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Mean curvature flow method for numerical cosmology
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We provide a mean curvature flow method for numerical cosmology and test it on cases of
inhomogenous inflation. The results show (in a proof-of-concept way) that the method can handle even
large inhomogeneities that result from different regions exiting inflation at different times.
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I. INTRODUCTION

In recent years, there have been several numerical
studies of inhomogeneous expanding cosmologies [1-7].
Ultimately, the goal of these simulations is to use a wide
enough class of initial data and to evolve long enough to
determine whether inflation occurs generically. These
simulations use several different slicing conditions, with
some using generalized harmonic coordinates, others using
the puncture gauge, and still others using constant mean
curvature (CMC) slicing. While any of these slicing
conditions can evolve for some time, it is not clear whether
(in all cases of interest) they can evolve long enough to
extract all relevant physics.

This issue of long-time evolution is addressed from the
mathematical side in a recent paper by Wang and Senatore
[8], which uses mean curvature flow to study inflationary
cosmology. In this paper, the authors show the long-time
existence of their slicing and the asymptotic behavior of the
spacetime. Mean curvature flow has been extensively
studied by pure mathematicians, but has (so far) seen
comparatively little application in physics.

We are thus motivated to try mean curvature flow slicing
as a numerical method to study expanding cosmologies.
The variables, equations of motion, and numerical methods
used are described in Sec. II. Our results are presented in
Sec. III. Conclusions are given in Sec. IV.

II. EQUATIONS OF MOTION

The spacetime is described in terms of a coordinate
system (#,x") and a tetrad (ed, e%), where both i and & go
from 1 to 3. We choose e, to be hypersurface orthogonal
with a relation between the tetrad and coordinates of the
form e, = N!0, and e, = e,'d;. Here, N is the lapse, and
the shift is chosen to be zero. Note that this means that for
any quantity F, we have 0,F = Ney(F). We choose the
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spatial triad to be Fermi-propagated along the integral
curves of e.

The commutators of the tetrad components are decom-
posed as follows:

[eO’ ea] = uan - (H(Saﬂ + Gaﬂ)eﬂv (1)

(e, eﬂ] = <2a[a5ﬂ]y + €aﬁ§n5y)eyv (2)

where n% is symmetric, and 6% is symmetric and trace-
free. In physical terms, H is one-third of the mean curvature
and is therefore equal to the Hubble constant when
the spacetime is Friedmann-Lemaitre-Robertson-Walker
(FLRW). The shear o, gives the extent to which different
directions are expanding at different rates. The quantity i,
is not an independent variable but is given in terms of the
lapse by it, = N~'e,N.

The matter is a scalar field ¢ with potential V. In order to
obtain evolution equations for the matter variables that are
first order in space and time, we define the quantities P and
Sa by pP= e0(¢) and Sa = ea(¢)

Mean curvature flow means that the surfaces of constant
time evolve by flowing along their normal vector an
amount equal to the mean curvature. In terms of our
variables, this means that the lapse N is given by
N = 3H. Note that this means that i1, = H e H.

The evolution equations for the tetrad and matter
quantities are as follows:

aleai = _N(Héaﬁ + Ga/})eﬁi’ (3)

1 1
0,H = e%e,H—2a%,H+N [—Hz —gaaﬁaaﬁ _§(P2 - V)] ,
(4)

3
Ouaa =N |3e,H) = ey(o) = iy + )

1
o (5 iy + 5aﬂ> + 2eqp 05’ + ZPS“] @
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0,n% = N[—675(“ey (657)) — Hn® +-2n(@,6P* — ey‘s(“uyo};ﬁ)],
(6)
ataaﬂ = 3e<aeﬂ>H + N[—e<a(aﬂ>) — 3Haaﬂ + a<al;tﬂ>
+ ey(;(aey(nﬂ)‘s) + eyg(anﬂ)‘s(u7 —2a’)

=21 " Npey + N0 g + S0 Sps], (7)

d,p = NP, (8)

0,S, = Nle,(P) + Pit, — HS, — 6,/ Sg], 9)

0,P = N |e%(S,) —3HP + S, (1" — 2a%) — Z—; . (10)

These variables are also subject to the vanishing of the
following constraint quantities:

Ccom = €aﬁﬂ(ea(elii) - aae/ii) - nﬂye;'iv (11)
Cu2 = 6(1/31(6/}(1;‘(1) + Clal:t/}) + nﬂ}'uw (12)
Cy = e,(n®) + e (ag) — 2a,n®, (13)

Ce=ep(0,)) —2e,(H) =30, ay—eqpn’c5' = PS,, (14)

1
Cq = 4e%(a,) + 6H* — 6a%a, — n®n,z + Enz — 050"

— (P 4§78, +2V), (15)

Cs = Sy — eo(d). (16)

Initial data are chosen to solve the constraints of Egs. (11)—
(16), which are then preserved (to within numerical
truncation error) under evolution. Preservation of the
constraints up to truncation error is used as a code test
and as a test that the resolution is adequate. The data are
evolved using Egs. (3)—(10). Here, Eq. (4) is parabolic, and
to obtain a mixed hyperbolic-parabolic system, we add a
multiple of Eq. (14) to the right-hand side of Eq. (5).

