Simplifying Cloud Management with Cloudless Computing

Yiming Qiu, Patrick Tser Jern Kon, Jiarong Xing', Yibo Huang, Hongyi Liu®
Xinyu Wang, Peng Huang, Mosharaf Chowdhury, Ang Chen

University of Michigan

ABSTRACT

Cloud computing has transformed the IT industry, but man-
aging cloud infrastructures remains a difficult task. We make
a case for putting today’s management practices, known as
“Infrastructure-as-Code,” on a firmer ground via a principled
design. We call this end goal Cloudless Computing: it aims to
simplify cloud infrastructure management tasks by supporting
them “as-a-service,” analogous to serverless computing that
relieves users of the burden of managing server instances. By
assisting tenants with these tasks, cloud resources will be pre-
sented to their users more readily without the undue burden
of complex control. We describe the research problems by
examining the typical lifecycle of today’s cloud infrastructure
management, and identify places where a cloudless approach
will advance the state of the art.

CCS CONCEPTS

* Networks — Cloud computing; * Software and its engi-
neering — Orchestration languages;

KEYWORDS

Infrastructure as code, cloud management

1 INTRODUCTION

Cloud computing has transformed the IT infrastructure, with
94% enterprises relying on cloud services of some form [1,
28]. However, cloud resources remain difficult to configure
and manage [14]. Cloud infrastructure management is neces-
sary because cloud workloads and applications are diversify-
ing beyond a few broad categories of Software-as-a-Service
(SaaS) products [52]. Each workload on the long tail of di-
verse cloud applications requires different infrastructure sup-
port; therefore, their management tasks are also customized.
As a result, cloud tenants (e.g., enterprises) employ extensive
cloud/DevOps engineering teams, who traditionally worked
with cloud-specific APIs [65] to configure infrastructures or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

HotNets °23, November 28-29, 2023, Cambridge, MA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.

ACM ISBN 979-8-4007-0415-4/23/11. .. $15.00
https://doi.org/10.1145/3626111.3628206

Rice University

s

manually constructed infrastructures through a “ClickOps’
approach using cloud portals [63].

Modern cloud automation frameworks arose as an attrac-
tive alternative to abstract away many of the complexities
of cloud management tasks. They follow the “Infrastructure-
as-Code” (IaC) paradigm [48] that enables users to define
their desired infrastructures (e.g., VMs, subnets, and VPN
gateways) by writing high-level IaC programs, while shield-
ing them from low-level details about how the underlying
resources are instantiated. Widely-used IaC frameworks in-
clude Terraform [32], OpenTofu [20], and Pulumi [24], all
of which work across cloud providers. Additionally, there
are cloud-specific counterparts such as Amazon CloudForma-
tion [4] and Azure Bicep [6]. Given an [aC program, these
frameworks reason about deployment plans and map them to
cloud-level APIs to create, modify, or destroy cloud resources.

However, today’s IaC frameworks lack a principled design
to fully unleash their benefits, and IaC-level abstractions of
cloud-level behaviors are often “leaky.” There exists a signifi-
cant gap between what cloud users perceive (i.e., the [aC-level
configuration) and what they actually receive (i.e., the cloud-
level infrastructure). We observe that many DevOps hours are
spent to address this gap, often in a manual, trial-and-error
fashion across the cloud infrastructure lifecycle. The industry
ideal of DevOps engineering, which promises to streamline
developer and operator teams, is severely hindered by these
complexities. Developers without cloud operation expertise
find it hard to manage infrastructure by themselves, while op-
erators with that knowledge have to spend significant amount
of time handling all types of bugs and failures, rather than
providing easy-to-use interfaces to developers.

In this position paper, we argue for a vision that we call
Cloudless Computing. Our view is that IaC-style manage-
ment is the right direction forward, but we must rethink its
constituent components, identify missing pieces from today’s
practices, and create a coherent roadmap. Like serverless
computing, which aims to reduce the burden of cloud users
in managing server VMs, cloudless computing aims to sup-
port cloud infrastructure management on behalf of users by
handling “cloudy” management tasks in a principled man-
ner. This will reduce the friction in managing cloud-based
infrastructures, so that developers and operators can work in
a concerted fashion for better control over their infrastructure.
We articulate design gaps and needed tools for overseeing the
entire lifecyle of cloud infrastructures, in order to meet the
constantly-evolving demands of tenant workloads.

