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Cyber-physical systems (CPS) have experienced rapid growth in recent decades. However, like any other computer-based
systems, malicious attacks evolve mutually, driving CPS to undesirable physical states and potentially causing catastrophes.
Although the current state-of-the-art is well aware of this issue, the majority of researchers have not focused on CPS recovery,
the procedure we defined as restoring a CPS’s physical state back to a target condition under adversarial attacks. To call for
attention on CPS recovery and identify existing efforts, we have surveyed a total of 30 relevant papers. We identify a major
partition of the proposed recovery strategies: shallow recovery vs. deep recovery, where the former does not use a dedicated
recovery controller while the latter does. Additionally, we surveyed exploratory research on topics that facilitate recovery.
From these publications, we discuss the current state-of-the-art of CPS recovery, with respect to applications, attack type,
attack surfaces and system dynamics. Then, we identify untouched sub-domains in this field and suggest possible future
directions for researchers.

CCS Concepts: « Computer systems organization - Embedded and cyber-physical systems; Real-time systems; «
Security and privacy — Systems security.
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1 INTRODUCTION

Cyber-physical systems (CPSs) integrate control, computing and sensing through physical components, and
have been rapidly sprouting over the past years [13]. This new type of paradigm requires technologies from
various fields such as embedded systems, wireless networks, and control theory, etc. So far, the technology of CPS
has boosted various applications to sprout, including unmanned autonomous vehicles (UAVs), smart grids, and
robotic arms. Market data shows that the CPS is in a period of rapid growth. In 2013, the worldwide CPS market
is anticipated to be worth $44 billion dollars. The market for CPS is anticipated to increase by 7.6% from 2013 to
2021. Recent years have seen a rise in the use of technology and the incorporation of Artificial Intelligence (AI)
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across several sectors in North America, both of which have contributed to the region’s development. The global
CPS market size is expected to grow from 86 billion dollars in 2022 to 137 billion dollars by 2028 [28].

Unfortunately, malicious attacks mutually evolve with the development in CPS and potentially lead to catastro-
phes [33, 43, 44]. Similar to traditional software systems, CPSs are burdened by failures caused by adversaries.
These attacks can come in various forms with catastrophic consequences. For example, the cyber worm Stuxnet
penetrates programmable logical controllers in industrial plants and has been estimated to have infected over
60,000 computers around the globe upon its discovery in 2010 [24]. Another example is transduction attacks
by speakers, which can interfere the gyroscope readings in drones, leading to undesired flight trajectories and
even crashes [81]. The defense against a large variety of attacks have called attention of researchers, since CPSs
include numerous life-critical applications such as autonomous vehicles and medical devices [13], and any failure
due to attacks may entails devastating results such as property damages or lethal consequences.

Consequently, an objective in CPS research is to counteract the adversarial attacks, by restoring desirable target
physical states after an attack is landed. For example, a target state for a power grid can be outputting voltages
within a safe range, and for an autonomous vehicle can be parking on the shoulder of the road. In this paper,
we denote this procedure of restoration as recovery, a term borrowed from previous literature [44, 58, 103]. To
formalize this procedure, we first define a CPS’s target states as follows.

Definition 1.1 (Target physical states). Given a physical state space S, we denote the physical state of a CPS at
time t as s; € S. A physical state s, is a target physical state with respect to a predicate P iff it satisfies P.

Generally, states can be divided into physical states and cyber states, with the latter denoting the states on
cyber variables. In this paper, the recovery objective is to restore predefined physical states only, and we will use
the term “states” for physical states from now on. The reason for focusing on physical states is that they relate to
damages in our physical world, leading to severe casualties such as property destruction, injuries or even lethal
consequences.

Notice that this predicate P in Definition 1.1 specifies the target condition of states. For example, an autonomous
vehicle may have a 3-dimensional physical state space S = [—100m, 100m] X [—10m, 10m] x [0m/s, 20m/s].
Here, the first two dimensions are the vehicle’s allowable positions in a coordinate, and the last dimension is its
allowable speeds. Then, if the shoulder of the road is a position region [ —100m, 100m] X [9m, 10m], the target
condition “parking on the shoulder of the road" can be specified as P = s, € [—100m, 100m] X [9m, 10m] x {0m/s}.
So far, researchers have expressed this target predicate P in various formal languages, including linear temporal
logic (LTL) [71], metric temporal logic (MTL) [46] and signal temporal logic (STL) [61]. From the previous
definition, we now formalize the procedure of recovery as follows.

Definition 1.2 (Recovery). A CPS recovery, or simply recovery, is an online procedure that starts at some time
t;, where the system’s states, is not a target state with respect to a predefined predicate P. The procedure aims
to produce a target state s;, at a later time ¢, > t; with respect to P. Optionally, an additional objective is to
maintain the satisfaction of P from t, until some &5 > t,.

So far, researchers have proposed various methods to design recovery algorithms that meet Definition 1.2.
There exist multiple ways to categorize these solutions. For example, one partition is whether the procedure
requires a dedicated recovery controller, which serves for recovery purpose only and splits the CPS into normal
vs. recovery modes. Another partition is by different adversarial scenarios, such as different attack surfaces like
sensors, actuators and communication channels. What is more, based on the type of application and scenario,
people have different recovery targets, i.e. the condition P to be satisfied. For example, P can be a condition of
safety, stability, liveness, or other desirable properties.

In this survey, we partition the papers by their recovery methods. This decision is made from a practical
standpoint, so that readers can easily tell what tools have been adopted in the state-of-the-art, under what
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assumptions, and with what effects. We categorize the papers by two major categories: methods that do not
leverage a controller for recovery purpose, and methods that do so. The reason for this categorization is because
there exist various useful tools in the control domain. By reducing the recovery problem to a control problem,
these tools can be applied to solve the recovery problem. We refer to these two categories of recovery methods as
shallow and deep recovery, respectively, defined as follows.

Definition 1.3 (Shallow and Deep Recovery). A shallow recovery is a recovery procedure that does not (neces-
sarily) leverage a controller for recovery purpose only. In contrast, a deep recovery is a recovery procedure that
utilizes a dedicated recovery controller.

For example, in this paper [1], the authors introduce a simplex architecture of controllers, with one of them
dedicated for guiding the system to stability to counteract adversarial effects. This method shall fall into deep
recovery based on our definition. Another recovery example is to exclude a redundant component, such as a
sensor, when the system detects that it is malfunctioning [79]. This method corrects the CPS’s physical states
without leveraging a dedicated recovery controller, so it is considered shallow recovery based on Definition 1.3.
An illustration of shallow vs. deep recovery is shown in Figure 1. In shallow recovery, the CPS keeps using the
same controller, with the corrupted input adjusted by some recovery module. Differently, in deep recovery, the
CPS switches to a recovery controller to handle altered behaviors due to attacks.
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Fig. 1. Shallow vs. deep recovery methods.

In this survey, we review existing research papers that discuss CPS recovery based on Definition 1.2. The
papers are sampled from conferences including CDC, RTAS, RTSS, ICCPS and EMSOFT, as well as journals
such as IEEE Transactions on Control of Network Systems, IEEE Transactions on Automatic Control and IEEE
Transactions on Industry Applications, between year 2014 and 2023. From these venues, we select published
works that either propose a concrete recovery solution for a specific scenario, or explore techniques that assist
the development of recovery algorithms. Overall, the surveyed publications are tabulated in Section 2.4, with a
total of 30 papers. This is a relatively small number compared to conventional survey papers, but it indicates that
the field of CPS recovery is new and sprouting.

1.1 Comparison to Existing Surveys

With the increasing integration of computational resources and physical components in cyber-physical systems
(CPS), traditional air gaps have been breached, expanding the attack surface. Numerous surveys have identified
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various attacks and threats in this domain. For instance, some research adapts existing cybersecurity solutions to
CPS, presenting an attack taxonomy from a cybersecurity perspective [39]. Recognizing the unique attributes of
CPS, surveys, such as Alguliyev et al., [7], utilize tree diagrams to illustrate the specific attacks and threats faced
by CPS. The urgent need to fortify CPS has led to a wealth of research focusing on defending against adversarial
attacks. A significant portion of this research, as classified by Mitchell et al.[65], revolves around Intrusion
Detection Systems (IDS), exploring various detection techniques and audit materials. Giraldo et al.[29] extend
this by reviewing studies that incorporate physical models in attack detection, acknowledging the intertwining of
physical and cyber aspects in CPS. In light of the complexity of defense strategies, comprehensive reviews such
as those by Yaacoub et al.[98] and Chong et al.[19] have emerged, examining multiple facets of defense including
attack prevention, detection, and mitigation. Additionally, Olowononi et al. [68] explore the application of Al
and ML in countering cybersecurity threats. While certain surveys like He et al.[32] focus on specific domains
such as smart grids, there’s a noticeable tendency for most to emphasize cyber attacks, often overlooking the
physical dimension. For instance, Cao et al.[11] concentrate primarily on network attacks within CPS. Although
Mahmoud et al. [60] review studies addressing cyber attack issues from a control perspective, but only a fraction
of these address control methods in CPS under cyber attacks. This gap underscores the need for more in-depth
reviews that specifically address the recovery of CPS’s physical states from attacks to effectively mitigate their
impacts.