The hyperbolic equations are evolved using the iterated
Crank-Nicholson method with the time step proportional to
the space step as required by the Courant condition.
Numerical evolution of parabolic systems using explicit
methods is usually slow, because it requires a time step
proportional to the square of the space step. Instead, we use
an implicit method to treat Eq. (4), which allows us to use
the same time step as for the hyperbolic equations.

III. RESULTS

To perform simulations quickly and with high resolution,
we treat spacetimes with two spatial symmetries. We use
Cartesian coordinates (x,y,z) and have dependence

only on x. We use periodic boundary conditions with
0 < x <2z, with 0 and 27 identified.

Initial data are found using the York method [9]. That is,
we write the initial data in terms of a freely specifiable piece
and an unknown conformal factor which we solve for
numerically. The initial data for the metric variables are the
following:

H = hy, (17)

o' = w8, (18)
aq = =2y e, 0y, (19)
nap = 0, (20)

Oup =W Zyp. (21)

Here, h is a constant, which means that our initial data
surface is a constant mean curvature surface.

The initial data for the matter variables are as follows:
P =y %0 and S, = e ¢, where Q and ¢ are given by

Q = po + focosx, (22)

¢ = ¢y + fcosx, (23)

where pg, fo, $o, and f; are constants.
For consistency with the momentum constraint
[Eq. (14)], we pick Z,; to be

Zop = diag(ayy. dayy, —(1 + A)ayy), (24)

where A is a constant and a;; is given by

1
a —f1<p0cosx+1focos2x>. (25)

The Hamiltonian constraint [Eq. (15)] then becomes the
following elliptic equation for -

Pow + (V) =35 + 4 (0F + 292, )y~
+ (9'po,p)y = 0. (26)

which we solve numerically.

One of the conditions for the theorems of [8] is a
potential V satisfying 0 < A} <V <A,, where A; and
A, are constants. In order to investigate this case, we
choose a potential of the form

Al €_¢/C + A2€¢/C
e_(p/c + e¢/c

V(g) = : (27)
where A, A,, and c¢ are constants. A plot of the potential
with parameters A; = 1, A, =2, ¢ = 1 is shown in Fig. 1.
Note that this potential has two plateaus: the upper one at
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FIG. 1. Vvs¢forAj =1, A, =2,and c = 1.

A,, and the lower one at A;. We perform runs with A; and
A, greater than zero to compare to the results of [8].
However, as noted in [8], their conditions are only designed
to model the onset of inflation. In particular, with A; > 0,
one cannot model the exit from inflation. In order to treat
this case too, we also perform simulations with A; = 0.

Potentials of this form are chosen in this preliminary
study for purposes of comparison with the results of [8].
However, our mean curvature flow method is compatible
with any potential, including more commonly used poten-
tials like m?¢?>.

Results for a simulation using the potential of Fig. 1 are
shown in Figs. 2 and 3. Here, Fig. 2 shows the time
development of H, while Fig. 3 shows the time develop-
ment of ¢. Since the coordinate x has 0 and 2z identified,
this means that the left-hand side of each panel of each
graph is identified with the right-hand side. Note in Fig. 2
that at intermediate times, two regions develop with two
different values of H, while by the end, there is a uniform
value of H corresponding to what was the lower value at

25 | =0 —— =4 —— =8 ——
2
T 15} 1
1L i
05 1 I o~
0
25 =12 —— | =16 —— =20 ——
2 L 4
T 15} 1
1k i
05 1
0
X X X

FIG.2. Hvsxfort=0,4,38, 12, 16, and 20. The parameters
for the potential are A; = 1, A, = 2, ¢ = 1. The parameters for
the initial data are hy = 2, pg =5, fo = 0.1, o = 0.5, f1 = 0.8,
A=0.5.
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FIG.3. ¢ vsxfort=0,4,8, 12, 16, and 20. The parameters for

the potential are A; = 1, A, =2, ¢ = 1. The parameters for the
initial data are hy =2, pg =35, fo =0.1, ¢y =0.5, f; =0.8,
A=0.5.

intermediate times. This behavior can be understood by
looking at the corresponding panels of Fig. 3: at inter-
mediate times, one region has the scalar field ¢ at the top
plateau of the potential, while the other region has ¢ at the
bottom plateau of the potential. By the final time of the
simulation, ¢ is at the bottom plateau everywhere.

