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Abstract—False data injection (FDI) attacks can manipulate
power system measurements, leading to system economic losses
and security issues. Although machine-learning (ML) detectors
can effectively detect FDI attacks, the current methods used to
construct FDI attacks do not take into account the presence of
ML detectors. To tackle this problem, we propose novel con-
vex matrix-completion-based FDI (MC-FDI) attacks on DC and
AC power flow models from an attacker’s perspective, accounting
for the temporal correlation between compromised and historical
measurements. The proposed attacks minimize the nuclear norm
of the compromised measurement matrix to make the compro-
mised measurement consistent with the historical measurements,
and also maximize the L1-norm of the incremental voltage angle
to ensure a sufficient negative impact on the power system oper-
ation. Moving target defense (MTD) is proposed to detect the
proposed MC-FDI attacks from the defender’s standpoint. The
idea is to actively change the line impedance to corrupt the spa-
tial and temporal correlation of the compromised measurements
in the MC-FDI attacks. Numerical results on the IEEE 14-bus
and IEEE 118-bus systems show the stealthiness of the proposed
attacks to both the Chi-square detector and ML detectors as well
as the efficacy of MTD in detecting the MC-FDI attacks.

Index Terms—False data injection, matrix completion, machine
learning detector, moving target defense, state estimation.

I. INTRODUCTION

HE SMART grid integrates information and communi-
Tcation technology (ICT) enabled devices and Internet of
Things (IoT) technologies to enable the transition to decar-
bonization and electrification. However, these devices also
bring vulnerabilities to the cybersecurity of the smart grid. The
U.S. Department of Energy received 362 power interruption
reports related to cyber-physical attacks between 2011 and
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2014 [1]. As significant threats to modern power systems,
these attacks can undermine or even disrupt the control system
of power grids, potentially resulting in tremendous economic
loss and severe consequences.

The False Data Injection (FDI) attack is considered one of
the most critical cyberattacks that can occur against smart grids
due to its high-consequence nature. These attacks are intended
to manipulate the state estimation (SE) results obtained by
grid operators, thereby creating a significant risk to the grid’s
overall security and reliability. The elaborately constructed
attack vector on the Supervisory Control and Data Acquisition
(SCADA) measurements can bypass bad data detection by
keeping consistent with physical laws like Kirchhoff’s cir-
cuit laws. Since the power system state estimation is the
basis of many power system operation applications in the
energy management system (e.g., contingency analysis and
economic dispatch), FDI attacks can result in serious conse-
quences, such as economic loss, unstable system states, and
even voltage collapse led to widespread blackouts [2]. The
2015 Ukraine cyberattack took over six months of infiltration
and was successful in compromising the SCADA system and
de-energizing a portion of the grid for a few hours [3]. In
the Ukraine blackout, the attackers loaded malicious firmware
into field gateway devices of the SCADA network to ensure
that remote commands could not be issued to bring the sub-
stations back online, even when operator workstations were
recovered [3]. Liang et al. argued that the circumstances
of the Ukraine blackout highlight the plausibility of com-
mon assumptions in FDI attacks regarding the knowledge and
capabilities required by an adversary [4].

Traditionally, state estimators obtain grid measurements
from remote terminal units (RTUs), which measure the voltage
magnitudes, power injections, and power flows. Most of the
FDI attacks in the literature focus on RTU-based state estima-
tion. Jin et al. analyzed the vulnerability of the power system
AC-SE against FDI attacks, and demonstrated an attacker can
plan a stealthy FDI attack in polynomial time with limited
resources [5]. Different algorithms were proposed to construct
stealthy FDI attacks by compromising the minimum number
of sensors [6], [7]. Soltan et al. proposed joint cyber and physi-
cal attacks on the power grid based on a simplified AC power
flow model [8]. Liang et al. introduced an FDI attack that
can induce physical line overflows [9]. Yuan et al. proposed
a special type of FDI, i.e., load redistribution attacks, which
aim to cause load shedding in the power system [10]. In the
modern power grid, Phasor Measurement Units (PMUs) are
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adopted to obtain a global view of the health of the grid [11].
PMUs can provide accurate and real-time synchronous phasor
measurements with Global Positioning System (GPS) time
sampled from geographically dispersed buses in the smart
grid [12]. Pei et al. proposed a greedy placement algorithm
of PMU devices to detect coordinated FDI attacks, in which
the most vulnerable buses are protected [12]. However, PMUs
are subjected to many vulnerabilities due to their dependency
on external time sources for time synchronization and lack
of strong authentication [13], [14]. Basumallik et al. investi-
gated the vulnerability of PMU-based state estimation under
the FDI attacks [15]. Alexopoulos et al. proposed a sparse
FDI attack method against PMU-based state estimation using
complementarity reformulation to compromise the minimum
number of sensors [16].

However, there is no guide in selecting the malicious incre-
mental voltage in the traditional FDI (TFDI) attacks, which
can yield a distinct change of measurement values. These
distinct measurement changes cause the FDI attacks to be eas-
ily detected by state-of-art anomaly detection methods, such
as machine learning (ML) methods. ML methods have been
proposed to detect FDI attacks in the smart grid by learning
the spatial and temporal correlation of historical measure-
ments. Supervised machine-learning-based binary classifiers
were presented to check the distance between normal and
compromised measurements [2]. Ozay et al. applied multiple
supervised methods, including perceptron, k-nearest neighbor,
support vector machine (SVM), and sparse logistic regres-
sion to detect FDI attacks [17]. Esmalifalak et al. first applied
dimension reduction to the measurements and then utilized dis-
tributed SVM to classify the compromised measurements [18].
Sakhnini et al. tested three classification techniques using dif-
ferent heuristic feature selection techniques and concluded
that the SVM and the k-nearest neighbor algorithms overper-
form artificial neural networks in detecting FDI attacks [19].
Semisupervised learning methods are also applied to detect
FDI attacks, in which the information obtained from the
unlabeled test samples is used for the learning models. The
basic idea is to cluster the normal and compromised measure-
ments into distinct regions in the feature spaces. Ozay et al.
employed the semisupervised SVM algorithm to establish the
relationship between supervised and semisupervised learning
algorithms for detecting FDI attacks [17]. Esmalifalak et al.
proposed the Gaussian abnormal detector to detect the devia-
tion in measurements, and the outliers were identified as FDI
attacks [18].

From the perspective of the attacker, the traditional FDI
attacks have a problem because their construction methods
only consider the spatial correlation of the historical mea-
surement, not the temporal correlation, making them easily
detectable by machine learning methods. Furthermore, there
is a trade-off in selecting the malicious incremental voltage
during constructing FDI attacks. An FDI attack with a large
incremental voltage has a sufficient negative impact on the
power system operation, but it is more likely to be detected by
the ML detectors due to the distinct change of measurement
values. Conversely, an FDI attack with a small incremental
voltage could be stealthy to the ML detectors, but it has a triv-
ial negative impact on the power system. In the literature, there

2147

is a research gap in developing a novel FDI attack that has
a sufficient negative impact on the power system but remains
stealthy to ML detectors.

Matrix completion (MC) is a promising technique to recover
an intact matrix with low-rank properties from incomplete
data [20]. MC applications include wireless communications,
traffic sensing, integrated radar and communications, and
power systems. Therefore it has received much attention in the
past several years [21]. MC can learn the spatial or temporal
correlation of incomplete data based on the low-rank property
of matrices. If the matrix is formulated by the elements col-
lected at a single time step, MC can recover the missing values
by learning the spatial correlation of elements. Centralized and
decentralized state estimation methods were proposed for the
distribution system with low observability, which employed
the conventional MC method augmented with noise-resilient
power flow constraints [22], [23], [24]. If the matrix is for-
mulated by the elements collected over multiple time steps,
MC can estimate the missing elements by learning the tem-
poral correlation of available elements. For example, MC was
successfully applied to estimate missing phasor measurement
unit (PMU) data [25] and detect bad data [26] using historical
measurements.

This paper proposes novel FDI attack models which uti-
lize matrix completion to determine the incremental voltage,
such that the compromised measurements follow the tem-
poral correlation of the historical measurements. Therefore,
the proposed attack can remain stealthy to machine-learning
attack detectors. In addition, the proposed attack models also
maximize the incremental voltage to ensure a sufficient neg-
ative impact on the power system operation. The novelty
of this paper is two-fold. From the attacker’s perspective,
this paper proposes novel FDI attack models which improve
the stealthiness against ML detectors, while ensuring a suf-
ficient negative impact on the power system operation. From
the defender’s perspective, we apply moving target defense
(MTD) to detect the highly stealthy MC-FDI attacks. It is
worth emphasizing that the goal of this paper is not to edu-
cate the attackers on how to construct highly crafted attacks,
but to provide the grid defender a better understanding of
how to design effective defense approaches against such new
attacks.

o« We propose a defense-attack framework consisting of

a hybrid defense model and FDI attacks. The hybrid
defense utilizes a model-based Chi-2 detector in conjunc-
tion with prevailing machine-learning detectors. To the
best of our knowledge, this is the first piece of literature
to focus on the development of FDI attacks designed to
maintain stealthiness against a hybrid defense model.

o From the attacker’s standpoint, we propose novel con-
vex matrix-completion-based FDI (MC-FDI) attack algo-
rithms in both DC and AC power flow models to optimize
the malicious incremental voltage. The proposed attacks
exhibit two distinctive features. Firstly, they utilize the
MC technique to make the compromised measurements
consistent with the temporal correlation of historical mea-
surements. Secondly, the attacks use the TFDI model to
enforce the spatial relationship of the compromised mea-
surements. Furthermore, the proposed attacks can strike a
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TABLE I
NOMENCLATURE
Symbol Definition
0 Voltage angle of buses excluding reference bus
X System state vector
a FDI attack vector
z Measurement vector
Z, Compromised measurement vector
Z Historical measurement matrix
7, Compromised measurement matrix
H DC measurement matrix in state estimation
b; Susceptance of line i— (between bus i and )
n Total number of system buses
m Total number of measurements
idx' Index array of time instants
idx™ Index array of buses
r(") Matrix rank operator

balance between the attack’s stealthiness against a hybrid
defender and their malicious consequences on the power
system operation, allowing the attackers to achieve their
objectives while reducing the risks of being detected.

