
Introduction 
In a changing climate, vulnerable groups such as older adults, low income, and those with 
chronic health conditions are at increased risk from extreme heat.1,2,3,4  Previous work on 
extreme heat exposure largely has focused on mortality and morbidity data to discern the health 
impact of extreme heat.4,5,6  They seldom examine and make use of physical and physiological 
information observed in people’s daily living environment.  Such information is valuable for 
establishing preventive measures and interventions to avoid harm from extreme heat.   

The purpose of this study is to address this gap in extreme heat and health related studies, and 
assess the impact of extreme heat on vulnerable groups such as the older adult and low income 
household.  Researchers have begun to use wearable sensors on outdoor workers and older 
adults to monitor continuously at the person level physiological signals with the rising 
temperature.7,8,9 They have, however, rarely integrated person-level ambient temperature with 
physical/physiological conditions from extreme heat.10,11 Outdoor air and land surface 
temperatures are often quite different from person-level ambient temperatures due to factors 
including AC use, housing material properties, and ventilation.12,13   

Studies relating extreme heat to health outcomes typically rely on local weather station 
monitoring and modeling.14,15 They do not reflect individually experienced temperatures that 
vary widely within and between individuals.16  Individuals move in and out of locations that are 
equipped with and without air conditioning (AC) and ventilation. While these small variations in 
one's microenvironment are important to ascertain the overall exposure level and its impact on 
health, they are not well established. This leads to exposure misclassifications by disregarding 
varying indoor temperatures and urban heat island effect reflecting higher temperatures in urban 
areas compared to their surrounding rural areas.17  Subsequently we will likely miss real effects 
of extreme heat. Single threshold-driven heat warnings, thus, can be ineffective given such 
individual variabilities of heat experience.  

The wrist-worn GENEActiv accelerometer we use contains a small temperature sensor that 
provides a practical solution to continuously monitor temperature on the skin surface. The skin 
temperature differs from the relatively stable core body temperature, and reflects their external 
thermal environment. Though the skin temperature is affected by an individual’s core 
temperature, changes are dominated by interactions with ambient conditions.18   The wrist is 
known to be most susceptible to external thermal sensations.19   We conducted a feasibility 
study using two iButton temperature sensors on nine participants.20   We put two iButton 
sensors on the Fitbit watch.  One sensor was on the side of the watch touching the skin and the 
other sensor was away from the skin. The study found that skin and near air temperatures as 
measured by the wrist-worn Fitbit watch were highly correlated.  

We build on our latest research using wearable sensors to assess the impact of extreme heat 
and demonstrate for the first time the role of physical activity and sleep.  Extreme heat is known 
to affect the health of exposed individuals negatively by reducing physical activity21,22,23 and 
disturbing sleep.24,25,26,27,28,29  To identify varying effects of extreme heat on physical activity and 
sleep, longitudinal and precise assessments are necessary. Self-reported measures of physical 
activity and sleep do not offer accurate information to match with changing person-level ambient 
temperature. The accelerometer-based objective measures distinguish sedentary and low levels 
of physical activity, and provide precise measurements of sleep efficiency and sleep time. We 
use a well-validated, research grade GENEActiv accelerometer30 to measure continuously 
person-level temperature, physical activity and sleep for multiple days and nights.   

We hypothesize reduced physical activity and impaired sleep. We focus on low income 
communities adversely affected by extreme heat and include an assessment of AC use that 



mitigates one’s person-level ambient temperature.  The impact of extreme heat is worse for low-
income households and communities of color as they lack access to AC and live in lower quality 
housing. Even if households have AC, they may not use them often because of high utility 
costs.31,32  We plan to expand this study to a larger cohort and help provide critical information in 
the development of evidence-based extreme heat intervention programs for low-income and 
older households largely situated within the communities of color.   

Method 

We recruited 30 participants in a low-income and predominantly Black community in Houston, 
Texas in August and September of 2022 (Table 1).  This is conducted in the participant’s daily 
living environment. 