In describing this vision, we are faced with the fact that to-
day’s cloud management is a set of loose, under-documented

®

& o oo

{ Steep learning curve ”] : T P ‘[1aC Policy [Developing 1aC
1 @ | Cloudy ‘ Cloudless 1 1)
3 { Insufficient validation J ‘Infrastructure Infrastructure ; [T
: N - S — - alidating la
' i ' c
Suboptimal deployment H i o e ‘ | frg Mgr g l.
-1 te -
Error-prone updates o< N L S Deploying 1aC
Orchestration Platforms S
Opaque failures o) Applle Refresh Applle Refresh H
H — - w [Updating laC J{ Debugging laC]

Ad-hoc policies

(a) State of the art

—aws A D0

—— =~ A
Cloud providers

sl AppyV T ’eiéméif}"iﬁaséir

(b) Cloudless Computing

Figure 1: We call the end goal of an ideal management scheme “cloudless computing.” (a) Today’s practices, known as
“Infrastructure-as-code” (IaC) suffer from a range of limitations, which undercut the benefit they bring and make the
management process foreign and ““cloudy.” (b) We believe that a principled design will result in a better framework for
cloud infrastructure management, providing a correct and streamlined process for the entire cloud lifecycle.

practices rather than an exact science. We anchor our discus-
sion by embedding the research problems into the typical
lifecyle of today’s cloud infrastructure, including develop-
ing the IaC configurations, validating configuration correct-
ness, scheduling the deployment steps, performing infras-
tructure updates and handling failures, as well as enforcing
user-defined policies on the cloud infrastructure throughout
all stages. Figure 1 is an overview of the full stack for cloud
infrastructure management, and we examine each component
in detail in this paper.

2 INFRASTRUCTURE AS CODE (IAC)

Infrastructure-as-Code (IaC) frameworks, such as Terraform,
OpenTofu, and Pulumi, have gained wide popularity.

2.1 Existing IaC frameworks

IaC frameworks allow cloud users to codify their desired
infrastructure as a high-level configuration file, removing
the need to understand the underlying provisioning steps to
achieve their desired end-state. This could be done with im-
perative or declarative designs. Some [aC frameworks are
developed outside the major cloud providers. In Pulumi, IaC
programs are written using existing imperative programming
languages (e.g., Pulumi’s Python SDK [21] package). In Ter-
raform/OpenTofu, IaC programs are written in a declarative
style using the HCL language [16], which is an expressive
language with many constructs for modularity. Other IaC
frameworks are supported by individual cloud providers di-
rectly, such as Azure Bicep and AWS CloudFormation, of-
fering analogous functionalities. They either have their own
languages [11] or use JSON/YAML as configuration formats.

Consider a simplified IaC program in HCL, as shown in
Figure 2. It first uses a Terraform data source to obtain the
current AWS region being used (line 2). Next, it declares a
variable (lines 4-7) describing a configuration value to be
defined later. Resource blocks are another important element
in HCL, and they declare instances of specific infrastructure

1 /* Simplified Terraform code snippet =/

[3S]

data "aws_region" "current" {}

4 variable "vmName" {

5 type = string

6 default = "cloudless"
7}

9 resource "aws_network_interface" "nl"{

10 name = "example-nic"

11 location = data.aws_region.current.name
12}

14 resource "aws_virtual_machine" "vml"{

15 name = var.vmName

16 nic_ids = [aws_network_interface.nl.id]
17 }

Figure 2: A simplified Terraform IaC program.

objects, such as network interfaces (lines 9-12) and virtual ma-
chines (lines 14-17). Each such resource is further configured
with various attributes (e.g., name, location).

After the user describes the infrastructure in the IaC pro-
gram, the rest is handled by the IaC frameworks for deploy-
ment. As the first step, basic validation will be performed to
check for format and grammatical correctness [40]. Next, the
user-provided [aC program (i.e., the user’s desired cloud state)
will be automatically compared with the user’s current cloud
state (if any), resulting in a resource dependency graph where
some nodes are marked as to be added or deleted [26, 38].
In the case of Pulumi, IaC programs are embedded directly
in application code [23], so its language runtime observes
code execution to extract resource registrations (e.g., create
an AWS S3 bucket) in order to construct the graph. From
there, an execution plan [34] is created, which specifies what
resources need to be updated in what dependency order. Fi-
nally, resources are deployed or destroyed [33], by instruct-
ing the appropriate resource providers [27, 36] to construct
required contexts and execute appropriate cloud API calls.

However, mapping from the IaC-level code constructs to the
cloud-level APIs is quite involved [25, 36]. Mapping rules
are usually crafted by a collaboration between teams from
the IaC vendors and cloud providers, which is a manual and
labor-intensive process [3, 15]).

Besides cloud providers and IaC framework vendors, the
IaC ecosystem also includes another third-party community
consisting of IaC contributors, who create open-source laC
modules [37] that can be composed in various deployment
scenarios by cloud users.

