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Abstract—False data injection (FDI) attacks can manipulate
power system measurements, leading to system economic losses
and security issues. Although machine-learning (ML) detectors
can effectively detect FDI attacks, the current methods used to
construct FDI attacks do not take into account the presence of
ML detectors. To tackle this problem, we propose novel con-
vex matrix-completion-based FDI (MC-FDI) attacks on DC and
AC power flow models from an attacker’s perspective, accounting
for the temporal correlation between compromised and historical
measurements. The proposed attacks minimize the nuclear norm
of the compromised measurement matrix to make the compro-
mised measurement consistent with the historical measurements,
and also maximize the L1-norm of the incremental voltage angle
to ensure a sufficient negative impact on the power system oper-
ation. Moving target defense (MTD) is proposed to detect the
proposed MC-FDI attacks from the defender’s standpoint. The
idea is to actively change the line impedance to corrupt the spa-
tial and temporal correlation of the compromised measurements
in the MC-FDI attacks. Numerical results on the IEEE 14-bus
and IEEE 118-bus systems show the stealthiness of the proposed
attacks to both the Chi-square detector and ML detectors as well
as the efficacy of MTD in detecting the MC-FDI attacks.

Index Terms—False data injection, matrix completion, machine
learning detector, moving target defense, state estimation.

I. INTRODUCTION

T
HE SMART grid integrates information and communi-

cation technology (ICT) enabled devices and Internet of

Things (IoT) technologies to enable the transition to decar-

bonization and electrification. However, these devices also

bring vulnerabilities to the cybersecurity of the smart grid. The

U.S. Department of Energy received 362 power interruption

reports related to cyber-physical attacks between 2011 and
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2014 [1]. As significant threats to modern power systems,

these attacks can undermine or even disrupt the control system

of power grids, potentially resulting in tremendous economic

loss and severe consequences.

The False Data Injection (FDI) attack is considered one of

the most critical cyberattacks that can occur against smart grids

due to its high-consequence nature. These attacks are intended

to manipulate the state estimation (SE) results obtained by

grid operators, thereby creating a significant risk to the grid’s

overall security and reliability. The elaborately constructed

attack vector on the Supervisory Control and Data Acquisition

(SCADA) measurements can bypass bad data detection by

keeping consistent with physical laws like Kirchhoff’s cir-

cuit laws. Since the power system state estimation is the

basis of many power system operation applications in the

energy management system (e.g., contingency analysis and

economic dispatch), FDI attacks can result in serious conse-

quences, such as economic loss, unstable system states, and

even voltage collapse led to widespread blackouts [2]. The

2015 Ukraine cyberattack took over six months of infiltration

and was successful in compromising the SCADA system and

de-energizing a portion of the grid for a few hours [3]. In

the Ukraine blackout, the attackers loaded malicious firmware

into field gateway devices of the SCADA network to ensure

that remote commands could not be issued to bring the sub-

stations back online, even when operator workstations were

recovered [3]. Liang et al. argued that the circumstances

of the Ukraine blackout highlight the plausibility of com-

mon assumptions in FDI attacks regarding the knowledge and

capabilities required by an adversary [4].

Traditionally, state estimators obtain grid measurements

from remote terminal units (RTUs), which measure the voltage

magnitudes, power injections, and power flows. Most of the

FDI attacks in the literature focus on RTU-based state estima-

tion. Jin et al. analyzed the vulnerability of the power system

AC-SE against FDI attacks, and demonstrated an attacker can

plan a stealthy FDI attack in polynomial time with limited

resources [5]. Different algorithms were proposed to construct

stealthy FDI attacks by compromising the minimum number

of sensors [6], [7]. Soltan et al. proposed joint cyber and physi-

cal attacks on the power grid based on a simplified AC power

flow model [8]. Liang et al. introduced an FDI attack that

can induce physical line overflows [9]. Yuan et al. proposed

a special type of FDI, i.e., load redistribution attacks, which

aim to cause load shedding in the power system [10]. In the

modern power grid, Phasor Measurement Units (PMUs) are
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adopted to obtain a global view of the health of the grid [11].

PMUs can provide accurate and real-time synchronous phasor

measurements with Global Positioning System (GPS) time

sampled from geographically dispersed buses in the smart

grid [12]. Pei et al. proposed a greedy placement algorithm

of PMU devices to detect coordinated FDI attacks, in which

the most vulnerable buses are protected [12]. However, PMUs

are subjected to many vulnerabilities due to their dependency

on external time sources for time synchronization and lack

of strong authentication [13], [14]. Basumallik et al. investi-

gated the vulnerability of PMU-based state estimation under

the FDI attacks [15]. Alexopoulos et al. proposed a sparse

FDI attack method against PMU-based state estimation using

complementarity reformulation to compromise the minimum

number of sensors [16].

However, there is no guide in selecting the malicious incre-

mental voltage in the traditional FDI (TFDI) attacks, which

can yield a distinct change of measurement values. These

distinct measurement changes cause the FDI attacks to be eas-

ily detected by state-of-art anomaly detection methods, such

as machine learning (ML) methods. ML methods have been

proposed to detect FDI attacks in the smart grid by learning

the spatial and temporal correlation of historical measure-

ments. Supervised machine-learning-based binary classifiers

were presented to check the distance between normal and

compromised measurements [2]. Ozay et al. applied multiple

supervised methods, including perceptron, k-nearest neighbor,

support vector machine (SVM), and sparse logistic regres-

sion to detect FDI attacks [17]. Esmalifalak et al. first applied

dimension reduction to the measurements and then utilized dis-

tributed SVM to classify the compromised measurements [18].

Sakhnini et al. tested three classification techniques using dif-

ferent heuristic feature selection techniques and concluded

that the SVM and the k-nearest neighbor algorithms overper-

form artificial neural networks in detecting FDI attacks [19].

Semisupervised learning methods are also applied to detect

FDI attacks, in which the information obtained from the

unlabeled test samples is used for the learning models. The

basic idea is to cluster the normal and compromised measure-

ments into distinct regions in the feature spaces. Ozay et al.

employed the semisupervised SVM algorithm to establish the

relationship between supervised and semisupervised learning

algorithms for detecting FDI attacks [17]. Esmalifalak et al.

proposed the Gaussian abnormal detector to detect the devia-

tion in measurements, and the outliers were identified as FDI

attacks [18].

From the perspective of the attacker, the traditional FDI

attacks have a problem because their construction methods

only consider the spatial correlation of the historical mea-

surement, not the temporal correlation, making them easily

detectable by machine learning methods. Furthermore, there

is a trade-off in selecting the malicious incremental voltage

during constructing FDI attacks. An FDI attack with a large

incremental voltage has a sufficient negative impact on the

power system operation, but it is more likely to be detected by

the ML detectors due to the distinct change of measurement

values. Conversely, an FDI attack with a small incremental

voltage could be stealthy to the ML detectors, but it has a triv-

ial negative impact on the power system. In the literature, there

is a research gap in developing a novel FDI attack that has

a sufficient negative impact on the power system but remains

stealthy to ML detectors.

Matrix completion (MC) is a promising technique to recover

an intact matrix with low-rank properties from incomplete

data [20]. MC applications include wireless communications,

traffic sensing, integrated radar and communications, and

power systems. Therefore it has received much attention in the

past several years [21]. MC can learn the spatial or temporal

correlation of incomplete data based on the low-rank property

of matrices. If the matrix is formulated by the elements col-

lected at a single time step, MC can recover the missing values

by learning the spatial correlation of elements. Centralized and

decentralized state estimation methods were proposed for the

distribution system with low observability, which employed

the conventional MC method augmented with noise-resilient

power flow constraints [22], [23], [24]. If the matrix is for-

mulated by the elements collected over multiple time steps,

MC can estimate the missing elements by learning the tem-

poral correlation of available elements. For example, MC was

successfully applied to estimate missing phasor measurement

unit (PMU) data [25] and detect bad data [26] using historical

measurements.

This paper proposes novel FDI attack models which uti-

lize matrix completion to determine the incremental voltage,

such that the compromised measurements follow the tem-

poral correlation of the historical measurements. Therefore,

the proposed attack can remain stealthy to machine-learning

attack detectors. In addition, the proposed attack models also

maximize the incremental voltage to ensure a sufficient neg-

ative impact on the power system operation. The novelty

of this paper is two-fold. From the attacker’s perspective,

this paper proposes novel FDI attack models which improve

the stealthiness against ML detectors, while ensuring a suf-

ficient negative impact on the power system operation. From

the defender’s perspective, we apply moving target defense

(MTD) to detect the highly stealthy MC-FDI attacks. It is

worth emphasizing that the goal of this paper is not to edu-

cate the attackers on how to construct highly crafted attacks,

but to provide the grid defender a better understanding of

how to design effective defense approaches against such new

attacks.

• We propose a defense-attack framework consisting of

a hybrid defense model and FDI attacks. The hybrid

defense utilizes a model-based Chi-2 detector in conjunc-

tion with prevailing machine-learning detectors. To the

best of our knowledge, this is the first piece of literature

to focus on the development of FDI attacks designed to

maintain stealthiness against a hybrid defense model.