« From the perspective of the defender, we apply MTD, for
the first time, in the physical layer of the power system to
detect MC-FDI attacks by actively changing the system
configuration. Our theoretical analysis proves that MTD
can corrupt both the temporal and spatial correlation of
compromised measurement in MC-FDI attacks. This rep-
resents a significant step towards detecting data-driven
FDI attacks through the corruption of both temporal and
spatial correlation of compromised measurements.

The rest of this paper is organized as follows. We provide
preliminaries and related work in Section II. In Section III,
we propose the DC- and AC- MC-FDI attack models. In
Section IV, we propose MTD to detect the MC-FDI attacks.
We conduct case studies in Section V. Conclusions are drawn
in Section VI.

II. PRELIMINARIES

In this section, we provide background knowledge of MC,
SE, FDI attacks, and a machine-learning attack detector as
preliminaries for the follow-up sections.

A. Notation

Variables frequently used are summarized in Table I, where
boldfaced lower-case and upper-case letters stand for vectors
and matrices, respectively. From the attacker’s perspective,
subscript 0 denotes variables before attacks. For example, z
and z, stand for uncompromised and compromised measure-
ment vector, respectively. From the defender’s perspective,
subscript 0 denotes variables before MTDs. For example,
Hy represents the original measurement matrix before an
MTD, and H; stands for the one after the implementation
of an MTD at time f. In addition, variables preceded by
A represent changes in the variables. For example, Ax rep-
resents the malicious incremental voltage vector introduced
by the attacker. This paper uses superscript 7 to represent
time instant and uses superscript ' to represent the transpose
operator.
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B. Matrix Completion

Matrix completion technology aims to estimate the unknown
elements in an incomplete matrix that has a low-rank property.
Formally, let M € R"*™ be a real-valued data matrix to
be recovered; let & C {1,...,n1} x {1, ..., ny} describe the
index of the known elements in M, and My represents the
observation matrix. The matrix completion problem can be
formulated as a rank-minimization problem as follows:

min
DeR"1 %72
s.t. Dy =My @))]

(D)

where the decision variable D estimates the incomplete
matrix M. However, this problem is NP-hard due to the non-
convexity of the rank function, and its solution algorithms are
doubly exponential. Problem (1) can be modeled as a convex
optimization problem by minimizing the nuclear norm using
the convex relaxation technique [22].

min — |D],
DeRM *m2
s.t. Dy = My @)

where the nuclear norm ||D||, sums the singular values of D.
Problem (2) often has a unique minimizer D that equals M, if
there are sufficient randomly-sampled entries in My [27].

C. Power System State Estimation and FDI Attacks

In the DC-SE, nodal voltage angles, i.e., system states,
x € R"lare estimated by active nodal power injection
(which can be positive or negative) and active branch power
flow measurements z € R™. The measurement vector and
states are related as z = H - x + e, where e € R" is
the measurement noise assumed to be Gaussian distributed
with zero mean, and a diagonal covariance matrix W =
diag(ol_z, o, 2, R anjz). DC-SE has a closed-form solution
as follows: X = (HHWH) " '"H'Wz. In the AC-SE, the system
states x € R*~1 je. nodal voltage angle and magnitude,
are estimated by a set of measurements z € R, including
the power injection, power flow, and voltage magnitude mea-
surements. The measurement vector and states are related as
z = h(x) + e, where h(-) is a vector of nonlinear function
determined by the type of measurements. Since AC-SE doesn’t
have a closed-form solution, Gauss-Newton iterative algorithm
is used to solve the following weighted least square problem:
min (z — h(x))W(z — h(x)).

The Chi-2 detector is a widely used bad data detector (BDD)
in DC-SE and AC-SE to detect bad data, as the estimation
residual follows the Chi-2 distribution. When the system is
free of bad data, the estimation residual is less than a preset
threshold, ie., y = ||z—H-X||2 < yy in DC-SE and y =
[lz — h(X)|]2 < ym in AC-SE, where yy = X(2m—n),a is the
threshold to ensure BDD has a false alarm rate at 1 — «.

An FDI attack aims to mislead the estimated states in the
system operator’s SE by injecting an attack vector a into
the SCADA measurements, i.e., z, = z + a. In the DC-
FDI attack [28], the estimation residual under attack in the
defender’s Chi-2 detector is zero in the noiseless condition,
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ie., ¥s = ||(z+a) —H- (x+ Ax)||» = 0, if the attacker
calculates the FDI attack vector a as follows:

a=H- Ax 3)

In the AC-FDI attacks, the estimation residual under attack
in the defender’s Chi-2 detector remains the same before and
after FDI attacks, i.e., ¥, = ||(z+ a) — h(xX + AX)||2 = ||z —
h(x)||2, if the FDI attack vector a can be calculated by:

a = h(x + Ax) — h(x) 4

Since FDI attacks do not increase the estimation residual in
the defender’s Chi-2 detector compared with the situation free
from attacks, FDI attacks remain stealthy to the defender’s
Chi-2 detector.

D. Machine Learning Detectors

Machine learning methods have been used to detect FDI
attacks based on the fact that normal data and compromised
data tend to be separated in a certain projected space. In this
paper, the SVM detector [18] is chosen to evaluate the stealthi-
ness of the proposed FDI attacks for two reasons. First, it is the
first machine learning method in the literature to demonstrate
a decent capability to detect FDI attacks. Second, the SVM
detector utilizes principal component analysis (PCA) as a pre-
processing step, allowing for visualization during the attack
detection. Traditional metrics such as precision, recall, and
F1 score can be used to quantitatively measure the stealthiness
of the proposed FDI attacks, while the visualization capabili-
ties of the SVM detector enable qualitative demonstration of
the proposed attack characteristics.

In the SVM detector, PCA is first applied to project
the historical measurement data to a low-dimensional space.
Dimension reduction solves the challenge brought by the
high-dimensionality and redundancy of measurement data in
practical power systems, and it is also beneficial for visual-
ization. Then, the SVM method is proposed to detect stealthy
FDI attacks [17], [18]. Generally, an SVM classifier constructs
a hyperplane or a set of hyperplanes used for classification.
Given a labeled training set S = (x;,y;), [ = 1,..., L of size
L, with y; €{1, —1} including both normal measurement data
and compromised data, the SVM problem can be formulated
by (5). The goal of SVM is to find the normal direction of
a hyperplane @ and parameter b such that the prediction is
correct for the most samples.

min
®,8,b

sit. yi(@ox) +b) = 1-§
£>0, [=1,...,L (5)

L
1 /
Eww—i—Czl:é[
i

where ¢ (x;) is a nonlinear transformation that maps x; in a
higher dimensional space, and @’ is the transpose of w. The
slack variable & accounts for nonlinearly separable training
sets, and C is a tunable positive regularization parameter.
Artificial Neural Networks (ANN) consist of interconnected
neurons organized in layers. The training process allows
ANNSs to learn complex patterns and relationships in the data,
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A MC-FDI attack model i Hybrid defense model

X,
SE > MCFDI |, /[ DCFDI) | H  Chi2Detector |
Model —>
-bl Collect Data ’—b (1), (14) AC-FDI (9) -,m‘
ZO
al
B z, Y
7 Power System + »|  State Estimati =
[ X,

Fig. 1. The framework of MC-FDI attack against the hybrid defense model.

enabling them to make predictions or classifications [29].
Logistic Regression (LR) is a popular statistical modeling
technique used for binary classification problems, which
assigns probabilities to each outcome class [30]. Polynomial
Logistic Regression extends the basic LR model by allowing
for polynomial terms in the input variables, making it capa-
ble of capturing nonlinear relationships between the predictors
and the response. Gaussian Naive Bayes is a probabilistic
machine learning algorithm based on Bayes’ theorem that
assumes a Gaussian (normal) distribution for the continuous-
valued features. It calculates likelihoods for each class and
combines them with prior probabilities to predict the output
class [31]. These three ML methods are also used to evaluate
the stealthiness of the proposed FDI attacks.

IIT. MATRIX COMPLETION-BASED FDI ATTACK

In this section, we will propose a defense-attack framework
for MC-FDI attacks against a hybrid defense model and further
define the capability and knowledge of the attacker in MC-FDI
attacks. Finally, we will propose the mathematical model of
MC-FDI attacks in the DC and AC power system models,
respectively.