Inclusion criteria: We recruited initially adults 60 and older and expanded later to all adults to 
facilitate recruitment.  Participants live in a predominantly low income and Black community, and 
can use or get help with online and/or smartphone-based app surveys.  We hired a local 
nonprofit working with low income communities to assist with recruitment and monitoring of 
participants.  Each participant received monetary compensation for their two-week participation 
in the study. This study was approved by Texas A&M Institutional Review Board committee 
(IRB2022-0735). 

 

Category count (distinct) count 
(%) 

n 30   
Gender   
Males 9 30.0% 
Females 21 70.0% 
Age 58.23   
<40 5 16.7% 
40-49 1 3.3% 
50-59 10 33.3% 
60-69 5 16.7% 
70-75 6 20.0% 
76+ 3 10.0% 
Race     
African American 23 76.7% 
Latino or Hispanic 5 16.7% 
Two or More 1 3.3% 
White 1 3.3% 
Education level     
High school 10 33.3% 
Less than high school 2 6.7% 
Some college 12 40.0% 
Bachelor's (or equivalent) 4 13.3% 
Income level     
$9,999 or less 10 33.3% 
$10,000 to $14,999 6 20.0% 



$15,000 to $24,999 4 13.3% 
$25,000 to $34,999 5 16.7% 
$35,000 to $49,999 3 10.0% 
$50,000 to $74,999 1 3.3% 
$75,000 or more 1 3.3% 
How often do you use 
your air conditioning? 

    

No air conditioning available 1 3.3% 
Used at least once a month 1 3.3% 
Used at least once every 
few days 

3 10.0% 

Used at least once every 
day 

25 83.3% 

  

Table 1: Participant demographic and AC use information 

 

Participants were assigned a user ID code and a serial number for their respective 
accelerometer after completing the online informed consent and initial survey consisting of 
demographic, health, housing, and AC information.  All accelerometers were configured to 
operate at 40hz and were given to participants at >95% battery life.  The accelerometers were 
configured to automatically turn on at 05:00 the day prior to the start date. Accelerometers were 
configured to collect data for 4-weeks in order to provide a buffer to the study’s 2-week 
collection period. 
 
A local project staff delivered accelerometers to participants 1-3 days prior to their start date. 
The battery was fully charged for a month, so participants did not need to remove the 
accelerometer from the wrist.  They were asked to wear it on the wrist of their choice. After a 
two-week study period, the accelerometers were collected within five days to begin data 
extraction. Each accelerometer was extracted individually and converted into a .bin file. From 
there, each data file was trimmed to only account for data that occurred within the designated 
two-week study period. The data files were labeled with user IDs and start/end dates in order to 
maintain data integrity. 
 
Data 
Surveys were used to collect information on participants' age, sex, race, income status, and 
housing conditions. The AC use was classified as “frequent” if the participants responded, 
“Used at least once every day”, and “infrequent” otherwise.   

The wrist-worn GENEActiv accelerometer was used to record person-level ambient 
temperature, physical activity, and sleep 24 hours over 14 days for each participant.  

Person-level ambient temperature was summarized as per-day overall temperature. 

Outside temperature information for each day was determined based on historical weather data 
using participants’ zip codes. 33  The temperatures varied from 25℃ to 38℃ across study days 
with a median of 34℃ and an interquartile range of 32℃-35℃.  
 

Physical activity and sleep were processed from the raw movement data using GENEActiv 
default R markdown analysis tools.  The processed data included non-wear times, per-day (3pm 



to 3pm) durations of sedentary, light, moderate, and vigorous activity, total sleep time, and sleep 
efficiency per day. For each day, the proportion of sedentary time was calculated as total 
sedentary time divided by total wear time and translated into percentages. Sleep efficiency was 
defined as ( [Total Sleep Time] / [Time In Bed] ) * 100. Any days with less than 12 hours of wear 
time or with data quality issues (estimated sleep efficiency of zero) were excluded from the 
analyses.    

