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Unmanned aerial vehicles (UAVs) have various applications in different settings, including e.g., surveillance, packet delivery,
emergency response, data collection in the Internet of Things (IoT), and connectivity in cellular networks. However, this
technology comes with many risks and challenges such as vulnerabilities to malicious cyber-physical attacks. This paper
studies the problem of path planning for UAVs under GPS sensor permanent faults in a cyber-physical system (CPS) perspective.
Based on studying and analyzing the CPS architecture of the UAV, the cyber “attacks and threats” are differentiated from
attacks on sensors and communication components. An efficient way to address this problem is to introduce a novel approach
for UAV’s path planning resilience to GPS permanent faults artificial potential field algorithm (RCA-APF). The proposed
algorithm completes the three stages in a coordinated manner. In the first stage, the permanent faults on the GPS sensor of the
UAV are detected, and the UAV starts to divert from its initial path planning. In the second stage, we estimated the location of
the UAV under GPS permanent fault using Received Signal Strength (RSS) trilateration localization approach. In the final
stage of the algorithm, we implemented the path planning of the UAV using an open-source UAV simulator. Experimental and
simulation results demonstrate the performance of the algorithm and its effectiveness, resulting in efficient path planning for
the UAV.

CCS Concepts: • Computer systems organization → Robotic autonomy; Reliability .

Additional Key Words and Phrases: Permanent Faults, unmanned aerial vehicles, path planning, artificial potential field,
Received Signal Strength (RSS) trilateration localization.

1 INTRODUCTION
Unmanned aerial vehicles (UAVs) have attracted significant interest in civilian and military applications. Indeed,
many new technologies have been involved in designing and building UAVs that have different capabilities in
rescue missions and emergency response. Additionally, UAV technology is expected to become a crucial part
of aerial surveillance systems, particularly in smart cities. Also, in wireless communication systems, UAVs will
play a significant role in assisting and improving the existing communication infrastructure and helping the
deployment of the 5G technology in rural and remote regions [52]. UAV trajectory planning is one of the most
critical components in controlling and monitoring UAVs during flight. Therefore, the UAV must stay connected
with its associated ground base station (GBS) to make sure that the position and location of the UAV have been
updated regularly. Additionally, the path planning and the trajectory design of a UAV becomes a key challenge
to provide the best wireless connectivity and enhance the system’s security and robustness. The air-to-ground
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channel model has been studied in [2]. Also, new studies started to look at UAVs as aerial base stations [22], [37].
Authors in [26], have studied the optimal position for UAVs to maximize the throughput. In UAV positions and
placement scenarios, authors in [41] have considered the entire trajectory design for multiple UAVs to jointly
optimize scheduling and user association. In the deployment and trajectory planning in UAV communication
with jamming, authors in [36] proposed a trajectory planning method in 3D and introduced an anti-jamming
approach by dynamically adjusting the UAV’s trajectory. Moreover, authors in [39] present an intelligent UAV
anti-jamming strategy, in which the optimal trajectory of the typical UAV is obtained via dueling double deep
Q-network (D3QN). A low-power robust learning framework to deal with adversarial attacks has been introduced
in [29], the authors propose a staged ensemble defense strategy in the framework, which achieves better defensive
performance than a single defense algorithm.
One approach in trajectory design planning is to apply the artificial potential field (APF) algorithm. The APF

method is a virtual force method that was first introduced by Khatib in [13]. The APF algorithm is developed to
avoid collisions among multiple real-time autonomous vehicles and robots operating in a complex environment
[13]. Recently, several studies have been conducted on UAV path planning using APF. For instance, the authors in
[31] study the optimized APF for multiple UAVs operating in a 3-D dynamic environment. Similarly, the adaptive
particle swarm optimization algorithm (APSO) designed for introduction to APF has been introduced in [50]
where authors combine the global virtual navigation path (VNP) calculated by the particle swarm optimization
algorithm (PSO) with the artificial potential field method for UAV path planning. In [19], the authors propose
two algorithms, one is an obstacle avoidance control algorithm for a distributed multi-UAV formation system,
and the other is the velocity-based artificial potential field (VAPF) algorithm which helps a UAV to avoid dynamic
obstacles and overcome the APF problems of local minimum.The key idea behind the APF algorithm is to calculate
the distance between the moving object and the obstacle.
Cyber-physical systems (CPS) are intelligent computer systems that are engineered in a way combining