2.2 Limitations of today’s IaC management

While existing IaC frameworks lower the barrier of using
the cloud, they have notable limitations across all stages of
infrastructure management, presenting significant challenges.
Developing IaC infrastructure (§3.1). For enterprises that
have not adopted IaC, transitioning to IaC-style management
will be a steep learning curve. This not only involves learning
anew paradigm and ecosystem, but also migrating an existing
cloud deployment already in use to [aC programs.
Validating IaC infrastructure (§3.2). [aC-level programs
do not have visibility into cloud-level API behaviors. Thus,
a seemingly correct IaC program (i.e., one that compiles
successfully) may still cause deployment errors. We need
stronger mechanisms to validate [aC correctness.
Deploying IaC infrastructure (§3.3). Existing IaC frame-
works suffer from inefficiencies when deploying cloud re-
sources. Some common reasons are the lack of scheduling
optimizations and dependency pruning.

Updating IaC infrastructure (§3.4). Once an [aC infrastruc-
ture is in deployment, it goes through myriad updates over
its lifecycle. In existing frameworks, concurrent updates are
subject to race conditions which could lead to inconsistency,
and their rollback processes are not sufficiently robust.
Diagnosing IaC infrastructure (§3.5). During the lifecycle
of the cloud infrastructure, many things can go wrong. Ac-
cidental drift from the desired state, or infrastructure bugs,
require additional support from an IaC-level cloud debugger.
Policing IaC infrastructure (§3.6). The cloud lifecycle re-
quires changes to IaC programs based on user intentions.
Various policies are often required to govern each IaC pro-
gram snapshot and how the infrastructure evolves. Existing
frameworks and policy languages do not adequately support
cloud user-level policies.

3 TOWARD CLOUDLESS COMPUTING

To achieve cloudless computing, we must systematically ad-
dress all of these issues in the lifecycle of IaC-style cloud
infrastructure management.

3.1 Developing IaC infrastructure

The cloud infrastructure lifecyle starts with the development
phase. Cloud users must configure their desired infrastruc-
ture correctly by providing an IaC program. This is not an
easy task, especially for IaC tools like Terraform [32] and

OpenTofu [20] that involve learning a new language. Fur-
thermore, for many enterprises that already have cloud-based
infrastructures, their current deployments are not created and
managed by IaC frameworks. We need better support for IaC
development.
Automated IaC synthesis. Recent developments in LLMs
(large language models) put us at an inflection point where
program synthesis is ever closer to practical use. Unfortu-
nately, existing LLM-based tools [22, 30, 31] frequently gen-
erate invalid IaC code, even for small-scale templates involv-
ing widely used resources (e.g., AWS EC2). Not only do
LLMs hallucinate basic syntax, but they are also liable to
introduce security vulnerabilities, representing a risk for pro-
duction environments. Thus, one research direction is to tailor
ML-assisted synthesis techniques [50, 58] specifically for
IaC program generation, with the goal of generating reliably
correct [aC programs that would improve the productivity of
existing IaC users, while simultaneously lowering the barrier
for new users to adopt IaC tools. A potential solution to this
open problem is to decompose the infrastructure into its com-
ponent elements to simplify synthesis, while jointly applying
formal and textual specifications (e.g., type-guided and ML-
based search) for multi-modal synthesis to improve reliability.
Yet another approach could consider injecting relevant por-
tions of the user’s existing infrastructure as additional context
in a retrieval augmented generation [60] fashion to guide the
LLM in generating personalized code or suggestions.
Porting non-IaC infrastructures to IaC. The ability to port
an existing, non-IaC cloud infrastructure to IaC frameworks
is essential to wider adoption. Today, many enterprises al-
ready construct their infrastructures directly using cloud-level
APIs or cloud portals outside IaC frameworks. Porting these
deployments to IaC requires high-fidelity translation of low-
level cloud infrastructure state to an equivalent IaC program,
which is a challenging task. Industry practitioners have recog-
nized this need, and tools like Aztfy [7] and Terraformer [41]
resort to porting with static, pre-defined templates. The result-
ing IaC programs usually lack clear structures and require the
DevOps engineers to manually analyze and refactor them.
We believe that porting from existing cloud infrastructures
to IaC must be assisted with a program optimizer that pro-
vides structural guidance. Further, the main objective is code
“quality” in terms of ease of understanding and maintenance
rather than just correctness or performance goals. This raises
two interesting research questions: (1) how should we for-
mally define and quantify these code metrics? and (2) how
should we devise automated refactoring techniques to achieve
these objectives? For instance, if the cloud-level state con-
tains many resources of the same type, the corresponding [aC
program should use compact structures such as count and
for_each in Terraform instead of a straight enumeration
of all resources one by one; as another example, nested mod-
ules in Terraform are another way to wrap sets of resources
with the same structure. For an individual resource, many of
its cloud-level attributes could be removed when porting to

the TaC level, because they will be automatically constructed
when lowering an IaC program to the cloud level.