• From the attacker’s standpoint, we propose novel con-

vex matrix-completion-based FDI (MC-FDI) attack algo-

rithms in both DC and AC power flow models to optimize

the malicious incremental voltage. The proposed attacks

exhibit two distinctive features. Firstly, they utilize the

MC technique to make the compromised measurements

consistent with the temporal correlation of historical mea-

surements. Secondly, the attacks use the TFDI model to

enforce the spatial relationship of the compromised mea-

surements. Furthermore, the proposed attacks can strike a
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TABLE I
NOMENCLATURE

balance between the attack’s stealthiness against a hybrid

defender and their malicious consequences on the power

system operation, allowing the attackers to achieve their

objectives while reducing the risks of being detected.

• From the perspective of the defender, we apply MTD, for

the first time, in the physical layer of the power system to

detect MC-FDI attacks by actively changing the system

configuration. Our theoretical analysis proves that MTD

can corrupt both the temporal and spatial correlation of

compromised measurement in MC-FDI attacks. This rep-

resents a significant step towards detecting data-driven

FDI attacks through the corruption of both temporal and

spatial correlation of compromised measurements.

The rest of this paper is organized as follows. We provide

preliminaries and related work in Section II. In Section III,

we propose the DC- and AC- MC-FDI attack models. In

Section IV, we propose MTD to detect the MC-FDI attacks.

We conduct case studies in Section V. Conclusions are drawn

in Section VI.

II. PRELIMINARIES

In this section, we provide background knowledge of MC,

SE, FDI attacks, and a machine-learning attack detector as

preliminaries for the follow-up sections.

A. Notation

Variables frequently used are summarized in Table I, where

boldfaced lower-case and upper-case letters stand for vectors

and matrices, respectively. From the attacker’s perspective,

subscript 0 denotes variables before attacks. For example, z0

and za stand for uncompromised and compromised measure-

ment vector, respectively. From the defender’s perspective,

subscript 0 denotes variables before MTDs. For example,

H0 represents the original measurement matrix before an

MTD, and Ht stands for the one after the implementation

of an MTD at time t. In addition, variables preceded by

� represent changes in the variables. For example, �x rep-

resents the malicious incremental voltage vector introduced

by the attacker. This paper uses superscript T to represent

time instant and uses superscript ′ to represent the transpose

operator.

B. Matrix Completion

Matrix completion technology aims to estimate the unknown

elements in an incomplete matrix that has a low-rank property.

Formally, let M ∈ R
n1×n2 be a real-valued data matrix to

be recovered; let � ⊆ {1, . . . , n1} × {1, . . . , n2} describe the

index of the known elements in M, and M� represents the

observation matrix. The matrix completion problem can be

formulated as a rank-minimization problem as follows:

min
D∈Rn1×n2

r(D)

s.t. D� = M� (1)

where the decision variable D estimates the incomplete

matrix M. However, this problem is NP-hard due to the non-

convexity of the rank function, and its solution algorithms are

doubly exponential. Problem (1) can be modeled as a convex

optimization problem by minimizing the nuclear norm using

the convex relaxation technique [22].

min
D∈Rn1×n2

‖D‖∗

s.t. D� = M� (2)

where the nuclear norm ‖D‖∗ sums the singular values of D.

Problem (2) often has a unique minimizer D that equals M, if

there are sufficient randomly-sampled entries in M� [27].

C. Power System State Estimation and FDI Attacks

In the DC-SE, nodal voltage angles, i.e., system states,

x ∈ R
n−1are estimated by active nodal power injection

(which can be positive or negative) and active branch power

flow measurements z ∈ R
m. The measurement vector and

states are related as z = H · x + e, where e ∈ R
m is

the measurement noise assumed to be Gaussian distributed

with zero mean, and a diagonal covariance matrix W =

diag(σ−2
1 , σ−2

2 , . . . , σ−2
m ). DC-SE has a closed-form solution

as follows: x̂ = (H′WH)−1H′Wz. In the AC-SE, the system

states x ∈ R
2n−1, i.e., nodal voltage angle and magnitude,

are estimated by a set of measurements z ∈ R
m, including

the power injection, power flow, and voltage magnitude mea-

surements. The measurement vector and states are related as

z = h(x) + e, where h(·) is a vector of nonlinear function

determined by the type of measurements. Since AC-SE doesn’t

have a closed-form solution, Gauss-Newton iterative algorithm

is used to solve the following weighted least square problem:

min (z − h(x))′W(z − h(x)).

The Chi-2 detector is a widely used bad data detector (BDD)

in DC-SE and AC-SE to detect bad data, as the estimation

residual follows the Chi-2 distribution. When the system is

free of bad data, the estimation residual is less than a preset

threshold, i.e., γ = ||z − H · x̂||2 < γth in DC-SE and γ =

||z − h(̂x)||2 < γth in AC-SE, where γth = χ2
(m−n),α

is the

threshold to ensure BDD has a false alarm rate at 1 − α.

An FDI attack aims to mislead the estimated states in the

system operator’s SE by injecting an attack vector a into

the SCADA measurements, i.e., za = z + a. In the DC-

FDI attack [28], the estimation residual under attack in the

defender’s Chi-2 detector is zero in the noiseless condition,
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i.e., γa = ||(z + a) − H · (x + �x)||2 = 0, if the attacker

calculates the FDI attack vector a as follows:

a = H · �x (3)

In the AC-FDI attacks, the estimation residual under attack

in the defender’s Chi-2 detector remains the same before and

after FDI attacks, i.e., γa = ||(z + a) − h(x + �x)||2 = ||z −

h(x)||2, if the FDI attack vector a can be calculated by:

a = h(x + �x) − h(x) (4)

Since FDI attacks do not increase the estimation residual in

the defender’s Chi-2 detector compared with the situation free

from attacks, FDI attacks remain stealthy to the defender’s

Chi-2 detector.

D. Machine Learning Detectors

Machine learning methods have been used to detect FDI

attacks based on the fact that normal data and compromised

data tend to be separated in a certain projected space. In this

paper, the SVM detector [18] is chosen to evaluate the stealthi-

ness of the proposed FDI attacks for two reasons. First, it is the

first machine learning method in the literature to demonstrate

a decent capability to detect FDI attacks. Second, the SVM

detector utilizes principal component analysis (PCA) as a pre-

processing step, allowing for visualization during the attack

detection. Traditional metrics such as precision, recall, and

F1 score can be used to quantitatively measure the stealthiness

of the proposed FDI attacks, while the visualization capabili-

ties of the SVM detector enable qualitative demonstration of

the proposed attack characteristics.

In the SVM detector, PCA is first applied to project

the historical measurement data to a low-dimensional space.

Dimension reduction solves the challenge brought by the

high-dimensionality and redundancy of measurement data in

practical power systems, and it is also beneficial for visual-

ization. Then, the SVM method is proposed to detect stealthy

FDI attacks [17], [18]. Generally, an SVM classifier constructs

a hyperplane or a set of hyperplanes used for classification.

Given a labeled training set S = (xl, yl), l = 1, . . . , L of size

L, with yl ∈{1, −1} including both normal measurement data

and compromised data, the SVM problem can be formulated

by (5). The goal of SVM is to find the normal direction of

a hyperplane ω and parameter b such that the prediction is

correct for the most samples.

min
ω,ξ,b

1

2
ω

′
ω + C

L∑

i=1

ξl

s.t. yi

(
ω

′φ(xl) + b
)

≥ 1 − ξl

ξl ≥ 0, l = 1, . . . , L (5)

where φ(xl) is a nonlinear transformation that maps xl in a

higher dimensional space, and ω
′ is the transpose of ω. The

slack variable ξl accounts for nonlinearly separable training

sets, and C is a tunable positive regularization parameter.

Artificial Neural Networks (ANN) consist of interconnected

neurons organized in layers. The training process allows

ANNs to learn complex patterns and relationships in the data,

Fig. 1. The framework of MC-FDI attack against the hybrid defense model.

enabling them to make predictions or classifications [29].

Logistic Regression (LR) is a popular statistical modeling

technique used for binary classification problems, which

assigns probabilities to each outcome class [30]. Polynomial

Logistic Regression extends the basic LR model by allowing

for polynomial terms in the input variables, making it capa-

ble of capturing nonlinear relationships between the predictors

and the response. Gaussian Naïve Bayes is a probabilistic

machine learning algorithm based on Bayes’ theorem that

assumes a Gaussian (normal) distribution for the continuous-

valued features. It calculates likelihoods for each class and

combines them with prior probabilities to predict the output

class [31]. These three ML methods are also used to evaluate

the stealthiness of the proposed FDI attacks.

III. MATRIX COMPLETION-BASED FDI ATTACK

In this section, we will propose a defense-attack framework

for MC-FDI attacks against a hybrid defense model and further

define the capability and knowledge of the attacker in MC-FDI

attacks. Finally, we will propose the mathematical model of

MC-FDI attacks in the DC and AC power system models,

respectively.