1.2 Purpose of This Study

This survey aims to raise scholars’ awareness of the burgeoning area of CPS recovery, by reviewing relevant
papers in an organized manner and discussing what is currently lacking. Therefore, from this paper, researchers
will not only understand the current state-of-the-art, but also identify potential future research directions. Overall,
we have the following contributions.

(1) We identified the necessity of surveying literature on CPS recovery, due to the increasing impact of CPS and
their adversarial attacks. As a response, we surveyed 30 relevant papers from 2014 to 2023 in top venues.

(2) We categorize the surveyed literature from a practical standpoint, i.e., by recovery methods. Researchers
can therefore tell what tools have been used by state-of-the-art. In addition, we partition the literature by
two major categorizes: methods that do not use control (referred as shallow recovery) and that use control
(deep recovery), due to multiple useful tools exist in the control domain.

(3) We analyze the surveyed literature for their detailed techniques, assumptions, and what is being lacked of,
to show researchers possible future directions.

2 PRELIMINARIES
2.1 Adversarial Attacks on CPS

With the increasing complexity and openness of CPS, new vulnerabilities are exposed, and different malicious
attacks against them are emerging, causing serious personal casualties, social harm, and economic losses [33, 43,
44]. For a better presentation of recovery techniques later, this section analyzes attacks targeted on CPS in three
dimensions: attack purposes, surfaces, and targets.

The attack purposes fall into two categories according to their impact. The first type of attacks directly
undermine the safety of CPS. For example, simple disconnections or signal injections into actuators can cause the
building or bridge to oscillate at the resonance frequency and cause huge damage to the structures or people in
them [101]. Because CPSs are usually safety-critical, the following attack dimensions mainly focus on attacks
in this category. In addition, the paper focuses more on recovery methods targeted at them. The other type of
attacks do not directly target the safety of CPSs. Attackers may target the confidentiality of CPSs to prepare for
further attack [14], the availability of other network infrastructure [30], or people’s privacy [9].
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The attack surfaces belong to the cyber domain or the physical domain. In the cyber domain, attackers can
inject false sensor measurements or control inputs, delay or block the signals. For example, spoofing temperature
measurements of a device in a power system to smaller values can cause it to overheat and even explode [25]. In
the physical domain, attacks can manipulate physical properties to mess up sensor readings [3, 4, 17, 35, 72, 99, 107].
For example, an attacker can use a radio transmitter that broadcasts fake GPS signals to steer a yacht off course [74],
or use ultrasonic waves to affect IMU sensor readings [85]. Note that, attacks from the physical domain cannot
easily identified using classical software detection mechanisms.

Communication
Channels

Sensors Controllers Actuators

Physical Plant

Fig. 2. Vulnerabilities of CPS against adversarial attacks.

The attacks can target on any components of CPS, thus they are divided into controller, sensor, actuator
attacks. Controller attacks alter the control logic so that the controller generates incorrect control inputs. One
way is to overwrite the control program directly [6]. For example, the Stuxnet can reprogram a Programmable
Logic Controller (PLC) to change the frequency of the converters in Iranian Nuclear Facilities [22]. Another way
is to change the configurations of the control program. For example, an attacker can compromise the syringe
pump via an insecure configuration interface [83]. Specifically, the command interface of a syringe pump can be
hijacked, and a malicious configuration can be sent to the interface to inject a lethal amount of medication to
a patient. Sensor attacks alter the sensor measurements from the cyber or physical domain so that the control
logic acts on malicious data that cannot reflect the actual physical states. For example, the attacker may corrupt
LiDAR [82, 110], camera [37, 75, 109], GPS [40], and etc. There is a trend that attackers tend to avoid being
identified by people [91], or compromise multiple sensors simultaneously to bypass defense mechanisms [12].
Actuator attacks prevent the actuation or control input being implemented by actuators. For example, attackers
can block the communication channel to the actuators, or inject false control commands to the actuators [101].
Overall, sensors, controllers, actuators and the communication channels in between can all become vulnerabilities
of the CPS, as shown in Figure 2.

2.2 Detection of Attacks

Although researchers are well aware of the issue of CPS attacks and safety, the current state-of-the-art majorly
focuses on attack detection only. So far, detection techniques have well answered the question of how to determine
a failure exists, such as EKF and chi-square detector.

Some researchers proposed methods to detect attacks based on system states since the states in CPS are highly
correlated due to the system dynamics and physical law. For example, the researchers in [33] propose a method
to detect attacks based on the correlation between sensor data. Since there are redundancies in the system, it
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is possible to identify the abnormal data based on the trustful data. It is also possible to detect the attacks in
real-time based on the correlation between temporal features [4].

It is also important to notify there are a group of attacks that are hard to be detected or will never be detected.
Therefore, it is important to keep the system safe from these attacks. The paper [42] gives a comprehensive study
on the stealthy attacks detection on CPS in real-time. Moreover, the paper [53] studies the hidden attacks that
can never be detected by the detectors, the optimal hidden attacks are defined to measure the boundary of the
negative effect of the attacks. Also, a conservative real-time warning-based framework is provided to guarantee
the safety of the CPS even the detectors failed to detect the hidden attacks. Furthermore, the paper [94] utilizes
attention mechanisms on top of attack detection to diagnose the attack start time.

One remark is that, in real-world applications, after detection a CPS must eliminate or alleviate the negative
effects caused by attacks, restoring the system back to expected behaviors, and therefore preventing further
damages. Therefore, recovery is always required. However, we find that relative few publications have addressed
CPS recovery methods, compared to numerous research on detection.

2.3 Notations

The papers surveyed use different sets of symbols for variables, and we unify their notations as in Table 1, with
the same order of appearance in this paper. Moreover, we use subscripts in form of x; to denote a timestamped
variable at time t. For example, x, and x; means the same physical state variable x at time t = 0 and ¢t = 1,

respectively. In addition, we use superscripts in form of X0

(1) )

to denote the same variable corresponding to different
system components. For example, '’ and y(2

1 and sensor 2, respectively.

mean two measurements of the same variable perceived by sensor

2.4 List of Surveyed Literature

Based on Definition 1.3, we identify 16 papers on shallow recovery and 11 papers on deep recovery. Moreover,
we identify two papers [23, 108] that do not purpose recovery solutions, but aim to discover information that
assist recovery instead. We believe these papers are also worth mentioning in this survey, and include them in
Section 5. Finally, we provide a discussion in Section 6. The 16+12+2=30 papers are categorized as illustrated in
the tree diagram of Figure 3.

3 SHALLOW RECOVERY

In this section, we discuss literature on shallow recovery techniques. By Definition 1.3, these are recovery
solutions that do not leverage dedicated controllers. Researchers have proposed various methods to guide a CPS
back to its desirable conditions without solving for control.

3.1 Component Redundancy

One simple recovery method is to leverage component redundancy, so that we can perform operations such as
excluding suspicious components. Here, redundancy means that multiple components serve for the same purpose
and it is acceptable to discard some of them while keeping the system running. The procedure that excludes
corrupted components is referred to by researchers as detection, isolation and reconfiguration (DIR) [13], i.e.,
detecting suspicious components, isolating them from participating in the process, and optionally reconfigure
other components. If no reconfiguration is done, this procedure can also be denoted as DI (without R) only.
Based on the description above, DI or DIR only needs a powerful detector with high sensitivity and acceptable
precision to inform the system on degree of trust/suspicion. For instance, researchers have shown that recurrent
neural networks (RNNs), a deep learning model that captures pattern in time series [63], can be trained as a
detector and raise alarms on a redundant set of system components, while telling how suspicious each individual
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Symbol Meaning

x physical state € R"

u control signal € R™

A system dynamics matrices € R™"

B process dynamics matrix € R™*"™

R stable set of physical states C R"

w weight of a sensor in sensor fusion € R

U control function that outputs u

Yy measurement € R”

C measurement dynamics matrix € RP™"; by default C is identity and y = x
z random noise

T a period of time € Z, if discrete, R, if continuous
q number of sensors failed € Z,

p total number of sensors € Z

x estimated physical state € R"

X set of physical states € R"

u set of controls € R™

J cost function in an optimization problem

Ksafe pre-defined set of safe physical states C X’
Xrarget pre-defined set of target physical states C X4

r reward in reinforcement learning

fs stability cost of a system

Iz control cost of a system

T policy in reinforcement learning
x optimal policy in reinforcement learning

D set of failed system components in a mass failure
b utility score of a system component

v binary variable indicating whether a component is finished recovery in a mass failure

Table 1. Notations used in this paper in order of appearance.

sensor is [79]. This work demonstrates an elementary scenario: for a car travelling on a straight road, the speed
of its four wheels, monitored by four distinct sensors, should be approximately the same. If the four sensor
readings are different, consider an attack and assign a smaller weight to the suspicious wheel(s) when doing
weighted-average sensor fusion. Notice that the component exclusion/isolation can be either hard or soft, such
that a hard exclusion completely bans the component from participating any further system operation, e.g.,
assigning a zero weight to a suspicious wheel speed sensor. On the other hand, a soft exclusion only mitigates its
participation, e.g., assigning a non-zero but smaller weight. The workflow is illustrated in Figure 4.