3.2 Validating IaC infrastructure

Even a grammatically-correct IaC program could exhibit un-
desired behaviors—akin to “configuration errors” in other
systems where the problem does not stem from the IaC pro-
gram itself but rather the parameter values [67, 70]. For cloud
deployments, such errors are exacerbated by the fact that (1)
configuration correctness is eventually decided at the cloud
level, not the TaC level; (2) cloud providers have differing
expectations on correct behaviors; and (3) cloud behaviors
evolve over time due to feature changes. Thus, we believe
that cloudless computing requires a powerful IaC validation
phase to catch potential deployment issues as early as possi-
ble, preferably before deploying any resources into providers,
to reduce the amount of DevOps engineering effort and time.
Semantic validation with stronger IaC types. Current [aC
languages are weakly typed. For instance, in Terraform, re-
source attributes are treated as generic “strings” although they
carry much richer semantic information—e.g., one “string”
may specifically represent a virtual machine and another
specifically a subnet. With today’s types, composing resources
into dependency graphs is error-prone. As a concrete example,
Azure requires that a virtual machine resource must reference
its network interface by the resource ID; however, at the IaC
level, this reference could be easily misused (e.g., by refer-
encing the ID of a different resource type).

Thus, one interesting research direction is to augment the
IaC frameworks with semantic types [57], to make resource
composition easier by design. This follows existing work [57]
that performs type discovery within a restricted vocabulary,
but IaC frameworks support a much larger set of cloud re-
sources, each with different attributes, which are further con-
stantly evolving due to cloud feature changes. To address
these additional challenges, one possible solution is to rely on
IaC usage examples, [aC documentations, as well as cloud-
level API specifications, to derive stronger validation checks
either using analytical or NLP-based methods. If we could
automatically extract a graph representation of resource types
and dependencies from online sources, then we can derive a
knowledge base about resource types and update it as cloud
features evolve at the IaC level.

Deeper, cloud-specific validation. Further validation is re-
quired beyond just typing, often in a cloud-specific manner.
Consider a concrete example: Azure requires that VMs and
their attached network interface cards (NICs) must be in the
same cloud region. If a configuration violates this rule, it will
error out during deployment. However, at the IaC level, a
program may specify VMs and their NICs to be in different
regions while still passing all IaC-level syntax check. As addi-
tional examples, Azure VMs could specify a password only if
another disable_password attribute is explicitly set to
false; Azure virtual networks cannot have overlapping address
spaces if they are connected with each other through peering

or gateway connection. These cloud-level constraints usually
involve interactions among multiple different resources and
their parameters, which are often under-specified at the IaC
level, because the IaC-level compiler is not fully aware of
the cloud-level expectations, which could further change over
time. Today, cloud users are also caught by surprise due to
deployment errors, and fixing these problems increases De-
vOps engineering cost and time. Instead of leaving this burden
to users at deployment time, we believe that these surprises
should be eliminated at compile time via stronger, cloud-
level validation. Our insight is that IaC-style management
offers an opportunity to transform cloud-level constraints
into IaC-level program checks, e.g., through domain-specific
customization to existing techniques such as specification
mining [54, 66, 70].

3.3 Deploying IaC infrastructure

After validation, IaC frameworks hand off the execution to
the cloud by invoking various cloud-level APIs to update
resources based on the dependency graph. Today’s IaC frame-
works, however, suffer from long deployment times due to
suboptimal planning and “best effort” graph walks, constrain-
ing the velocity of incorporating needed features.

Accelerating IaC deployment. Deploying an [aC program
to the cloud could take a long time, sometimes on the order of
hours or even days [56, 62]. Current [aC frameworks only per-
form basic dependency analysis on the resource dependency
graph [33], missing out potential acceleration opportunities
with optimized deployment plans. The resource dependency
graph is a DAG (directed acyclic graph), with multiple “par-
allel” subgraphs that can be deployed concurrently. Further,
resources on “non-critical paths” could make way for “crit-
ical paths” to expedite the completion of the deployment.
We believe that further analyses will not only lead to faster
deployment speeds, but also help to locate potential errors
quickly when debugging an IaC program. However, such
analyses would require taking into account domain-specific
constraints that dictate how IaC deployments can or cannot
be parallelized—e.g., cloud API rate limiting, estimated de-
ployment times for various cloud resources, retries in case of
resource hanging or failure—to achieve this goal.

Accelerating deployment updates. [aC deployment is not
a one-time effort; rather, deployment “deltas” are frequently
incorporated to a live cloud infrastructure. Today’s IaC frame-
works unfortunately treat them similarly as a deployment
from scratch—even a single resource update will trigger ex-
pensive queries on all cloud-level resource state and recompu-
tation of the deployment plan from the ground up [38]. This
results in high turnaround time. Cloudless computing should
provide optimizations that enable incremental updates to ac-
celerate cloud deployments. Our observation is that modifica-
tions to individual resources have a limited impact, affecting
only a small subset of successor and predecessor nodes in
the resource dependency graph. By identifying the “impact
scope” of a deployment change, we can confine the changes

to a significantly smaller resource subgraph, like in other con-
texts [55, 69]. This will reduce the overhead on resource state
queries and redeployment, and lead to cost savings.