A. Matrix Completion-Based FDI Attack Framework

We propose a defense-attack framework consisting of a

hybrid defense model and an MC-FDI attacker, as shown in

Fig. 1. In the framework, we define the hybrid defender as

the system operator who utilizes both the model-based detec-

tor (Chi-2 detector) and ML detectors (such as SVM detector

and ANN detector) to detect FDI attacks. We define the MC-

FDI attacker as an attacker that utilizes the MC technology to

remain attack stealthy to both the model-based and the ML

detectors and ensure a sufficient negative impact on system

operation. When the power system is under the load condi-

tion Pt
D and Qt

D at time t, the SCADA measurement vector

is zt. The MC-FDI attacker first collects SCADA measure-

ments over time, and then conducts the SE to estimate x̂t.

Based on the collected historical measurements Z0, the MC-

FDI attacker utilizes MC-FDI models to calculate the optimal

incremental voltage state �x∗ considering the characteristics

of historical measurements. Finally, the traditional FDI models

are utilized to calculate the malicious measurement a injected

by the attacker.

The knowledge and capability of the MC-FDI attacker

are summarized as follows: i) The attacker knows the grid

topology and line parameters of the power systems. If the
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Algorithm 1 DC-MC-FDI Attack Algorithm

Input: Length of the historical measurement T, attacked

buses idxbus
a

Output: Compromised measurements za

1: Initialization: A null historical measurement matrix

Z0 = ∅

2: // Construct the historical measurement matrix Z0

3: while (the number of columns of Z0 < T) do

4: Eavesdrop SCADA measurements zi at time i

5: Add zi to the last column of Z0, i.e.,Z0 = [Z0, zi]

6: Keep eavesdropping SCADA measurements at time

i = i + 1

7: end while

8: Run DC-MC-FDI model (11) to get �x∗

9: Calculate the compromised measurements according

to (8)

10: return za

Algorithm 2 AC-MC-FDI Attack Algorithm

Input: Length of the historical measurement T, attacked

buses idxbus
a

Output: Compromised measurements za at time t

1: Initialization: A null historical measurement matrix

Z0 = ∅

2: // Construct the historical measurement matrix Z0

3: while (number of columns of Z0 < T) do

4: Eavesdrop SCADA measurements zi at time i

5: Add zi to the last column of Z0, i.e.,Z0 = [Z0, zi]

6: Keep eavesdropping the SCADA measurements at

time i = i + 1

7: end while

8: Apply state estimation to estimate the voltage at time t

9: Calculate the Jacobian matrix to linearize the AC-FDI

attack model

10: Run AC-MC-FDI model (14) to get �x∗

11: Calculate the compromised measurements according

to (9)

12: return za

attacker only has limited information on grid topology and line

parameters, the attack still can utilize Algorithms 1 and 2 to

construct MC-FDI attacks using a modified H matrix and h(x)

based on the principle in [32]; ii) The attacker has the write

access to all measurements related to compromised states;

iii) The attacker has the read access to all SCADA mea-

surements, and can continuously eavesdrop on the SCADA

measurements for a long time; and iv) The attacker knows the

grid voltage in the AC power system model.

Regarding Assumption i), the complete knowledge of the

grid topology and line parameters is a common assumption in

many prior works on FDI attacks [5], [7], [8], [9], [10], [16],

[28], [33]. It is important to note that write access is a prereq-

uisite for all FDI attacks, as stated in Assumption ii). In FDI

attacks, not all measurements need to be injected with mali-

cious data, and only the measurements related to compromised

states need to be injected. The attacker needs write access to

Fig. 2. Time sequence of measurement eavesdropping, attack construction,
and attack injection.

all measurements related to compromised states. Assumption

iii) of the read access is realistic, as evidenced by the Ukraine

cyber-attack incident, where the attackers had long-term power

system reconnaissance over six months or more without being

noticed [3]. Since the SCADA layer communication network

architecture has no cryptographically secure communication

protocol, intercepting and forging communication messages

is easy to achieve [4]. In addition, the existing blind FDI

attacks [34], [35] assume that the attacker can collect histor-

ical measurements for a long period. Lakshminarayana et al.

pointed out that the length of historical measurement should

be more than 500 time instants in the IEEE 4-bus system

to construct a stealthy blind FDI attack [36]. More histori-

cal measurements are needed to construct stealthy blind FDI

attacks in a larger system. Assumption iv) of the grid volt-

age is a common assumption in most prior works on AC FDI

attacks [5], [32], [33]. Hug and Giampapa first proposed this

assumption in the AC-FDI attack model due to the nonlinear

measurement-states relationship [33].

We propose a DC-MC-FDI and an AC-MC-FDI attack algo-

rithm, as shown in Algorithm 1 and Algorithm 2, respectively.

The attacker first needs to decide the length of the historical

measurement T used in matrix completion and then decide on

the attacked buses idxbus
a to manipulate their voltage. Since

the matrix completion technology is used in the MC-FDI

attacks, the attacker ought to construct a historical mea-

surement matrix Z0 free of attacks in the first step of the

MC-FDI attack. The attacker can continuously eavesdrop on

the SCADA measurements for T instants and then construct a

historical measurement matrix Z0, as follows:

Z0 =
[
z1 z2 · · · zT−1 zT

]
(6)

where zt ∈ R
m is a vector of all SCADA measurements at

time t, Z0 ∈ R
m×T is composed of all SCADA measurements

in the order of the time sequence, and T represents the length

of eavesdropping periods used in the historical measurement

(the number of columns in Z0).

We present the time sequence of measurements eaves-

dropping, attack construction, and attack launch based on

state estimation periods in Fig. 2. The attacker first keeps

eavesdropping SCADA measurements until the attacker has T

historical measurement vectors. After collecting sufficient his-

torical measurements, the attacker can launch an attack at any

time. Here, we use tT to denote the current SE period when

the attacker launches an attack. When the attacker decides

to launch an attack on tT , a malicious vector a calculated
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by the MC-FDI model is injected into the SCADA measure-

ment zT . Consequently, the compromised measurement matrix

under attack can be defined as:

Za

(
idxt

a

)
= Z0

(
idxt

a

)
+ a

Za

(
idxt

0

)
= Z0

(
idxt

0

)
(7)

where idxt
a = {T}, idxt

0 = {1, 2, . . . , T − 1}, and a is the

malicious injection measurements determined by the malicious

incremental voltage �x.

In the second step of MC-FDI attacks, MC-FDI models are

proposed in Sections III-B and III-C to determine the optimal

incremental voltage in the DC and AC power system mod-

els, respectively. Note that the voltage at the attack time T

needs to be estimated by the attacker through state estimation

for constructing AC-MC-FDI attacks but is not necessary for

DC-MC-FDI attacks. This voltage estimation requirement is

the same as the construction of traditional AC-FDI attacks,

according to (4).

In the last step of MC-FDI attacks, the attacker can calcu-

late the malicious measurements at time T using the optimal

malicious incremental voltage based on the traditional FDI

models. The compromised measurements in the DC-MC-FDI

attack can be expressed as:

zT
a = zT

0 + H · �x∗ (8)

Similarly, the compromised measurements in the AC-MC-

FDI attack can be expressed as follows:

zT
a = zT

0 + h
(
xT + �x∗

)
− h(xT) (9)

B. The DC-MC-FDI Attack Model

Since there is a trade-off between the attack stealthiness

and the negative impact in the construction of FDI attacks

against the machine learning detector, it is necessary to

balance the trade-off in selecting the value of incremental

voltage. Thus, we propose a novel MC-FDI model to cal-

culate an optimal malicious incremental voltage in the FDI

attacks, which considers the temporal correlation of the his-

torical measurements and ensures sufficient negative impact

on the power system operation. The MC-FDI model in the

DC model is proposed in (10), which minimizes the nuclear

norm of the compromised measurement matrix and max-

imizes the L1-norm of the malicious incremental voltage

angle.

min
�x

‖Za‖∗ − λ‖�x‖1 (10)

s.t. Za(i) = Z0(i) + a i ∈ idxt
a (10.1)

Za(i) = Z0(i) i ∈ idxt
0 (10.2)

a = H�x (10.3)

�xlb(i) ≤ �x(i) ≤ �xub(i) i ∈ idxbus
a (10.4)

�x(i) = 0 i ∈ idxbus
0 (10.5)

where Z0(i) represents i-th column in Z0, and �x(i) stands for

the i-th element in the vector;λ is the weight parameter; idxbus
0

and idxbus
a is the index of buses free of attack and the index

of attacked buses, respectively. Constraints (10.1) and (10.2)

define the compromised measurement matrix under attack.

Constraint (10.3) is the traditional DC-FDI attack model.

Constraint (10.4) introduces lower bound �xlb and upper

bounds �xub to allow but limit the malicious incremental

voltage angle in each of the attacked buses. Constraint (10.5)

ensures that the buses in idxbus
0 are free of attacks.

