shown to be well-posed for R()\) large enough in Sect. 4.
We then initialize the boundary layer construction by solving the system:

A+ ikVwly) — 82wi) =0,
U] =1-Ulwy], (2.17)

Well-posedness of this system will be shown in Sect. 3. Note that we got rid at this step of the stretching

term. This creates an error term —ikU.'V, [wg)%] which will be corrected by the next hydrostatic term

in the expansion. With this in mind, we deﬁne our j’th order hydrostatic term in the expansion (2.14)
(j > 1) as the solution of

A+ ikVo)wl) — kUL VW] — 02wl = kUL V, w8 V)]
Bywily=0 =0, (2.18)
and for the j’th order boundary layer term (j > 1):
A+ ikVo)wl) — 82wl) =0,
Ulwgy) = ~Ulwip)], (2.19)

We stress that this sequence of profiles (wg),wgz) can be expressed in terms of a sequence of parameters

and of two fixed functions. To see this, we introduce

A= — U (2.20)

) Birkhauser
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14 A =0
A=) TR (2.21)
Aj7 J =z 1

as well as the solution Qpgj, of
(A +ikVy)QpL — 0,01 =0,
UQpL] = 1. (2.22)
and the solution Fg of
(A +ikVy)Fy — kU Vy[Fy] — 3§FH = UV, [Qp1],
9y Frly=0 =0, (2.23)

These two systems will be shown to have solutions for ®(\) > K,|k|?/3 in Sects.3 and 4. Clearly, it
follows that

wg;_mm, j>0, (2.24)
W —ikN; o Fy,  j>1 (2.25)

and inserting this relation into the formulae for A;, we find
Njt1 = (—ikU[Fy))N;, thatis \; = (—ikU[Fg]) Xo, j>0. (2.26)

From these relations, we see that all profiles (wg),wg%) only depend on %(T{)7 Fy and Qpg;. Moreover,

as A; obeys a geometric progression, the convergence of the series will depend on whether the common
ratio (—ikU[Fy]) is less than 1, which will be examined in Sect. 5.

2.2.2. Iteration for w;,pom. We are led to perform a similar iteration to construct winnom, the solution
0 (2.12). We decompose as follows:

Winhom =WIH + WIB

—wIH-i-w Z —I—Z IB

—UJ?}_} + UJ(O) +w (tazl) +w (tazl) (227)
We will now describe the quantities appearing above.
At leading order, similarly to the previous paragraph, we want w( ) to solve

A+ ikVy)wlpy — kU Vy[win] — 020\ = winit,
dywrly—o = 0, (2.28)
(see Sect. 4 for well-posedness) and wﬁ)g) to solve
()\—l—sz)wIB 32 (O)—O
Ulwip) = ~Ulwiy) (2:29)
0) (0)]

Again, this construction of w}B creates an error —ikU.V,|w;p
We now define the higher order “tail” quantities. We define for j > 1,

(A +ikV)wiy — kU, [w¥] — 020 = kU Vw0 V), i>1
Bywily=0 = 0, (2.30)

and
A+ ikV,)wiy — 82wl = 0,
Ulw?] = ~Ulw)). (2.31)

T Birkhauser
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We once again propose

A= U], 50, (2.32)
Given these definitions, we have
Wi =AQpL,  j 20 (2.33)
W =ikN 1 Fy,  j>1 (2.34)
where again,
Xjs1 = (—ikU[Fy));, thatis A; = (—ikU[Fg])’ e, j > 0. (2.35)

2.3. Gevrey Stability Estimate

We will be working under the hypotheses
k] > ko, (2.36)
RN >K,|k|5. (2.37)

where K, kg >> 1 relative to universal constants. We introduce the following weight, which will be used
throughout our analysis:

G=UL =R 72P g7 (2.38)
We first state the following elementary properties of the weight U, ;’ K

Lemma 2.2. The weight (2.38) satisfies the following upper and lower bounds:

< k|3 (14 y)° (2.39)

(1+y)° < <
~Uly

Proof. For the upper bound, we have
1 1 1 2
= < = [k[3 (1 +y)°.
Ul U+ k3L +y) 0 T RS (14 y)°
For the lower bound, we have the general elementary inequality for a,b > 0:
1 1

> .
a+b ~ 2max{a,b}

Given this, the lower bound will follow from the following upper bound
max{~UL, [F™3(1+9) "} £ (1+9) ™",
upon invoking our decay assumption, (1.11b). O

As a result of the formal analysis of the two previous paragraphs, and of the rigorous analysis of
Sects. 3-5, we state our main proposition on the structure of @[A] from (2.10).

Proposition 2. Under (2.36)~(2.37), for any constant A, there is a unique solution d)[fl] of (2.8b)—(2.8c¢)
that can be decomposed in the following manner:

&[A] = ANQpr + Awly + Al ™ + winhom, (2.40)

where A\ € C, and where the functions Qpr, wg),wgam,wmmm € L2((1+y)3R,) were introduced in the

previous paragraph. Moreover, they satisfy the following bounds:
|K|
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V[QsLl] Nl)}'é, (2.41D)

VPl Sgis (2.410)
»m@?“us%(ﬁ&r(r+ggg, (2.410)
Vil S5 K100+l (2.41¢)

This proposition will be proven in Sect. 5. Given this structural decomposition of & = w[A], (2.40),
we can prove

Proposition 3. Under (2.36)—(2.37), the equation (2.8a), where & = & [121] was introduced in Proposition 2
has a unique solution A satisfying:

1 o
—— A% 2.42
ng ¢l (2.42)

Proof. For brevity, we focus on the a priori estimate. We rewrite (2.8a) upon recalling the definition of
V in (2.1) and invoking the structural decomposition (2.40) as

A+ ik + ik| k) A =ik Vo] + A
—ikMAV[QpL] + ikAV[WW] + ik AV + ik V[winhom] + Ainit- (2.43)

A S+ y) winillZs +

We distinguish between two regimes in the (A, k) space.
Case 1: |\ + ik|k|| > |k|? In this case, we can simply divide both sides of (2.43) by |\ + ik|k||, and take
the modulus. We obtain as a result

i |k|>\* k| 0)
Al <[ —————|V[Q +—_—

L

(tail) A
X+ ikl Vil ”)' |

\kl 1 2

+ V 1mhom + 7. Aznz

s (tml 2 1 1,2
Sl Q A ITAL inhom o) Aim’
S (vl + VIR + TVt ) A1+ o Vissanon] + 5l Aival

|| 1 1 || 1
< 1 1 A inhom — | A 2.44
N(|k||/\\1/2< +3‘E(/\)>+§R(/\)+§R(>\)|)\|1/2( TRx )))' ‘+|k||v[°" homl| + g5 [ Aimarl (244)
m(\,k)

Upon invoking (2.36) and (2.37), we bound the Fourier-Laplace multiplier, m(\, k), appearing above via

1 1 1 |k|
AE) S
OB STENE TROAE TR T RO
1 1 1
< < . 2.45
ST T RR) S H (245)
Inserting back into (2.44), we obtain
| | ~ |k‘2/3 |A| + 77 |]€‘ |V[wlnh0m]| + 5 2 |Ainit|7
which closes the estimate for A7 and implies that
A'S = Vlrmom]l + | Ainit] 2.46
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We now use the bound (2.41e) to control the w;npom contribution:

1

Al <
A R

1.
B2+ y) winie 22 + 72 | Ainit]
1 1 -
Sw\\(l + y)gwithLg + ﬁ|Aim‘t‘

Case 2: |\ + ik|k|| < 3|k|> This case is more delicate and relies upon a cancellation of the cross term
between A and the leading order hydrostatic quantity ng). To identify this cancellation, we introduce
fu = Awg). We write (2.43) together with the equation on fr, which reads

(A + ik + ik|k) A = ikV[fu] + ikAAV[QpL] + ikAVWE D] + ikVwinhom] + Ainit,  (2.47a)
A+ ikVy) fir — 02 fur =ikUY (y)yA + ikUV, | fu] (2.47D)

We take the (complex) scalar product of equation (2.47a) by A and of (2.47b) by ﬁfH, where U, is

defined in (2.38) (the use of this weight is explained in Sect.4). We integrate (2.47b)’by parts in y, and
subsequently take the real part. This produces the identity

RN AP” + %()‘)H(_U;k)l/ng%? + IIW%‘HII%Z
= R(ikVIfulA - (ikyA, fu)) + %(ikWyfl, ) + R |(U:|)2 By fu. frr) — R(kV, [ fu), frr)
+ %(kukU_kVy [fa), i) + REENVIQBL]AR) + REEVWED)AR) + R(EV [Winhom] A)
+ R(AimiA). (2.48)

We will now extract a cancellation from the first two terms on the right-hand side of (2.48). An integration
by parts gives

R(iKVLf)A ~ {ikyA, fur)) =R(V(Ful A + (ikyA, 0,04, fu))
(z‘kV[ Fr)A — (ikA,U, [fH]>)

R
m(im fulA+ ikAV[E])
07

(2.49)

where we have used for any two complex numbers a,b € C, the elementary identity R(ik(ab + @b)) = 0.
We then have the bound

" !