algorithmic computation and communication processes while sensing and interacting with the physical world.
The rapid development of CPS technology encourages the development of key technologies and products in
autonomous systems such as UAVs and self-driving cars. The mutual interaction between the physical world and
information technology puts CPS at risk and makes it vulnerable to malicious attacks that are beyond traditional
cyber attacks [1, 3, 24]. This is becoming a real threat to many technologies sometimes resulting in potential
breaches of sensitive information about individuals and entities. Therefore, UAVs are one of the most targeted
elements by the attackers to take advantage of and wreak havoc by taking control of the UAVs’ movement and
position. However, since it is difficult to ensure the safe movement of UAVs with the autopilot system against
various cyber security attacks, many new studies have proposed new approaches to discovering the attackers
and providing a recovery procedure for the system. The authors in [7] discuss the security threat coming from
cyber attacks and how it will affect the safety performance of the UAVs, and they analyze the Cross-domain
security risk mechanism of UAVs. Furthermore, in [38], the authors propose a new GPS spoofing attack detection
method based on a machine learning algorithm that allows UAVs to detect GPS spoofing attacks. An attacker
implementing GPS spoofing sends fake information either by generating new signals or by altering legitimately
received signals, leading to an inaccurate display of GPS positions of the targeted device [21]. By the same token,
a detection attack using the Bayesian network model has been proposed in [34], authors use their proposed
model to analyze and detect the fake GPS signal data which is injected by the attackers. In the same direction, the
authors in [6] carry out three studies involving GPS attacks in UAVs detecting GPS fraud, counterfeiting GPS on
real UAVs, and implementing security measurements to avoid the attack. In [42], the authors propose an effective
real-time cyber attack detection method using modified sliding innovation sequences (MSIS) detector. Also, in
[47] the authors develop a GP-based approach to estimate the unknown disturbance and propose an approach to
adapt the system performance (i.e., speed) along the planned trajectory based on environmental constraints and
the GP-based estimation and to dynamically update the GP model.
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These results have motivated further research efforts on studying problems of adversarial attacks on UAVs. The
adversarial training and defensive distillation methods are evaluated and discussed in [32]. The authors in [33]
propose two adversarial attack methods based on forward derivative and optimization to conduct adversarial
attacks against DL-based navigation systems of UAVs. To the best of our knowledge, prior work has not taken
into account the impact of the cyber-physical attack on the path planning of the UAV and how it affects the entire
flight mission of the UAV by sending wrong information to the GBS on the location of the UAV. Furthermore,
in many cases, it can cause a real danger to the entire mechanism and the components of the autopilot system,
which controls the movement of the UAV.

To address this challenge, we propose an efficient approach to detect and recover the UAV path planning
under cyber-physical attacks on the GPS, knowing that the UAV is equipped with a detector. Attack detection
occurs when the UAV loses connectivity with the nearest ground base station (GBS). By injecting false data, the
attack diverts the UAV from following its planned path and dictates it to follow a different path. In addition,
the GBS loses track of the UAV information such as the coordinates at a certain time and location. We design a
new detection and estimation architecture based on two steps. Firstly, we estimate the UAV location under GPS
attack using received signal strength (RSS) based trilateration. Secondly, we develop a procedure of resilience to
permanent faults method based on the artificial potential field (RCA-APF) algorithm.
In essence, the RCA-APF algorithm is a specific method that handles both GPS permanent fault detection

and estimated UAV path planning. Such an algorithm can be developed based on feeding the system with the
coordinates of the UAV during its flight from an initial to a final location. To be specific, our method is applicable
to deal with compromised sensor measurements caused by faults and false data injection. In this sense, detection,
and estimation are presented as cause and effect in this paper. Finally, we evaluate our design by conducting
simulation-based experiments which demonstrate the performance of the proposed approach.

Particularly, the RCA-APF algorithm, while indeed serving as an obstacle avoidance mechanism, is intrinsically
designed to complement our system’s resilience to GPS permanent fault. In scenarios where GPS fault might
mislead the UAV path into hazardous zones, the RCA-APF algorithm serves as a critical layer of defense. It enables
the UAV to make context-aware decisions, avoiding obstacles that might not be evident through compromised
GPS data. In addition, the RCA-APF algorithm works in collaboration with our RSS trilateration technique.
While RSS trilateration provides accurate localization in the absence of reliable GPS data, RCA-APF ensures safe
navigation through potential threats, forming a comprehensive solution to GPS faults.
Regarding the advantages of RCA-APF over traditional APF algorithms, we have identified several key im-

provements:

• Unlike traditional APF algorithms [13], which have static response behaviors, our RCA-APF algorithm
adapts its response based on the context, such as the proximity and size of obstacles and the severity of
GPS fault.

• Our algorithm demonstrates superior robustness in dynamic and unpredictable environments, a common
challenge for the UAV, especially in GPS-compromised scenarios.

The rest of the paper is organized as follows. Section 2 presents the design overview and the system model.
Section 3 introduces the UAV cyber-physical system and the threat model. Section 4 describes the UAV cyber-
physical system approach. Section 5 demonstrates the simulation results. Finally, Section 6 concludes the paper.