Similarly, another study has proposed a Byzantine fault-tolerant architecture, namely BFT++, by leveraging
redundant component replicas with diverse software interfaces [64]. Based on traditional CPS designs that are
resilient to Byzantine faults, if a sufficiently large portion of redundant components remains intact within a small
window of vulnerability, the system will recover from adversaries. The assumption is that all the redundant
components consume the same input, and the attacker can only interrupt one input signal within a period of time.
Therefore, implementing diverse interfaces across all the redundant components may lead to a higher chance for
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Fig. 3. Tree diagram of the surveyed literature.

tolerance and recovery. In the design of BFT++, input signals enters an artificial divert stage before entering each
component. One example diversification method is to customize each component’s executable memory layout,
such that the same variable does not live at the same address for all components. Another example is to utilize
different instruction set architectures (ISA) on the components, such as using x86 on one and ARM on another.
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Fig. 4. Workflow of component exclusion method discussed in [79]. The recovery module assigns weights to redundant
sensors based on how much each of them can be trusted. The assumption is multiple sensors are serving for the same
function, i.e., redundancy.

This diversity can be further encouraged if the input into these redundant components must undergo different
delays, creating temporal differences.

Another research work focuses on exploiting implicit redundancy [57]. While explicit redundancy means
identical physical components serving for the same functionality, implicit redundancy means non-identical
components mimicking each other’s functionalities by additional software processes. For example, a vehicle’s
camera, radar and LiDAR take different forms of inputs, but we can interpret the same output, such as the distance
to an obstacle ahead, from all three components. The advantage of implicit over explicit redundancy appears
when the duplicate physical components are expensive. Hence, when a subset of components are failing due
to adversaries, it is possible to substitute its functionality using another. The authors of this paper provide a
search algorithm for substitutions on the graph of the CPS information flow. This algorithm is proved to preserve
desirable properties, from a predecessor node in the graph to a successor, when the latter mimics the former.
For example, if a camera has a certain guarantee on identifying obstacle distances, then a LIDAR mimicking the
camera’s output shall inherit the same guarantee.

3.2 Feedback Signal Restoration

When a measured signal is lost or losing integrity due to adversarial attacks, a type of recovery methods aim to
restore a reliable signal, and therefore guide the CPS back to target physical states.

One scenario is that a signal is partially corrupted, and we are able to use the healthy readings to estimate
the true value of the corrupted ones. A corresponding technique that utilizes autoregressive integrated moving
average (ARIMA) is introduced in [67]. ARIMA is a machine learning method that forecasts a time series, such
that a forecasted data point fits a regression pattern along with other data points [34]. Therefore, it is useful
to repair missing sensor readings or fix abnormal sensor readings during CPS runtime, under the assumption
that a healthy sensor produces a smooth trend of data. Specifically, the reason for adopting ARIMA model is
because systems have inertia, so that any sensor measurement must not change too drastically and approximately
maintains a linear relationship with its auto-regressive past values. The recovery approach built on top of ARIMA,
namely Efficient Temporal and Spatial Data Recovery (ETSDR), trains an ARIMA model from pre-collected data
offline, and then uses this model as a substitute of system dynamics. Next, at runtime, when a sensor reading has
large difference, either temporal (very different from the sensor’s own past readings) or spatial (very different
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from neighboring sensors), the recovery module replaces the reading with ARIMA prediction plus a small drift
value. The ARIMA model itself is also constantly updated by confident sensor readings or predicted state values
during runtime.

The authors of [67] demonstrate the capability of ETSDR to repair missing data by comparing it to other time
series forecasting methods for CPS sensor readings, including weighted prediction (WP) [97] and exponentially
weighted moving average (EWMA) [18]. They generate simulated sequences of sensor reading data and perform
stochastic data loss from 10% to 60%. Then, three error metrics, root mean square deviation (RSME), mean absolute
error (MAE) and integrated absolute error (IAE), are used to measure the difference between model-predicted
data and actual data.

A more specific scenario is sensor networks under denial of service (DoS) attacks [92].Here, the CPS’s
components may utilize a network system, such as the Internet, to communicate with each other. The authors use
a networked inverted pendulum system as an example, with the sensors and actuators reading from and acting on
the pendulum, but the controller being remote. DoS attacks aim to cause packet losses on the feedback channel
to the remote controller. Leveraging game theory, the authors propose an augmented control policy to handle the
losses. This policy selects an optimal control output that takes advantages of available packet information to
maximize the CPS’s utility.

DoS attacks are also discussed for microgrid CPS recovery strategies [55]. Here, a distributed controller remotely
talks to a cluster of information nodes and another cluster of physical power grid nodes. The controller has three
objectives: (1) synchronizing power frequency among grid nodes, (2) reducing error of power frequency based on
a reference frequency, and (3) maintaining consistent incremental costs on all grid nodes. Upon a DoS attack,
part of the information required to control the grid nodes is lost. As a countermeasure, this paper proposes a
two-step consensus algorithm to repair the partially lost signal. First, multiple intrinsic mode functions (IMFs)
are obtained from historical data via statistical inferences, specifically empirical mode decomposition (EMD).
These functions do not necessarily have explicit meanings, and will reach a consensus to repair every lost value.
The consensus mechanism is carried out by learning a deep neural network in the form of extreme learning
machine (ELM), with IMF estimations as inputs and repaired signal values as outputs.

The above paper leverages a deep learning technique for the final repair decision, and the following work
proposes an alternative deep method using a modified denoising auto-encoder (MDAE) [96]. That is, the CPS
leverages two deep neural networks that serve as encoder and decoder respectively before and after the network
communication. The partially corrupted signal enters the encoder and become encrypted, and it is the decoder’s
job to not only decipher the encrypted signal, but also repair the signal while decoding. Ideally, this technique
can both counteract the effects of partially corrupted signals and defend the CPS against eavesdropping.

Similar to [55], a succeeding work [78] also introduces a consensus method to recover from failed CPS
networks. Here, nodes are assumed to be connected via a communication network abstracted as a graph. A loss of
connection between two nodes is therefore equivalent to discarding an edge and modifying the graph’s topology.
The corresponding recovery strategy is based on a collaborative shortest-path algorithm, namely dynamic routing.
Specifically, the algorithm iteratively searches for a broken edge that can restore the connection to the largest
number of nodes if repaired. By computing this order, the links can be gradually rebooted for signal repair.

3.3 State Estimation

Another adopted recovery method is to predict or estimate the actual physical state that an unattacked system
should be in. Different from feedback signal repair, which restores lost measurements using reliable measurements
in proximity, this approach usually aims to handle failures in state sensor integrity, with measurements no longer
reliable. One remark is that the estimated physical state can also assist a dedicated recovery controller in deep
recovery, which will later be discussed in Section 4. Here, we only cover relevant shallow recovery methods.
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Another remark is that the synchronization between cyber states and physical states has been a widely studied
topics, but to our knowledge, only a few papers (discussed below) have adapted this method to conquer problems
in CPS recovery.