. Us s/ N N f
(ih =y A, )| < W[ (U7 = U2 29A, )|

Uly
1 1 fu
< |Ek|2/3 Alll—2H2
> | ‘ || (1 + y) ||L2| | || (_U;:k)1/2 ||L2

; fr
SIEPP (AP + I\Wlliz)

The next three terms can be treated exactly as in the proof of Lemma 4.1, Sect. 4, taking f = fg. One
keypoint is the cancellation

RkVy[ful, fu) = 0. (2.50)
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We find (see Lemma 4.1 for all necessary details):

(U// )/ 1 1 1
\<(U,, 0 )| - sl gmettlis S gyl

k(U = UZy)
Us

Volfal f)| S WP gy F
s,k

Inserting into (2.48), we get

N 1 1 1
RNVIAP + gce()\)HW}CHHLZ +5 ||Wa y frll72

S RPPLAR + (KPP + 1)) fall2z + REEAV[QpL]A?) + RERVWE]A]2)

1
(=U )2
+ ROV [Winnom] A) + R(Aimi A).

69

By conditions (2.36)—(2.37), the first two terms at the right-hand side can be absorbed for K, large

enough, resulting in

ROVIAP + %(AHmf)men%z + ||Wayfzf|%z
S REENVIQBL]AR) + REEVWED)AR) + REVWinhom] A) + R(AimitA). (2.51)
We now bound the right-hand side of (2.51). First, we have
RGNV AR Sl Vel AR S 0 (14 LY 4 (2.52)
Al R(A)

where we have invoked our bounds (2.41a) and (2.41b).
Second, we have by (2.41d):

K2 L

R(ikV[w DA < 1+ 2 2.53
REVIL AP S sy (U o) 4] (253)
where we have invoked (2.41d)
Injecting back into (2.51), we obtain
. 1 1
ROVIA]? + 8?()\)HchHH%z + \\Wanyniz
|| k? k| 02 , 7 i 7
< + — + = ) |A]” + [ROEV | winhom|A)| + |R(Ainit A)|- 2.54
(307 * sogirs + woooep) AP+ ROV i D+ R A (259
n(\k)
To bound the Fourier-Laplace multiplier, n(\, k), we have to observe that
1 1 1
A+ ikJH] < IR = SO > SRR = 1A > oIk, (2.55)
Using this observation, we find that
|| k?
k M
I IV TV

<( S S
TARD) K3 PR(N) K2

)m(x) < RN
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using (2.36) and (2.37). Therefore, these terms can be absorbed to the left-hand side of (2.54). Doing so
produces the bound

. 1 1
RIAP + %(/\)”Wﬁ{”%z + ||W8ny||i2

< IR(ikV[winhom] A)| + [R(Asmi A)|. (2.56)
A standard Young’s inequality for products gives for a § > 0,

Cs
R(N)

ik Y [winhom] A| < SROV|A|? + k2 |V[winhom] |2

<EROVIAP + e 71+ )%
< SRMIAP + CIEP2((L + ) Ginae 172
while
i d] < SROVIAP + o A
R(A)
< SRNIAP + ClE|73] A |?
Hence,
AP S I+ 9)*wimiellFs + k12| Ainae|?
This concludes the proof of the proposition. ([

We can now conclude the proof of our main Proposition 1.

Proof of Proposition 1. Under the assumptions of Proposition 1, that are exactly (2.36)—(2.37), estimate
(2.42) holds:

A S 11+ ) winiell 22 + K172/ A
We now come back to the decomposition of @:
&= A(A0ps + 0 + i) + winhom- (2.57)

By the analysis performed in Sect. 3, notably formula (3.22), (3.2) and estimate (3.9), we have

- k
1045l 10+ 0%l + 10+ 5ol S N+ L S I+ 60 S A
(2.58)
By the analysis performed in Sect. 4, notably (4.11), we have
1 ||
1 3 (0) < (0) < < |k 1/3
1A +y)wy e S ||(_U;tk)1/2‘“H 2 S ) < k|

Using also (5.5), (5.3), and estimate (4.10), we get

ail
1+ 9)Pw i e S RN+ ) Frllze S el ol

k k| 1
<= (14 ) < p/s.
s &e(x)mm( ) S

Similarly, using decomposition (5.6), (5.4), (2.58), (4.12), we find

1
(A
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/4 |11/6 || L
||(1+y) Winhom| L2 < %( ) (|/\| + k77 + 14 ()\)l)\ll/2>”(_U;/,k)l/2wmlt”L2
|k| 1/4 1/6 |k| 3 -
A k 1 1 ini
< IkI_l/SIA\1/4||(1+y) wimtllm. (2.59)
0
Together with the estimate for A, ¢f. (2.41a) and the estimate (2.42) for A, we end up with

1@, A) i SIR2AM (10 + ) Gomiell 2z + 6122 A (2.60)

which yields the estimate of the proposition.

3. Construction of Qpy,

This section is devoted to the construction of Qpr,, solution to (2.22), under the assumptions (2.36)—(2.37).
We will achieve this Qg7 as a sum:

o0

Qpp = Z(g(j) + 20, (3.1)
§=0
where we initialize the iteration by defining:
EONy) = Are Y, = UEY). (32)

where A\/2 is the square root of A with positive real part. Notice that U [€ (0)] = 1. We now define, for
§ >0, the profiles 20) = ZU) (X k, y) through the following equation:

A+ ikVo)EV) — 9220 = —ikV,£W), (3.3a)
2@ |,—0 = 0. (3.3b)
(see below for well-posedness). We then define, for j > 1, the following “heat” profiles:
AU — 8§§(j) =0, (3.4a)
UED) = —uEU-1). (3.4b)
This equation admits explicit solutions
€0) = YE-DNEe A — YEUDJEO = o O] i1 (3.5)
Inserting this into (3.3a), we obtain that
20) = —q; 2O, j>1, (3.6)
where the profile Z(©) satisfies
A+ ikV)EO — 9220 = —ikV,¢©), (3.7a)
2O),—0 = 0. (3.7b)

Inserting (3.6) into the definition of a;, we obtain the relation
Vj > ]., a; = —0pQj_1, Qp = U[E(O)] (38)

From all these relations, we see that once the well-posedness of (3.7a)—(3.7b) will be shown, all terms
(¢U),20)) in the expansion (3.1) will be well-defined through formulae (3.2), (3.5) and (3.6), having
noticed that o; = ap(—ap)?. Moreover, the convergence of the sum in (3.1) will hold if |ag| < 1, which
will be shown to be true under (2.36)—(2.37).
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The well-posedness of (3.7a)—(3.7b) is settled in

Lemma 3.1. System (3.7a)~(3.7b) has a unique solution E(©) satisfying for all m > 0:

k2 k?

"ZON S e 9O S

—_
—
—

lly (3.9)

where the implicit constant in the above inequalities depends on m.