However, the proposed model is a non-convex optimization

problem, as the objective function is a sum of a convex func-

tion ‖Za‖∗and a concave function −λ‖�x‖1. By analyzing the

problem structure, we transform the objective into the sum of

a convex function ‖Za‖∗ and a plane p′�x. Specifically, we

convexify the problem by introducing an attacker preference

vector p ∈ R
n×1. The elements in p reflect the attacker’s inten-

tion for each bus in the system. The attacker can set the value

ofp(i) 1, −1, and 0 to decrease, increase and retain the volt-

age of Bus i, respectively. Multiple open-source packages can

be used to solve the following convex problem (11), such as

CVX [37] and CVXPY [38].

min
�x

‖Za‖∗ + λp′�x

s.t. (10.1) − (10.5) (11)

Note that λ is a positive weight parameter used to balance

the trade-off between ‖Za‖∗ and ‖�x‖1. From the attacker’s

perspective, a larger λ results in a larger incremental voltage

‖�x‖1 (a larger impact on power system operation), but a

larger nuclear norm ‖Za‖∗ (indicating less following the tem-

poral correlation of the historical measurements). The weight

needs to be fine-tuned based on the specific system. Based

on our numerical results, the range of λ is usually between 1

and 20.

C. The AC-MC-FDI Attack Model

We extend the DC-MC-FDI model to an AC-MC-FDI

model, which integrates the traditional AC-FDI model (4) as a

constraint. The differences between the DC-MC-FDI and AC-

MC-FDI attacks are the essential differences between the DC

and AC power system models. The decision variable�x is

composed of the incremental voltage magnitude and incre-

mental voltage angle. The historical measurement matrix Z0

in the AC model contains more measurement types than those

in the DC model. The most important difference is the non-

linear relationship h(·) between the measurements and states.

However, the existence of nonlinear power flow constraints

and power balance constraints makes the AC-MC-FDI model

hard to solve. Therefore, we apply the first-order Taylor series

expression on h(·) to linearize the relationship between the

measurements and states at time T, as follows:

h(xT + �x) = h(xT) + H(xT)�x (12)

where H(xT) = ∂h(xT)/∂x is the Jacobian matrix of h(x) at

x = xT . Note that the same Jacobian matrix is also needed

in solving the AC weight least square (WLS) SE, which is

a necessary step in the traditional AC-FDI attacks. Thus, the

calculation of the Jacobian matrix in the AC-MC-FDI model

is not an extra burden for the attacker. In this case, the injected

measurements a can be expressed in a linearized formulation
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using the Jacobian matrix:

a = h(xT + �x) − h(xT) = H(xT)�x (13)

Therefore, we propose a convex AC-MC-FDI model in (14),

which utilizes the linearized relationship between the measure-

ments and states in the constraints. Note that we replace the

voltage state xT with x̂T estimated by the attacker’s SE, since

xT is unknown to the attacker.

min
�x

‖Za‖∗ + λp′�x

s.t. Za(i) = Z0(i) + a i ∈ idxt
a

Za(i) = Z0(i) i ∈ idxt
0

a = H(̂xT)�x

�xlb(i) ≤ �x(i) ≤ �xub(i) i ∈ idxbus
a

�x(i) = 0 i ∈ idxbus
0 (14)

It is worth mentioning that this paper focuses on con-

structing MC-FDI attacks against state estimation with RTU

measurements in transmission systems. FDI attacks against

PMU-based state estimation can be effectively detected by a

data-driven detector [26], which utilizes the temporal corre-

lation of the historical synchronized measurements from the

PMU devices. Therefore, from the perspective of the attacker,

it is important to consider the temporal correlation of the syn-

chronized measurements in the construction of FDI attacks

against PMU-based state estimation. In the PMU-based state

estimation, the synchronized measurements from the PMU

devices z ∈ R
m include the real and imaginary parts of volt-

age phasors and those of current phasors, and the state vector

x ∈ R
2N consists of the real and imaginary parts of N bus

voltage phasors. The PMU-based state estimation is a linear

state estimator on Cartesian formulation and thus z = Hx

holds [16]. Since the linear relationship in the PMU-based

state estimation is the same as that in the RTU-based state

estimation in Section II-C, the DC-MC-FDI attack algorithm

(Algorithm 1) can be directly applied to construct FDI attacks

against PMU-based state estimation. However, the MC-FDI

attacks against PMU-based state estimation is beyond the

scope of this work and will be investigated in our future work.

IV. DETECTION OF MC-FDI ATTACKS

Since the proposed MC-FDI attacks are designed to be

stealthy to the hybrid defense model, it is necessary to pro-

vide extra defense for the power systems. We propose to apply

MTD in the physical layer of power systems to enhance the

capability to detect MC-FDI attacks. In MTD, the system

operator frequently and actively changes the transmission

line reactance using the distributed flexible AC transmission

system (D-FACTS) devices. The varying system configuration

increases the barriers for the attackers to launch the MC-

FDI attacks since the knowledge of the power system is one

requirement for MC-FDI attacks.

A. MTD Planning Model and Operation Model

MTD in power systems is composed of two essential

steps, i.e., MTD planning and MTD operation. An MTD

planning scheme determines a set of transmission lines to

install D-FACTS devices, while an MTD operation delicately

determines the D-FACTS setpoints under varying load con-

ditions [39]. It has been proved that MTD planning largely

determines the MTD detection effectiveness in the noiseless

condition [40], and MTD operation slightly influences the

MTD detection performance in noisy conditions [41].

The graph-based planning method can maximize the MTD

detection effectiveness in the following two ways [41]. First,

the graph-based planning method maximizes the rank of the

composite matrix, the detection effectiveness metric of MTD,

by eliminating the loops in the graphs composed of lines

equipped with and without D-FACTS devices. Second, the

graph-based planning method eliminates unprotected buses

by covering all necessary buses with D-FACTS devices.

Therefore, we adopt the graph-based planning method to

determine the allocation of D-FACTS devices in MTD.

MTD operation determines the D-FACTS setpoints in real-

time. The random MTD operation [42] is the simplest and

most unpredictable MTD operation method, in which setpoints

of each D-FACTS device are randomly selected based on

uniform distribution within its operation range:

bij ∼ U
(
(1 − η)b0

ij, (1 + η)b0
ij

)
(15)

where η is the MTD magnitude that reflects the physical capa-

bility of D-FACTS devices; b0
ij is the original line susceptance;

and bij is the line susceptance modified by D-FACTS devices

in MTD. As any other MTD operation method [43], [44] can

be viewed as a subset of the random MTD, random MTD

operation is generalized across all MTD operation methods.

Without loss of generality, we use the random MTD operation

under the graph-based planning to detect MC-FDI attacks. In

the following subsections, we prove that MTD methods are

able to corrupt both the temporal correlation and spatial corre-

lation of compromised measurement in MC-FDI attacks. The

conclusion drawn can be similarly extended to other MTD

operation methods.

B. Corruption of Temporal Correlation in MC-FDI Attacks

The MC-FDI model minimizes the nuclear norm of the com-

promised measurement matrix. The compromised measure-

ment matrix in the DC noiseless condition can be reformulated

in (16). As the measurement matrix H0 is a fixed matrix, the

essential objective of the MC-FDI model is to minimize the

nuclear norm of the compromised state matrix Xa. Therefore,

the MC-FDI model, in fact, optimizes the incremental state to

follow the temporal correlations of the historical states.

Za =
[
H0x1 H0x2 · · · H0xT−1 H0(xT + �x)

]
= H0Xa (16)

where Xa =
[
x1 x2 · · · xT−1 (xT + �x)

]
is the compromised

state matrix.

MTD utilizes the random MTD operation method to change

the susceptance of the lines identified by the graph-based plan-

ning method in each SE period. Accordingly, the measurement

matrix in the state estimation at time t can be represented by

Ht. We define the uncertainties introduced by MTD for the

attacker as the difference between the measurement matrix
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before and after MTD, i.e., �Ht = Ht − H0. In most

MTD research in the cybersecurity of power systems, it is

assumed that traditional attacker doesn’t realize the existence

of MTD deployed in the field [40], [41], [42], [44], [45]. It

is possible that an attacker is aware of MTD defense tech-

niques and knows D-FACTS devices are used in the power

grid. Our recent work proposed three types of alert attack-

ers who can detect the existence of MTD using bad data

detection, unsupervised learning methods, or MTD operation

models [46].

However, it is realistic to assume that the attacker doesn’t

have enough attack window to estimate the current system

configuration under MTD, regardless of the traditional or alert

attackers. This assumption holds based on two facts. First, the

attacker may have the capability to track the changing system

parameters resulting from MTD. However, the attacker must

collect the historical measurements under this configuration for

a long time period to estimate the current system configuration.