3.4 Updating IaC infrastructure

IaC infrastructure updates raise a set of challenges that go
beyond accelerating deployment speeds.

Concurrent updates and mutual exclusion. For a large en-
terprise, multiple DevOps engineers or teams share the same
cloud infrastructure and may submit updates concurrently.
This further requires IaC frameworks to detect and avoid op-
eration conflicts during infrastructure updates. Existing tools
simply lock the entire cloud infrastructure for modifications
at any scale [35], restricting the potential for parallel updates.
Partitioning the cloud infrastructure into smaller segments
managed by different DevOps engineers is not practical either,
since the infrastructure is fundamentally a shared resource.
Cloudless computing should provide granular locking mech-
anisms for concurrent updates while guaranteeing isolation.
For instance, if we provide per-resource locks, mutual exclu-
sion needs only arise when the same resource is being updated
by different DevOps teams. Furthermore, a per-resource lock
still allows them to execute updates on other resources with-
out having to wait for all concurrent updates to settle. In
general, we need a lock manager backed by an [aC database
that reflects the “golden state” of the cloud infrastructure, as
well as transaction mechanisms for atomic updates while guar-
anteeing isolation. Updates are scheduled based on the logical
state and locks in the database, and only later applied to the
physical infrastructure. Different lock scheduling strategies
can be developed for different update goals.

IaC rollbacks during updates. In reality, any update might
fail due to runtime errors, or the cloud users themselves may
request a rollback for other reasons. One might think this is
as simple as retrieving the previous state, analyzing the delta
from the current deployment, and modifying it back [39].
However, this is not sufficient, as resource modifications may
not be reversible in the same manner in which they are per-
formed. Simply applying a previous configuration doesn’t
always roll back the infrastructure to its intended previous
state. For instance, consider the case where a virtual machine
instance has been modified with custom network settings that
are not captured in the configuration files. Rolling back to
a previous version does not mean these modifications will
be automatically reversed simultaneously—as a matter of
fact, they are often ignored by IaC workflow. In such cases,
one viable solution is to identify resource modifications that
are not easily reversible, and then destroy them with a new
deployment from scratch. We want to minimize the amount
of resource redeployment in the rollback process, and also
guarantee a reliable identification of rollback plans before any
updates are performed. Similarly, better version control sys-
tems that track the mapping between past configurations and
their corresponding states—i.e., a “time machine”’—would

be a significant help to checkpointing resource states and
generating precise rollback plans.

3.5 Diagnosing IaC infrastructure

An TaC debugger for cloud infrastructures is essential for
cloudless computing, as failures happen frequently and are
opaque to cloud users. The debugger should consist of an
observability component that monitors runtime failures, as
well as a repair component that reflect the cloud-level errors
to the IaC-level program and suggest possible fixes.

IaC drift detection and reconciliation. “Resource drift” is
a common class of runtime problems in IaC deployments. It
refers to cloud infrastructure changes that occur outside of
the control of cloud IaC [17]—e.g., when the infrastructure is
managed by IaC frameworks but also legacy cloud-level API
scripts. Without timely mitigation, the hybrid tooling could
produce conflicting operations and result in failures or other
vulnerabilities. Existing IaC frameworks cannot easily capture
drifts caused by operations outside their control. Industry
tools like driftctl [12] attempt to bypass the [aC frameworks
and directly use cloud-level API to scan the deployment state,
which incurs significant time overhead due to cloud API rate
limiting [46]. Frequent scanning is also expensive if API calls
have quotas or paywalls [45]. Cloudless computing should
support drift detection natively within its own stack, by an
observability component that relies on cloud activity logs [8,
13] to detect “drift events.” If any unexpected event is reported
in the log, the IaC frameworks should either regenerate the
IaC-level program to reflect the latest deployment, or notify
corresponding parties for further reconciliation.

IaC debugging and repair. Infrastructure deployments “er-
ror out” at the cloud level, but cloud users view their in-
frastructure at the IaC level. When a problem occurs, cloud
providers generate error messages at the API level, which
can make it difficult for users to understand the exact IaC
resources involved and how to resolve the error. For example,
an error message like “Linux virtual machine creation failed
because specified NIC is not found” lacks precise correlation
to the original TaC program itself—the above error message
gives people the impression that NIC does not exist, while
the root cause is that the NIC and VM were not configured in
the same region. To make things worse, such error messages
do not even pinpoint the specific “lines of code” as to which
parameter is causing the anomaly. We need debuggers that
correlate runtime cloud-level errors to the IaC program itself.
This could be an analytical process or equipped by LLMs to
translate natural language error messages into higher-level
root causes and suggest fixes [47, 61, 68].