A. Matrix Completion-Based FDI Attack Framework

We propose a defense-attack framework consisting of a
hybrid defense model and an MC-FDI attacker, as shown in
Fig. 1. In the framework, we define the hybrid defender as
the system operator who utilizes both the model-based detec-
tor (Chi-2 detector) and ML detectors (such as SVM detector
and ANN detector) to detect FDI attacks. We define the MC-
FDI attacker as an attacker that utilizes the MC technology to
remain attack stealthy to both the model-based and the ML
detectors and ensure a sufficient negative impact on system
operation. When the power system is under the load condi-
tion Py, and Qf, at time t, the SCADA measurement vector
is z;. The MC-FDI attacker first collects SCADA measure-
ments over time, and then conducts the SE to estimate X;.
Based on the collected historical measurements Zg, the MC-
FDI attacker utilizes MC-FDI models to calculate the optimal
incremental voltage state Ax* considering the characteristics
of historical measurements. Finally, the traditional FDI models
are utilized to calculate the malicious measurement a injected
by the attacker.

The knowledge and capability of the MC-FDI attacker
are summarized as follows: i) The attacker knows the grid
topology and line parameters of the power systems. If the
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Algorithm 1 DC-MC-FDI Attack Algorithm

Input: Length of the historical measurement 7, attacked
buses idxb"s

Output: Compromised measurements z,

1: Initialization: A null historical measurement matrix
7o =90

2:  // Construct the historical measurement matrix Zg

3:  while (the number of columns of Zy < T) do

4 Eavesdrop SCADA measurements z; at time i

5: Add z; to the last column of Zyg, i.e..Zo = [Zo, Z;]

6: Keep eavesdropping SCADA measurements at time
i=i+1

7:  end while

8 Run DC-MC-FDI model (11) to get Ax*

Calculate the compromised measurements according
to (8)
10: return z,

Algorithm 2 AC-MC-FDI Attack Algorithm

Input: Length of the historical measurement 7, attacked
buses idxb"s

Output: Compromised measurements z, at time ¢

1: Initialization: A null historical measurement matrix

Zo=0

2:  // Construct the historical measurement matrix Z

3:  while (number of columns of Zy < T) do

4 Eavesdrop SCADA measurements z; at time i

5: Add z; to the last column of Zg, i.e..Zo = [Zo, z;]

6: Keep eavesdropping the SCADA measurements at
time i =i+ /

7:  end while

8:  Apply state estimation to estimate the voltage at time ¢

Calculate the Jacobian matrix to linearize the AC-FDI
attack model

10 Run AC-MC-FDI model (14) to get Ax*

11:  Calculate the compromised measurements according
to (9)

12: return z,

attacker only has limited information on grid topology and line
parameters, the attack still can utilize Algorithms 1 and 2 to
construct MC-FDI attacks using a modified H matrix and h(x)
based on the principle in [32]; ii) The attacker has the write
access to all measurements related to compromised states;
iii) The attacker has the read access to all SCADA mea-
surements, and can continuously eavesdrop on the SCADA
measurements for a long time; and iv) The attacker knows the
grid voltage in the AC power system model.

Regarding Assumption i), the complete knowledge of the
grid topology and line parameters is a common assumption in
many prior works on FDI attacks [5], [7], [8], [9], [10], [16],
[28], [33]. It is important to note that write access is a prereq-
uisite for all FDI attacks, as stated in Assumption ii). In FDI
attacks, not all measurements need to be injected with mali-
cious data, and only the measurements related to compromised
states need to be injected. The attacker needs write access to
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SE period

Current time

—> Eavesdrop —> Construct attack ~ —> Launch attack

Fig. 2. Time sequence of measurement eavesdropping, attack construction,
and attack injection.

all measurements related to compromised states. Assumption
iii) of the read access is realistic, as evidenced by the Ukraine
cyber-attack incident, where the attackers had long-term power
system reconnaissance over six months or more without being
noticed [3]. Since the SCADA layer communication network
architecture has no cryptographically secure communication
protocol, intercepting and forging communication messages
is easy to achieve [4]. In addition, the existing blind FDI
attacks [34], [35] assume that the attacker can collect histor-
ical measurements for a long period. Lakshminarayana et al.
pointed out that the length of historical measurement should
be more than 500 time instants in the IEEE 4-bus system
to construct a stealthy blind FDI attack [36]. More histori-
cal measurements are needed to construct stealthy blind FDI
attacks in a larger system. Assumption iv) of the grid volt-
age is a common assumption in most prior works on AC FDI
attacks [5], [32], [33]. Hug and Giampapa first proposed this
assumption in the AC-FDI attack model due to the nonlinear
measurement-states relationship [33].

We propose a DC-MC-FDI and an AC-MC-FDI attack algo-
rithm, as shown in Algorithm 1 and Algorithm 2, respectively.
The attacker first needs to decide the length of the historical
measurement 7" used in matrix completion and then decide on
the attacked buses ide‘” to manipulate their voltage. Since
the matrix completion technology is used in the MC-FDI
attacks, the attacker ought to construct a historical mea-
surement matrix Zo free of attacks in the first step of the
MC-FDI attack. The attacker can continuously eavesdrop on
the SCADA measurements for 7 instants and then construct a
historical measurement matrix Zg, as follows:

- Z7-1 27 (6)

where z;, € R™ is a vector of all SCADA measurements at
time t, Zo € R”*T is composed of all SCADA measurements
in the order of the time sequence, and T represents the length
of eavesdropping periods used in the historical measurement
(the number of columns in Zg).

We present the time sequence of measurements eaves-
dropping, attack construction, and attack launch based on
state estimation periods in Fig. 2. The attacker first keeps
eavesdropping SCADA measurements until the attacker has T
historical measurement vectors. After collecting sufficient his-
torical measurements, the attacker can launch an attack at any
time. Here, we use fr to denote the current SE period when
the attacker launches an attack. When the attacker decides
to launch an attack on f7, a malicious vector a calculated

Z() = [Z] Y /)
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by the MC-FDI model is injected into the SCADA measure-
ment z7. Consequently, the compromised measurement matrix
under attack can be defined as:

Z,(idx) = Zo(idx!) + a
Za(idx)) = Zo(idx() @)

where idxl, = (T}, idx; = {1, 2,..., T —1}, and a is the
malicious injection measurements determined by the malicious
incremental voltage Ax.

In the second step of MC-FDI attacks, MC-FDI models are
proposed in Sections III-B and III-C to determine the optimal
incremental voltage in the DC and AC power system mod-
els, respectively. Note that the voltage at the attack time T
needs to be estimated by the attacker through state estimation
for constructing AC-MC-FDI attacks but is not necessary for
DC-MC-FDI attacks. This voltage estimation requirement is
the same as the construction of traditional AC-FDI attacks,
according to (4).

In the last step of MC-FDI attacks, the attacker can calcu-
late the malicious measurements at time 7" using the optimal
malicious incremental voltage based on the traditional FDI
models. The compromised measurements in the DC-MC-FDI
attack can be expressed as:

2l =z) +H- Ax* (8)

a =

Similarly, the compromised measurements in the AC-MC-
FDI attack can be expressed as follows:

z! =z} + h(xr + AX*) — h(x7) 9)

B. The DC-MC-FDI Attack Model

Since there is a trade-off between the attack stealthiness
and the negative impact in the construction of FDI attacks
against the machine learning detector, it is necessary to
balance the trade-off in selecting the value of incremental
voltage. Thus, we propose a novel MC-FDI model to cal-
culate an optimal malicious incremental voltage in the FDI
attacks, which considers the temporal correlation of the his-
torical measurements and ensures sufficient negative impact
on the power system operation. The MC-FDI model in the
DC model is proposed in (10), which minimizes the nuclear
norm of the compromised measurement matrix and max-
imizes the Ll-norm of the malicious incremental voltage
angle.

min | Za[, — Al Ax]; (10)

st Za(i) = Zo(i) +a i€idx, (10.1)
Z.(i) = Zo(i) i€iddy (10.2)

a = HAx (10.3)
AXp(i) < AX() < Axup(i) i€ idl™ (10.4)
Ax(i) =0 i €idx)™ (10.5)

where Z (i) represents i-th column in Zg, and Ax(7) stands for
the i-th element in the vector;A is the weight parameter; idxg‘”
and ide”“ is the index of buses free of attack and the index

of attacked buses, respectively. Constraints (10.1) and (10.2)
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define the compromised measurement matrix under attack.
Constraint (10.3) is the traditional DC-FDI attack model.
Constraint (10.4) introduces lower bound Ax; and upper
bounds Ax,; to allow but limit the malicious incremental
voltage angle in each of the attacked buses. Constraint (10.5)
ensures that the buses in idxy* are free of attacks.

However, the proposed model is a non-convex optimization
problem, as the objective function is a sum of a convex func-
tion ||Z,||«and a concave function —A || Ax||;. By analyzing the
problem structure, we transform the objective into the sum of
a convex function ||Z,|l+ and a plane p’ Ax. Specifically, we
convexify the problem by introducing an attacker preference
vector p € R"*!. The elements in p reflect the attacker’s inten-
tion for each bus in the system. The attacker can set the value
ofp(i) 1, —1, and O to decrease, increase and retain the volt-
age of Bus i, respectively. Multiple open-source packages can
be used to solve the following convex problem (11), such as
CVX [37] and CVXPY [38].

min ||Z,|, + Ap'Ax
AX

s, (10.1) — (10.5) (11)

Note that X is a positive weight parameter used to balance
the trade-off between ||Z,||« and ||Ax|/;. From the attacker’s
perspective, a larger A results in a larger incremental voltage
|AX||; (a larger impact on power system operation), but a
larger nuclear norm ||Z,||. (indicating less following the tem-
poral correlation of the historical measurements). The weight
needs to be fine-tuned based on the specific system. Based
on our numerical results, the range of A is usually between 1
and 20.