The most straightforward state estimation is to compute states in a model-predictive way, i.e., roll-forwarding,
assuming that the dynamics is a known white-box and has negligible noises. The earliest paper [26] on this topic
was published in 2014 and assumes a noisy linear dynamics as

Xpe1 = Axp + B(Ut(yo,...,yt) + zgl))

Yy = Cxy + zgz)

(1)

where the notations are defined in Table 1. The estimation problem is how to correctly reconstruct the initial state
X, after a period of time T, when the sensor readings v, . . ., yr—; are available but they are corrupted by attacks on
a fixed number of q dimensions, i.e., g sensors fail and give erroneous measurements during runtime. The authors
then define correctable errors, which can be tolerated when reconstructing x,. Based on this idea, the major
takeaway is that the maximal size of q is [p/2 — 1] such that the error is correctable, where p is the total number
of sensors. In plain words, with at most half of the sensors failed, we can still correctly estimate x, using the
authors’ algorithm, and therefore predicting the succeeding states from the dynamics. Consequently, the system
can constantly recover itself by iteratively running the estimator and replace the faulty sensor readings with
estimated values when producing control. One drawback of this approach is that the computation is expensive
when the number of corrupted sensors is close to the upper-bound [p/2 — 1]. Also, the approach is unable to
handle the case that more than half sensors are corrupted.

Different from the paper in the above paragraph, [45] considers a more relaxed assumption, where the sensor
corruption does not happen at the very beginning, but rather some time in the middle. In this case, the computation
will be much cheaper, with a checkpointer being leveraged to memorize a sliding window of sensor readings.
The fixed-size sliding window, or detection window, enqueues a new measurement and its corresponding control
signal upon reading and dequeues the oldest historical data at the same time. Under the assumption that the
checkpointer remains uncorrupted, the system validates the consistency within the detection window and reports
anything suspicious. Then, the same recovery method applies: replacing the flawed sensor reading with the
estimated state from dynamics roll-forwarding. The workflow of the recovery procedure is illustrated in Figure 5.
This tool is compared to later works in experiments and please see Section 4 for details.

Although papers on state estimation mostly discuss corrupted sensors caused by general attacks, some specify
the type of attack and design corresponding solutions. For example, the paper [100] particularly considers
switching attacks. By its name, switching attacks, or switching location attacks, are a type of attacks where the
adversary constantly changes their attack location at some frequency. For example, sensor #1 is under false data
injection from ¢t = 1 to t = 3 seconds, and then the attack stops and changes to sensor #2 from t = 3tot = 5.
This is opposite to fixed location attacks, where the adversary stays still. A typical target for switching attacks is
on interconnected distributed systems, such as a multi-area power grid, with each area a controller. The attacker
aims to break the connection topology by either shutting down a node (a sensor or an actuator), forcing it to
go offline, or interrupting an edge to cut a link between nodes. Under this type of failure, the objective of this
paper is to perform an unbiased estimation of the actual system state, including all components, without much
knowledge of the attack except for an upper bound of the number of failed sensors and actuators. To perform the
state estimation, a noisy (linear) CPS under switching attacks is modeled as a (linear) stochastic system with
hidden discrete modes, with each mode includes the information of the CPS’s operation modes, current topology,
and if the sensors/actuators are under attacks. Next, mode-matching is done by computing the probability of
which mode the system is in, given the available information. The paper also provides a theoretical analysis on
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Fig. 5. A typical state estimation-based shallow recovery. Upon a sensor detection, the system switches from using physical
sensor readings to estimated states. A checkpointer [45] can be optionally used to accelerate state estimator by caching
information.

the method’s resilience, such as the sufficient conditions for the estimated stochastic model to represent the true
underlying system.

Another paper [51] also proposes a method to estimate states under switching location attacks. Nevertheless,
this paper discusses a problem of restoring an unknown initial state x, based on sensor measurements from
t = 0to some t = T, while some sensors are under switching attacks. In other words, a subset of sensors
are giving erroneous readings, while this subset is changing at some constant frequency. The paper hence
provide a solution, namely a dynamic decoder, which is a function that maps measurements yj, ...,y to an
estimated initial state X. The approach to solve for this decoder is by convex optimization, searching for x, that
minimizes ) , ||y, — CA;%||, where C is the linear mapping matrix from states to measurements, and 4, is the
roll-forwarding matrix from the initial state to the state at ¢, based on system dynamics. The paper proves the
sufficiency and necessity of this optimization problem to compute an accurate decoder function.

When dynamics is an unknown black-box, state prediction becomes a more complicated problem. The easiest
way is to break the procedure into two steps: (1) estimate the dynamics itself with a surrogate model and (2) call a
state estimation algorithm on the surrogate model. System identification techniques have paved the way for the
first step. For example, observer/Kalman filter identification (OKID) [38, 86] has been in the game since 1990s. As
the field of machine learning matures, scientists carry on system dynamics identification with more up-to-date
models, from recursive least square (RLS) and least mean square (LMS) [62] to deep learning for complex and
even chaotic dynamics [36]. Approaches other than this two-step scheme exist, but they are mostly associated to
deep recovery and will be discussed in Section 4.

System identification can be accomplished by simple statistics in matured toolboxes when there is sufficient
prior knowledge. For instance, the paper [16] assumes a template for a linear quadcopter dynamics which consists
of 12 dimensions including position, pitch angle, linear and angular velocity. Another assumption is the full
knowledge of a PID controller. Then, with the Matlab system identification (SI) toolbox [56], the linear dynamics
can be estimated by iterative regression on a set of pre-collected training data on system inputs and outputs.
Then, recovery is accomplished by replacing the faulty sensor measurement with the estimated states by the
identified surrogate system.

Deep learning models, i.e., neural networks, have also been used to capture system dynamics. The motivation
for utilizing deep models is that they are designed to discover complex patterns with implicit influencing factors,
which can be useful for modeling unknown real-world system dynamics on one hand. On the other hand, a
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Fig. 6. The training procedure of a CGAN discussed in [88]. At runtime, G and D will be used respectively as the state
estimator and detector as in Figure 5.

typical disadvantage of deep models is that these models require large amount of data to train or will end up
overfitting [48]. In [5], the surrogate model to capture the system dynamics is an LSTNet [47], a neural network
architecture that is designed to perform long and short-term time series forecasting tasks. The architecture contains
convolutional layers [69], which are designed to find location-agnostic patterns, e.g., time-invariant/context-
invariant system dynamics, as well as recurrent layers [63], which aim to capture temporal dependencies and can
be useful in fitting closed-loop dynamics. However, like other deep models, LSTNet requires a pre-training phase
on data collected in a normally behaved system, and has a chance of overfitting due to its complex nature. The
recovery in this paper is simple: replacing the sensor reading with LSTNet estimation after an attack is detected.
Moreover, the paper adopts the checkpointer in [45] for caching runtime data points.

Another state estimation method is conducted by generative adversarial networks (GAN), described in [88]. The
model of GAN [21] has been proved useful for generating data points following an unknown distribution. It consists
of a discriminator neural network (D) that is trained to distinguish out-of-distribution data (fake/fabricated,
output=1) from in-distribution data (real, output=0), as well as a generator neural network (G) trained to
produce fake data from random noise input to fool D. These two neural networks co-evolve through competition
and eventually G can generate data points almost indistinguishable from the real ones. When learning an
underlying dynamic that produces CPS physical states, different periods of time can be seen as different underlying
distributions where states are drawn from. Therefore, time is a condition and the GAN is in fact a conditional GAN
(CGAN). A major contribution of this paper is how to utilize D and G after their convergence. First, the authors
claim that D can serve as an anomaly detector to capture faulty states, because a well-trained discriminator
should able to distinguish whether a state is from the learned dynamics or not, given the temporal condition.
On the other-hand, G can serve as a state estimator. The idea is that the data points generated by a well-trained
generator should be close to true data distribution, i.e., healthy system dynamics. The training process (not
runtime) of this approach is illustrated as in Figure 6. At runtime, the recovery procedure is still as in Figure 5,
with the detector replaced by trained D and the state estimator replaced by trained G.

The authors of the CGAN paper [88] also evaluates their approach with experiments. On a battery management
system of an autonomous vehicle, two types of attacks are simulated: (1) a physical attack that changes the
underlying dynamical system, such as replacing the battery with an alternative, low-performance battery, and (2)
a denial-of-service (DoS) attack, where all sensor readings are injected with a random noise.
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3.4 Response Selection from a Candidate Set

Finally, researchers have proposed wrapper tools around available recovery methods. In one particular paper
[41], the assumption is that the system has a set of candidate responses to an attack, and the objective is to select
the one with maximized benefit and/or minimized cost. Notice that these responses can be either shallow or deep,
but this research only considers the ones without using a dedicated recovery controller, i.e. shallow techniques.
Therefore, we attribute it to shallow, but notice that this framework can be trivially extended to deep recovery.