For example, the length of historical measurements should be

more than 500 time instants to accurately estimate the sin-

gular vector of the system configuration in the IEEE 4-bus

system [36]. Much more historical measurements are required

in a larger system. Second, as a proactive defense method,

MTD’s frequency can be determined by the defender. If the

defender changes the system configuration more frequently,

the attacker will have a shorter attack window to estimate

the system configuration and launch attacks. Consequently, the

attacker cannot collect enough historical measurements under

the current system configuration in the short attack windows.

The dynamic nature of MTD can make it more challenging

for the attacker to identify the system parameters with insuffi-

cient historical measurements, as the MTD defense can make

the attack surface more unpredictable and difficult to exploit.

If the attacker detects the existence of MTD but fails to

accurately estimate the current system configuration under

the MTD, a reasonable attacker will postpone launching FDI

attacks. In other words, MTD prevents potential attackers

from launching attacks, which is the advantage of proactive

defense. To theoretically analyze the capability of MTD on

detecting launched attacks, it is reasonable to assume that the

attacker use the original system configuration without MTD

(H0) to construct the MC-FDI attacks. This assumption is

widely adopted in MTD works [40], [41], [42], [43], [44],

[45], [46], [47] in the analysis of the detection effectiveness.

The compromised measurement matrix in the MC-FDI

attack under the MTD can be expressed as (17).

Za =
[
H1x1 H2x2 · · · HT xT + H0�x

]

=
[
(H0 + �H1)x1 (H0 + �H2)x2 · · · (H0 + �HT )xT + H0�x

]

= H0Xa +
[
�H1x1 �H2x2 . . . �HT xT

]

= H0Xa + �H � X0 (17)

where X0 =
[
x1 x2 · · · xT−1 xT

]
is the state matrix, �H =[

�H1 �H2 . . . �HT

]
is the historical incremental H matrix

introduced by MTD, and � is the element-wise product for

the submatrices in �H and the columns in X0.

MTD corrupts the temporal correlation of the historical

states in the MC-FDI model in two aspects. First, without

considering any attacks, MTD corrupts the correlations of his-

torical voltage X0. This is because the randomness introduced

by MTD to the system configuration can cause irregular nodal

voltage changes. Second, compared with (16), the MC-FDI

model under the MTD no longer focuses on minimizing the

nuclear norm of the compromised state matrix Xa. The objec-

tive function of MC-FDI is also influenced by �H � X0 due

to the varying system configurations in MTD. Thus, the com-

promised measurements calculated in MC-FDI attacks could

not be consistent with the temporal correlation of historical

measurements under the MTD.

C. Corruption of Spatial Correlation in MC-FDI Attacks

The MC-FDI model takes the FDI model as constraints

such that the compromised measurements satisfy the spatial

correlation, i.e., the subject to the physical law of the power

system. However, MTD can effectively break this spatial cor-

relation of the compromised measurements. Assume that the

attacker launches an MC-FDI attack at time T using H0, and

the actual measurement matrix is HT . Then, the compromised

measurements of the MC-FDI attack at time T is calculated

as follows:

zT
a = HTxT + H0�x∗ + e (18)

Note that the difference between (8) and (18) is H matrix.

Under no MTD condition, the compromised measurements can

be calculate by (8), where zT
0 = H0xT + e.

Under the noiseless condition, the estimation residual is

zero, i.e., γMTD = 0, if and only if H0�x ∈ col(HT) accord-

ing to (3). As H0 �= HT , the estimation residual is likely

larger than zero, indicating the detection of MC-FDI attacks.

Specifically, the estimation residual of the MC-FDI attack

under the MTD can be expressed in (19). Essentially, MTD

causes the MC-FDI attacker to use incorrect system configu-

ration to calculate the attack vector, resulting in breaking the

physical law of the power system, such as the imbalance of

the nodal power injection in attacked buses. Therefore, MTD

is able to corrupt the spatial correlation of the compromised

measurement vector.

γMTD =

∥∥∥(HT xT + H0�x) − HT

(
HT

T HT

)−1
HT

T(HT xT + H0�x)

∥∥∥

=

∥∥∥
(

I − HT

(
HT

T HT

)−1
HT

T

)
H0�x

∥∥∥ (19)

V. NUMERICAL RESULTS

A. Test Systems and Simulation Setting

We perform numerical tests on the IEEE 14-bus system

and the IEEE 118-bus system to evaluate the performance of

MC-FDI attacks against the hybrid defense model and demon-

strate the effectiveness of MTD in detecting MC-FDI attacks.

The proposed MC-FDI attacks are modeled and solved by

the CVX package in MATLAB [37]. The SE, Chi-2 detector,

MTD, and TFDI attacks are all programmed in MATLAB.

The algorithms are performed on a laptop with an Intel Core

i5 processor CPU 2.70 GHz dual-core with 8 GB RAM.

The measurements in the AC-SE include active and reactive

power flow measurements, active and reactive power injec-

tion measurements, and voltage magnitude measurements. We
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adopt a 2.5 redundant factor in the AC-SE. Specifically, we

randomly select 2.5 × (2N − 1)measurements among all pos-

sible measurements until the observability of the system is

met.

We apply the hourly load profile of ERCOT [48] to the

load buses in the IEEE 14-bus system, and the hourly load

profile of WECC [49] to the load buses in the IEEE 118-bus

system. Then, the power flow problem is solved by MATLAB

MATPOWER in each power system. At each time instant, the

SCADA measurements are collected from the solution of the

power flow problem. These collected measurements serve as

the normal (uncompromised) historical measurements in the

training, validation, and testing dataset. We construct TFDI

attacks with different attack magnitudes under multiple time

instants, in which the voltage angles of randomly selected

buses are compromised, and their incremental values are ran-

domly selected according to their attack magnitude. These

collected measurements under TFDI attacks serve as the com-

promised historical measurements in training, validation, and

testing dataset. In addition, the proposed MC-FDI attacks are

included in the testing dataset, since the objective of the exper-

iments is to evaluate the stealthiness of the proposed MC-FDI

attacks against ML detectors. In summary, the training dataset

includes the normal measurements and measurements under

TFDI attacks, and the testing dataset includes the measure-

ments under the proposed attacks, measurements under the

TFDI attacks for comparison, and the normal data to calculate

the false positive (FP) rate.

The machine learning detectors, including SVM, logistic

regression, artificial neural network, and Bayesian detector are

trained and tested using the Sklearn package [50] in Python.

5-fold cross-validation is conducted in the training dataset to

find the parameters of different ML detectors, such as the LR’s

penalization parameter, NB’s probability threshold, and ANN’s

number of neurons in the hidden layer and the strength of

the regularization. In the 5-fold cross-validation, the training

dataset is randomly shuffled and then is equally split into five

groups. For each unique group, we take the group as a valida-

tion set, take the remaining groups as a training data set, and

then fit a ML detector on the training set and evaluate it on the

validation set. Then, the average F1 score on the five valida-

tion sets is adopted as the metric to evaluate the performance

of the ML detector under the given parameters.

B. Traditional FDI Attacks Against SVM Detector

In this section, we first demonstrate the drawbacks of the

TFDI attacks against the SVM detector and then show the

importance of the nuclear norm of the historical measurement

matrix in the construction of FDI attacks against the SVM

detector. First, we evaluate the performance of TFDI attacks

against the SVM detector under different attack magnitudes

(AM), where the attack magnitude AM defines the range of

incremental voltage, i.e., �x ∈ [−AM · x, AM · x]. Note that

a larger attack magnitude reflects a larger selection range of

the incremental voltage, but not necessarily ensures a larger

incremental voltage angle due to the definition of the attack

magnitude.

Fig. 3. Projection of normal and compromised data in the training set by
PCA.

In the IEEE 14-bus system, the dimension of the data is

68. The training dataset includes 350 normal (uncompromised)

measurement vectors and 350 compromised measurement vec-

tors. The normal measurement vectors are collected from

the SCADA system from the 1st time instant to 350th time

instant. TFDI attacks randomly select three buses to compro-

mise their voltage from the 100th time instant to the 300th time

instant with 0.1-0.4 AMs. The compromised measurement

vectors in the training set are sampled from the measure-

ments under the TFDI attacks. The testing set includes 100

uncompromised measurement vectors collected from 351th

time instant to 450th time instant, 200 compromised measure-

ment vectors under MC-FDI attacks with λ = {3.1, 3.2}, and

500 compromised measurement vectors under TFDI attacks

with AM={0.01, 0.05, 0.1, 0.2, 0.3}. Specifically, we gen-

erate 100 attacks for each attack magnitude, and TFDI and

MC-FDI attacks compromise the voltage of three buses.

Note that five attack magnitudes of the TFDI attacks are

selected based on the voltage situation of the IEEE 14-bus

system, such that the incremental voltages in TFDI attacks

are comparable to those in MC-FDI attacks. In the IEEE

14-bus system, the average value of L1-norm of the incre-

mental voltage in MC-FDI attacks with two λ weights are

0.057, and 0.140, respectively, and those in TFDI attacks

with five AMs are 0.002, 0.008, 0.015, 0.029, and 0.049,

respectively.

We apply the PCA dimension reduction to the training and

testing dataset. With two principal components (convenient for

the visualization), 99% of the signal variance will be retained.