C. The AC-MC-FDI Attack Model

We extend the DC-MC-FDI model to an AC-MC-FDI
model, which integrates the traditional AC-FDI model (4) as a
constraint. The differences between the DC-MC-FDI and AC-
MC-FDI attacks are the essential differences between the DC
and AC power system models. The decision variableAx is
composed of the incremental voltage magnitude and incre-
mental voltage angle. The historical measurement matrix Zg
in the AC model contains more measurement types than those
in the DC model. The most important difference is the non-
linear relationship /(-) between the measurements and states.
However, the existence of nonlinear power flow constraints
and power balance constraints makes the AC-MC-FDI model
hard to solve. Therefore, we apply the first-order Taylor series
expression on h(-) to linearize the relationship between the
measurements and states at time 7, as follows:

h(xr + AX) = h(x7) + H(x7) AX (12)

where H(x7) = 0h(xr)/0x is the Jacobian matrix of A(x) at
x = X7. Note that the same Jacobian matrix is also needed
in solving the AC weight least square (WLS) SE, which is
a necessary step in the traditional AC-FDI attacks. Thus, the
calculation of the Jacobian matrix in the AC-MC-FDI model
is not an extra burden for the attacker. In this case, the injected
measurements a can be expressed in a linearized formulation
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using the Jacobian matrix:

a = h(xr + Ax) — h(x7) = H(x7)Ax (13)

Therefore, we propose a convex AC-MC-FDI model in (14),
which utilizes the linearized relationship between the measure-
ments and states in the constraints. Note that we replace the
voltage state xy with X7 estimated by the attacker’s SE, since
x7 is unknown to the attacker.

min ||Z,|, + Ap' Ax
AX

s.t. Z,0) =Zo(i) + a i €idx,
Z.(i) = Zo(i) i € idxh
a = H(Xy)Ax
AXp(i) < AX() < Axup(i) i € idxl™
Ax(i) = 0 i€idd™  (14)

It is worth mentioning that this paper focuses on con-
structing MC-FDI attacks against state estimation with RTU
measurements in transmission systems. FDI attacks against
PMU-based state estimation can be effectively detected by a
data-driven detector [26], which utilizes the temporal corre-
lation of the historical synchronized measurements from the
PMU devices. Therefore, from the perspective of the attacker,
it is important to consider the temporal correlation of the syn-
chronized measurements in the construction of FDI attacks
against PMU-based state estimation. In the PMU-based state
estimation, the synchronized measurements from the PMU
devices z € R” include the real and imaginary parts of volt-
age phasors and those of current phasors, and the state vector
x € R?M consists of the real and imaginary parts of N bus
voltage phasors. The PMU-based state estimation is a linear
state estimator on Cartesian formulation and thus z = Hx
holds [16]. Since the linear relationship in the PMU-based
state estimation is the same as that in the RTU-based state
estimation in Section II-C, the DC-MC-FDI attack algorithm
(Algorithm 1) can be directly applied to construct FDI attacks
against PMU-based state estimation. However, the MC-FDI
attacks against PMU-based state estimation is beyond the
scope of this work and will be investigated in our future work.

IV. DETECTION OF MC-FDI ATTACKS

Since the proposed MC-FDI attacks are designed to be
stealthy to the hybrid defense model, it is necessary to pro-
vide extra defense for the power systems. We propose to apply
MTD in the physical layer of power systems to enhance the
capability to detect MC-FDI attacks. In MTD, the system
operator frequently and actively changes the transmission
line reactance using the distributed flexible AC transmission
system (D-FACTS) devices. The varying system configuration
increases the barriers for the attackers to launch the MC-
FDI attacks since the knowledge of the power system is one
requirement for MC-FDI attacks.

A. MTD Planning Model and Operation Model

MTD in power systems is composed of two essential
steps, i.e., MTD planning and MTD operation. An MTD
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planning scheme determines a set of transmission lines to
install D-FACTS devices, while an MTD operation delicately
determines the D-FACTS setpoints under varying load con-
ditions [39]. It has been proved that MTD planning largely
determines the MTD detection effectiveness in the noiseless
condition [40], and MTD operation slightly influences the
MTD detection performance in noisy conditions [41].

The graph-based planning method can maximize the MTD
detection effectiveness in the following two ways [41]. First,
the graph-based planning method maximizes the rank of the
composite matrix, the detection effectiveness metric of MTD,
by eliminating the loops in the graphs composed of lines
equipped with and without D-FACTS devices. Second, the
graph-based planning method eliminates unprotected buses
by covering all necessary buses with D-FACTS devices.
Therefore, we adopt the graph-based planning method to
determine the allocation of D-FACTS devices in MTD.

MTD operation determines the D-FACTS setpoints in real-
time. The random MTD operation [42] is the simplest and
most unpredictable MTD operation method, in which setpoints
of each D-FACTS device are randomly selected based on
uniform distribution within its operation range:

by ~ U((1 = mbj, (1 +nb})

where 1 is the MTD magnitude that reflects the physical capa-
bility of D-FACTS devices; bg- is the original line susceptance;
and b;; is the line susceptance modified by D-FACTS devices
in MTD. As any other MTD operation method [43], [44] can
be viewed as a subset of the random MTD, random MTD
operation is generalized across all MTD operation methods.
Without loss of generality, we use the random MTD operation
under the graph-based planning to detect MC-FDI attacks. In
the following subsections, we prove that MTD methods are
able to corrupt both the temporal correlation and spatial corre-
lation of compromised measurement in MC-FDI attacks. The
conclusion drawn can be similarly extended to other MTD
operation methods.

(15)

B. Corruption of Temporal Correlation in MC-FDI Attacks

The MC-FDI model minimizes the nuclear norm of the com-
promised measurement matrix. The compromised measure-
ment matrix in the DC noiseless condition can be reformulated
in (16). As the measurement matrix Hg is a fixed matrix, the
essential objective of the MC-FDI model is to minimize the
nuclear norm of the compromised state matrix X,. Therefore,
the MC-FDI model, in fact, optimizes the incremental state to
follow the temporal correlations of the historical states.

Z, = [Hox; Hoxz - - Hoxr—| Ho(xr + Ax)] = HoX,  (16)

where X, = [xl X --- X7—1 (X7 + AX)] is the compromised
state matrix.

MTD utilizes the random MTD operation method to change
the susceptance of the lines identified by the graph-based plan-
ning method in each SE period. Accordingly, the measurement
matrix in the state estimation at time t can be represented by
H;. We define the uncertainties introduced by MTD for the
attacker as the difference between the measurement matrix
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before and after MTD, i.e., AH;, = H; — Hyp. In most
MTD research in the cybersecurity of power systems, it is
assumed that traditional attacker doesn’t realize the existence
of MTD deployed in the field [40], [41], [42], [44], [45]. It
is possible that an attacker is aware of MTD defense tech-
niques and knows D-FACTS devices are used in the power
grid. Our recent work proposed three types of alert attack-
ers who can detect the existence of MTD using bad data
detection, unsupervised learning methods, or MTD operation
models [46].

Howeyver, it is realistic to assume that the attacker doesn’t
have enough attack window to estimate the current system
configuration under MTD, regardless of the traditional or alert
attackers. This assumption holds based on two facts. First, the
attacker may have the capability to track the changing system
parameters resulting from MTD. However, the attacker must
collect the historical measurements under this configuration for
a long time period to estimate the current system configuration.
For example, the length of historical measurements should be
more than 500 time instants to accurately estimate the sin-
gular vector of the system configuration in the IEEE 4-bus
system [36]. Much more historical measurements are required
in a larger system. Second, as a proactive defense method,
MTD’s frequency can be determined by the defender. If the
defender changes the system configuration more frequently,
the attacker will have a shorter attack window to estimate
the system configuration and launch attacks. Consequently, the
attacker cannot collect enough historical measurements under
the current system configuration in the short attack windows.
The dynamic nature of MTD can make it more challenging
for the attacker to identify the system parameters with insuffi-
cient historical measurements, as the MTD defense can make
the attack surface more unpredictable and difficult to exploit.

If the attacker detects the existence of MTD but fails to
accurately estimate the current system configuration under
the MTD, a reasonable attacker will postpone launching FDI
attacks. In other words, MTD prevents potential attackers
from launching attacks, which is the advantage of proactive
defense. To theoretically analyze the capability of MTD on
detecting launched attacks, it is reasonable to assume that the
attacker use the original system configuration without MTD
(Hp) to construct the MC-FDI attacks. This assumption is
widely adopted in MTD works [40], [41], [42], [43], [44],
[45], [46], [47] in the analysis of the detection effectiveness.

The compromised measurement matrix in the MC-FDI
attack under the MTD can be expressed as (17).

7, = [H]X] Hyx, --- Hpxp +HOAX]
= [(Ho + AHDx; (Ho + AHp)x; -+ (Ho + AHp)x7 + HoAx]
=HoX, + [AHx; AH)x; ... AHyxr]

=HoX, + AHO X, (17)

where Xg = [x1 X2 -+ X7 XT] is the state matrix, AH =
[AH] AH, ... AHT] is the historical incremental H matrix
introduced by MTD, and © is the element-wise product for
the submatrices in AH and the columns in Xg.