Proof. We just detail the a priori estimates, the construction of the solution being then classical. We will
make use of the fact that R(A/2) ~ |A|'/2. More precisely, if R(\) > 0, then

%(/\1/2) < ‘)\|1/2 < \/§§R()\1/2)

Indeed, the first inequality is trivial. For the second one, we write \'/2 = a 4 ib, a > 0, so that \ =
a? — b? + 2iab. Condition R(\) > 0 implies a > |b|, so that

Al < a? — 0% 4 2a |b| < 302 = 3R(AV/?)2.

We now take the (complex) scalar product of (3.7a) with y?™Z() and take the real part. This produces

ROy =N 72 + Iy 0,272 — m(2m — 1)|ly" =D, = —R(ikVE?, EDym). (3.10)

We estimate the right-hand side, using |V (y)| < ||[VY||oo ¥

= m ‘)‘|1/2HV/||00|]€| m —z me=
[(ik V.0, 20y2m)| < WH e | _pouseyy 2 ly™EO | 2
Clkl . mo
= W”y EO 2 (3.11)
RN 1= 0), m2 C?k?

< THH y" Iz + RN A2 (3.12)

Back to (3.10), we deduce from the previous inequalities:

me m—1lm k>
RNy :(0)Hi2 —m(2m —1)[ly 15(0)”%3 S W (3.13)
m — k m—~ m—1—

ly™0,Z 72 S Wﬂy Oz +mlly™"'ED)7.. (3.14)

To obtain (3.13) we simply drop the second term from the left-hand side of (3.10), apply (3.12), and use
the factor of 1 in (3.12) to absorb this contribution to the left-hand side. To obtain (3.14), we drop the
first term on the left-hand side of (3.10) (which is positive) which implies

ly™9,E @172 <m(2m — Dlly™EQNT; + R(ikVED, EOyPm)

Clk|

il E@ |z,
|)\|m/2+1/4 L

Sm(2m — 1)|ly" =), +

where we have invoked the inequality (3.11).
There are two cases to consider:

o If R(A) > |S(N)|, we have |A| = R(N), so that (3.13) implies

k2

m=(0)2 m— 1—~(O)
Ally™E L2 = m(2m = 1)y ||L2N7|/\|m+3/2

A simple induction on m yields the first inequality in (3.9), the second one follows then from (3.14).
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o If 3()\)] > R(N), we go back to (3.7a), take the scalar product with y?>™Z(®) but this time take the
imaginary part. We find
SN ymED|2, = —k(VEO, 2042y om0, 2@ 2 120) — §(ikV.e@ 20y2my (3.15)
Proceeding as above, we have for some C' > 0:

Clk|
|A[m/2+1/4

202 k>

w20, < B 0
”y ||L2 || ||L2+| ( )||A|m+1/2

iRV @, 2Oym)| <

We also have

= 1= - 1= L m—1m 1 -
(02,5712 < fly" BV e lly™ ' E 22 < Slly™ T 20T + Sy 0, E P |7

_ C|k|
m—1=0)2 =(0
< CHy - ”L2 + |/\|m/2+1/4 ||y )HL2
SN =), my2 C'k?
< = m —_— .
=Ty et s
Note that we have used (3.14) to go from the second to the third inequality. Moreover, we have
|k(VEO,ZO ™) | < k] [V [loolly™ 2272 < (K] HV’Iloollym”(O)HmHy"”rl Ol 2
ISV =(0) 2 Ck? +lg
< = y™
ISV =), my2 O/kZ m=(0) 'k
< = —
<5 RO ey = I gy e

where the last inequality follows from (3.13), applied with index m + 1 instead of m. For K, large
enough, assumptions (2.36)—(2.37), together with inequality |(\)] > R(N), yield
Ok ISV Ok
< ) S 1’
ISNIRA) = 8 [S(MRA)?

so that we get
k2 k2
1S(A )H)\|m+1/2 |A|m+3/2

ISy E e < mlly™ =72 +

~

As |A] = |S(N)], we find

k2

Ay E QN2 < mlly™ =2 + a2

~

A simple induction on m yields the first inequality in (3.9). The second one follows then from (3.14).
This concludes the proof.

(I
A corollary to our construction is the following:
Corollary 1. Under assumptions (2.36)~(2.37), the constant ag = U[Z)] satisfies
|| <1 (3.16)

As a consequence, the function Qgr, introduced in (3.1) is well-defined, belongs to L*(y™dy) for allm > 0,
and is a solution of (2.22). Moreover, it satisfies the estimate:

sup [V [QpL]| < V[|QsL] S

3.17
y>0 \)\| ( )
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Proof. For any function f = f(y) integrable over Ry, any § > 0, we have

A+ /‘f+/+wf /mf+/+w1yf
< VBl + ([ ) Mt = ViUl + ol

< IFILE Il 1% (3.18)

where we optimized in § to get the last bound. It follows from this interpolation inequality and from the
estimates (3.9) that

=(0) =(0)11/2)), =(0)|1/2 < ( k )1/2( k )1/2< ko
lag| < /IR+ =V <= ”L ly= ||L2 ~ |)\|5/4 |)\|7/4 =~ |)\|3/2 <1 (3.19)

We deduce from the analysis at the beginning of Sect. 3 and from (3.16) that the sum introduced in (3.1)
converges:

oo

Qpr =) (€Y +2) (3.20)
=0
— 60 120 -3 0y (60 +20) = (1 - 3 (—ap)ag) (€@ + 2O) (3.21)
i>1 i1
— (0) 4 =(0)
= (1= 7)€@ +20) (3.22)

As €0 decays exponentially, and as Z(°) € L?(y™dy) for all m > 0 by estimates (3.9), Qpr € L*(y"dy)
for all m > 0.
For the bound (3.17), we write

V[QpLl] SVIED N+ VIED] S FV[EO]

1
IA[1/2

where the first term at the right-hand side comes from an explicit computation, based on formula (3.2).
For the second term, we integrate by parts to get:

+oo +oo +oo
—_ — — — 1/2 1/2
VIEOD= [ ([ = [ yE Ol < =10
Y

k 1

< < 3.23
SRPERSRINDE (3.23)

Here we have used successively the interpolation inequality (3.18) with f = y|=()| and the bounds (3.9).
This concludes the proof. O

4. Construction of Hydrostatic Profiles

In this section, we want to construct all of the “hydrostatic” profiles appearing in our analysis. These

include F, wg,)), and wg(g. The abstract problem behind this construction is:

(A +ikVe) f —ikUSV,[f] = 05 f = R,
Ay flly=0 =0, (4.1)

The point is to solve this problem under conditions (2.36)—(2.37). The difficulty lies in the stretching
term ¢kU['V,[f], which is a priori O(|k|), and can not be absorbed in the standard energy estimate unless
R(A) =~ |k|, which only provides local well-posedness for data analytic in z. This difficulty is by now
classical and appears in the analysis of several anisotropic systems, including hydrostatic Euler equations
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[?] or Prandtl equations [18,28]. In the case of hydrostatic Euler, it is well-known that generically, ana-
lyticity is needed for well-posedness, just as in the case of the Triple-Deck system [27]. But when data

are concave, Sobolev stability estimates can be derived [1]. Roughly, the idea is to test against — U,, f
instead of f, and to use the cancellation
1 ' oy Yy
R(—ikU/Vy[f], U,,f> = R@kV,[f], f) = —R(ik f fr=0.
“+oo “+o0

We will here adopt the same kind of weighted estimates. Still, there are difficulties compared to the case of
hydrostatic Euler equations. First, the diffusion term —35 f creates additional terms, including boundary
terms after integration by parts. This is why we need the artificial homogeneous Neumann condition
0y f =0, to be compared with the “real” inhomogeneous condition (2.7) satisfied by the vorticity of the
Triple-Deck system, or equivalently with condition (2.8¢). This also explains the need for the complicated
iterative scheme described in paragraph 2.2, with the addition of boundary layer terms that allows to
restore the real boundary condition. We remind that this scheme has strong similarities with the one of
[7].