The paper particularly discusses this approach and designs an autonomous response controller (ARC). One
prerequisite for this controller is a hierarchical risk correlation tree (HRCT), which is a stochastic decision tree,
with each path being a path an attacker can take to reach certain malicious goals. For example, an attacker
can first access the authentication of the system’s cached key, then modify the key, then inject false data to
sensors as an imposter, and finally accomplishes a man-in-middle attack. This tree structure also includes a
quantitative risk, or cost, at each path. The other prerequisite for ARC is a candidate set of responses, which is
application-specific. The authors separate these responses into two major categories: (1).cyber countermeasure
responses, which resolves problems by calling a software process, such as packet dropping, traffic isolation, and
process termination, and (2) physical countermeasure responses, which requires changes in physical components,
such as deploying a secure gateway. The job of the ARC is to select a response, or a subset of responses, to
mitigate the cost based on HRCT. At runtime, nodes of HRCT are partially observable, and the probability of every
path taken can be computed. With every response associated with a quantitative impact on the tree nodes, such
as traffic isolation can reduce the probability of false data injection, minimizing the total cost can be achieved by
solving an optimization problem.

S gl o ng Candidate Responses

attacks with predefined costs)

packet dropping,
traffic isolation,
network reconfiguration,

paths response set

alarm Recove odule response

Attack Detector > >
Select response

to minimize cost

Fig. 7. The workflow of response selection as discussed in [41].

4 DEEP RECOVERY

This section reviews papers on deep recovery, which means a dedicated controller is used for guiding the CPS
back to its desirable conditions. Therefore, deep recovery means that the recovery problem is boiled down to a
control problem. These control synthesis techniques are further divided into non-machine learning-based and
machine learning-based synthesis.
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Fig. 8. Restarting recovery workflow on simplex architecture in one iteration, proposed by [1, 2]. Upon an attack detection,
the system switches from complex to simple controller, while constantly checking if the complex controller can be rebooted.

Sensors

4.1 Non-Machine Learning-based Control Synthesis

When the dynamics is known, the recovery controller is able to be solved by conventional control methods,
including linear programming (LP), linear quadratic regulator (LQR), model predictive control (MPC). We identify
two control targets from the corresponding literature: system stability and system safety.

Existing papers have discussed system designs and algorithms to reach a stable set of physical states. For
instance, [1] introduces the simplex architecture [76], which means the system is divided into two isolated parts:
a main unit with a normal, unverified and complex controller serving for the CPS’s task purposes and a rescue
unit with a verified and simple controller, with a sole aim to stabilize the system. The assumption is that only
the main unit is vulnerable, and the system dynamics is (or can be approximated as) a linear time-invariant
system, in form of x = Ax + Bu, where x is the state and u is the control signal. Moreover, the control function
is also linear, in form of 4 = Kx. Under such linearity, there exists some coefficient matrix P that defines a stable
ellipsoid of states R = {x | x"Px < 1}, where the Lyapunov potential function x"Px hasa negative-definite
derivative. Therefore, any trajectory starts within R never leaves R, and the rescue unit’s objective is to guide
the system’s physical state back to R and keep it inside for an unbounded time. When the main unit fails due to
attacks, the rescue controller takes over the system and ensures its stability, while the main unit being rebooted.
Since only the main unit of the complex controller is assumed to be vulnerable, the sensors are still intact and
sensor readings can still be used by the simple controller dedicated for recovery.

A succeeding work [2] enhances the stability guarantee of this simplex architecture approach by finding
secure execution intervals (SEI). In this work, the authors address a more severe scenario where an adversary is
intentionally.driving the system state outside of the stable ellipsoid. Therefore, SEI is defined as a time interval
that the system is guaranteed to stay inside the stable set despite an adversary. When a system starts inside the
stable ellipsoid, due to system inertia, the unstable states are not immediately reachable but rather requires time.
A period of SEI hence exists no matter how hard the adversary pushes the system. The recovery module sorts the
components to be rebooted into multiple tasks in the order of priority while searching for the next best restarting
time within SEIs using reachability analysis. Each rebooting task is then assigned to a sufficiently long SEI in
which the task is guaranteed to finish. Consequently, this paper presents a restarting-based CPS recovery method
that guarantees to counteract an unstablizing adversary.
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Fig. 9. State estimation-based deep recovery, used in [58, 59, 103, 104]. Different from Figure 5, upon a detection, the system
not only uses estimated states to replace physical sensor readings, but also switches to a recovery controller to drive the
system back to a pre-defined target state set. A checkpointer [45] can be optionally used to accelerate state estimator by
caching information.

Specific CPS applications have leveraged stability-guided recovery controllers. For example, when the dynamics
is known, legged robots can perform a black-flip to achieve stability in standing-up positions [90]. Aiming for
the stable physical states, quadruped robots are able to leverage recovery-dedicated controllers to perform
corresponding foothold motions after falling. Another application considers exoskeleton in healthcare industry
[8]. In this paper, the goal is to stabilize a pair of exoskeletons around a person’s ankles while an adversarial
pushing force is exerted on the person’s body. After detecting the perturbing force, the exoskeletons must react
to maintain not only a stable position but also stable forward steps. This is as well guided by stability-guided
control.

Different from stability, another control target is for the CPS’s safety, which is usually defined as reaching
a given subset of the physical state space, i.e., Xsqre C X The authors of [103] continue to leverage the state
prediction method from [45] in a deep recovery context. Here, a recovery controller takes over the system upon a
failure is detected, and computes control signals u, to ur in a time window T by solving the linear programming
(LP) problem as in (2), assuming time is discrete.

minimize, v ex, upugeu J(X1, .. X7, U, ... uT)
. A A @)
SUbJeCt to (x0 = xinit) A /\(xt+1 = Axt + But A /\ xt € Xsafe (xT € Xtarget)
t=0 t=0

Here, the normal behavior is defined by the system states being safe and inside a target set, i.e., x € Xsafe and
x € Xjarger- The constraint requires (1) the first state is a given initial state x;,;;, (2) the system follows a given
dynamics, and (3) eventually the system will be guided back to normal at time T. The second constraint utilizes
the roll-forwarding state prediction technique in [45]. Moreover, the cost function J is linear in this case, and a
succeeding work [104] replaces it with a quadratic cost function such that the recovery controller becomes a
linear quadratic regulator (LQR), claiming that LQR recovery provides a smoother state trajectory. Optionally,
there can be an additional constraint xz,...,xr+m € Xyarger» Which asks the controller to not only bring the
system back to the target, but also maintains it there for a period of length M. The workflow of this recovery
procedure is illustrated in Figure 9. Another succeeding work [105] leverages model predictive control (MPC) on
a more relaxed constraint on system dynamics. Here, the dynamics is allowed to be nonlinear, and the recovery
control utilizes a Taylor polynomial approximation to simplify the computation.
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The authors of [104] compares the shallow recovery in [45], linear-cost deep recovery in [103] and their own
quadratic-cost method. Extensive experiments have been run on five different control systems: vehicle turning,
RLC circuit, DC motor position, aircraft pitch and quadrotor, each with three trials of sensor attacks: biased
sensor value, sensor reading delay and sensor reading replay.

Researchers have also taken this approach on specific applications, such as power grids overloading [58].
In power grids, the ultimate goal is to prevent overheating to break the system and cause destruction, and
therefore the normal state is defined as small fluctuations in power generation and transmission. Quantitatively,
the objective function of this recovery-based model predictive control methodology (RMPC) is to minimize
generation ramping and load shedding with the presence of attacked components. A model predictive control
problem, similar to Equation (2) but specifically for power grid load balancing, is formulated in their paper. The
idea is the same: minimizing the objective under the constraints of system dynamics, control limits, and other
desirable system properties.

4.2 Machine Learning-based Control Synthesis

When the dynamics is unknown, solving for the recovery controller usually requires statistical inferences from
observations. Specifically, machine learning techniques are introduced to solve for controls in this scenario. We
identify two major approaches to devise a recovery controller in black-box dynamics: system identification and
reinforcement learning.

The following paper presents an approach to first identify the system dynamics by statistics, and then apply an
MPC controller. A subsequent work to [58] discussed in Section 4, the paper [59] considers a similar scenario to
minimize thermal fluctuation in attacked power grids, except that the system dynamics is only partially known.
The assumption here is that the dynamics is a linear time-invariant (LTI) system, but the coefficient matrices are
unknown. Consequently, the first step is to perform system identification on the coefficients by training on input
and output data when the CPS is attack-free, such as by regularized least squares method [73]. Then, the same
steps as in [58] on the surrogate dynamics, while the model parameters can be constantly updated during runtime
by trusted data points. This procedure is denoted by the authors as recovery-based data-driven MPC (RDMPC).