MTD corrupts the temporal correlation of the historical
states in the MC-FDI model in two aspects. First, without
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considering any attacks, MTD corrupts the correlations of his-
torical voltage Xo. This is because the randomness introduced
by MTD to the system configuration can cause irregular nodal
voltage changes. Second, compared with (16), the MC-FDI
model under the MTD no longer focuses on minimizing the
nuclear norm of the compromised state matrix X,. The objec-
tive function of MC-FDI is also influenced by AH © Xy due
to the varying system configurations in MTD. Thus, the com-
promised measurements calculated in MC-FDI attacks could
not be consistent with the temporal correlation of historical
measurements under the MTD.

C. Corruption of Spatial Correlation in MC-FDI Attacks

The MC-FDI model takes the FDI model as constraints
such that the compromised measurements satisfy the spatial
correlation, i.e., the subject to the physical law of the power
system. However, MTD can effectively break this spatial cor-
relation of the compromised measurements. Assume that the
attacker launches an MC-FDI attack at time 7 using Hyp, and
the actual measurement matrix is Hy. Then, the compromised
measurements of the MC-FDI attack at time 7 is calculated
as follows:

zaT = Hrxr + HyAx* + e (18)

Note that the difference between (8) and (18) is H matrix.
Under no MTD condition, the compromised measurements can
be calculate by (8), where zg = Hoxr + e.

Under the noiseless condition, the estimation residual is
zero, i.e., yyrp = 0, if and only if HyAx € col(Hr) accord-
ing to (3). As Hy # Hr, the estimation residual is likely
larger than zero, indicating the detection of MC-FDI attacks.
Specifically, the estimation residual of the MC-FDI attack
under the MTD can be expressed in (19). Essentially, MTD
causes the MC-FDI attacker to use incorrect system configu-
ration to calculate the attack vector, resulting in breaking the
physical law of the power system, such as the imbalance of
the nodal power injection in attacked buses. Therefore, MTD
is able to corrupt the spatial correlation of the compromised
measurement vector.

-1
YMID = H (Hrxr + HoAx) — Hr (HTH7) ™ HE (Hrx7 + HoAx) ”

= | (- By (mfm) B Hox| (19)

V. NUMERICAL RESULTS
A. Test Systems and Simulation Setting

We perform numerical tests on the IEEE 14-bus system
and the IEEE 118-bus system to evaluate the performance of
MC-FDI attacks against the hybrid defense model and demon-
strate the effectiveness of MTD in detecting MC-FDI attacks.
The proposed MC-FDI attacks are modeled and solved by
the CVX package in MATLAB [37]. The SE, Chi-2 detector,
MTD, and TFDI attacks are all programmed in MATLAB.
The algorithms are performed on a laptop with an Intel Core
i5 processor CPU 2.70 GHz dual-core with 8 GB RAM.
The measurements in the AC-SE include active and reactive
power flow measurements, active and reactive power injec-
tion measurements, and voltage magnitude measurements. We
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adopt a 2.5 redundant factor in the AC-SE. Specifically, we
randomly select 2.5 x (2N — 1)measurements among all pos-
sible measurements until the observability of the system is
met.

We apply the hourly load profile of ERCOT [48] to the
load buses in the IEEE 14-bus system, and the hourly load
profile of WECC [49] to the load buses in the IEEE 118-bus
system. Then, the power flow problem is solved by MATLAB
MATPOWER in each power system. At each time instant, the
SCADA measurements are collected from the solution of the
power flow problem. These collected measurements serve as
the normal (uncompromised) historical measurements in the
training, validation, and testing dataset. We construct TFDI
attacks with different attack magnitudes under multiple time
instants, in which the voltage angles of randomly selected
buses are compromised, and their incremental values are ran-
domly selected according to their attack magnitude. These
collected measurements under TFDI attacks serve as the com-
promised historical measurements in training, validation, and
testing dataset. In addition, the proposed MC-FDI attacks are
included in the testing dataset, since the objective of the exper-
iments is to evaluate the stealthiness of the proposed MC-FDI
attacks against ML detectors. In summary, the training dataset
includes the normal measurements and measurements under
TFDI attacks, and the testing dataset includes the measure-
ments under the proposed attacks, measurements under the
TFDI attacks for comparison, and the normal data to calculate
the false positive (FP) rate.

The machine learning detectors, including SVM, logistic
regression, artificial neural network, and Bayesian detector are
trained and tested using the Sklearn package [50] in Python.
5-fold cross-validation is conducted in the training dataset to
find the parameters of different ML detectors, such as the LR’s
penalization parameter, NB’s probability threshold, and ANN’s
number of neurons in the hidden layer and the strength of
the regularization. In the 5-fold cross-validation, the training
dataset is randomly shuffled and then is equally split into five
groups. For each unique group, we take the group as a valida-
tion set, take the remaining groups as a training data set, and
then fit a ML detector on the training set and evaluate it on the
validation set. Then, the average F1 score on the five valida-
tion sets is adopted as the metric to evaluate the performance
of the ML detector under the given parameters.

B. Traditional FDI Attacks Against SVM Detector

In this section, we first demonstrate the drawbacks of the
TFDI attacks against the SVM detector and then show the
importance of the nuclear norm of the historical measurement
matrix in the construction of FDI attacks against the SVM
detector. First, we evaluate the performance of TFDI attacks
against the SVM detector under different attack magnitudes
(AM), where the attack magnitude AM defines the range of
incremental voltage, i.e., Ax € [-AM - X, AM - X]. Note that
a larger attack magnitude reflects a larger selection range of
the incremental voltage, but not necessarily ensures a larger
incremental voltage angle due to the definition of the attack
magnitude.
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In the IEEE 14-bus system, the dimension of the data is
68. The training dataset includes 350 normal (uncompromised)
measurement vectors and 350 compromised measurement vec-
tors. The normal measurement vectors are collected from
the SCADA system from the 1% time instant to 350" time
instant. TFDI attacks randomly select three buses to compro-
mise their voltage from the 100" time instant to the 300™ time
instant with 0.1-0.4 AMs. The compromised measurement
vectors in the training set are sampled from the measure-
ments under the TFDI attacks. The testing set includes 100
uncompromised measurement vectors collected from 351
time instant to 450" time instant, 200 compromised measure-
ment vectors under MC-FDI attacks with A = {3.1, 3.2}, and
500 compromised measurement vectors under TFDI attacks
with AM={0.01, 0.05, 0.1, 0.2, 0.3}. Specifically, we gen-
erate 100 attacks for each attack magnitude, and TFDI and
MC-FDI attacks compromise the voltage of three buses.
Note that five attack magnitudes of the TFDI attacks are
selected based on the voltage situation of the IEEE 14-bus
system, such that the incremental voltages in TFDI attacks
are comparable to those in MC-FDI attacks. In the IEEE
14-bus system, the average value of Ll-norm of the incre-
mental voltage in MC-FDI attacks with two A weights are
0.057, and 0.140, respectively, and those in TFDI attacks
with five AMs are 0.002, 0.008, 0.015, 0.029, and 0.049,
respectively.

We apply the PCA dimension reduction to the training and
testing dataset. With two principal components (convenient for
the visualization), 99% of the signal variance will be retained.
Figures 3, 4, and 5 show the projection of the training set,
the projection of MC-FDI attacks in the testing set, and the
projection of TFDI attacks with different attack magnitudes in
the testing set, respectively. Note that the blue stars in Fig. 4
and 5 are the projection of the normal data in the training set,
which serve as the reference.

Since the normal and compromised data are not linearly sep-
arable, the SVM detector with Gaussian kernel is applied to
detect FDI attacks. The choice of kernel coefficient o and reg-
ularization parameter C can impact the efficiency of the SVM
in detecting attacks. We train the SVM with different C and o
values. Under each parameter pair, we conduct 5-fold cross-
validation in the training dataset, and we adopt the average
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TABLE II
AVERAGE F1 SCORE OF THE 5-FOLD CROSS-VALIDATION SET
UNDER DIFFERENT C AND o VALUES

C N 0.3 1 3 10 30 100 300
0.3 0.50 0.50 0.52 0.57 0.59 0.66 0.71
1 0.50 0.53 0.55 0.64 0.65 0.74 0.77
3 0.51 0.54 0.61 0.67 0.72 0.76 0.79
10 0.54 0.56 0.65 0.71 0.75 0.79 0.80
30 0.55 0.63 0.67 0.73 0.78 0.80 0.80
100 0.57 0.66 0.71 0.77 0.80 0.82 0.78
300 0.61 0.68 0.74 0.79 0.81 0.81 0.76
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Fig. 4. Projection of MC-FDI attacks in the testing set by PCA.
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Fig. 5. Projection of TFDI attacks in the testing set by PCA.

of the F1 scores as the measure of accuracy. Specifically, the
kernel coefficient o and regularization parameter C are opti-
mized by searching in the set {0.01, 0.03, 0.1, 0.3, 1, 3, 10,
30, 100, 300}. Table IT shows the F1 score of the cross-
validation set under different C and o values. Thus, we set
C=100 and o0 =100 in the SVM detector.

In Fig. 5, it is seen that most compromised data locate out-
side of the historical data area (blue star area), which can be
treated as outliers (detected by the SVM detector). The outliers
of the compromised data with a larger AM can be farther from
the historical data area. This is consistent with the fact that
a larger AM can drive the compromised data further deviated
from the historical data. Accordingly, the compromised data
with a smaller AM is more likely to remain inside the historical
data area. However, we can observe that some compromised
data with large AM is also located inside the historical data
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Fig. 6. The nuclear norm and L1-norm of all TFDI attacks by SVM detector.

area. It is necessary to further investigate whether these FDI
attacks inside the historical area have large AM but small
incremental voltage.