Another difficulty comes from the fact that we want to include in our analysis shear flows such that
—U! decays very fast at infinity, in which case the hydrostatic weight —1/U” would impose too much
decay on the data. To overcome this issue, our idea is to consider the weight 1/ — ;’ x> Which has been
defined in (2.38). Our main result on the abstract problem (4.1) is the following:

Lemma 4.1. Under (2.36)—(2.37), system (4.1) has a unique solution f satisfying:

1 , 1 1 1
Wf”m + ”Wa yflZe < RN )H (—U7)12

ROV RIIZ:- (4.2)

Proof. We again focus on the estimate, the construction following from standard arguments. We take the
(complex) scalar product of (2.16) with f—7,— and take the real part:
s,k

%(A)H(Ui)m% " ||Wayf%2 (43
e, )+ R Yy s e, s gr Ly a
1 07, o) T MRS g |

Note that we have made crucial use of the Neumann condition on f to integrate by parts the diffusion
term. As explained above, the third term at the left-hand side vanishes identically. For the fourth term,
we write

EETEIN 0] < W@ -0 A, (4.5)
< W21+ )72, )2 ||(_U}k)1/2f||m < (4.6)
<2 [ oo N gy e (7)
< 4Ky 1o ||Wf||Lz (4.8)
< 62— (4.9)

2
Wf”m

Here, (4.7) is a consequence of the usual Hardy inequality:

1+ )72Vl e < NA+5) 7 Vylflllze < 2022
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while (4.8) comes from the modified one:
IFllze < 20wFl (f lim F=0)
y—-+oo

which is valid for functions vanishing at infinity. Indeed, in such a case, through integration by parts:

+oo “+oo
/ |F(y)|*dy = —2/ yF'(y)F(y)dy
0 0

and the inequality follows from Cauchy—Schwarz. Finally, inequality (4.9) comes from the pointwise bound
y < W Regarding the commutator with the diffusion, taking into account (1.11c), which implies

‘( v/ U”k|<1 weget

(U; o) 1 1
@1, (U;,k | <1 5 =l 7 a2 g 7y
1 1
< §||W8yf“m + CHWJCHLQ

We ﬁnally bound the source term via

1 1 , 1 1 )
< ||l 2 || 775 2 2 - 5 2.
U// >| ~ || (*U;/k)l/QR”LyH ( U// )1/2 f”L = 2?}%()\) || (7U;/k)1/2R”Ly + 2%()\)“ (7U;/k)1/2 f”Ly

(R, f—7

Gathering all these estimates, and using (2.36)—(2.37) to absorb the terms in ||Wf\\%2 that are at
s,k Yy
the right-hand side (notably the one from (4.9)), we obtain (4.2). This concludes the proof. O

We are now ready to construct the “hydrostatic” quantities, F, Wl(q), and w}%.

Corollary 2. Under (2.36)-(2.37), systems (2.23), (2.16), and (2.28) have solutions FH,wl(q), and w%),
respectively, obeying the following estimates:

1 1 1 1
— _Fy|? —_— Q 4.1
%(A)H (_U;/’k)l/g I‘I”L2 + ||( U// )1/2 y H||L2 N%( ) Sup ‘V [ BL” ~ %( )l)\‘ ( 0)
1 (012 1 WO Ikl
MM——% — 4.11
1 (0) 1 (0) 1 1 >
§R(A)” ( U// )1/2"‘JIH||L2 + || (7Uél,]€)1/2 waH”LQ NéR( ) || (7U;/,]€)1/2 winit”L%' (412)

where U, was defined in (2.38).

Proof. This follows by applying Lemma 4.1, upon choosing R to be equal to U/V,[Qp1],ikUy, and
winit respectively. We make use of the fact that

_U// ( U//)1/2 c Lz(R )
(=UL )2~ i
Also, regarding (4.10), we use (3.17) to obtain the second bound. O

Corollary 3. The averages satisfy the following estimate
1

U[Ful] + VIIFul] < ROVA[2’ (4.13)
U@ + V@] < %g') (4.14)
Ul + Vo S = ! (4.15)

N%uﬂkuwm%Wh?
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Proof. From (3.18), we have

U] < / 1< 12 12

+oo
iAls [ = [ < s s
+Jy

This implies in particular

1
U Full + VIIFa) S +9)*Falle < ”7(_1]" e Fr| 12
s,k
0 0 1 0
ot )+ VI ) S 10+ 90 s S gzl e
s,k
0 0 1 0
Ul + VW S 1+ y)wipllze < |7 )1/2w§,3||m.

The estimates follow then from the previous corollary.

5. Proof of Proposition 2
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(4.16)

(4.17)

(4.18)
(4.19)

(4.20)

O

The goal of this section is to prove Proposition 2, its main aspect being to construct, for a given A, a
solution W[A] to (2.8b)—(2.8c). As explained in Paragraph 2.2, we look for a solution in the form (2.10),

that involves the solutions @ of (2.11) and w;ppom of (2.12).
One has (so far formally)

(0)

o= UJH + W(O) (tazl) (tail)

+twpr
(0) Z

j>1

=Wy + XQpL + Y (ikAj—1Fr + A Qpr)
j=1

where, see (2.26):
Xoi=1—-UWW], A= (—ikU[Fu]) ro

Similarly

0 0 l l
Winhom —w§]3' +w§B) + ;IZZ ) + gtlé“)

_wIH (0)+Zw +Zw
j>1

—wg}, + MoQp1L + Zik/\j_lFH +XQB1L
j=>1

where, see (2.35):
Xo = USR], Xy = (—ikU[Fu])Y Ao
(0)

The analysis of Sects.3 and 4 has allowed to construct Qpr, Fg,wy , and w?};

Corollary 3, we have

k
< __ -

(5.1)

. Moreover, from

(5.2)
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k
[Ao| S 1+ 5}4(/\) (5.3)
~ 1 1
|>\0‘ S.z %(}\) H (_U//k)l/zwinitHL?/ (54)

In particular, under assumptions (2.36)—(2.37), one has [kU[Fg]| < %, which shows the convergence of
the series:

_ 0 tail >\o tail .
Y at )\ at
Winhom = M\SBL + w§0) + %{ l), with A, 1= ——0 YH D ik, Fy. (5.6)

1+ ikU[Fy]’
It implies decomposition (2.40), and the estimates (2.41a)—(2.41d) follow directly from (3.17), from the
estimates of Corollary 3 and from (5.3)—(5.4). To prove (2.41e), we have:
1 1 ||
1% inhom N ini
[insom]] N( AT + 57+ syl o Gyl

( )|k|1/3”(1+y) znthL2
where we have invoked both (2.36)—(2.37) and the bound

1
=i fllee = B[Y3]1(1 + ) fll 2
s,k

which follows from (2.39).
This concludes the proof of the proposition.

6. Proof of Theorem 1

Thanks to Proposition 1, we can now prove Theorem 1. For technical reasons that will be made clearer
below, we need a slightly modified version of Proposition 1, where we replace the resolvent system (2.8a)—
(2.8b)—(2.8¢) by the system

(A + ik + ik|k|) Ay = ikV[on] + At (6.1a)
(A +ikVy n)on — ikULVyon] — 020n = ikU. (y)yAn + Ginit, (6.1b)
Ulon] = Ay, (6.1¢)
substituting to the unbounded shear flow Vi(y) = y + Us(y) the sequence of bounded shear flows
Vin() = Nx(5) +Usw). N> 1. (6:2)

for x = x(¢) < £ a smooth compactly supported function in R, satisfying x(§) = £ in [0, 4] It will be
useful in what follows to integrate (6.1a)—(6.1c) to the corresponding velocity formulation.