After actigraphy data processing, activity and sleep information was available on 29 participants 
over a total of 438 days, ranging from 6 to 19 days of data per participant.   

Statistical analyses 
 
Mixed-effect linear regression models were fit on participant-day level data to conduct within-
person and between-person analyses. The participant-specific random intercept was used to 
account for between-participant baseline differences in response variables, as well as to 
account for correlation across days for the same participant.  

To assess the effect of heat exposure on physical activity, Model 1 used participant-day 
percentage of sedentary time as the response.  Age, sex, race, day type (weekday vs weekend) 
and participant-day person-level ambient temperature were used as fixed covariates. To assess 
the effect of extreme heat exposure on sleep impairment, Model 2 used participant-day sleep 
efficiency as the response. Age, sex, race, day type (weekday vs weekend) and participant-day 
person-level ambient temperature were used as fixed covariates. We also included participant-
day percent of sedentary time as a fixed covariate in Model 2 because sleep could also be 
affected by physical activity. For both Models 1 and 2, we conducted a sensitivity analysis to 
validate whether the effect of person-level ambient temperature was linear by comparing Akaike 
Information Criterion (AIC) values between the linear mixed model and generalized additive 
mixed model, and used penalized regression splines to estimate the effect of person-level 
ambient temperature.34 The best model was selected as the one with the smallest value of AIC. 

To assess the effect of AC use on person-level ambient temperature as a function of outside 
temperature, Model 3 used participant-day person-level ambient temperature as the response. 
Age, sex, race, frequency of AC use, day type (weekday vs weekend) and participant-day 
outside temperature were used as fixed covariates. We also considered models that include 
interactions between outside temperature and AC use, outside temperature and age, day type 
and AC use, and day type and outside temperature as fixed covariates. The best model was 
selected based on the smallest value of AIC. 

All linear mixed-effect models were fit using R package nlme,35 and all generalized additive 
mixed models were fit using R package mgcv.36  P-value < 0.05 was considered statistically 
significant. All analyses were performed in R statistical software version 4.1.2. 
 
Results 
Model 1: Association between sedentary time and person-level ambient temperature. 
Based on the linear mixed-effects model, the person-level ambient temperature had a significant 
effect on the percent of sedentary time (p-value < 0.0001), with a 1℃ degree increase in 
ambient temperature leading to around 2% (βtemp = 2.11) increase in the percent of time spent 
sedentary. The effects of age, sex, day type, and race were not significant. Comparing AIC 
values between the linear model (AIC = 3147) and the generalized additive model (AIC = 3072) 
confirmed that the additive model provided a better fit to the data, with p-value<0.0001 for 
person-level ambient temperature, and a borderline significant effect of age (p-value = 0.0450 



with an effect size of 2.1% increase in sedentary time for every 10 years of age). The effect of 
sex was significant, with men having a 7.7% increase in sedentary time compared to women. 
The effects of day type and race were not significant. Figure 1 shows the predicted percentage 
of sedentary time as a function of person-level ambient temperature with 95% confidence 
interval. To illustrate the effect of age, the black line corresponds to age = 70 years (75th 
percentile), and the blue line corresponds to age = 35 years (10th percentile).  While the effect is 
linear from 25℃ to 30℃, it levels off afterward, suggesting that an increase in person-level 
ambient temperature beyond 30℃ does not provide a further increase in sedentary time, 
resulting in a nonlinear effect.   

 
Figure 1. The predicted percentage of sedentary time as a function of person-level ambient 
temperature (with 95% CI) for age = 70 (black) and age = 35 (blue) based on Model 1. 
 