The authors of [59] compare their RDMPC approach to a given dynamics method as in [58] by experiments,
showing the capability of the learned model to correctly recover power overload even under a wrong assumption
of system topology. These experiments are simulated on the IEEE test cases, which approximates the American
Electric Power system [20]. In the upper subfigure, line 22 of IEEE 30-bus system is under attack and the RMPC
with correct topology successfully recovers the system by maintaining the the current within its limit of 0.16 p.u.
However, the given model in RMPC fails when the processor incorrectly believes line 27 is compromised. On
the other hand, even with the wrong topology, the data-driven approach, RDMPC, still achieves the recovery
objective. Similar results are shown in the bottom subfigure, where RDMPC resolves power overload in line
22 of IEEE 118-bus system under the false belief that line 15 and 20 are suffering denial-of-service. For more
experiment details, please refer to the original paper.

Another publication leverages sequence-to-sequence (Seq2Seq) models to predict the recovery control signal
in a period of time [54], under sensor attacks. Two Seq2Seq models are trained, each consisting of one encoder
and one decoder. The first model serves as the state estimator to predict the actual physical state measurements
from the corrupted sensor, while the second model serves as the recovery controller to output control signals
from the estimated states. With this formulation, the recovery problem is reduced to a two-step multivariate
forecasting problem, with the Seq2Seq models available off-the-shelf. For example, RNNs, LSTMs and GRUs [63]
can all be applied to the encoder-decoder implementation.

Different from using a surrogate dynamic plus a conventional controller, researchers in reinforcement learning
has leveraged a purely learned approach [27]. Reinforcement learning is a machine learning procedure that
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Fig. 10. The reinforcement learning approach proposed by [27], where an optimal control policy is learned offline and helps
adjust the system’s behavior at runtime.

learns a policy, i.e., what action to select at a given state to maximize not only the current reward, but also a
potential future value [50, 84, 87, 95]. It has already been proven useful in tasks such as chess, go, and competitive
video games [15, 77, 80], due to the fact that these tasks require strategies to maximize an overall score. In CPS
recovery, we can see the process of reinforcement learning as an implicit system identification, such that the
system is modeled as a Markov decision process, but instead of outputting a surrogate model, it directly produces
a recovery control policy. In this paper, the policy takes in the current state and outputs an adjustment in the
control signal for a base controller, e.g., PID controller. The adjustment aims to guide the system back to, or
maintain the system inside a pre-defined normal state of high reward. The assumption is the same as any other
reinforcement learning problem: a known state space, action space and reward function, with the rewards at each
state denotes whether the state is normal or abnormal. The authors formalize a finite state space and an action
space for a quadcopter example, and a reward function is designed as r, = ((f;, + f, )’ + ef)_l, where f;, is the
stability cost in form of a linear combination of state errors from references, f;, is the control cost combining
the control signal and its derivative, and €fisa slack variable. In other words, a normal or desirable behavior of
the quadcopter is defined as flying steadily on its planned trajectory. Then, the training is done by actor-critic
algorithm [49]. Finally, the learned fault-tolerant policy 7™ runs alongside the default PID controllers and adjusts
their control signals based on state received. One significant advantage of this approach is the direct output of an
optimal policy that is aware of a desirable behavior norm, but a drawback is that reinforcement learning requires
large amount of training data and the careful design of state space and action space before runtime [93, 102]. The
workflow of this approach is illustrated in Figure 10.

Different from [27], the paper [52] leverages reinforcement learning to directly compute a controller instead
of assisting an existing controller. This dedicated recovery controller aims to guide a CPS back to a predefined
safety target, specified by a signal temporal logic (STL) [61], in shortest time possible. That is, the objective is to
reach the goal as soon as possible (ASAP), which is a reasonable objective for real-time systems that requires
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fast responses. For example, a vehicle needs to park on the road shoulder ASAP when it suddenly has a flat tire.
Under black-box dynamics, the solution framework, namely ASAP-Phi, leverages the following reward function

QS(x, . 1) if (x,1) ¥ ¢

r >> maxg ;s QS(x, ¢, t') otherwise

rasap(%,¢,1) = { ®3)
Here, x denotes a trajectory of states, i.e., ¥ = xyX; . ..xr for some finite T = 0. The target STL is denoted as ¢.
For example, ¢ = x; € Xy,p,. A trajectory X can be evaluated at any time step t < T on ¢, and the outcome can
be either true, meaning & at time ¢ satisfies ¢, denoted as (%,t) F ¢, or false, denoted as (%,¢) ¥ ¢. Moreover, the
function QS denotes quantitative semantics [31], a finite real-valued measurement of the degree of satisfaction.
The larger QS(%, ¢, t) is, a larger degree that x at time ¢ satisfies ¢. This can be seen as an extension from binary
satisfaction outcomes to real numbers. As shown in Equation (3), this reward function r454p uses quantitative
semantics scores when the trajectory is not yet fulfilling the target, and uses a large constant r when it fulfills.
The authors prove that this reward function is able to encourage fast satisfaction of a specification ¢ under
black-box dynamics, and it is insensitive of algorithms. Particularly, this reward function can be used along with
any actor-critic-based [70] model-free reinforcement learning algorithms.

5 EXPLORATORY RESEARCH

There exist a few papers that do not directly purpose CPS recovery techniques. Instead, they discuss methods to
assist recovery solutions. We therefore believe these are also worthwhile for review. Specifically, we find two
papers that respectively consider two research problems: (1) order of recovery upon a mass failure on multiple
CPS components, and (2) the adversary’s intention upon an attack. By solving these two problems, we would
have more information in constructing CPS recovery techniques.

5.1 Recovery Order upon Mass Failure

To decide the order of significance when recovering multiple failed components, and the authors of [108] has
provided a solution. Two models are therefore proposed based on different assumptions of the component-level
recovery method: (1) reserved model (RM), where recovery is "prepaid”, i.e., resources must be committed in
advance of recovery and (2) opportunistic model (OM), where recovery is "pay-as-you-go", i.e., recovery can

start as soon as some resources are available. At offline, each component i is preassigned with a utility value b,
The utility value of a component is a design choice, and the authors of this paper assumes same utility for all
components in experiments. Both models are then formulated as integer linear programming (ILP) problems that
search for recovery orders that optimize some objective functions. Hence, the RM method can be reduced to

T
maximize Z Z b(l)vgl) 4

ieD t=1

where D is the set of failed devices, oﬁi) is a binary variable indicating whether device i has finished repairing at
time t = 1...T. This RM ILP has three categories of constraints:

(1) Device dependency: a device can be repaired only if its supportive devices are working,

(2) Time for repair: a failed device returns to functioning only after a period of recovery time, and

(3) Sufficient resources for repair: a device can be repaired only if it has enough resources.

Similarly, in OM, the same objective function is to be maximized but slightly different constraints shall be obeyed:
(1) The "time for repair" constraint is loosened because recovery begins once part of the resources are allocated.
(2) The "sufficient resources for repair" constraint is also loosened due to the same reason.

(3) Moreover, additional constraints are added to this category to ensure recovery begins once resources are
within a threshold.
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The ILP can be solved efficiently by algorithms such as dynamic programming. Please refer to the original paper
for the mathematical formulation of these constraint functions.

The authors of [108] present an experiment by simulating 50 failed devices in a general CPS, with each device
assigned with a utility, maximum resources consumed at a time step (stage), and maximum number of stages for
recovery. There is also a pre-defined amount of total resources available per stage. The experiment compares RM
and OM algorithms, with the ILP solved by either an ILP solver or dynamic programming (DP).

5.2 Intention Interpretation

One interesting approach to suggest recovery actions is to infer what the attacker wants, assuming the system is
under attack. By knowing the intention of the adversary, the CPS is able to take countermeasures by intentionally
avoiding the adversary’s goal. For instance, if the attacker’s purpose is found to be driving an autonomous vehicle
to a specific coordinate, the system can see that location as a danger zone and modify its control to keep away
from it. The paper [23] approaches this problem with inverse reinforcement learning (IRL) [66]. Formally, IRL is
to backward infer a reward function from a known control policy, and different from the healthy CPS’s control
policy 7, the attacked CPS has an alternative policy n# wto guide the system behavior, which can be observed
by traversing the state space.

Therefore, the IRL problem is formalized as estimating the reward function that conveys the attacker’s intention
based on 7. At lower level, the reward function can be approximately solved by an active exploration method,
which is updating the maximum likelihood estimation of the probability of a reward configuration given an
observation, while traversing through the states, leveraging the Monte Carlo Markov Chain algorithm [10].
Although not providing an explicit recovery technique, a well-estimated intention of the attacker facilitates
designing counter actions, such as setting a penalty for going to the states highly rewarded by the attacker.