We analyze the spatial and temporal correlation of each
FDI attack to evaluate the performance of the SVM detec-
tor on detecting FDI attacks. Due to the definition of AM,
AM cannot accurately and directly reflect the malicious mod-
ification on the measurements by attacks. Thus, we use the
Ll-norm of the incremental voltage angle (||Ax||;) as the
metric for measuring the attack’s strength on the spatial cor-
relation. Then, we use the nuclear norm of the compromised
historical measurement matrix as the metric for quantifying
the attack’s impact on the temporal correlation. The trained
SVM detector is used to detect 500 TFDI attacks with differ-
ent AMs. Then, we calculate the L1-norm and nuclear norm of
500 TFDI attacks. Finally, we project all detected TFDI attacks
into R? space in Fig. 6(a) and all undetected TFDI attacks in
Fig. 6(b). We refer the R? space as norm-norm space hereafter.
Since TFDI attacks with small incremental voltage (less than
0.01 L1-norm value) slightly modify the measurements, these
attacks have a very limited impact on the nuclear-norm values
and thus are very likely to be stealthy to the SVM detector,
as shown in Fig. 6(b). By comparing these two figures, we
can see that for the TFDI attacks with large L1-norm val-
ues (more than 0.05 L1-norm value), most undetected TFDI
attacks have comparatively lower nuclear norm values, and
most detected TFDI attacks have comparatively higher nuclear
norm values. Even though TFDI attacks with low nuclear norm
values can also be detected, as shown in the lower right cor-
ner of Fig. 6(a), there are no undetected FDI attacks with
high nuclear norm values, as shown in the upper right corner
of Fig. 6(b).

We further equally divide the norm-norm space into 16
blocks and calculate the attack detection probability (ADP)
of each block. The ADP of a given block is defined as the
ratio of the number of detected attacks to the number of total
attacks in the block. The heatmap of ADP in the norm-norm
space is shown in Fig. 7. We can observe a low ADP in the
low nuclear norm and low L1-norm value block (the lower
left corner), a high ADP in the high nuclear norm and high
L1-norm blocks (the upper right corner), and a low ADP in
the high L1-norm but low nuclear norm blocks (the lower
right corner). The lower right corner block and the upper
left corner blocks are NaN, since no FDI attack falls into
these blocks. Simulation results highlight the importance
of temporal correlation (the nuclear norm of the historical
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measurement matrix), when the attacker aims to construct
stealthy FDI attacks with large incremental voltage against
the SVM detector.

Therefore, we can summarize the drawbacks of TFDI
attacks: 1) there is no guide for selecting the incremen-
tal voltage; 2) TFDI attacks with small incremental voltage
can be stealthy to the SVM detector, but they also have a
low negative impact on the system; 3) attacks with large
incremental voltage can be detected by the SVM detector
without considering the temporal correlation of the historical
measurements.

C. Performance of MC-FDI Attacks

In this section, we evaluate the performance of MC-FDI
attacks against the SVM detector. We assume the attacker
utilizes 200 historical measurement vectors to construct the
historical measurement matrix, intends to increase the voltage
angle of Buses 6, 12, and 13, and adopts A = 3.1. First, we
show the compromised voltage angle and the compromised
measurements in the 300" instant in Fig. 8. It is seen that the
compromised voltage is very different from the normal volt-
age, and the attack manipulates the measurements related to
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TABLE III
CPU TIME OF MC-FDI ATTACK WITH DIFFERENT NUMBER OF PERIODS
IN THE HISTORICAL MEASUREMENT MATRIX

Time (s) T=50 T=100 T=200 T=300 T=400
DC model 4.3 16.8 91.7 116.9 299.8
AC model 8.1 273 110.9 262.6 488.8

the attacked buses. Even though the MC-FDI attack obviously
manipulates the voltage, the MC-FDI attack doesn’t yield a
distinct change in measurement values. In Fig. 4, all MC-FDI
attacks locate inside the normal data area. It indicates that the
dimension reduction fails to separate the normal data and the
compromised data. This is because the MC-FDI attacks con-
sider the temporal correlation of the historical measurements
by minimizing the nuclear norm of the historical measurement
matrix. As the SVM detector can only detect the outlier, the
proposed MC-FDI attacks ought to be stealthy to the SVM
detector.

The CPU time of the MC-FDI attacks using the different
number of periods in the historical measurement matrix in the
DC and AC model is summarized in Table III. The number of
decision variables in the AC-MC-FDI attack is twice of those
in the DC-MC-FDI attack. In addition, the size of the historical
measurement in AC-MC-FDI attacks is larger than that in the
DC-MC-FDI attack, since there are 34 measurements in the
DC-SE and 68 measurements in the AC-SE. Thus, the CPU
time of AC-MC-FDI attack is longer than that of the DC-
MC-FDI attack. It is seen that the CPU time of solving the
proposed MC-FDI models depends on the size of the historical
measurement matrix. The CPU time greatly increases with the
increasing number of historical measurement vectors in Z,. In
order to reduce the CPU time and launch an FDI attack in
time, it is suggested to reduce the number of the historical
measurement vector in Z,. As shown in Fig. 4, 200 historical
measurement vectors are sufficient to lead the MC-FDI attack
stealthy to the SVM detector.

D. Impact of Weights on the Performance of MC-FDI Attacks

In this section, we evaluate the impact of weights on the
performance of MC-FDI attacks. Assume the attacker intends
to increase the voltage angle of Buses 6, 12, and 13 in the 300th
instant using 200 historical measurement vectors. We increase
the weight A from 2.2 to 3.3 with an incremental of 0.05. First,
we demonstrate the impact of weights on the L1-norm of incre-
mental voltage and the nuclear norm of the compromised his-
torical measurement matrix. We compare the MC-FDI attacks
using different weights with the 500 TFDI attacks generated
in the 300™ instant in Section V-B. Specifically, we first com-
bine the data points in Fig. 6(a) and Fig. 6(b) and then project
the MC-FDI attacks into the norm-norm space, as shown in
Fig. 9. With the increase of the weight, both the L1-norm of
Ax and the nuclear norm of Z, increase. Compared with TFDI
attacks, the MC-FDI attacks always have the lowest nuclear
norm value regardless of the L1-norm value. This comparison
demonstrates the effectiveness of the proposed MC-FDI model
in balancing the trade-off between maximizing the negative
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Fig. 10. Impact of weights on the stealthiness of MC-FDI attacks to the
SVM.

impact and maintaining the temporal correlation of historical
measurements.

Then, we demonstrate the impact of weights on the
stealthiness of the MC-FDI attack on the SVM detector. We
apply the PCA dimension reduction on 350 historical mea-
surement vectors and the 22 MC-FDI attacks with increasing
weights in the 300" instant, as shown in Fig. 10. We can see
that all MC-FDI attacks succeed in locating inside the histori-
cal data area, indicating the stealthiness of MC-FDI attacks to
the SVM detector. Moreover, as shown in the zoom-in figure,
the compromised data with a larger A deviates farther from the
historical data area. In summary, a larger weight results in a
larger incremental voltage but also degrades the temporal cor-
relation of the historical measurements, which increases the
probability of being detected by the SVM detector.

E. Stealthiness of MC-FDI Attacks Against ML Detectors

In this section, we further evaluate the stealthiness of MC-
FDI attacks against other ML detectors, including artificial
neural networks (ANN), polynomial logistic regression (LR),
and Gaussian Naive Bayes (NB). The performance of the four
ML detectors on detecting TFDI and MC-FDI attacks are
shown in Tables IV and V, respectively. Note that the column
“Norm” in Tables IV and V represents the average L1-norm
of the incremental voltage under the attacks with the given
weight.

We apply artificial neural networks as the attack detector
to evaluate the effectiveness of the proposed MC-FDI attacks.
We construct an ANN with three hidden layers and conduct a
grid search to optimize the number of neurons in each layer
and the regularization parameters. Specifically, we search the

2157
TABLE IV
PERFORMANCE OF MACHINE LEARNING DETECTORS
ON DETECTING TFDI ATTACKS
Detector AM Norm Precision Recall F1
SVM 0.1 0.015 0.95 0.35 0.51
0.3 0.049 0.97 0.74 0.84
ANN 0.1 0.015 0.94 0.52 0.67
0.3 0.049 0.96 0.78 0.86
LR 0.1 0.015 1.00 0.26 0.42
0.3 0.049 1.00 0.70 0.82
NB 0.1 0.015 0.75 0.18 0.29
0.3 0.049 0.88 0.46 0.61
TABLE V
PERFORMANCE OF MACHINE LEARNING DETECTORS
ON DETECTING MC-FDI ATTACKS
Detector A Norm Precision Recall F1
SVM 3.1 0.057 0.67 0.04 0.08
3.2 0.140 0.78 0.07 0.13
ANN 3.1 0.057 0.67 0.12 0.20
3.2 0.140 0.77 0.20 0.32
LR 3.1 0.057 1.00 0.02 0.04
3.2 0.140 1.00 0.06 0.11
NB 3.1 0.057 0.81 0.26 0.39
3.2 0.140 0.82 0.28 0.42

number of neurons in each hidden layer from 10 to 50 with
an increment of 10, and the regularization parameter in the
set {0.00001, 0.0001, 0.001, 0.01, 0.1, 1}. In the grid search,
the average F1 score of the 5-fold cross-validation sets serves
as the performance metric. In the IEEE 14-bus system, 50,
50, and 40 neurons are selected in three hidden layers with
0.01 regularization parameter. Due to the space limit, we only
present the TFDI with 0.1 and 0.3 AM, and MC-FDI attacks
with A = 3.1 and A = 3.2. It is seen that the ANN detector
has a high precision value in detecting TFDI and MC-FDI
attacks. ANN detector can detect 52% and 78% TFDI attacks
with 0.1 AM and 0.3 AM, respectively, but it can only detect
12% and 20% MC-FDI attacks with A = 3.1 and A = 3.2,
respectively.