3.6 Policing IaC infrastructure

An TaC program describes a snapshot of the cloud infrastruc-
ture, but across the cloud lifecycle, there are user-specific
policies that govern not only individual IaC programs but
also their evolution over time. For example, an enterprise may

require autoscaling policies while ensuring that their infras-
tructure does not exceed their budget; another may require
that some specific resource types must be used (e.g., AWS
database instances with the latest CPU features); infrastruc-
tures may also be subject to regulatory policies (e.g., GDPR,
FedRAMP) as well as myriad security and privacy guidelines
commonly practiced in their specific industry [19, 43, 44,
49, 53]. Thus, cloudless computing needs an “infrastructure
controller” that enforces IaC policies across the lifecycle.
Enforcing policies with a controller. Analogous to an SDN
controller, IaC policing tools could be viewed as the con-
troller for the cloud infrastructure lifecycle, allowing users
to enforce different policies as needed. Existing tools (e.g.,
Terrascan [42], Checkov [10]) either rely on an Open Policy
Agent (OPA) [19] language (e.g., Rego [18]), or framework-
specific languages (e.g., Sentinel [29] for Terraform), but
these policy languages are hard to master. For instance, Rego
is akin to Datalog, significantly different from languages that
DevOps engineers are familiar with. We believe that a better
controller would expose higher-level abstractions for author-
ing policies. Another angle is to support automated policy
generation, e.g., inferring user-specific policies from their
existing [aC programs. For instance, by adapting template ex-
traction techniques [59], instead of writing exact policies, we
can turn the problem into “outlier detection,” which compares
new laC programs with templates extracted from existing
repositories to detect deviations from common practices.
Policies as observations and actions. We believe that a better
abstraction would clearly separate two aspects of the policy:
the observations, and the actions. Consider autoscaling poli-
cies as a concrete example. Today, cloud autoscaling [64]
targets certain services (e.g., for VMs [9] and Kubernetes [2])
and scale in/out events (e.g., CPU/memory utilization). How-
ever, users cannot easily define policies that are not explicitly
supported by cloud providers, such as “scale out the number
of VPN gateways and attached tunnels if traffic throughput
is close to their capacity,” or “scale out the number of VMs
if their attached network interfaces are highly loaded.” This
is because the current laC frameworks do not explicitly cap-
ture and expose enough metrics and events as “observations,”
while existing policy languages do not expose sufficiently rich
“actions” to evolve the IaC program based on the observations.
Allowing for a wider range of observations and actions would
better support a broader variety of user policies.

Moreover, policies take effect at different phases of the
infrastructure lifecycle. At each stage, different “observations”
and “actions” would apply. For example, a policy that governs
failure handling could take resource drifts as observations, but
another policy that governs IaC updates may use autoscaling
metrics for decision making. Thus, the policy language should
be flexible enough to capture the evolving set of observations
and actions throughout the cloud infrastructure lifecycle.

4 MANAGEMENT: THE FINAL FRONTIER

Much of cloud research has been directed to better designs
for its software/hardware stacks and myriad use cases. Cloud
infrastructure management as of today, although foundational
to cloud usage, is defined by the set of tools and best practices
rather than principled studies. To better enable innovation, we
believe now is the time to focus on management issues as a
top-level objective in cloud computing research.

We do view two lines of work as sharing similar goals
with us, improving the manageability of cloud infrastructures,
even if stated implicitly at times and to varying degree.

Serverless computing [5] aims to simplify cloud usage by
allowing tenants to focus on their key business logic, without
getting bogged down with the details of server management.
This reduces management overhead compared to serverful
computation. Sky computing [51] aims to simplify the use of
multi-cloud resources, by resource scheduling via an inter-
cloud broker. This reduces cross-cloud management burdens
for cloud users. Cloudless computing, on the other hand, calls
out cloud manageability as the center of attention, whether for
serverless/serverful, single-cloud/sky infrastructures, through-
out their deployment lifecycle.

ACKNOWLEDGMENTS

Many cloud architects, cloud engineers, and DevOps engi-
neers have taken time to share their practices with us, espe-
cially Mark Tinderholt at Microsoft, for which we are grate-
ful. We also thank the anonymous reviewers for their helpful
feedback. This work was partially supported by NSF grants
CNS-1942219, CNS-2106751, CNS-2107147, CCF-2123654,
CNS-2214272, CNS-2317751, CNS-2317698, a Google PhD
Fellowship, and a VMware Early Career Faculty Grant.