Lemma 6.1. Let (Oy, Ay) satisfy (6.1a)—(6.1c). Let iy = [} on, on = —ik [y, @™ = [Yoimit,
Then the following system is satisfied:

Ny + ikViiy + N V] — 02y = —ik|k|An + ikUy, (Ve n — Vi)dn] + ™", (6.3a)
ikuy + 8yf)N =0, (6.3b)
[QN,’lA)N]ly:() = 0, ﬁfN|y:oo = AN. (630)
Proof. This follows essentially verbatim to the proof of Lemma 2.1. O

All estimates used to show Proposition 1 apply to the system (6.1a)—(6.1c) so that we can state:

) Birkhauser



JMFM Improved Well-Posedness for the Triple-Deck and Related Models via Concavity Page 23 of 34 69

Proposition 4. There exists absolute positive constants K., Cy, ko and M, such that for all N > 1,
|k| > ko, all X with R(\) > K.|k|*/3, and all data (Ginit, Ainit) € H, cf. definition (2.9), system (6.1 )7
(6.1b)—(6.1c) has a unique solution satisfying

1(@n, Al < ColkYP I (@inaes Aie) | 1r-

We insist that the control at the right-hand side is uniform in N, notably because ||V y||z~ is bounded
uniformly in N. We then state refined resolvent estimates:

Lemma 6.2. The solution (O, Ax) of the resolvent system (6.1a)-(6.1b)~(6.1c) given by Proposition 4
satisfies: for all |k| > ko, N > c|k|*?, where ¢ is a large universal constant, and for all X such that
R(A) = K. |k[2,

S0

o, Al < O 1t A (6.4)

as well as
|k
RY

where Cy, so are absolute constants, while Cn possibly depends on N.

||((1 + y)ilwl\f»AN)”H S C’O H(antaAinit)”H (65)

Proof. The proof proceeds by essentially treating all terms from (6.1a)—(6.1c) aside from the A\ term on
the right-hand side. Notationally, we drop the subscript N on (fi ~N,@n). We proceed in three steps, which
we delineate explicitly.

Step 1: Estimate of |\||A|. First we have from (6.1a):

INIAL <[k[[A] + [k[2[A] + (K[ V@] + [Ainie]
SIE? iA| + |k| 1(1+y)? ZthL2 + |Azmt| (6.6)
Above, to go from the first to second line, we have performed the following estimate:

ViRl < Vi@l S 1Al A VIRzLl] + [AVISE ] + [AVILE ] + Vdikon ]

K1 | K K LE oo
sy 7 A oy oo (U oy M1+ gy 10+ 0@z

SIRIAL+ K511+ ) Ginitl 2 (6.7)

where we have used (2.41a)—(2.41e), as well as (2.36)—(2.37). Plugging inequality (2.42) in the right-hand
side of (6.6) and dividing by |A], we find
znzt|)

S oy (e
[ (@init, Ainit) [ 7 (6.8)

<1+

2
< k

~ A

Going back to (6.7), we infer

Vol < (F2 4 53) @i, 4 k|| (Dinit, Ain 6.9
Hw” ~ |A‘ + H(wznzh znzt)”H ~ ||(w2nzt7 'ant)”H ( . )

Step 2: Estimate of R(N)||(14+y)" @] 2. We now treat the quantity w. For this, we first derive a Neumann
condition for & by evaluating (6.3a) at y = 0, which produces

Oywly—0 = x| 0z A — U[(Vs,n — Vi) Oaw)]. (6.10)

We therefore study the system
A+ ikVy n)@ — ikULV, (0] — 020 = kU (y)yA + Ginit, (6.11a)
Oyw|y=0 = ik|k|A — ikU[(Vs,n — V5)&] (6.11b)

T Birkhauser



69 Page 24 of 34 D. Gerard-Varet et al. JMFM

We take the L? (complex) scalar product of the equation with (1 + y)?>™®, m = 2,3, and take the real
part:

RV +y)"ll72 + (L +y)"8y@l 72 — m(2m —1)|ly™ D2
= —0y0ly=0@ly=0 + RGKU (Y)V,[0), (1 +9)°"@) + R(KU (y)yA, (1 +y)*"@)
+ R(Dinit, (1 +y)*"d)
< 0y@ly=ol @ly=ol + KIVI@lI(1 + )" @llL2 + [KAII(1 + )" @] L2
I+ )" @it 22 [[(1 + )" @ 2
We have the inequality

N N N ~nl/2 m 1/2
10y @y=ol [&ly=ol < ClAy@ly=ol (1 + )™ &l|;% ||<1 +y)" 0,01

M

1+ )™ @lTe + s 11+ 9) ™00l 7 + C'19y@ly—ol?

2%@)
%( RO 1yl + 210+ 070,213 + O (KA + R2UI(Vew — Va)a?).

where the last line comes from (6.11b). Combining this inequality with the usual manipulations based on
Young’s inequality, we end up with
RO+ )" G172 + 11+ )™ Oy |7

kQ o[? k2A2 1 mAini 22
< KYAP + B2 U[(Ven — V)@ + |k[*V[|w]] +‘ °| A (1 +y)" @inie |7,

R\ RO\ ROV
2Y[w|)? M Dinit|| %2
< k‘4|A|2 4 kJQ‘U[( N — S)(DHQ |k8%}(g ” ”(1 +y§}){(>\) ||L

‘We then notice that

UV =Vl < [ Ve = Villol < [ Ve = Villol 5 [ 57192
0 AN

4 4
1
([ v?) Iy 1+ gl (612)
T
We take N > |k|*/3, so that
k‘2
~ < k>3 <R (6.13)
Combining (6.8), (6.9), (6.12) and (6.13), we end up with
> > E® Y T L
RN +y)" @z + (L +y)"0y0llz: < WH(WiMbAth)HH ROV [(@inits Ainit) |7 (6.14)
< LS”(@, 'y )2 (6.15)
~ §R()\) inity {dinit ) || H .

where the last line follows from (2.37). If R®(\) > |;‘|, the bounds of the lemma follow from (6.8) and
(6.15) with m = 3: in this case, the constant C'y can be taken independent of N. Otherwise, we move to
step 3.

Step 3: Estimate of S(N)|[(1 4 y)™®| 2 (only needed if |R(N)| < %I) In this case, we have J(\) > %
We take again the L? scalar product of equation (6.11a) with (1 + y)?>™®, but this time consider the
imaginary part. There are two differences with the previous estimate for the real part: the advection term
ikV, n@ gives a non-zero contribution:

[S(ik Vi v, (1+y)* ") < [K[[Van (14 9)™ |22 |1+ 3)"@] 2
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Moreover, the diffusion term no longer yields a coercive term. We treat it as
S(B50, (1 +9)* "))
<[ +y)™ y@||L2||(1 +y)"0| 22 + 2m(2m = D1 +y)" T '0ll7e + 18y@ly=ol |@y=o]

|\9( )| mg C m 2 - 2
SO v C " ,
< I+ )"l + )"0yl + O (KAP + (Ve = Va)2)?)

Treating all other terms as before, we find an inequality of the type

k|8 A 1
S 1 "oz, < | Dinits Ainit) |17

IRV (1 9) @l 11+ )@l ) (6.16)

11+ )"0yl

Multiplying inequality (6.15) by % and summing it to inequality (6.16), we end up with

Cx §R()\) m |2 1 m ~ 112
(SO + G I+ 0"l + 510+ )"0,
k8 K8

+

< ST A. . 2 m A R m ~ )
S (oo + s @i Al + IRV (1 5)" @l 10+ )"0

This implies (we remind that ()| > %)
8

k m A m A
|)\|||(wznzta Aimit) 3+ IVex (14 9)" 0 22 11+ )" 2

To obtain the first bound of the lemma, we use the bound |V 5| < CN. Hence,

A +)"@lZs <

8
I+ )" olZs < WH(wmm Aii) | + RINII(L +9)" 072

k8 k8 . k|N o
S @i Asio B + 1N (04 ol + B g+ pmai. )

< K H(wznzh Aznzt)HH KN H(l + y)m L ||L2
~ A AL

Note that to go from the first to the second inequality, we have plugged the first inequality in the last

term |k|N||(1 4+ y)"@[|3.. But we know from (6.15) that ||(1 4+ y)"@[|3> < k®||(@init, Ainit) |3, so that

eventually we find

N|k|16
A

Taking m = 3, together with (6.8), this yields the first bound of the lemma. As regards the second bound,

we take m = 2 and use that |V n(y)| < Cy, hence:

AN +y)"ol2: < 1 @init, Ainie) 72

. K 2 . .
A +y)?oliz. < WI\(wz'm'taAz'nit)II% + [RII(+ )@ a1+ )@ e

By Young’s inequality,
[

1 )13,

R kS -
AL+ y)%@)3- S W||(wimt»14z‘m't)||§{ +
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But from (6.15) applied with m = 3, we know that [[(1 + v)3@||2. < k3||(@init, Aini) |13, hence
10

AL+ y)%@)3- S (Qinits Aimit) |3

il
Al
Together with (6.8), this yields the second bound of the lemma, and concludes the proof. ]

We can now prove our main theorem, Theorem 1.