6 DISCUSSION
6.1 Assumptions of Attacks

Table 2. Attack types assumed by shallow recovery papers (Section 3).
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Table 3. Attack types assumed by deep recovery papers (Section 4).
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For shallow recovery papers listed in Table 2, among the methods that uses redundant components, [79]
considers a specific application on sensor redundancy and therefore assumes attacks on sensors. Feedback signal
repair methods [55, 67, 78, 92, 96] are designed for information loss during communication, and assume attacks
over communication channels. State estimation methods [5, 16, 26, 45, 51, 88, 100] assume corrupted sensors and
therefore the measured state needs to be estimated. The remaining papers do not assume a particular attack
surface. Moreover, except for [92] and [55] are specifically designed for DoS attacks, and [100] and [51] are
designed for switch location attacks, researchers in general do not care about the attack types.

For deep recovery papers listed in Table 3, [54,103-105] consider attacks on sensors, while the remaining
papers do not care about the attack surface. Also, all these papers do not care about the attack type. In summary,
the surveyed deep recovery papers only consider general faulty scenarios where the CPS needs to be guided back
to normal, regardless of the type of attacks.

6.2 Assumptions of the Dynamics

The papers surveyed also assume for different types and different levels of knowledge of the dynamics. For
example, we divide the deep recovery methods into recovery in white box and black box dynamics in Section 4.
However, there exist more detailed categorization of the dynamics assumptions, and we tabulated them in Table
4 and 5.

As shown in Table 4, shallow recovery papers with machine learning-based techniques do not require explicitly
known dynamics. For example, [79] leverages RNNs to learn the system dynamics before sensor fusion, [67] uses
ARIMA to interpolate missing measurements, and [5] utilizes LSTNet as a substitute of the dynamics model.
On the other hand, techniques that does not leverage statistical inference (i.e. learning) of the dynamics require
explicit models. The same situation applies to deep recovery papers as shown in Table 5, where learning-based
methods do not require the knowledge of dynamics while the others do. Moreover, [16] and [59] assume known
equation structure but unknown coefficients of the dynamics, and uses system identification techniques to infer
the coefficients. In both shallow and deep recovery, around half of the papers assume linearity of the dynamics,
while the other half assume general, nonlinear dynamics.

6.3 Additional Q&A

We also provide additional analysis in Q&A form as follows.
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Table 4. Dynamics assumed by shallow recovery papers (Section 3).

5 =
oD 4B
Q < — ~ — — s ) -
e - - I - IR IR -
= 20 IS o 7] < < 5} 5} O = o < 3 g, %
g & ¢ w»w g @ ¥ 0§ ¥ B w 4 7 g =
£ 5 =< £ § 2 = § & 5§ Z £ & 2% £ 7
s = S z B 35 B % & Z 5 2 0T Z £ ¥
& ¥ N N Y 0w Y w9 S = B Y = o =
S 2 B » o o > 84 5 2 & 0 0 X =
Dynamics knowledge
Known v o/ v o/ v v v v
Unknown coefficients v
Unknown Vv v v o/ Va4
Dynamics type
Linear v v v/ v
Nonlinear v v o v v v o/ v v o v v
Table 5. Dynamics assumed by deep recovery papers (Section 4).
. < — - - -—
— ; < ) © ) . . . . .
jf~ EIR 3~ w e w W & & F =
o 8l w o § § § =t sl s g =%
el e g o < = = .
£ 2 & z N NN 2 2 F § 3§
< < — A n ¥ n = = = =
=) — e = = 0 N < ~ ~
= 8 S0 s O o ;e 3,
Dynamics knowledge
Known V' v v v v v v U/ v
Unknown coefficients v
Unknown v o/
Dynamics type
Linear v v o/ v o/
Nonlinear v o/ v v v v

Q1: Besides whether the recovery method is using a dedicated controller (i.e. shallow vs. deep recovery), what
are some other dimensions to partition the recovery works?

A1: There are a few important dimensions that we identified. First, the specific CPS applications, such as
power grids, sensor networks, robotics, etc., or unspecified. Second, the attack types, such as switch-location
attack, false data injection, man-in-the-middle, etc., or unspecified. Third, the attack surfaces, such as sensors,
controllers, actuators, communication networks, etc., or unspecified. Finally, we can divide the recovery scenarios
into known system dynamics (white-boxes) vs. unknown system dynamics (black-boxes), which is already done
in Section 4. Usually, a white-box dynamics implies the recovery method has guarantees in restoring the target
physical state conditions, whereas black-box does not.

Q2: Based on the literature surveyed, what is the current state-of-the-art in CPS applications considered in
the recovery research area?
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A2: The majority of the surveyed works do not specify an application. Instead, they consider a general CPS
consisting of sensors, controllers, actuators and optionally communication networks. Although some literature use
an application as an example for their proposed method, the method can be trivially extended to other areas. For
instance, [? ] uses velocity sensors on four-wheeled vehicles throughout the paper, but the component exclusion
technique can be applied to any CPS with redundant components. However, a few of them are application-specific.
For instance, [55, 58, 59] consider power grids, with the recovery techniques particularly designed for power
transmission objectives such as load balancing and frequency limits. Also, [90] focuses on quadruped robots, [27]
on quadcopters and [8] on an healthcare application of ankle exoskeletons.

Q3: Based on the literature surveyed, what is the current state-of-the-art in attack types considered in the
recovery research area?

A3: Similar to application scenarios, most works do not specify an attack type. Instead, they focus on the type
of consequences caused by the attacks. For example, the entire Section 3.3 consists of solutions against loss of
measured signals regardless of the attack type, but some of the papers ([92] and [55]) specifically focus on DoS
attacks on communication networks. Similar situations happen in other sections, with two exceptions of [100] and
[51] consider switching location attacks. However, in the recovery wrapper provided by [41], researchers have
discussed various targeting recovery responses to particular attack types. In general, the recovery works focus
on CPS malfunctions, and the solutions can be easily extended to various attack types when the malfunctions are
the same.

Q4: Based on the literature surveyed, what is the current state-of-the-art in attack surfaces considered in the
recovery research area?

A4: Two particular attack surfaces are heavily addressed by some of the papers: sensors and communication
channels. Shallow recovery papers in Section 3.3 ([5, 16, 26, 45, 51, 88, 100]) as well as two deep recovery papers
in Section 4 ([103-105]) focus on sensor attacks. In this case, sensor readings are compromised due to attacks
and therefore an estimation of the actual physical state shall be provided from a different information source.
Meanwhile, the majority of papers in Section 3.2 ([55, 78, 92, 96]) focus on deprivation in communication channels,
assuming different parts in the CPS are remote to each other. Therefore, when the communication signal is lost
or corrupted, recovery strategies need to figure out the missing packets as well as optimize the CPS’s actions for
utilities. The remaining of the papers surveyed do not have a particular focus on attack surfaces. Instead, they
counteract erroneous behaviors regardless of from what surfaces the attacks are injected.

Q5: Based on the literature surveyed, what is the current state-of-the-art in white-box vs. black-box dynamics
considered in the recovery research area?

A5: First, some recovery strategies are not affected by whether the system knows the dynamics or not. For
instance, the redundant components introduced in Section 3.1 only have to exclude the suspicious components
in their processes. However, the knowledge of system dynamics may affect most of the methods. For example,
the literature using physical state estimation will be heavily dependent on this knowledge, since a white-box
dynamics allows straightforward roll-forwarding. In Section 3.3, among the 7 papers on state estimation, 4 of
them assume white-boxes while 3 of them assume black-boxes. Moreover, the knowledge of dynamics also
affects the synthesis of a dedicated recovery controller. In Section 4, 7 out of 10 deep recovery papers assume
white-boxes and 3 black-boxes. Notice that some recovery methods not only assume white-box dynamics, but
also have stricter requirements. For example, [103] and [104] assume linear dynamics and [1], [2] and [52] assume
existence of stability.

Q6: What are relevant research backgrounds that can contribute to CPS recovery research?

A6: First, researchers with embedded systems backgrounds are able to apply their expertise in CPS architecture
designs that aim for high resilience as well as recovery against attacks. Second, scholars with security background
may extend their knowledge in security into this field. However, they shall mark the difference between CPS and
software systems. For instance, as mentioned in [1], rebooting a node or component has been a long-established
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method to recover a software system from malicious attacks, but in CPS the condition for rebooting shall be very
different. Third, control system researchers are encouraged to promote recovery with dedicated controllers, i.e.,
deep recovery, where the recovery problem reduces to a control problem. More sophisticated control objectives,
algorithms and frameworks are more than welcome. Fourth, machine learning researchers shall be capable of the
situations where statistical inferences are required. For example, when the dynamics is a black-box, so that the
CPS agent must first undergo a training phase. When traditional control guarantees are not applicable, machine
learning metrics such as adversarial robustness can serve well to demonstrate the recovery performance. Last but
not least, we encourage researchers in various application fields to participate in this sprouting domain, including
healthcare systems, robotics, power grids, household sensor networks, etc. Interdisciplinary efforts are necessary
when the research is brought to application level.