REFERENCES

[1] 26 cloud computing statistics, facts & trends for 2023. https://www.cl
oudwards.net/cloud-computing- statistics/#Sources.
[2] AKS Autoscaler. https://learn.microsoft.com/en-us/azure/aks/cluster-a
utoscaler#about-the-cluster-autoscaler.
[3] AWS Cloud Control API. https://aws.amazon.com/cloudcontrolapi/.
[4] AWS CloudFormation. https://aws.amazon.com/cloudformation/.
[5] AWS Lambda. https://aws.amazon.com/lambda/.
[6] Azure Bicep. https://learn.microsoft.com/en-us/azure/azure-resourc
e-manager/bicep/.
[7]1 Azure Export for Terraform. https://github.com/Azure/aztfexport.
[8] Azure Monitor Activity Log. https://learn.microsoft.com/en-us/azure/
azure-monitor/essentials/activity-log.
[9]1 Azure VM Scale Set. https://learn.microsoft.com/en-us/azure/virtua
I-machine-scale-sets/overview.
[10] Checkov: ship code that’s secure by default. https://bridgecrew.io/chec
kov/.
[11] Comparing JSON and Bicep templates. https://learn.microsoft.com/en
-us/azure/azure-resource- manager/bicep/compare- template-syntax.
[12] Driftctl. https://driftctl.com/.
[13] GCP Cloud Audit Logs. https://cloud.google.com/logging/docs/audit.
[14] Hashicorp State-of-the-Cloud Survey. https://www.hashicorp.com/stat
e-of-the-cloud.
[15] HashiCorp Terraform on Azure. https://azure.microsoft.com/en-us/so
lutions/devops/terratorm/.

[16] HCL: the HashiCorp configuration language. https://github.com/hashi
corp/hcl.

[17] Infrastructure Drift and Drift Detection Explained. https://snyk.io/blog
/infrastructure-drift-detection-mitigation/.

[18] Opa’s native query language rego. https://www.openpolicyagent.org/
docs/latest/policy-language/.

[19] Open Policy Agent. https://www.openpolicyagent.org/.

[20] OpenTofu: The open source infrastructure as code tool. https://opento
fu.org/.

[21] Pulumi & Python. https://www.pulumi.com/docs/languages-sdks/pyth
on/.

[22] [Pulumi] AL https://www.pulumi.com/ai/.

[23] [Pulumi] Automation API. https://www.pulumi.com/docs/using-pulum
i/automation-api/.

[24] Pulumi: Infrastructure as code in any programming language. https:
/Iwww.pulumi.com/.

[25] [Pulumi] Packages. https://www.pulumi.com/registry/.

[26] [Pulumi] pulumi stack graph. https://www.pulumi.com/docs/cli/comm
ands/pulumi_stack_graph/.

[27] [Pulumi] Resource Providers. https://www.pulumi.com/docs/concepts
/resources/providers/.

[28] RightScale 2019 State of the Cloud Report from Flexera. https://resour
ces.flexera.com/web/media/documents/rightscale-2019-state-of-the
-cloud-report-from-flexera.pdf.

[29] Sentinel integration with terraform. https://docs.hashicorp.com/sentine
I/terraform.

[30] STRUCTURA’s Al Assistant. https://www.structura.io/resources/build
-terraform-code-using-structuras-ai-assistant.

[31] [styra] AI-Generated Infrastructure-as-Code: The Good, the Bad and
the Ugly. https://www.styra.com/blog/ai- generated-infrastructure-as-c
ode-the- good-the-bad-and-the-ugly/.

[32] Terraform by Hashicorp. https://www.terraform.io/.

[33] [Terraform] Command: apply. https://developer.hashicorp.com/terrafor
m/cli/commands/apply.

[34] [Terraform] Command: plan. https://developer.hashicorp.com/terrafor
m/cli/commands/plan.

[35] Terraform Locking. https://developer.hashicorp.com/terraform/langua
ge/state/locking.

[36] [Terraform] Providers. https://registry.terraform.io/search/providersn
amespace=hashicorp.

[37] Terraform Registry Modules. https://registry.terraform.io/browse/mod
ules.

[38] Terraform: Resource Graph. https://developer.hashicorp.com/terrafor
m/internals/graph.

[39] Terraform Rollback. https://developers.cloudflare.com/terraform/tutor
ial/revert-configuration/.

[40] Terraform validation. https://developer.hashicorp.com/terraform/cli/co
mmands/validate.

[41] Terraformer: CLI tool to generate terraform files from existing infras-
tructure. https://github.com/GoogleCloudPlatform/terraformer.

[42] Terrascan: Detect compliance and security violations across Infrastruc-
ture as Code to mitigate risk before provisioning cloud native infras-
tructure. https://runterrascan.io/.

[43] TFLint: A Pluggable Terraform Linter. https://github.com/terraform-1
inters/tflint.

[44] TFSec: Security Scanner for Your Terraform Code. https://github.com
/aquasecurity/tfsec.

[45] Throttling Resource Manager requests. https://learn.microsoft.com/en
-us/azure/azure-resource- manager/management/request-limits-and-t
hrottling.