Model 2: Association between sleep efficiency and person-level ambient temperature. 
Based on the linear mixed effects model, the person-level ambient temperature had a significant 
effect on sleep efficiency (p-value = 0.0337), with a 1℃ degree increase in person-level ambient 
temperature leading to around 2% (βtemp = -1.8) decrease in sleep efficiency. The effects of age, 
sex, day type, race, and percentage spent sedentary were not significant. Comparing AIC 
values between the linear model (AIC = 3920) and the generalized additive model (AIC = 3903) 
confirmed that the additive model provided a better fit to the data, with p-value = 0.0073 for 
ambient temperature. The effects of age, sex, day type, race and percentage spent sedentary 
were not significant. Figure 2 shows the predicted sleep efficiency as a function of person-level 
ambient temperature with 95% confidence interval.  The values of fixed covariates were set to 
match the values in Model 1 (sex = female, race = African American), and the percentage of 
sedentary time was set at 50% (average across all participants). The predicted responses for 
age = 70 (black) and age = 35 (blue) overlap as the estimated effect size is small (βage = 0.06) 
and not significant (p-value = 0.719). The shape of the estimated curve suggests that the effect 
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of person-level ambient temperature is strongest when moving from 32℃ to 35℃; thus, the 
effect is nonlinear.   

 
 
Figure 2. The predicted sleep efficiency as a function of person-level ambient temperature (with 
95% CI) on sleep efficiency for age = 70 (black) and age = 35 (blue) based on Model 2. The 
lines overlap as the estimated effect size for age was small (βage = 0.06) and not significant (p-
value = 0.719). 
 
 
Model 3: Association between outside temperature, AC use, and person-level ambient 
temperature. Using the AIC criterion for model selection of appropriate interaction terms led to 
the model that included an interaction between day type and AC use and an interaction between 
the outside temperature, day type, and AC use (AIC = 1420). The main effect of outside 
temperature was significant (p-value < 0.0001). The main effects for AC use (p-value = 0.1211) 
and day type (p-value = 0.0671) were not significant but had a significant pairwise interaction 
effect (p-value = 0.0002). The interaction between the outside temperature, day of the week and 
AC use was also significant (p-value = 0.0001). The effects of age, sex, and race were not 
significant. 

To facilitate the interpretation of effects sizes in the presence of significant interactions, Figure 3 
displays predicted person-level ambient temperature as a function of outside temperature 
stratified by AC use (straight lines for frequent, pointed lines for infrequent) and day type (black 
= weekday, red = weekend). When AC use is infrequent, there is little difference between 
weekday and weekend (βweekend = -0.58), and the person-level ambient temperature is estimated 
to be overall quite high (31℃-32℃). However, when AC use is frequent, there is a clear 
difference in association between weekdays and weekends. On weekdays, the frequent use of 
AC leads to an estimated decrease of 1℃ in person-level ambient temperature, bringing it to an 
average of 30℃.	The association between person-level ambient temperature and outside 
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temperature, while significant, is not very strong (βtemp = 0.11). In contrast, on weekends, the 
frequent use of AC leads to a significant reduction in person-level ambient temperature 
compared to the infrequent use, and also a significantly stronger association between outside 
temperature and ambient temperature (βtemp = 0.49).   

Overall, frequent AC use implies lower person-level ambient temperature; however, the effect 
size varies significantly depending on the day type (weekday vs weekend), and the range of 
outside temperature. The effect of AC use is the strongest on the weekends, and when outside 
temperatures are less extreme. Specifically, AC use makes a greater difference to person-level 
ambient temperature when the outside temperature is moderate (28℃), and less difference 
when the outside temperature is higher (34℃). Overall, there is a significant difference in how 
the outside temperature affects the person-level ambient temperature based on day type and 
AC use.  

 
Figure 3. The predicted person-level ambient temperature as a function of outside temperature 
for weekday (black) and weekend (red) separated by AC use (straight – frequent, pointed – 
infrequent) based on Model 3. Age effect is not shown as it was not significant after adjusting for 
the day type (p-value = 0.2475) with a small estimated effect size (βage = 0.02). A significant 
interaction exists between AC use and day type, with a stronger correlation between person-
level ambient and outside temperatures with frequent AC use on the weekends (red straight 
line) compared to weekdays (black straight line). 
 