Figures 3, 4, and 5 show the projection of the training set,

the projection of MC-FDI attacks in the testing set, and the

projection of TFDI attacks with different attack magnitudes in

the testing set, respectively. Note that the blue stars in Fig. 4

and 5 are the projection of the normal data in the training set,

which serve as the reference.

Since the normal and compromised data are not linearly sep-

arable, the SVM detector with Gaussian kernel is applied to

detect FDI attacks. The choice of kernel coefficient σ and reg-

ularization parameter C can impact the efficiency of the SVM

in detecting attacks. We train the SVM with different C and σ

values. Under each parameter pair, we conduct 5-fold cross-

validation in the training dataset, and we adopt the average
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TABLE II
AVERAGE F1 SCORE OF THE 5-FOLD CROSS-VALIDATION SET

UNDER DIFFERENT C AND σ VALUES

Fig. 4. Projection of MC-FDI attacks in the testing set by PCA.

Fig. 5. Projection of TFDI attacks in the testing set by PCA.

of the F1 scores as the measure of accuracy. Specifically, the

kernel coefficient σ and regularization parameter C are opti-

mized by searching in the set {0.01, 0.03, 0.1, 0.3, 1, 3, 10,

30, 100, 300}. Table II shows the F1 score of the cross-

validation set under different C and σ values. Thus, we set

C=100 and σ =100 in the SVM detector.

In Fig. 5, it is seen that most compromised data locate out-

side of the historical data area (blue star area), which can be

treated as outliers (detected by the SVM detector). The outliers

of the compromised data with a larger AM can be farther from

the historical data area. This is consistent with the fact that

a larger AM can drive the compromised data further deviated

from the historical data. Accordingly, the compromised data

with a smaller AM is more likely to remain inside the historical

data area. However, we can observe that some compromised

data with large AM is also located inside the historical data

Fig. 6. The nuclear norm and L1-norm of all TFDI attacks by SVM detector.

area. It is necessary to further investigate whether these FDI

attacks inside the historical area have large AM but small

incremental voltage.

We analyze the spatial and temporal correlation of each

FDI attack to evaluate the performance of the SVM detec-

tor on detecting FDI attacks. Due to the definition of AM,

AM cannot accurately and directly reflect the malicious mod-

ification on the measurements by attacks. Thus, we use the

L1-norm of the incremental voltage angle (‖�x‖1) as the

metric for measuring the attack’s strength on the spatial cor-

relation. Then, we use the nuclear norm of the compromised

historical measurement matrix as the metric for quantifying

the attack’s impact on the temporal correlation. The trained

SVM detector is used to detect 500 TFDI attacks with differ-

ent AMs. Then, we calculate the L1-norm and nuclear norm of

500 TFDI attacks. Finally, we project all detected TFDI attacks

into R
2 space in Fig. 6(a) and all undetected TFDI attacks in

Fig. 6(b). We refer the R
2 space as norm-norm space hereafter.

Since TFDI attacks with small incremental voltage (less than

0.01 L1-norm value) slightly modify the measurements, these

attacks have a very limited impact on the nuclear-norm values

and thus are very likely to be stealthy to the SVM detector,

as shown in Fig. 6(b). By comparing these two figures, we

can see that for the TFDI attacks with large L1-norm val-

ues (more than 0.05 L1-norm value), most undetected TFDI

attacks have comparatively lower nuclear norm values, and

most detected TFDI attacks have comparatively higher nuclear

norm values. Even though TFDI attacks with low nuclear norm

values can also be detected, as shown in the lower right cor-

ner of Fig. 6(a), there are no undetected FDI attacks with

high nuclear norm values, as shown in the upper right corner

of Fig. 6(b).

We further equally divide the norm-norm space into 16

blocks and calculate the attack detection probability (ADP)

of each block. The ADP of a given block is defined as the

ratio of the number of detected attacks to the number of total

attacks in the block. The heatmap of ADP in the norm-norm

space is shown in Fig. 7. We can observe a low ADP in the

low nuclear norm and low L1-norm value block (the lower

left corner), a high ADP in the high nuclear norm and high

L1-norm blocks (the upper right corner), and a low ADP in

the high L1-norm but low nuclear norm blocks (the lower

right corner). The lower right corner block and the upper

left corner blocks are NaN, since no FDI attack falls into

these blocks. Simulation results highlight the importance

of temporal correlation (the nuclear norm of the historical
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Fig. 7. ADP of the SVM detector against TFDI attacks.

Fig. 8. The MC-FDI attack on the 300th time instant.

measurement matrix), when the attacker aims to construct

stealthy FDI attacks with large incremental voltage against

the SVM detector.

Therefore, we can summarize the drawbacks of TFDI

attacks: 1) there is no guide for selecting the incremen-

tal voltage; 2) TFDI attacks with small incremental voltage

can be stealthy to the SVM detector, but they also have a

low negative impact on the system; 3) attacks with large

incremental voltage can be detected by the SVM detector

without considering the temporal correlation of the historical

measurements.

C. Performance of MC-FDI Attacks

In this section, we evaluate the performance of MC-FDI

attacks against the SVM detector. We assume the attacker

utilizes 200 historical measurement vectors to construct the

historical measurement matrix, intends to increase the voltage

angle of Buses 6, 12, and 13, and adopts λ = 3.1. First, we

show the compromised voltage angle and the compromised

measurements in the 300th instant in Fig. 8. It is seen that the

compromised voltage is very different from the normal volt-

age, and the attack manipulates the measurements related to

TABLE III
CPU TIME OF MC-FDI ATTACK WITH DIFFERENT NUMBER OF PERIODS

IN THE HISTORICAL MEASUREMENT MATRIX

the attacked buses. Even though the MC-FDI attack obviously

manipulates the voltage, the MC-FDI attack doesn’t yield a

distinct change in measurement values. In Fig. 4, all MC-FDI

attacks locate inside the normal data area. It indicates that the

dimension reduction fails to separate the normal data and the

compromised data. This is because the MC-FDI attacks con-

sider the temporal correlation of the historical measurements

by minimizing the nuclear norm of the historical measurement

matrix. As the SVM detector can only detect the outlier, the

proposed MC-FDI attacks ought to be stealthy to the SVM

detector.

The CPU time of the MC-FDI attacks using the different

number of periods in the historical measurement matrix in the

DC and AC model is summarized in Table III. The number of

decision variables in the AC-MC-FDI attack is twice of those

in the DC-MC-FDI attack. In addition, the size of the historical

measurement in AC-MC-FDI attacks is larger than that in the

DC-MC-FDI attack, since there are 34 measurements in the

DC-SE and 68 measurements in the AC-SE. Thus, the CPU

time of AC-MC-FDI attack is longer than that of the DC-

MC-FDI attack. It is seen that the CPU time of solving the

proposed MC-FDI models depends on the size of the historical

measurement matrix. The CPU time greatly increases with the

increasing number of historical measurement vectors in Za. In

order to reduce the CPU time and launch an FDI attack in

time, it is suggested to reduce the number of the historical

measurement vector in Za. As shown in Fig. 4, 200 historical

measurement vectors are sufficient to lead the MC-FDI attack

stealthy to the SVM detector.

D. Impact of Weights on the Performance of MC-FDI Attacks

In this section, we evaluate the impact of weights on the

performance of MC-FDI attacks. Assume the attacker intends

to increase the voltage angle of Buses 6, 12, and 13 in the 300th

instant using 200 historical measurement vectors. We increase

the weight λ from 2.2 to 3.3 with an incremental of 0.05. First,

we demonstrate the impact of weights on the L1-norm of incre-

mental voltage and the nuclear norm of the compromised his-

torical measurement matrix. We compare the MC-FDI attacks

using different weights with the 500 TFDI attacks generated

in the 300th instant in Section V-B. Specifically, we first com-

bine the data points in Fig. 6(a) and Fig. 6(b) and then project

the MC-FDI attacks into the norm-norm space, as shown in

Fig. 9. With the increase of the weight, both the L1-norm of

�x and the nuclear norm of Za increase. Compared with TFDI

attacks, the MC-FDI attacks always have the lowest nuclear

norm value regardless of the L1-norm value. This comparison

demonstrates the effectiveness of the proposed MC-FDI model

in balancing the trade-off between maximizing the negative
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Fig. 9. Impact of weights on the performance of MC-FDI attacks.

Fig. 10. Impact of weights on the stealthiness of MC-FDI attacks to the
SVM.

impact and maintaining the temporal correlation of historical

measurements.

Then, we demonstrate the impact of weights on the

stealthiness of the MC-FDI attack on the SVM detector. We

apply the PCA dimension reduction on 350 historical mea-

surement vectors and the 22 MC-FDI attacks with increasing

weights in the 300th instant, as shown in Fig. 10. We can see

that all MC-FDI attacks succeed in locating inside the histori-

cal data area, indicating the stealthiness of MC-FDI attacks to

the SVM detector. Moreover, as shown in the zoom-in figure,

the compromised data with a larger λ deviates farther from the

historical data area. In summary, a larger weight results in a

larger incremental voltage but also degrades the temporal cor-

relation of the historical measurements, which increases the

probability of being detected by the SVM detector.