[46] Tools for Infrastructure Drift Detection. https://snyk.io/blog/tools-infra
structure-drift-detection/.

[47] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and S. Ra-
jmohan. Recommending root-cause and mitigation steps for cloud
incidents using large language models. In /ICSE, 2023.

[48] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri.
Devops: introducing infrastructure-as-code. In ICSE-C, 2017.

[49] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovié,
T. King, A. Reynolds, and C. Tinelli. CVC4. In CAV, 2011.

[50] B. Berabi, J. He, V. Raychev, and M. Vechev. Tfix: Learning to fix
coding errors with a text-to-text transformer. In ICML, 2021.

[51] S. Chasins, A. Cheung, N. Crooks, A. Ghodsi, K. Goldberg, J. E.
Gonzalez, J. M. Hellerstein, M. 1. Jordan, A. D. Joseph, M. W. Ma-
honey, A. Parameswaran, D. Patterson, R. A. Popa, K. Sen, S. Shenker,
D. Song, and I. Stoica. The sky above the clouds, 2022.

[52] M. Cusumano. Cloud computing and SaaS as new computing platforms.
Communications of the ACM, 53(4):27-29, 2010.

[53] L. De Moura and N. Bjgrner. Z3: An efficient smt solver. In TACAS,
2008.

[54] J. Eberhardt, S. Steffen, V. Raychev, and M. Vechev. Unsupervised
learning of api aliasing specifications. In PLDI, 2019.

[55] W. Fan, C. Hu, and C. Tian. Incremental graph computations: Doable
and undoable. In SIGMOD, 2017.

[56] B. Grubic, Y. Wang, T. Petrochko, R. Yaniv, B. Jones, D. Callies,
M. Clarke-Lauer, D. Kelley, S. Demetriou, K. Yu, and C. Tang. Con-
veyor: One-tool-fits-all continuous software deployment at Meta. In
0SDI, 2023.

[57] Z. Guo, D. Cao, D. Tjong, J. Yang, C. Schlesinger, and N. Polikarpova.
Type-directed program synthesis for restful apis. In PLDI, 2022.

[58] J. He, C.-C. Lee, V. Raychev, and M. Vechev. Learning to find naming
issues with big code and small supervision. In PLDI, 2021.

[59] S. K. R. Kakarla, A. Tang, R. Beckett, K. Jayaraman, T. Millstein,
Y. Tamir, and G. Varghese. Finding network misconfigurations by
automatic template inference. In NSDI, 2020.

[60] P.Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiit-
tler, M. Lewis, W.-t. Yih, T. Rocktéschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural
Information Processing Systems, 33:9459-9474, 2020.

[61] J. Li, B. Hui, G. Qu, B. Li, J. Yang, B. Li, B. Wang, B. Qin, R. Cao,
R. Geng, et al. Can Ilm already serve as a database interface? a big
bench for large-scale database grounded text-to-sqls. arXiv preprint,
2023.

[62] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,
Q. Lin, Y. Wu, S. Levy, and M. Chintalapati. Gandalf: An intelligent,
end-to-end analytics service for safe deployment in large-scale cloud
infrastructure. In NSDI, 2020.

[63] J. Lloyd. Cloud foundations and landing zones. In Infrastructure
Leader’s Guide to Google Cloud: Lead Your Organization’s Google
Cloud Adoption, Migration and Modernization Journey, pages 239-244.
Springer, 2022.

[64] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. A review of
auto-scaling techniques for elastic applications in cloud environments.
Journal of grid computing, 12:559-592, 2014.

[65] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc. Are rest apis
for cloud computing well-designed? an exploratory study. In /CSOC,
2016.

[66] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac. Syn-
thesizing configuration file specifications with association rule learning.
In OOPSLA, 2017.

[67] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasu-
pathy. An empirical study on configuration errors in commercial and
open source systems. In SOSP, 2011.

[68] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. Radev. Typesql: Knowledge-
based type-aware neural text-to-sql generation. In NAACL, 2018.

[69] E. Zhai, A. Chen, R. Piskac, M. Balakrishnan, B. Tian, B. Song, and
H. Zhang. Check before you change: Preventing correlated failures in
service updates. In NSDI, 2020.

[70] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou. Encore: Exploiting system environment and correlation infor-
mation for misconfiguration detection. In ASPLOS, 2014.

	Abstract
	1 Introduction
	2 Infrastructure as Code (IaC)
	2.1 Existing IaC frameworks
	2.2 Limitations of today's IaC management

	3 Toward Cloudless Computing
	3.1 Developing IaC infrastructure
	3.2 Validating IaC infrastructure
	3.3 Deploying IaC infrastructure
	3.4 Updating IaC infrastructure
	3.5 Diagnosing IaC infrastructure
	3.6 Policing IaC infrastructure

	4 Management: The Final Frontier
	References