Proof of Theorem 1. As discussed at the beginning of Paragraph 2.1, it is enough to show that for any
initial data (wim-t, Aipit = U [wmit]) satisfying

2/3
||€C°|a“”| (1+ y>3winit||L2(R><]R+) < 400, ¢ >0,
there exists 3, C, s > 0, such that system (2.4) has a unique solution in [0,T = %0[ satisfying
co— L [2/3 col0a |23 s
eleo 00020 (1 g g2u(t, Yoy < Clle (14 102" (1 + 9 winill ooy (6.17)

Going to Fourier in z, it is enough to show that for all £ € R*, and all data (@im‘t, Ainit = U[cbmit]) € H,
system

A + ik A+ ik|k|A = ikV[Q), (6.18a)
O + ikVid — iUV, (0] — 020 = ikyU!/ A, (6.18D)
Up) = A (6.18¢)

has a global in time solution (d), A) starting from (d)im»t, A,»m»t), and satisfying:

1. - 2/ “i
101+ )7 o, ), Al < CePM 1@+ k)| (@it Ainie) 11 (6.19)
Indeed, as |Ainit| < [[(1 + y)*@init || L2(r, ), this implies

|2/3t

1@+ )20, Yrzm,) < CeHHL+ KD (1 + y)*Ginitll 22z,

‘kp/s, squaring, integrating in k£ and using Plancherel theorem, we find

Multiplying each side by e(c0—58%)
(6.17).

We first consider the case of low frequencies, namely |k| < kg, where ko was introduced in Proposition
1. In this case, we use a fact emphasized in Paragraph 2.1: solving (6.18) under the condition A = U[Q]

is equivalent to solving it under the Neumann condition
Dy y—o = ik|k|A

Under this more standard condition, solving system (2.4) for fixed k is easy. Namely, by lifting the
inhomogenous boundary data and using classical weighted L? estimates, one can construct a unique
global solution in C'(Ry, H) satisfying

d. . o
%H (@, A3 + 1+ y)?*0ywl 7z < KPIH(@, A) 13 (6.20)
It follows that:

(@), A)|lu < Cec‘k‘gt”(d)inityAinit)”H (6.21)

This inequality implies (6.19) for |k| < kg, with s =0, § = C’kg/ % Let us mention briefly that a similar
standard Gronwall estimate (with bad growth rate |k|?) could have been established starting from the
equivalent velocity formulation of (6.18), that is in terms of (& = [ @, A) rather than in terms of (&, A).

In particular, thanks to this velocity estimate, one can check that (&, A) is unique among all solutions in
L (Ry, L*(Ry)) x L9 (Ry) (without asking for regularity of 9,@).

Hence, the last point is to show that such solution satisfies (6.19) in the high frequency regime |k| > ko.
We will prove this by compactness, through consideration of the approximate systems:
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O An + ikAy +ik|k|Ay = ikV[D), (6.22a)
SN + ikVi nion — ikUVylon] — 020N = ikyUl Ay, (6.22D)
Ulon] = Ax (6.22¢)

where V; n was defined in (6.2). System (6.22) can be written in an abstract way as:
0 (on, An) + Lin (On, Ax) =0,
where we see Ly as the (closed, densely defined) linear operator from
D(Lpy) = {(@,A) € Hy, o%0eL*((1+ y)2dy)} into  Hy = {(@,A) e H, U[o] = A}

It follows from the resolvent estimate in Lemma 6.2 that the operator L; n is sectorial. More precisely,
let Op N = ﬁ|k|’50. Taking |k| > ko large enough, we can always assume 65 ny < % For any )y €

{R(\) = K.|k[*?}, and any X\ € D(\g, Ok n|No|), A+ Ly n is invertible: indeed,
(Al + Liv) = (Aold + L) (A = Ao) (hold + Ly v) ™ + 1)
and the last factor at the right-hand side has norm

IAN=Xol||Id + L n) Ha—m < 0k nCnlk|* <

DN =

where the first inequality comes from Lemma 6.2. Moreover,
QCN‘MSO < 4CN|]€|SO
Aol T Al

[(AId + L) ™y —r, < 20(Mold + L ) Hla—p < (6.23)

In particular, the resolvent set of Lj contains
U DOOk) O Ten = {RO) = =0 ]SO + Kok .
Ao E{R(N)=K.|k[?/3}

By standard results for sectorial operators, Ly n generates an analytic semigroup that can be written as

1

o—tLiN — 7/ eM(Id + Ly, n) " 'dA
Tk, N

2

resulting in

et on || gy < eK*|k\2/3t|k|so / e—ek,le‘#dy < 4CN6K*|k|2/3t|k\250
R 1+ |yl
It implies
) R 2/3 s .
l@n(t, ), At Dl < AN 4L 4 k)20 | (@it Ainie) 1 (6.24)

This is unfortunately still not enough, as the constant C'y may go to infinity with N. To obtain a uniform
bound, we proceed as follows. We introduce a lift of the initial condition, namely the couple

(@ige, Atige) = e (Dneats Ainit)
where Wpeqr satisfies
atd)heat - a:La':}heat =0, ayd)heat =0, ajheat‘t:O = Winit-
Integrating the equation in y, one can check that U[Wpeqt] = Ainic. We then set
Wy = e 2K b0 (o0 — Gupy) for £>0, Wy =0 for t<0 (6.25)
By = e 2Kkt (AN - Alift) for t >0, By=0 for t<0 (6.26)

From (6.24), we know that (W, By) belongs to L?(Ry, H). Moreover, it satisfies for all t € R, y € R:
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(2K.|k|*/® + 8;)Bx + ikBx + ik|k| By = ikV[Wx] + f (6.27a)
K.k + 0,)Wn + ikVu N W — kU Vy[Wn] — 02Wy = ikyU! By + F, (6.27b)
U[WN] = By (6.27C)

One can check that f = f(t) and F' = F(t,y), which are expressed in terms of V; v, k, and ((,Dl,-ft, Alift)
satisfy

1CF, Pl L2 e,y S VRPN @inits Ainie) |-
Taking the Fourier transform in time, with 7 the dual variable of ¢, we end up with the system
()\I + Lk,N)(VAVN, By) = (B, f), with A := 2K, |k[*/3 + ir.

We use this time the second resolvent estimate of Lemma 6.2, to find

LRIV
A1), F)

The right-hand side is integrable in 7, as the product of two L? functions. Applying the inverse Fourier
transform in 7 and Cauchy—Schwarz, we deduce a pointwise in time bounds, namely,

PO c
(1 + )" Wi (t, ), By (t)lla < CIEP [(F, HIL (R, H) = o KIS )l 2,y

S O|k|80+2” (winih Alnzt)”H

(1 + ) "W (r,-), By (T)|lar < Co

Estimate
A A 2/3 Si /A
(L +y) on(t, ), An(t )l < Coe® 11+ 1K) | (@init, Ainit) |

with 8 = 2K, s = so+2, follows. One can then send N to infinity and obtain estimate (6.19) as expected.
This concludes the proof. O

7. Linear Hydrostatic Navier—Stokes

We explain in this section how to adapt the analysis of (1.9)—(1.10) to prove Theorem 2. Differentiating
the first equation (1.15) with respect to y, we find, for w = 9,w:

0w + UgOpw — Ul'v — 8@3‘” =0,

Ozu + Oyv = 0,

uly=01 = vly=0,1-
Inspired by the previous sections, we could try to rely on a similar iteration scheme (at the level of the
resolvent equation): at each step we would solve the equation on vorticity with an artificial homogeneous
Neumann condition, and then rectify boundary conditions on u and v. However, correcting the boundary
condition on v would generate error terms that have too large amplitude. More precisely, in the analogue
of equation (2.23), the analogue of the source term V,[Q2p1] would be too large, of size 1 rather than

|)\|_1/ 2, This would prevent the convergence of the series. Therefore, we have to change the iteration, in
such a way that at each step the homogeneous Dirichlet condition on v is maintained. In particular, we

do not want to recover v from w using the formula v = — foy fly/ O,w, because given an arbitrary function
w, it does not necessarily vanish at y = 1. This implies not to use the exact analogue of operators U and
V, introduced in the Triple-Deck analysis. Following more closely the approach in [7], we first introduce
the stream function ®w] = ®[w|(y) defined as the solution of the Dirichlet problem