2 PRELIMINARIES AND DESIGN OVERVIEW
In this section, we delineate the system model, illustrating the trajectory of each UAV as it navigates from a
starting point to its destination. We detail the communication channel model between UAVs and Ground-Based
Stations (GBSs).
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2.1 System Model
In this work, we consider a graphical area with a 3� Cartesian coordinate system, where the horizontal coordinate
of a ground base station (GBS) : is fixed at,: = [G: , ~: ]. The UAV communicates with each of the ground
base stations with time length ) . All UAVs are assumed to fly at an altitude of �D above the ground, and the
time-varying horizontal coordinate of the UAV at time instant C is denoted by Lu = [GD (C), ~D (C)]. In this model,
potential permanent faults on the UAV path planning can be introduced, as shown in Figure 1. Also, we assume
that each UAV starts from a fixed initial location Ls = [GB , ~B ], and aims to reach the destination/goal Lg = [G6, ~6].
Also, we assume that the fixed obstacles are randomly distributed and the location of the obstacle 9 is denoted by
Lo = [G 9 , ~ 9 ].
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Fig. 1. UAVs attack system model.

2.2 Channel Model between UAV and GBS
The communication link between a UAV and the :Cℎ GBS is typically dominated by line-of-sight (LOS) [49]. The
LOS probability is given by

%!$( =
1

1 + 04G? (−1 (0A2C0= ℎ
38

− 0))
. (1)

where 0 and 1 are constant values depending on the environment. The relative NLOS probability is %#!$( =

1−%!$( . The UAV exchanges data packets with the GBS, assuming that all GBS locations are known. The distance
from the 8Cℎ UAV to the :Cℎ GBS at time C is given by

3: (C) =
√
� 2
D + (G8 (C) − G: )2 + (~8 (C) − ~: )2. (2)

Similarly, the distance from the 8Cℎ UAV to the 9Cℎ obstacle at time C is given by

3 9 (C) =
√
� 2
D + (G8 (C) − G 9 )2 + (~8 (C) − ~ 9 )2 . (3)
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3 UAV CYBER-PHYSICAL SYSTEM AND THREAT MODEL

3.1 System Model of UAVs Wireless Networks
UAVs are drones or aircraft that can fly without the need for a pilot on board. Also, UAVs are equipped with many
essential components such as the flight control unit, sensor payloads, and wireless communications module. In
addition, reliable and very high-speed wireless communication networks are required for the UAV to execute its
flying mission successfully. The payload sensors are equipped with onboard sensors and GPS modules for position
and navigation purposes. The communication module includes a high-speed wireless interface and antennas to
transmit and receive control signals and data. There are mainly two types of radio communications that occur
in a typical UAV-assisted communication network; UAV-to-UAV and the communication between UAV to the
nearest GBS. Moreover, network communication plays an important role to ensure smooth wireless networking
and uninterrupted services. The integrated system of the UAV works by collecting data, exchanging information,
making decisions, and eventually executing those decisions [10].

3.2 Cyber-Physical System Architecture of UAV
We consider that a single UAV is used to execute complex missions. During these missions, the UAV communicates
with the GBS through the uplink and downlink channels. Moreover, the onboard GPS sensor in the cyber-physical
system architecture plays an essential role in cooperating and achieving efficient coordination. In addition, the
GPS sensor helps the UAV with mission allocation and monitors path planning in addition to exchanging the
data between the UAV and the nearest GBS.
In this paper, we focus on the GPS permanent faults in cyber-physical systems. It is important to have an

attack detector deployed on the UAV to maintain the safety of the system [11, 18, 51]. Additionally, the attack
detector should be computing-efficient due to the limited resources on the UAV in real-time scenarios. Usually,
the attack detector monitors the data streams from the sensors to check whether there is a statistically abnormal
signal [17, 51]. For example, CUSUM-based methods can be applied onboard at the UAV to monitor the residuals
between the sensor measurements and estimation over a time window [17]. Figure 2 depicts the UAV hardware
components within the cyber-physical system architecture. Notably, the GPS sensor of the UAV emerges as an
appealing target for potential attackers, posing a significant risk of system damage. The errors in the GPS readings
affect the movements of the UAV. These errors instruct the UAV to follow a specific path. In other words, the
GPS permanent faults divert the UAV to an arbitrary location of the attacker’s choosing. It is worth noting that
the UAV is equipped with an onboard detector. This onboard attack detector is further used to estimate the UAV
position when the attacker caused the permanent fault for the UAV-GPS sensor. Figure 3 illustrates the primary
sensors mounted on the UAV, which include the onboard attack detection system, the GPS sensor, and the camera
sensor.