E. Stealthiness of MC-FDI Attacks Against ML Detectors

In this section, we further evaluate the stealthiness of MC-

FDI attacks against other ML detectors, including artificial

neural networks (ANN), polynomial logistic regression (LR),

and Gaussian Naïve Bayes (NB). The performance of the four

ML detectors on detecting TFDI and MC-FDI attacks are

shown in Tables IV and V, respectively. Note that the column

“Norm” in Tables IV and V represents the average L1-norm

of the incremental voltage under the attacks with the given

weight.

We apply artificial neural networks as the attack detector

to evaluate the effectiveness of the proposed MC-FDI attacks.

We construct an ANN with three hidden layers and conduct a

grid search to optimize the number of neurons in each layer

and the regularization parameters. Specifically, we search the

TABLE IV
PERFORMANCE OF MACHINE LEARNING DETECTORS

ON DETECTING TFDI ATTACKS

TABLE V
PERFORMANCE OF MACHINE LEARNING DETECTORS

ON DETECTING MC-FDI ATTACKS

number of neurons in each hidden layer from 10 to 50 with

an increment of 10, and the regularization parameter in the

set {0.00001, 0.0001, 0.001, 0.01, 0.1, 1}. In the grid search,

the average F1 score of the 5-fold cross-validation sets serves

as the performance metric. In the IEEE 14-bus system, 50,

50, and 40 neurons are selected in three hidden layers with

0.01 regularization parameter. Due to the space limit, we only

present the TFDI with 0.1 and 0.3 AM, and MC-FDI attacks

with λ = 3.1 and λ = 3.2. It is seen that the ANN detector

has a high precision value in detecting TFDI and MC-FDI

attacks. ANN detector can detect 52% and 78% TFDI attacks

with 0.1 AM and 0.3 AM, respectively, but it can only detect

12% and 20% MC-FDI attacks with λ = 3.1 and λ = 3.2,

respectively.

Since the compromised and uncompromised data in the

case study are not linearly separable, we adopt the polyno-

mial logistic regression to deal with the nonlinear boundary.

We perform a polynomial transformation on the original data

with 4th-order polynomials. The LR detector is solved using

a Newton-CG solver. The penalization parameter C of the

L2 penalty function is optimized by searching in the interval

[0.01,100] using 5-fold cross-validation. The maximum num-

ber of iterations is chosen as 1000. The attack detection

probability of the LR detector against TFDI attacks is 70%,

while that of the LR detector against MC-FDI attacks is 6%.

In addition, we apply the Gaussian Naïve Bayes classifier to

detect TFDI attacks and MC-FDI attacks. After the Gaussian

Naïve Bayes classifier is trained, the probability threshold

is optimized in the interval [0.01, 1] based on the average

F1 score of the 5-fold cross-validation. It is seen that NB

detector can detect 46% TFDI attacks with 0.88 precision,

and detect 28% MC-FDI attacks. Even though the NB has the

highest detection rate against MC-FDI attacks compared with

other detectors, the low recall against TFDI attacks indicates
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Fig. 11. The F1 score of the SVM detector using different numbers of training
samples. Fig. 11(a) shows the performance of SVM in detecting TFDI attacks
in the training process, and Fig. 11(b) shows the performance of the well-
trained SVM in detecting TFDI attacks and MC-FDI attacks in the testing
set.

NB performs badly in determining whether a measurement

vector is compromised or not.

The well-trained ML detectors have a low false positive

(FP) rate, while the stealthiness of the proposed attacks

against these detectors results in a low true positive (TP) rate.

Consequently, the precision value of these detectors varies

between [0, 1]. For example, the LR detector in Table V has

a 1.0 precision value due to two detected attacks (TP=2) and

zero misclassified normal data (FP = 0), while the LR detector

in Table VII has a zero precision value due to zero detected

attacks (TP=0). In Table V, the SVM detector detects four

attacks (TP = 4) and incorrectly classifies two normal mea-

surements as attacks (FP=2), resulting in a 0.67 precision

value.

TFDI attacks with small AM are hidden to ML detectors,

because these attacks merely inject tiny incremental voltage

angle into the system. For TFDI attacks with 0.01 AM, its

ADP against SVM, ANN, NB and LR are 0.01, 0.09, 0, and 0,

respectively. Note that the L1-norm of incremental voltage in

TFDI attacks with 0.01 AM is only 0.002. It is necessary to

highlight that MC-FDI attacks with large L1-norm of the incre-

mental voltage can also remain hidden to ML detectors. This

is because the MC-FDI attacks consider the temporal correla-

tion of the historical measurements, rather than injecting tiny

incremental voltage angle.

We analyze the impact of the number of training data on

the detection performance of SVM detector. The original train-

ing set includes 350 uncompromised historical measurement

vectors collected from the 1st instant to 350th instant, and 350

compromised measurement vectors. We denote the training set

by Ztrain =
[
Z0

train Za
train

]
∈ R

m×700, where Z0
train and Za

train

are uncompromised and compromised historical measure-

ments, respectively. When we decrease the size of the training

samples to k, we keep the most recent historical measurements

in the training set, i.e., Zk
train =

[
Z0

train(idx) Za
train(idx)

]
and

idx = 350−k/2+1:350. Thus, the number of uncompromised

measurement vectors is the same as that of compromised

measurements in the training set.

Fig. 11(a) shows the learning curve of the SVM detec-

tor in the training process, in which the F1 score of the

SVM in the training set and cross-validation set are calculated

under different sizes of the training set. When the training set

Fig. 12. Projection of the training set by MDS.

increases from 20 to 700 samples, we conduct 5-fold cross-

validation in each given training set. Then, we calculate the

average F1 score of the training set and cross-validation set,

respectively. It is seen that the F1 scores of the training and

cross-validation sets converge with a small gap, indicating no

overfitting exists in the training process. Further increasing

the sample size does not yield substantial enhancements in

achieving higher accuracy. Figure 11(b) shows that, for the

TFDI attacks, the detection effectiveness of the SVM detector

can be improved when the number of samples in the training

set increases from 100 to 300. After the number of samples in

the training set is larger than 300, the performance becomes

stable and cannot be improved by adding more training sam-

ples. The performance of the SVM detector in detecting TFDI

attacks is consistent with the learning curve of the SVM detec-

tor proposed in [18]. The F1 score of the SVM detector in

detecting MC-FDI attacks decreases with the increasing num-

ber of training samples. Specifically, the detector’s precision

increases but the recall decreases with the increasing number

of the training samples. This is because, with more historical

measurements, the project of MC-FDI attacks in R
2 space is

more likely to overlap with the historical measurements. Thus,

MC-FDI attacks are more prone to be stealthy to the detector,

i.e., a lower recall value.

In addition, we compare PCA with a global nonlinear tech-

nique for dimensionality reduction, multidimensional scaling

(MDS) [51]. Then, we further evaluate the stealthiness of

MC-FDI attacks using four ML detectors based on the pro-

jection data of MDS. PCA is a traditional linear technique for

dimensionality reduction. PCA finds a linear basis of reduced

dimensionality for the data, in which the amount of variance in

the data is maximal. Multidimensional scaling (MDS) is one of

the global nonlinear techniques for dimensionality reduction.

Global nonlinear techniques attempt to preserve global prop-

erties of the data, and are capable of constructing nonlinear

transformations between the high-dimensional data represen-

tation and its low-dimensional counterpart. Multidimensional

scaling (MDS) maps the high-dimensional data representation

to a low-dimensional representation while retaining the pair-

wise distances between the datapoints as much as possible.

MDS is widely used for the visualization of data [52].

We evaluate the stealthiness of MC-FDI attacks against ML

detectors under the global nonlinear dimensionality reduction

technique, i.e., MDS. We apply the MDS dimension reduction

to the training data set and the testing data set. Fig. 12 shows
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Fig. 13. Projection of MC-FDI attacks in the testing set by MDS.

Fig. 14. Projection of TFDI attacks in the testing set by MDS.

TABLE VI
PERFORMANCE OF MACHINE LEARNING DETECTORS

ON DETECTING TFDI ATTACKS USING MDS

the projection of normal and compromised data in the training

set, Fig. 13 shows the projection of MC-FDI attacks in the

testing set, and Fig. 14 shows the projection of TFDI attacks

with different attack magnitudes in the testing set. In Fig. 14,

the projection of TFDI attacks by MDS deviated further from

the normal data, compared with that by PCA in Fig. 5. It

indicates more TFDI attacks can be detected by ML detectors

under MDS. The projection of MC-FDI attacks under MDS

locates inside the normal data area in Fig. 13, indicating the

stealthiness of MC-FDI attacks.