85¢[w] =w, ®Pw]ly=01 =0. (7.1)
so that
u=0,Pw], v=—-Plw,.
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We then define

t

Ulw] = (9, @[w](0), 0, ®[w](1)) (7.2)

Finally, (1.15) is easily shown to be equivalent to:
Oyw + UsOpw — Ul'®lwy] — Oow = 0, (7.3a)
Uw] =0 (7.3b)

where the relation in (7.3b) corresponds to the Dirichlet conditions on u, while the Dirichlet conditions
on v are automatically encoded in the definition (7.1) of ®[w]. Note also that differentiating in = and
integrating in y the first equation of (1.15), we find

1

—Opep = 25'm/ (Usdy@[w])dy + Opw|y—0 — Opw|y=1
0
so that
1
Oxp = *23_@/ (Us0y@[w])dy + w|y=1 — w|y=o-
0

Eventually, evaluating the first equation of (1.15) at y = 0, 1 yields the mixed type boundary condition:

1
Oywly=01 = —2893/ (Usayq)[w])dy + wly=1 — w|y=o0. (7.4)
0

Similarly to the case of the Triple-Deck model, one can show that solving (7.3a) under condition (7.3b)
is the same as solving it under (7.4).

The main ingredient to prove the Gevrey 3/2 well-posedness of system (7.3) is again a stability estimate
for the resolvent equation

A& + ikUs® — ikUY @[] — 070 = Ginit (7.5)
where A € C, k € R*, and @;nit = @init(y) belongs to the space
H={&eL*(0,1), Uw]=0}
equipped with the L2 norm. Namely, we have

Proposition 5. There exist absolute positive constants K, ko and M, such that for all |k| > ko, all X with
R(N) > K. |k|?®, and all data &imy € H, equation (7.5) has a unique solution & satisfying

@l S I A1kl =22 | @imit | 2

On the basis of this proposition, by the same kind of reasoning as in Sect. 6, one proves Theorem 2.
Actually, the reasoning of Sect. 6 can be greatly simplified in this case: the y-domain being (0, 1) instead
of Ry, there is no difficulty related to the unboundedness of the advection field V;: one can prove directly
sectoriality on the original operator, without any approximation. For brevity, we do not give further
details for this last part, and just explain how to prove Proposition 5.

7.1. Iteration Scheme

Similarly to Sect.2.2, the idea is to look for a solution of (7.5) under the form of a series made of
hydrostatic and boundary layer terms:

w :wg)) + wg)% + ng) + ng% (7.6)
j=1 j=1

Again, we initialize the construction by solving the Neumann problem:

A+ ikU )l — kU @[wV] - 8§w§?) = Winit,
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9ywW],—0 = 0. (7.7)
We then initialize the boundary layer construction by solving the system:
(A + kU, )wly) — 02wly) =0,
Ulwisy) = U], (7.8)

where we remind that this time, the operator U is defined by (7.2), and involves the streamfunction ®[w]

defined in (7.1). Construction of solutions to (7.7) and (7.8) will be discussed below. Note that we get

again rid of the stretching term in (7.8). This creates an error term —ikU” @[wg)%], which will be corrected

by the next hydrostatic term in the expansion: more generally for j > 1, we introduce the solution wg)
of
A+ kU)ol — kUL @wY)] — 020y = kU @Y, "]

Oy ly=0 = 0, (7.9)

and the solution wg)L of
(A + kU, o) — 02w) =0,
U] = ~UlwiP] (7.10)

Similarly to Paragraph 2.2, one can simplify the expressions for (wg),wgl);). We first introduce the
sequence of vectors in R?:

A= — U] (7.11)

as well as the vector-valued function Qpr = Qpr(y) € R? defined by: for all vector A € R, Qpr - A
satisfies the system

(A +ikUs) (QpL - A) — 07 (L - A) =0,
UQpr - A=A (7.12)
Finally, we introduce the vector-valued function Fyy = Fy(y) € R? of
(A + ikU,) Fr — ikU]®[Fy] — 82 Fp = U/ ®[Qpy),
Oy Frly=0 =0, (7.13)
Anticipating that these functions are well-defined for R(\) > K, |k|?/3, it follows that
W =Qpr N, j>0,
W =ikFy - X1, §>1
and inserting this last relation into the formula for A;, we find
Njt1 = —tkU[Fy - \j],
that is: for all j > 0,
N = (—ikMg)? N, My :=U[Fy - A]. (7.14)

It remains to show the well-posedness of the boundary layer system (7.12), the hydrostatic systems (7.8)
and (7.13), and finally show that the matrix My satisfies |[ikMpy| < 1, so that the series defining @ will
converge. Again, this will be possible under conditions (2.36)—(2.37).
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7.2. Construction and Convergence of the Iteration

7.2.1. Boundary Layer Part. The only significant change compared to the analysis of the previous sections
is the treatment of the boundary layer model (7.12), as the operator U is now defined in terms of the
stream function. By linearity with respect to A, the function Qg (with values in R?) solves

(A +ikUs)2pL — 0;Q51 = 0,

UQpr] = 1d. (7.15)
where U[Qp1] is a 2 x 2 matrix: more generally, for any function Q with values in R?, U/[Q)] is defined by

UQIA =U[Q-A], VA € R%

As in Sect. 3, we look for this solution under the form

oo

Qpy = 3 (€D + 20, (7.16)
=0

where £, ZU) have values in R? and solve the systems:

2@ 3550') =0, (7.17a)
Uuie®] = 1d, (7.17b)
UED) = —uUEIY] forj>1 (7.17¢)

while
(A +ikU,)EY) — 9220) = —ikU,£W),
20|, =0, forj>0 (7.18)
Still following Sect. 3, defining the matrix
aj = UED,
one has:
W) = _5(0)%_17 =0) = _5(0)%_1
resulting in
o = —apai—1, j>1, ap :Z/{[E(O)].

The point is to construct £(©), 29 and show that the matrix ag has norm strictly less than 1. As regards
€O it is better to reformulate (7.17a) in terms of the stream function ®(©) := ®[¢(O]  that satisfies

2070 — 020 =0, (7.19a)

O, o1 =0, 9,00, = (1,07, 9,80[,_, =(0,1)! (7.19b)
This can be solved explicitly: one has

aT\  _a1/2 _pT NV ¢ 1 —d
00 = () () - e ()
where
)\—1/2
2

as |A| — 400, which is the asymptotics relevant to the regime (2.36)—(2.37). This implies

€O — 00) L ¢OH)  (0) . ) (a; ) NPy ) ) (—b; ) o N/2(1-y)
? : by ) . — .

—aj

ay ~ AV b~ AT e~ AT dy ~

Note that ¢~ is localized at scale |A\|7'/2 near y = 0, while £ is localized at scale |A|7'/2 near
y = 1. By a straightforward adaptation of Lemma 3.1, we obtain
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Lemma 7.1. System (7.18) with j = 0 has a unique solution = = Z(0=) 4 2OH) satisfying for all
m > 0:

k? s k?

ly™ =02 Sm ez ly™0,Z 72 Sm Na2E (7.20)
m=(0,+)12_ < k? mg =(0,4)12_ < k?
11 =y)"ER L Sm ek [ =y)™0E" 72 Sm NG (7.21)

where the implicit constant in the above inequalities depends on m.