In a sense, these two regions are present from the
beginning, since the field starts out at the top plateau in
one region and the bottom plateau in another region. From
this point of view, it may seem odd that H is uniform in the
initial data. However, constant H is a requirement of the
York method, since it allows the momentum constraint
equation to decouple from the Hamiltionian constraint
equation and thus be solved independently.

In order to model both inflation and the exit from
inflation, we perform simulations with the potential given
in Fig. 4, which has A; =0 and A, = 2. Results for a
simulation with this potential are shown in Figs. 5 and 6.
Other than the change in the potential, this simulation uses
the same parameters for initial data as the simulation
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FIG. 4. V vs¢ for Ay =0,A, =2,and ¢ = 1.
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FIG.5. Hvsxfort=0,4,8, 12, 16, and 20. The parameters

for the potential are A; = 0, A, =2, ¢ = 1. The parameters for
the initial data are hy = 2, py = 5, fo = 0.1, ¢ = 0.5, f; = 0.8,
A=0.5.

presented in Figs. 2 and 3. Note that the overall behavior is
very similar to that of the previous simulation: Fig. 5 shows
that at intermediate times, there are two regions with
different values of H, while by the end of the simulation,
H has become fairly uniform and is evolving toward zero.
Once again, this behavior can be understood by looking at
the behavior of ¢ given in Fig. 6: at intermediate times,
there are two regions—one with ¢ at the top plateau of the
potential, while the other has ¢ at the bottom plateau of the
potential. By the end of the simulation, ¢ is at the bottom
plateau everywhere.

In order to give the method a more stringent test, we use
initial data with a significantly larger amplitude for the
inhomogeneity of the scalar field. Results for this simu-
lation are presented in Figs. 7 and 8. Here, the results are
somewhat different from those of the previous two
simulations. Though this simulation is run for twice as
much time as the previous simulations, nonetheless even
at the end of the simulation, there are two distinct regions.

<
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FIG.6. ¢ vsxfort=0,4,8, 12,16, and 20. The parameters for
the potential are A; = 0, A, =2, ¢ = 1. The parameters for the
initial data are hg =2, py =35, fo = 0.1, ¢9 = 0.5, f1 = 0.8,
A=0.5.
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FIG.7. Hvsxfort=0,8, 16,24, 32, and 40. The parameters
for the potential are A; = 0, A, = 2, ¢ = 1. The parameters for
the initial data are hy =2, po=1, fo =0, ¢o =0, f; =3,
A=0.5.

In one region, the scalar field has reached the bottom
plateau of the potential, and thus inflation has ended.
However, in the other region, the scalar field is still at the
top plateau of the potential, and it is evolving very slowly.
We can therefore expect inflation in this region to go on
for an extended period of time. Furthermore, the behavior
of H is becoming quite steep in the transition region
between the inflationary region and the region where
inflation has ended.

In cases in which gradients are steep, one must ensure
that there are enough spatial points to provide adequate
spatial resolution. To address this issue, we present the
results of a convergence test in Fig. 9. In this figure, we plot
the natural logarithm of the L, norm of the constraint C; of
Eq. (15) vs time at two different resolutions. The top curve
is at the resolution of the simulations of Figs. 7 and 8. The
bottom curve is with twice as many spatial points. The
results show that we are in the convergent regime and thus
have adequate spatial resolution.

=8 —— =16 ——
4+ =24 —— =32 —— =40 ——
X X X

FIG.8. ¢ vsxfort=0,8, 16, 24, 32, and 40. The parameters
for the potential are A; = 0, A, = 2, ¢ = 1. The parameters for
the initial data are hy =2, po=1, fo =0, ¢o =0, f; =3,
A=0.5.
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FIG. 9. In(||Cs]||) vs t at two different spatial resolutions.

IV. CONCLUSION

Because the mechanism of inflation is local, inhomo-
geneous cosmologies remain inhomogeneous even when
inflation occurs. This is because different regions may
undergo different amounts of inflation and exit inflation
at different times. Thus, a numerical cosmology method

needs to be able to accurately evolve the spacetime for
sufficiently long times even in the presence of ongoing and
possibly large inhomogeneities. We have shown (in a proof-
of-concept way) that mean curvature flow is a promising
method for such robust long-term evolution. It would be
interesting to do a comparison of robustness (using the same
initial data) with the slicing methods used in Refs. [1-7].

One limitation of our current simulations is the restric-
tion to dependence on one spatial coordinate. In particular,
this limitation does not allow us to treat the case where
black holes form in an inhomogeneous inflating cosmol-
ogy. It would be interesting to perform simulations using
our method in the case of no symmetry. Since under mean
curvature flow the mean curvature remains positive, we
expect that in such a simulation the slices would slow down
and essentially freeze in the black hole region. That is, we
would expect a “collapse of the lapse” phenomenon similar
to what occurs in maximal slicing.
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