Since the compromised and uncompromised data in the
case study are not linearly separable, we adopt the polyno-
mial logistic regression to deal with the nonlinear boundary.
We perform a polynomial transformation on the original data
with 4M-order polynomials. The LR detector is solved using
a Newton-CG solver. The penalization parameter C of the
L2 penalty function is optimized by searching in the interval
[0.01,100] using 5-fold cross-validation. The maximum num-
ber of iterations is chosen as 1000. The attack detection
probability of the LR detector against TFDI attacks is 70%,
while that of the LR detector against MC-FDI attacks is 6%.

In addition, we apply the Gaussian Naive Bayes classifier to
detect TFDI attacks and MC-FDI attacks. After the Gaussian
Naive Bayes classifier is trained, the probability threshold
is optimized in the interval [0.01, 1] based on the average
F1 score of the 5-fold cross-validation. It is seen that NB
detector can detect 46% TFDI attacks with 0.88 precision,
and detect 28% MC-FDI attacks. Even though the NB has the
highest detection rate against MC-FDI attacks compared with
other detectors, the low recall against TFDI attacks indicates
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Fig. 11. The F1 score of the SVM detector using different numbers of training
samples. Fig. 11(a) shows the performance of SVM in detecting TFDI attacks
in the training process, and Fig. 11(b) shows the performance of the well-
trained SVM in detecting TFDI attacks and MC-FDI attacks in the testing
set.

NB performs badly in determining whether a measurement
vector is compromised or not.

The well-trained ML detectors have a low false positive
(FP) rate, while the stealthiness of the proposed attacks
against these detectors results in a low true positive (TP) rate.
Consequently, the precision value of these detectors varies
between [0, 1]. For example, the LR detector in Table V has
a 1.0 precision value due to two detected attacks (TP=2) and
zero misclassified normal data (FP = 0), while the LR detector
in Table VII has a zero precision value due to zero detected
attacks (TP=0). In Table V, the SVM detector detects four
attacks (TP = 4) and incorrectly classifies two normal mea-
surements as attacks (FP=2), resulting in a 0.67 precision
value.

TFDI attacks with small AM are hidden to ML detectors,
because these attacks merely inject tiny incremental voltage
angle into the system. For TFDI attacks with 0.01 AM, its
ADP against SVM, ANN, NB and LR are 0.01, 0.09, 0, and 0,
respectively. Note that the L1-norm of incremental voltage in
TFDI attacks with 0.01 AM is only 0.002. It is necessary to
highlight that MC-FDI attacks with large L1-norm of the incre-
mental voltage can also remain hidden to ML detectors. This
is because the MC-FDI attacks consider the temporal correla-
tion of the historical measurements, rather than injecting tiny
incremental voltage angle.

We analyze the impact of the number of training data on
the detection performance of SVM detector. The original train-
ing set includes 350 uncompromised historical measurement
vectors collected from the 1% instant to 350 instant, and 350
compromised measurement vectors. We denote the training set
by ZLirain = [Z(t)rain Ztarain] € Rmx700’ where Z?rain and Z?min
are uncompromised and compromised historical measure-
ments, respectively. When we decrease the size of the training
samples to k, we keep the most recent historical measurements
in the training set, i.e., Z¥ . = [Z0 . (idx) Z¢,,(idx)] and
idx = 350—k/241:350. Thus, the number of uncompromised
measurement vectors is the same as that of compromised
measurements in the training set.

Fig. 11(a) shows the learning curve of the SVM detec-
tor in the training process, in which the F1 score of the
SVM in the training set and cross-validation set are calculated
under different sizes of the training set. When the training set
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Fig. 12. Projection of the training set by MDS.

increases from 20 to 700 samples, we conduct 5-fold cross-
validation in each given training set. Then, we calculate the
average F1 score of the training set and cross-validation set,
respectively. It is seen that the F1 scores of the training and
cross-validation sets converge with a small gap, indicating no
overfitting exists in the training process. Further increasing
the sample size does not yield substantial enhancements in
achieving higher accuracy. Figure 11(b) shows that, for the
TFDI attacks, the detection effectiveness of the SVM detector
can be improved when the number of samples in the training
set increases from 100 to 300. After the number of samples in
the training set is larger than 300, the performance becomes
stable and cannot be improved by adding more training sam-
ples. The performance of the SVM detector in detecting TFDI
attacks is consistent with the learning curve of the SVM detec-
tor proposed in [18]. The F1 score of the SVM detector in
detecting MC-FDI attacks decreases with the increasing num-
ber of training samples. Specifically, the detector’s precision
increases but the recall decreases with the increasing number
of the training samples. This is because, with more historical
measurements, the project of MC-FDI attacks in R? space is
more likely to overlap with the historical measurements. Thus,
MC-FDI attacks are more prone to be stealthy to the detector,
i.e., a lower recall value.

In addition, we compare PCA with a global nonlinear tech-
nique for dimensionality reduction, multidimensional scaling
(MDS) [51]. Then, we further evaluate the stealthiness of
MC-FDI attacks using four ML detectors based on the pro-
jection data of MDS. PCA is a traditional linear technique for
dimensionality reduction. PCA finds a linear basis of reduced
dimensionality for the data, in which the amount of variance in
the data is maximal. Multidimensional scaling (MDS) is one of
the global nonlinear techniques for dimensionality reduction.
Global nonlinear techniques attempt to preserve global prop-
erties of the data, and are capable of constructing nonlinear
transformations between the high-dimensional data represen-
tation and its low-dimensional counterpart. Multidimensional
scaling (MDS) maps the high-dimensional data representation
to a low-dimensional representation while retaining the pair-
wise distances between the datapoints as much as possible.
MBDS is widely used for the visualization of data [52].

We evaluate the stealthiness of MC-FDI attacks against ML
detectors under the global nonlinear dimensionality reduction
technique, i.e., MDS. We apply the MDS dimension reduction
to the training data set and the testing data set. Fig. 12 shows
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Fig. 14. Projection of TFDI attacks in the testing set by MDS.

TABLE VI
PERFORMANCE OF MACHINE LEARNING DETECTORS
ON DETECTING TFDI ATTACKS USING MDS

Detector AM Norm Precision Recall F1

SVM 0.1 0.015 0.98 0.55 0.70
0.3 0.049 0.99 0.79 0.88

ANN 0.1 0.015 1.00 0.53 0.69
0.3 0.049 1.00 0.75 0.86

LR 0.1 0.015 1.00 0.34 0.51
0.3 0.049 1.00 0.62 0.76

NB 0.1 0.015 1.00 0.21 0.35
0.3 0.049 1.00 0.40 0.58

the projection of normal and compromised data in the training
set, Fig. 13 shows the projection of MC-FDI attacks in the
testing set, and Fig. 14 shows the projection of TFDI attacks
with different attack magnitudes in the testing set. In Fig. 14,
the projection of TFDI attacks by MDS deviated further from
the normal data, compared with that by PCA in Fig. 5. It
indicates more TFDI attacks can be detected by ML detectors
under MDS. The projection of MC-FDI attacks under MDS
locates inside the normal data area in Fig. 13, indicating the
stealthiness of MC-FDI attacks.

Four ML detectors (SVM, ANN, LR, and NB) are trained
and tested to detect TFDI and MC-FDI attacks using the low-
dimensional data by MDS. The performance of the machine
learning detectors on detecting TFDI and MC-FDI attacks
are shown in Table VI and VII, respectively. In Table VI,
it is seen that machine learning detectors have a better
detection capability in detecting TFDI attacks with a larger
AM. This is because TFDI attacks with a larger AM devi-
ate further from the normal data compared with the TFDI
attacks with a lower AM, as shown in Fig. 14. For TFDI
attacks with 0.3 AM, SVM can detect 79% attacks, and
LR can detect 62% attacks. In Table VII, it is seen that
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TABLE VII
PERFORMANCE OF MACHINE LEARNING DETECTORS ON
DETECTING MC-FDI ATTACKS USING MDS
Detector A Norm Precision Recall F1

SVM 3.1 0.057 0.86 0.06 0.11
32 0.140 0.86 0.06 0.11

ANN 3.1 0.057 1.00 0.02 0.04
3.2 0.140 1.00 0.02 0.04

LR 3.1 0.057 0.00 0.00 0.00
3.2 0.140 0.00 0.00 0.00

NB 3.1 0.057 1.00 0.02 0.04
3.2 0.140 1.00 0.06 0.11

the ADP of all four detectors is below 6%, indicating the
stealthiness of MC-FDI attacks against machine learning
detectors.

We further evaluate the effectiveness of MC-FDI attacks
in the IEEE 118-bus system. We assume the attacker utilizes
200 historical measurement vectors to construct the histori-
cal measurement matrix, and continually launches MC-FDI
attacks from the 300th instant to the 400th instant. Assume
the MC-FDI attacker intends to compromise the voltage angle
of Buses 60, 61, 62, 63, and 64.