From there, one can have bounds on ®[Z()] and U[E®] = (9,®[Z©](0),9,®[E®](1)). From the
representation formula

B0 = |

0

Y

1
(y— 1)y'EOD(y)dy' +/ (v — DyED (y)dy'
Yy
we deduce that
1
BECD) <2 [ [yEOD()|dy S AV
0

where the last inequality is obtained as in (3.23), thanks to Lemma 7.1. The same holds symmetrically
for ®[Z(>7)](y), and so

SHPI@[ Q) < A2
Also, we find that
1
0,80 < [ [ECD )Ny S KA

0

where the last inequality is obtained as in (3.19), thanks to Lemma 7.1. It follows that
U] S [kIIA 722

On the basis of all these bounds, one has easily the following analogue of Corollary 1:

Corollary 4. Under assumptions (2.36)~(2.37), the constant ag = U[Z)] satisfies
|040\ <1 (7.22)

As a consequence, the function Qpg, introduced in (7.16) is well-defined in H'(0,1), and is a solution of
(7.12). Moreover, it satisfies the estimate:

1
sup [®[QpL](y)] ST (7.23)
y>0 R\E

7.2.2. Hydrostatic Part. The construction of the hydrostatic terms wg) and Fy, solving (7.7) and (7.13),
is based as in Sect.4 on the use of weighted norms ||w/(—=U”)"/?||,2. This is actually simpler, as we do

not have problems related to decay at infinity: we can use directly U in the weight, instead of U, g’ - From
there, the estimates

1 1 1
%()‘)HWFHH%? + ||Wa yFull7: S ROV (7.24)
1 0 1 1
8?()\)HWWH 172 + H( U//)l/ga W1(L1 172 S RN )||W%‘mt||%§ (7.25)

are proved as the ones of Fy and wg(g in Sect. 4, and so is the bound

1
< __ -
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It follows that the matrix My defined in (7.14) satisfies |ikMpy| < 1 under (2.36)—(2.37), and the the

series defining @ converges. The estimate of Proposition 5 on @ can be deduced like the one of wippom

in (2.59) (the better power of k comes from the fact that we use the weight U/ instead of the modified
<1)- This concludes the proof.

Acknowledgements. SI acknowledges support from NSF Grant DMS-2306528 and NSF Grant DMS-
1802940 when this project was initiated. D.G-V. acknowledges the support of SingFlows project, Grant
ANR-18- CE40-0027 of the French National Research Agency (ANR) and of the Institut Universitaire
de France. YM acknowledges the support of JSPS KAKENHI Grant Number 20K03698, 19H05597,
20H00118, 21H00991, 21H04433.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article
under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the terms of such publishing agreement
and applicable law.

References

(1] Brenier, Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12(3), 495-512 (1999)
[2] Dalibard, A.-L., Dietert, H., Gérard-Varet, D., Marbach, F.: High frequency analysis of the unsteady interactive bound-
ary layer model. SIAM J. Math. Anal. 50(4), 4203-4245 (2018)
(3] Dietert, H., Gérard-Varet, D.: Well-posedness of the Prandtl equations without any structural assumption. Ann. PDE
5(1), 8 (2019)
[4] Dietert, H., Gerard-Varet, D.: On the ill-posedness of the triple deck model. STAM J. Math. Anal.(2021) (in press)
[5] Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591-609 (2010)
[6] Gérard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2-dimensional Navier—Stokes
flows. Duke Math. J. 167(13), 2531-2631 (2018)
[7] Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Optimal Prandtl expansion around concave boundary layer. Anal. PDE
(2020) (in press)
[8] Gerard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci.
Ec. Norm. Supér. (4) 48(6), 1273-1325 (2015)
[9] Gérard-Varet, D., Masmoudi, N., Vicol, V.: Well-posedness of the hydrostatic Navier-Stokes equations. Anal. PDE
13(5), 1417-1455 (2020)
[10] Gérard-Varet, D., Nguyen, T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1-2), 71-88
(2012)
[11] Grenier, E.: On the stability of boundary layers of incompressible Euler equations. J. Differ. Equ. 164(1), 180-222 (2000)
[12] Grenier, E., Guo, Y., Nguyen, T.T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165,
3085-3146 (2016)
[13] Guo, Y., Nguyen, T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416-1438 (2011)
[14] Ignatova, M., Vicol, V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal.
220(2), 809-848 (2016)
[15] Iyer, S.: On global-in-z stability of Blasius profiles. Arch. Ration. Mech. Anal. 237(2), 951-998 (2020)
[16] Iyer, S., Vicol, V.: Real analytic local well-posedness for the triple deck. Commun. Pure Appl. Math. 74(8), 1641-1684
(2021)
[17] Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.K.: On the local well-posedness of the Prandtl and hydrostatic Euler
equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865-3890 (2014)
[18] Kukavica, I., Vicol, V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun.
Math. Sci. 11(1), 269-292 (2013)
[19] Lagree, P.-Y.: Notes on the triple deck. http://www.lmm.jussieu.fr/lagree/COURS/CISM/TriplePont_CISM.pdf (2020)

T Birkhauser


http://www.lmm.jussieu.fr/ lagree/COURS/CISM/TriplePont_CISM.pdf

69 Page 34 of 34 D. Gerard-Varet et al. JMFM

[20] Li, W.-X., Masmoudi, N., Yang, T.: Well-posedness in Gevrey function space for 3d Prandtl equations without structural
assumption. arXiv:2001.10222 (2020)

[21] Lighthill, M.J.: On boundary layers and upstream influence ii. Supersonic flows without separation. Proc. R. Soc. A
Math. Phys. Eng. Sci. 217(1131), 478-507 (1953)

[22] Lin, Q., Liu, X., Titi, E.: On the effect of fast rotation and vertical viscosity on the lifespan of the 3d primitive equations.
arXivi2203.04922 (2022)

[23] Masmoudi, N., Wong, T.K.: On the H? theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204(1), 231-271
(2012)

[24] Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy
methods. Commun. Pure Appl. Math. 68(10), 1683-1741 (2015)

[25] Paicu, M., Zhang, P.: Global existence and the decay of solutions to the Prandtl system with small analytic data. Arch.
Ration. Mech. Anal. 241(1), 403-446 (2021)

[26] Paicu, M., Zhang, P., Zhang, Z.: On the hydrostatic approximation of the Navier—Stokes equations in a thin strip. Adv.
Math. 372, 107293 (2020)

[27] Renardy, M.: Ill-posedness of the hydrostatic Euler and Navier—Stokes equations. Arch. Ration. Mech. Anal. 194(3),
877-886 (2009)

[28] Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions, of the Navier—Stokes equation on a half-space.
I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433-461 (1998)

[29] Stewartson, K.: On the flow near the trailing edge of a flat plate ii. Mathematika 16(1), 106121 (1969)

[30] Zhang, P., Zhang, Z.: Long time well-posedness of Prandtl system with small and analytic initial data. J. Funct. Anal.
270(7), 2591-2615 (2016)

David Gerard-Varet Yasunori Maekawa

CNRS, Institut de Mathématiques de Jussieu-Paris Rive Department of Mathematics,

Gauche (IMJ-PRG) Graduate School of Science

Université Paris Cité and Sorbonne Université Kyoto University

75013 Paris Kyoto

France Japan

e-mail: david.gerard-varet@imj-prg.fr e-mail: maekawa.yasunori.3n@kyoto-u.ac.jp

Sameer Iyer

Department of Mathematics
University of California, Davis
Davis CA 95616

USA

e-mail: sameer@math.ucdavis.edu

(accepted: June 5, 2023; published online: July 21, 2023)

) Birkhauser


http://arxiv.org/abs/2001.10222
http://arxiv.org/abs/2203.04922

	Improved Well-Posedness for the Triple-Deck and Related Models via Concavity
	Abstract
	1. Introduction
	2. Outline of the Proof
	2.1. (ω, A) Decomposition
	2.2. Hydrostatic & Boundary Layer Iteration
	2.2.1. Iteration for overlineω
	2.2.2. Iteration for ωinhom

	2.3. Gevrey Stability Estimate

	3. Construction of ΩBL
	4. Construction of Hydrostatic Profiles
	5. Proof of Proposition 2
	6. Proof of Theorem 1
	7. Linear Hydrostatic Navier–Stokes
	7.1. Iteration Scheme
	7.2. Construction and Convergence of the Iteration
	7.2.1. Boundary Layer Part
	7.2.2. Hydrostatic Part


	Acknowledgements
	References