Four ML detectors (SVM, ANN, LR, and NB) are trained

and tested to detect TFDI and MC-FDI attacks using the low-

dimensional data by MDS. The performance of the machine

learning detectors on detecting TFDI and MC-FDI attacks

are shown in Table VI and VII, respectively. In Table VI,

it is seen that machine learning detectors have a better

detection capability in detecting TFDI attacks with a larger

AM. This is because TFDI attacks with a larger AM devi-

ate further from the normal data compared with the TFDI

attacks with a lower AM, as shown in Fig. 14. For TFDI

attacks with 0.3 AM, SVM can detect 79% attacks, and

LR can detect 62% attacks. In Table VII, it is seen that

TABLE VII
PERFORMANCE OF MACHINE LEARNING DETECTORS ON

DETECTING MC-FDI ATTACKS USING MDS

the ADP of all four detectors is below 6%, indicating the

stealthiness of MC-FDI attacks against machine learning

detectors.

We further evaluate the effectiveness of MC-FDI attacks

in the IEEE 118-bus system. We assume the attacker utilizes

200 historical measurement vectors to construct the histori-

cal measurement matrix, and continually launches MC-FDI

attacks from the 300th instant to the 400th instant. Assume

the MC-FDI attacker intends to compromise the voltage angle

of Buses 60, 61, 62, 63, and 64.

In the IEEE 118-bus system, the dimension of the data is

292. The training dataset that includes 400 uncompromised

measurement vectors and 400 compromised measurement

vectors. These uncompromised measurement vectors are col-

lected from the system under the WECC hourly load profile

from the 1st time instant to the 400th time instant. TFDI

attacks randomly select five buses to compromise voltage

from the 300th time instant to the 400th time instant with

0.6-1.0 AMs. The compromised measurements in the train-

ing set are sampled from the measurements under the TFDI

attacks. The testing dataset includes 100 uncompromised mea-

surement vectors collected from the 401st time instant to

the 500th time instant, 400 compromised measurement vec-

tors under MC-FDI attacks with λ = {6, 8, 10, 12}, and

500 compromised measurement vectors under TFDI attacks

with AM = {0.6, 0.7, 0.8, 0.9, 1.0}. Specifically, we gener-

ate 100 attacks for each attack magnitude. Note that the

attack magnitudes of the TFDI attacks are selected based

on the voltage situation of the IEEE 118-bus system, such

that the incremental voltages in TFDI attacks are compara-

ble to those in MC-FDI attacks. Specifically, L1-norm of the

incremental voltage in MC-FDI attacks with four λ weights

are 0.007, 0.019, 0.070, and 0.073, respectively, and those

in TFDI attacks with five AMs are 0.066, 0.080, 0.088,

0.100, and 0.118, respectively. From the perspective of the

attacker, the injected voltage in MC-FDI attacks and TFDI

attacks are comparable. Figures 15, 16, and 17 show the pro-

jection of the dataset for training and cross-validation, the

projection of MC-FDI attacks in the testing set, and the pro-

jection of TFDI attacks with different attack magnitudes in the

testing set.

SVM, ANN, LR, and NB are trained and tested to evalu-

ate the stealthiness of MC-FDI attacks in the IEEE 118-bus

system. We set 30, 50, and 20 neurons in three hidden layers

of the ANN and the regularization parameter is 0.01. Fig. 18

shows the learning curve of the ANN detector in the IEEE
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Fig. 15. Projection of the training set in the IEEE 118-bus system.

Fig. 16. Projection of MC-FDI attacks in the testing set in the IEEE 118-bus
system.

Fig. 17. Projection of TFDI attacks in the testing set in IEEE 118-bus system.

Fig. 18. The learning curve of the ANN detector in the IEEE 118-bus system.

118-bus system, in which the logistic loss of the training set

and cross-validation set are calculated at each epoch. The

learning curve indicates that ANN learns well, and the two

curves converge after 1000 epochs.

Table VIII shows the performance of the machine learning

detectors on detecting TFDI attacks. It is seen that the SVM

has the best detection capability, which can detect 76% TFDI

attacks. The ADP of NB and LR are around 45%. This is

because two detectors are not good at dealing with the over-

lap between the uncompromised and compromised data in the

TABLE VIII
PERFORMANCE OF MACHINE LEARNING DETECTORS ON DETECTING

TFDI ATTACKS IN THE IEEE 118-BUS SYSTEM

TABLE IX
PERFORMANCE OF MACHINE LEARNING DETECTORS ON DETECTING

MC-FDI ATTACKS IN THE IEEE 118-BUS SYSTEM

training set. Table IX shows the performance of the machine

learning detectors on detecting MC-FDI attacks. The ADP

of ANN is 12%, the ADP of SVM and LR are below 8%,

and the ADP of NB is zero. The simulation results verify

the stealthiness of MC-FDI attacks against machine learning

detectors.

F. Detection of MC-FDI Attacks Using MTD

In this section, we evaluate the performance of MTD in

detecting MC-FDI attacks. Similar to the previous sections, we

assume the attacker continually launches MC-FDI attacks from

the 300th instant to the 350th instant. The graph-based planning

installs D-FACTS devices on nine lines, which are indexed by

{1, 3, 4, 8, 10, 12, 13, 17, 18} in the IEEE 14-bus system.

Note that we use the line index of the IEEE 14-bus system case

in MATPOWER [53]. Generally, we set the MTD magnitude

η = 0.2. In each instant from the 1st instant to the 350th

instant, the random MTD operation method randomly selects

the setpoints of D-FACTS in the range: U(0.8b0
ij, 1.2b0

ij). Note

that MC-FDI attacks under MTD are constructed using the

original line impedance, and each measurement vector in the

historical measurement matrix is based on a different system

configuration.

Assume the attacker adopts λ = 2.5 in the MC-FDI attack.

For each MC-FDI attack, L1-norm of the incremental voltage

and the estimation residual in the Chi-2 detector are shown

in Fig. 19(a) and 19(b), respectively. The estimation resid-

ual is highly related to the incremental voltage. Specifically, a

larger incremental voltage results in a larger estimation resid-

ual. With weight λ = 2.5, the incremental voltages in the

MC-FDI attacks are relatively low (less than 0.01). The MTD

method merely succeeds in detecting 61% of MC-FDI attacks.

Even though the MTD detection effectiveness is mainly deter-

mined by the D-FACTS planning in the noiseless condition, it
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Fig. 19. Performance of MTD in detecting MC-FDI attack with λ = 2.5.

Fig. 20. Performance of MTD in detecting MC-FDI attacks with different
weights.

is also affected by FDI attack magnitude and MTD magnitude

in noisy conditions. It is necessary to evaluate the effectiveness

of MTD against MC-FDI attacks with different weights.

We further evaluate the performance of MTD in detecting

MC-FDI attacks under different weights, as the weight essen-

tially determines the attack magnitude of MC-FDI attacks. We

increase the weight from 2.5 to 3.5 with an incremental of 0.2.

For each weight, 50 MC-FDI attacks are constructed from the

300th instant to the 350th instant. In Fig. 20, it is seen that the

L1-norm of the incremental voltage increases with an increase

in the weight. Accordingly, the ADP of MTD increases with

the weight due to the increasing L1-norm of the incremental

voltage. It is necessary to highlight that a slight increase in the

L1-norm of the incremental voltage from weight 2.5 to weight

3.1 results in a significant increase in the ADP. When the

MC-FDI attacks with a small incremental voltage have a triv-

ial negative impact on the system operation, the MTD method

has a low ADP (around 60%). When the MC-FDI attacks start

to have a large incremental voltage, the MTD method could

reach a 100% detection probability. It reflects the effective-

ness of MTD in detecting MC-FDI attacks and preventing the

negative impact of MC-FDI attacks on the system operation.

VI. CONCLUSION

In this paper, we propose convex MC-FDI attacks in the DC

and AC power system model, respectively, which maximize

the malicious incremental voltage and minimize the nuclear

norm of the compromised historical measurement matrix. The

proposed attack models first integrate the FDI attack model

in the constraints to satisfy the spatial correlation of the mali-

cious measurements, and then utilize the matrix completion to

ensure malicious measurements consistent with the temporal

correlation of the historical measurements. Therefore, the MC-

FDI attacks are stealthy to both the model-based Chi-2 detector

and the machine-learning detectors. Due to the high stealthi-

ness of the MC-FDI attacks, we propose to apply MTD in the

physical layer of power systems to detect MC-FDI attacks by

actively changing the impedance of the lines with D-FACTS

devices. We theoretically prove that MTD can corrupt both

the temporal correlation and spatial correlation of the MC-

FDI attacks. Simulation results show that the MC-FDI models

are stealthy to both the Chi-2 detector and the machine learn-

ing detectors, and MTD is effective in detecting the MC-FDI

attacks.

In the future, we will integrate matrix completion techniques

into multiple blind FDI attacks, eliminating the attacker’s need

for grid topology and line parameters. These techniques will

aid blind FDI attacks in determining the optimal malicious

voltage increments. In addition, our future work will develop

an alternating direction method of multipliers solver for the

MC-FDI attacks to reduce the computational time.
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