Q7: Any suggestions to researchers in these relevant fields, with regard to future research directions in CPS
recovery?

A7: We encourage researchers to attempt novel sub-domains in this field. For example, as mentioned above,
works have been done on sensor and communication channel attacks, but seldom on controller and actuators. Also,
various types of attacks and applications may potentially endow more efficient and more specialized recovery
strategies with higher performance. We sincerely hope all the specific sub-categories can become not only clearly
identified but also populated with papers.

7 FUTURE DIRECTIONS AND CHALLENGES

We identify six major future directions for CPS recovery research as well as their corresponding challenges.

1. Recovery under different specific scenarios. Before conducting any research, the first step is always
identifying the problem. For CPS recovery, this step is to answer the question: Against what kind of attacks, and
with what assumptions of the system dynamics we are designing a recovery technique, and why we are researching
this scenario? As diverse CPS are evolving for numerous real-world applications, with different applications having
different potential failures and objectives. For instance, a smart grid must avoid overheating and fluctuating
power flow, and an autonomous vehicle must stay in safe physical states. Moreover, Section 2.1 points out that
not only CPS come in increasing diversity, but also attacks vary in multiple aspects such as purposes, surfaces
and targets. Unfortunately, as shown in Section 6.1, majority of the current literature has only focused on general
attacks and failures on certain attack surfaces. These recovery methods are not designed for specific attack types
or applications. Also, Section 6.2 shows that the assumptions of system dynamics can be further detailed. So
far, literature has only assumed for crude categories of linear vs. nonlinear systems, without considering more
specific types of dynamics, such as time-variant vs. time-invariant, Lyapunov stability, and degree of nonlinearity.

Therefore, we consider one future direction is to identify more specific categories of recovery assumptions. A
vital challenge of this direction is to distinguish what scenario assumptions are worth researchers to explore
recovery techniques - this can be for multiple reasons, such as closeness to reality, life criticality, wide commercial
use, or benefits to subsequent research. For instance, assuming a fully known noiseless linear time-invariant
(LTI) dynamic may be handy for soundness proofs, but this assumption can be too ideal and too restricted to be
applied to our physical world, so some alternative scenarios might be worth more efforts. Another example is
that all CPS recovery papers assume the recovery module itself is perfectly safe and doing exactly what people
designed, never considering its own vulnerability, which could lead to undesirable outcomes in applications.

2. Improving recovery soundness. Once a scenario is clearly identified, we ask the most significant question
for a proposed recovery tool: Does it work? Specifically, as CPS gradually playing more life-critical roles in
society, so that the most important metric to qualify a recovery method is how well does it save the system and its
surroundings from the potential risks caused by attacks. This is indeed the motivation we split the literature into
shallow and deep recovery, with the latter unambiguously addressing the importance of normal physical states.
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Whether the recovery module intentionally drives the system back to normal provides one way to qualitatively
evaluate soundness, and we can intuitively assert that the deep recovery methods provide better soundness than
the shallow ones. It is a pity that only a few papers so far fall into the category of deep recovery, while most
remain shallow.

Nevertheless, one remaining challenge is to formalize soundness, preferably quantitatively, in a standardized
way that researchers are able to agree on. For instance, an upper-bounded distance to a pre-defined safe set
after recovery may convince people that this method is sound, with the bound itself a metric. Some methods,
especially machine learning methods, might not be able to give deterministic guarantees due to randomness, so
that probabilistic measures can serve as substitutes. With a well-defined quantitative soundness, a succeeding
challenge is to design recovery methods that improve this metric at the trade-off with time and resource overheads.
For example, a learned state estimator’s soundness can be improved if the model approximates the underlying
distribution better, but this improvement requires training on a larger or less biased data set: Consequently, to
maintain training data overhead small in development phase, a novel data collection method for unbiased data
points can contribute.

3. Reducing latency for real-time systems. CPS are usually real-time systems, and some have very strict
requirements in fast reactions, i.e., low latency. For instance, drones and autonomous vehicles must interact with
the environment at high frequency and react fast to sudden changes. Otherwise, property damages or lethal
consequences may occur. Therefore, when designing recovery methods, two questions must be answered: (1)
Will running the recovery module pause or slow down the system? (2) How long does it take to run the recovery, and
if it takes a non-trivial period of time, is the computation result still useful as the situation may be different? Again,
the challenge will be the tradeoff between speed and other dimensions like soundness and memory consumption.
Some recovery methods are fast, such as restarting discussed in Section 4, but there is low to no guarantee that
these methods can fix the problem.

4. Reducing resource consumption at both development phase and runtime. We must consider economy
in CPS, which can be burdened by tedious production procedures and high requirements for hardware at runtime.
Therefore another question rises: How much does the recovery module cost during development and runtime? Unlike
traditional software systems, CPS are generally built as embedded systems, i.e., systems for a specific function,
such as robotic arms and unmanned vehicles: Hence, CPS generally do not require complete operating systems
nor complex architecture. Instead, light-weighted hardware and software with low developmental and runtime
costs promote mass production. Particularly, a recovery module is a software that built on top of an existing CPS,
and must not induce large resource consumption before and during runtime compared to other built-in processes.

As mentioned in the previous subsection, one large consumption at design phase shall be data collection and
training for machine learning models. This is a reasonable concern because we would better not assume all
information needed by recovery are given, and therefore some knowledge shall be inferred by statistics. Hence,
balancing among learning model complexity, accuracy and data cost when producing a CPS recovery module
becomes one research challenge. Another cost is the hardware resource overhead during runtime such as memory,
CPU and network bandwidth, which also needs to be taken into consideration when devising recovery.

5. Attack Diagnosis for Recovery. As noted, the binary result of attack detection, i.e. under attack or not, is
insufficient. The recovery also needs attack diagnosis to identify not only ‘who’: which components are corrupted,
but also “when: when the attack starts. Note that diagnosing the starting time is equally important since this
will tell until when the historical data are trustworthy, which thus the recovery can rely on. That is, after attack
detection, the diagnosis is activated to find out the trustworthy data that the recovery can use. Using compromised
historical data may result in a failed recovery, e.g. driving a system to an unsafe state. In spite of the importance,
attack diagnosis has been inadequately addressed so far. Consider recovery from sensor attacks as an example.
To launch the appropriate recovery needs to know both the ‘who’ and ‘when’. Although some existing sensor
attack detection methods may be extendable to find out which sensors are compromised [4, 72, 89, 106], none

ACM Comput. Surv.



26 + Luetal.

can do when they start to be compromised. For each sensor, we may set a threshold for the residual between
the predicted and observed values. Then, a sensor is considered as under attack if the residual is greater than
its threshold. However, this cannot be used to determine when the sensor starts to be under attack, and using
the detection time, i.e. the moment when a detector raises the alarm, is not accurate. This is because the attack
detector may take some time to ascertain the occurrence of an attack. Publication [94] is considered as the first
work to address this temporal sensor attack diagnosis problem in CPS. The authors in [94] develop an attention
mechanism based attack diagnosis method, which utilizes the fluctuations of attention scores as an indicator of
the start of an attack. Here we call for more efforts on effective and efficient attack diagnosis methods that can
real-time and accurately provide both the ‘who’ and ‘when’ to enhance the success of attack recovery.

6. More exploratory research topics. Besides concrete recovery methods themselves, more exploratory
research topics like the papers [23, 108] in Section 5 needs to be investigated. For instance, one example topic
is to theoretically or empirically analyze the trade-offs among the dimensions stated above. Other topics that
can possibly impact CPS recovery soundness or efficiency need also be analyzed. By answering these questions,
researchers do not directly build CPS recovery frameworks; instead, they provide valuable information on which
future recovery methods can be constructed.

8 CONCLUSION

We defined the concept of CPS recovery as the restoration of physical states under adversarial attacks. Then,
we surveyed the current state-of-the-art papers that satisfy our definition, with a total of 30 papers thoroughly
reviewed from year 2014 to 2023. Among these papers, we identify a major partition of not utilizing vs. utilizing
a dedicated controller to perform a recovery task, which we denoted as shallow vs. deep recovery. Finally, in the
discussion section, we discussed additional partitions of the literature, including applications, attack types, attack
surfaces and knowledge of the system dynamics. Then, we analyzed the current state-of-the-art based on these
partitions as well as provide suggestions for future research.
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