In the IEEE 118-bus system, the dimension of the data is
292. The training dataset that includes 400 uncompromised
measurement vectors and 400 compromised measurement
vectors. These uncompromised measurement vectors are col-
lected from the system under the WECC hourly load profile
from the 1% time instant to the 400th time instant. TFDI
attacks randomly select five buses to compromise voltage
from the 300th time instant to the 400th time instant with
0.6-1.0 AMs. The compromised measurements in the train-
ing set are sampled from the measurements under the TFDI
attacks. The testing dataset includes 100 uncompromised mea-
surement vectors collected from the 401% time instant to
the 500" time instant, 400 compromised measurement vec-
tors under MC-FDI attacks with A = {6,8, 10, 12}, and
500 compromised measurement vectors under TFDI attacks
with AM = {0.6,0.7,0.8,0.9, 1.0}. Specifically, we gener-
ate 100 attacks for each attack magnitude. Note that the
attack magnitudes of the TFDI attacks are selected based
on the voltage situation of the IEEE 118-bus system, such
that the incremental voltages in TFDI attacks are compara-
ble to those in MC-FDI attacks. Specifically, L1-norm of the
incremental voltage in MC-FDI attacks with four A weights
are 0.007, 0.019, 0.070, and 0.073, respectively, and those
in TFDI attacks with five AMs are 0.066, 0.080, 0.088,
0.100, and 0.118, respectively. From the perspective of the
attacker, the injected voltage in MC-FDI attacks and TFDI
attacks are comparable. Figures 15, 16, and 17 show the pro-
jection of the dataset for training and cross-validation, the
projection of MC-FDI attacks in the testing set, and the pro-
jection of TFDI attacks with different attack magnitudes in the
testing set.

SVM, ANN, LR, and NB are trained and tested to evalu-
ate the stealthiness of MC-FDI attacks in the IEEE 118-bus
system. We set 30, 50, and 20 neurons in three hidden layers
of the ANN and the regularization parameter is 0.01. Fig. 18
shows the learning curve of the ANN detector in the IEEE

Authorized licensed use limited to: Kansas State University. Downloaded on April 08,2024 at 21:02:10 UTC from IEEE Xplore. Restrictions apply.



2160

o
o
& ® o * Norma! data
02r o o | © Compramised data |
325 32 315 -31  -3.05 -3 295 29 285

Fig. 15. Projection of the training set in the IEEE 118-bus system.

0.05 T T T T T T T

* Normal data
O Compromised data

Fig. 16. Projection of MC-FDI attacks in the testing set in the IEEE 118-bus
system.

* | Normal data
o o AM=1

Lr o AM=09
¢ - AM=038
05F AM=07 | ]

- Om AM=0.6
B 4 S e i
N oo Mm ‘@)}*’@”’sﬁfo J(fh %*WME@
o
051 A b
oo A
A1k ° o2 " +O 4
o
15 . . . . . . .
325 32 315 31 -3.05 -3 -295 29 -285

Ztrl

Fig. 17. Projection of TFDI attacks in the testing set in IEEE 118-bus system.
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Fig. 18. The learning curve of the ANN detector in the IEEE 118-bus system.

118-bus system, in which the logistic loss of the training set
and cross-validation set are calculated at each epoch. The
learning curve indicates that ANN learns well, and the two
curves converge after 1000 epochs.

Table VIII shows the performance of the machine learning
detectors on detecting TFDI attacks. It is seen that the SVM
has the best detection capability, which can detect 76% TFDI
attacks. The ADP of NB and LR are around 45%. This is
because two detectors are not good at dealing with the over-
lap between the uncompromised and compromised data in the
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TABLE VIII
PERFORMANCE OF MACHINE LEARNING DETECTORS ON DETECTING
TFDI ATTACKS IN THE IEEE 118-BUS SYSTEM

Detector AM Norm Precision Recall F1

SVM 0.6 0.066 0.82 0.64 0.72
0.9 0.100 0.84 0.76 0.80

ANN 0.6 0.066 0.80 0.62 0.70
0.9 0.100 0.83 0.75 0.79

LR 0.6 0.066 0.69 0.34 0.46
0.9 0.100 0.75 0.46 0.58

NB 0.6 0.066 1.00 0.27 0.43
0.9 0.100 1.00 041 0.59

TABLE IX

PERFORMANCE OF MACHINE LEARNING DETECTORS ON DETECTING
MC-FDI ATTACKS IN THE IEEE 118-BUS SYSTEM

Detector A Norm Precision Recall F1

SVM 6 0.007 0.33 0.07 0.11
12 0.073 0.36 0.08 0.13

ANN 6 0.007 0.38 0.09 0.14
12 0.073 0.44 0.12 0.19

LR 6 0.007 0.32 0.07 0.11
12 0.073 0.25 0.05 0.08

NB 6 0.007 0.00 0.00 0.00
12 0.073 0.00 0.00 0.00

training set. Table IX shows the performance of the machine
learning detectors on detecting MC-FDI attacks. The ADP
of ANN is 12%, the ADP of SVM and LR are below 8%,
and the ADP of NB is zero. The simulation results verify
the stealthiness of MC-FDI attacks against machine learning
detectors.

FE. Detection of MC-FDI Attacks Using MTD

In this section, we evaluate the performance of MTD in
detecting MC-FDI attacks. Similar to the previous sections, we
assume the attacker continually launches MC-FDI attacks from
the 300™ instant to the 350" instant. The graph-based planning
installs D-FACTS devices on nine lines, which are indexed by
{1, 3, 4, 8, 10, 12, 13, 17, 18} in the IEEE 14-bus system.
Note that we use the line index of the IEEE 14-bus system case
in MATPOWER [53]. Generally, we set the MTD magnitude

= 0.2. In each instant from the 1% instant to the 350"
instant, the random MTD operation method randomly selects
the setpoints of D-FACTS in the range: U(0. 8b2, 1. 2b0) Note
that MC-FDI attacks under MTD are constructed usmg the
original line impedance, and each measurement vector in the
historical measurement matrix is based on a different system
configuration.

Assume the attacker adopts A = 2.5 in the MC-FDI attack.
For each MC-FDI attack, L1-norm of the incremental voltage
and the estimation residual in the Chi-2 detector are shown
in Fig. 19(a) and 19(b), respectively. The estimation resid-
ual is highly related to the incremental voltage. Specifically, a
larger incremental voltage results in a larger estimation resid-
val. With weight A = 2.5, the incremental voltages in the
MC-FDI attacks are relatively low (less than 0.01). The MTD
method merely succeeds in detecting 61% of MC-FDI attacks.
Even though the MTD detection effectiveness is mainly deter-
mined by the D-FACTS planning in the noiseless condition, it
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Performance of MTD in detecting MC-FDI attacks with different

is also affected by FDI attack magnitude and MTD magnitude
in noisy conditions. It is necessary to evaluate the effectiveness
of MTD against MC-FDI attacks with different weights.

We further evaluate the performance of MTD in detecting
MC-FDI attacks under different weights, as the weight essen-
tially determines the attack magnitude of MC-FDI attacks. We
increase the weight from 2.5 to 3.5 with an incremental of 0.2.
For each weight, 50 MC-FDI attacks are constructed from the
300 instant to the 350" instant. In Fig. 20, it is seen that the
L1-norm of the incremental voltage increases with an increase
in the weight. Accordingly, the ADP of MTD increases with
the weight due to the increasing L1-norm of the incremental
voltage. It is necessary to highlight that a slight increase in the
L1-norm of the incremental voltage from weight 2.5 to weight
3.1 results in a significant increase in the ADP. When the
MC-FDI attacks with a small incremental voltage have a triv-
ial negative impact on the system operation, the MTD method
has a low ADP (around 60%). When the MC-FDI attacks start
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to have a large incremental voltage, the MTD method could
reach a 100% detection probability. It reflects the effective-
ness of MTD in detecting MC-FDI attacks and preventing the
negative impact of MC-FDI attacks on the system operation.

VI. CONCLUSION

In this paper, we propose convex MC-FDI attacks in the DC
and AC power system model, respectively, which maximize
the malicious incremental voltage and minimize the nuclear
norm of the compromised historical measurement matrix. The
proposed attack models first integrate the FDI attack model
in the constraints to satisfy the spatial correlation of the mali-
cious measurements, and then utilize the matrix completion to
ensure malicious measurements consistent with the temporal
correlation of the historical measurements. Therefore, the MC-
FDI attacks are stealthy to both the model-based Chi-2 detector
and the machine-learning detectors. Due to the high stealthi-
ness of the MC-FDI attacks, we propose to apply MTD in the
physical layer of power systems to detect MC-FDI attacks by
actively changing the impedance of the lines with D-FACTS
devices. We theoretically prove that MTD can corrupt both
the temporal correlation and spatial correlation of the MC-
FDI attacks. Simulation results show that the MC-FDI models
are stealthy to both the Chi-2 detector and the machine learn-
ing detectors, and MTD is effective in detecting the MC-FDI
attacks.

In the future, we will integrate matrix completion techniques
into multiple blind FDI attacks, eliminating the attacker’s need
for grid topology and line parameters. These techniques will
aid blind FDI attacks in determining the optimal malicious
voltage increments. In addition, our future work will develop
an alternating direction method of multipliers solver for the
MC-FDI attacks to reduce the computational time.
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