Discussion 
As hypothesized, with the rising temperature, physical activity is reduced. This result 
corroborates other study findings that report decreased step counts37 and reduced participation 
in outdoor activities including park visits during hot summer days.38  What is novel with the use 
of the accelerometer is the segmentation of physical activity into light, moderate, vigorous and 
sedentary dimensions.  This segmentation demonstrates greater precision regarding the 
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intensity of physical activities, which is critical for older adults as sedentary and light activities 
can be pervasive.  We find increased sedentary behavior with the rising person-level ambient 
temperature. This is an important finding given the emerging evidence that sedentary behavior 
is a risk factor for cognitive decline.39   Sedentary behavior is associated with lower executive 
function test scores.40   Residents with high cognitive impairment spent the highest proportion of 
their daytime activity in sedentary behavior;41 and greater sedentary time was associated with 
lower cerebral blood flow.42  Sedentary behavior resulting in weight gain and obesity is also 
associated with cancer risk.43,44,45  Moderate to vigorous physical activity prevents chronic 
inflammation and insulin resistance, improves immune function, and reduces oxidative stress 
and sex hormones.46,47,48   

Results also support the well-proven thesis that extreme heat is associated with poor sleep 
health.  A systemic review between 1980 and 2017 showed that total sleep times declined, and 
sleep disruption rose among the older adult and low income residents in summer.49  Another 
study collected sleep data for five days using the wrist-worn accelerometer and compared them 
with bedroom temperature and humidity.  Sleep efficiency was lower in the summer than in the 
winter or fall.50  They also found increased wakefulness during summer compared to winter.  
Our result provides a more precise estimate of reduced sleep efficiency and complements 
existing studies that demonstrate decreased sleep quantity and quality. 
 
Finally, the role of AC in mitigating the effects of extreme heat cannot be overemphasized as 
seen in the difference between outside and person-level ambient temperature in our finding.  It 
is unclear why the effect of AC use on person-level ambient temperature is higher on the 
weekend compared to the weekdays.  Because location information and AC use are unavailable 
on a daily basis in the model, it is difficult to interpret these results.  To resolve this issue, 
obtaining geocoded information using an app-based survey with a question on daily AC use and 
complementing the survey with household-level smart meter data are options.  These options 
help match the fine-grained digital data from the accelerometer and strengthen personalized 
assessments of extreme heat impact. 

Limitations:  It is a relatively small sample in terms of age and gender distributions. This is also 
not a representative sampling but a purposeful one given the study’s focus on low income 
households with a higher variability of AC use. It is, thus, premature to draw a generalization of 
our findings.  Specifically, more investigation is needed to understand the nonlinearities 
demonstrated in both physical activity and sleep associated with the rising person-level ambient 
temperature.  A larger cohort with additional measures of confounders including comorbidities 
and chronic health conditions would shed light on this issue.  Adding interviews will also help 
evaluate the participants’ [mal]adaptive behavior during the hottest days of the summer and 
understand findings better.   

Conclusion   
 

Though the use of AC is pervasive in the southern part of the U.S., the study shows high 
variabilities in person-level ambient temperature despite relatively uniform outdoor temperature.  
This is due largely to the varying use of AC coupled with poorer housing conditions in the low 
income neighborhood that we draw our participants from.  Our findings confirm objectively what 
we know intuitively and with self-reported responses. That is, the elevated person-level ambient 
temperature increases sedentary behavior and decreases sleep efficiency.  

We expect the older adult in low income communities to be the most vulnerable target to 
extreme heat.  Older adults become less mobile with chronic illnesses, and lack of exercise 



because of hot weather often worsens their existing health conditions.  Reduced activity and 
sleep disturbance are likely to amplify cancer risk and deficits in mild cognitive impairment and 
Alzheimer’s disease and related dementias during extreme heat events.51,52,53 As such, it is 
important to assess the role of hot weather in the development of multiple adverse health 
outcomes such as accelerating cognitive decline, worsening pre-existing health conditions, and 
precipitating social isolation due to confinement at home. 
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