3.3 Cyber-Physical Attack to UAV and Threat Model
In general, a cyber-physical attack can target each of the components of any cyber-physical system. Indeed, UAV
security threats should be analyzed from the perspective of a new type of attack, which dismantles the physical
operation of the UAV. Moreover, sensors are critical components for the UAV to receive data about itself and the
surrounding environment. Essentially, UAVs rely on the collaboration of various sensors, including GPS. With
this crucial sensor, UAV can obtain the obstacle’s location, altitude, and other important information related to
the flight mission, for the safe and successful completion of a task. Additionally, the GPS sensor provides the
necessary data to make sure the UAV reaches its final destination. However, false data leads the UAV to make the
wrong decision, affecting flight safety and reliability. It can further cause a catastrophic crash. Therefore, sensor
attacks have been categorized as one of the most critical threats in cyber-physical attacks.
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Fig. 2. Cyber-physical system architecture.

ThreatModel. In this work, our attention is centered on the physical mechanisms of Unmanned Aerial Vehicles
(UAVs). Specifically, we explore the strategies for path planning in scenarios where UAVs encounter persistent
GPS sensor malfunctions. In addition, false GPS data alters the real data by compromising the integrity and
availability of the GPS sensor measurements. The wrong readings modify the GPS sensor data and feed it into the
system, making it unreliable, and thus the estimated state based on the sensor measurements becomes corrupted
and untrustworthy.
For example, the value r(t) can be set to be r̃(t) ± e by an attack, where e is the perturbation/modification

value. Another attack scenario can be realized by the attacker through delay of the data sent to the GPS sensor, i.e.,
r(t) = r̃(t0) for a time period of T where t0 is the start time of the attack, and then r(t) = r̃(t − T) for t ≥ t0 + T.

GPS Sensor Spoofing/Jamming.The UAV depends on the GPS signals received and processed by the onboard
GPS receiver. GPS spoofing attack is the most common attack form where the attackers take control of the UAV
by transmitting signals from the satellites to the target UAV. Compared with the spoofing attacks, GPS jamming is
more implemented GPS sensor spoofing attacks are directed toward onboard sensors that depend on the outside
environment. The goal of this attack is to destabilize UAVs by compromising the sensor by injecting false data.
Some attacks try to steal information through security holes of communication links in the system while others
aim to spoof sensors, such as GPS spoofing. Therefore, successful attacks will lead to serious consequences [8].
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Fig. 3. The hardware components of the UAV.

Another example that can be related to the spoofing attack, is to develop acoustic injection attacks on MEMS
accelerometers [35].
False GPS Sensor Data InjectionThe UAV can be forced to respond to false signals as a result of the GPS

sensor attack, and it can completely disrupt its navigation system and mislead the UAV from achieving its goal [14].
Fake GPS sensor data injection targets onboard GPS sensing components such as accelerometers and actuators
that are dependent on sensing external environment conditions. Authors in [16] took the UAVs navigation as
the example and modeled it as a stochastic liner CPS system with the Gaussian noise. The purpose of these
permanent faults is to destabilize UAVs by compromising a collection of sensors such as GPS and introducing
falsified readings into the flight controller, hence jeopardizing the control system and the flight mission of the
UAV [25].

4 UAV CYBER-PHYSICAL SYSTEM
The physical state of the UAV path planning under GPS permanent faults is addressed in this section. It contains
physical and cyber components including computation, communication, and on-board sensors. Figure 2 depicts
the data flows that begin with the UAV-GPS sensor, which communicates the original data from the UAV to the
nearest GBS. Computation modules, analyze and make decisions based on all the acquired information. In our
case, the onboard UAV-GPS sensor records all the decisions that the UAV makes. For example, the UAV flies
from an initial location following the path plan and at a specific time, the GPS sensor starts being disabled and
compromised due to faults. After a short delay, as shown in Figure 4.
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Fig. 4. The Path planning framework of the UAV at different scenarios.

The system architecture of the UAV includes the GPS procedure based on two main steps. Firstly, the UAV
localization method was introduced using the received signal strength trilateration approach, and then we
implemented the resilience to GPS permanent fault artificial potential field algorithm (RCA-APF). In other words,
the UAV generates the path plan in the environment with randomly distributed obstacles, where the UAV flies
from an initial position to the final destination while it communicates with the GBSs. Due to the GPS false
readings, the UAV loses its connectivity with the GBSs. Therefore, location estimation for the UAV is obtained
using the received signal strength trilateration.

4.1 Received Signal Strength Based Trilateration
To estimate the location of the UAV under the GPS attack, we use a geolocation approach based on the received
signal strength (RSS). Essentially, the UAV flies along a trajectory and receives signals from the surrounding
ground base stations (GBSs). The RSS traditional model [40] has been implemented to collect those measurements.
Using the long-distance path loss propagation model [20], [12], the location-related information measurements
are obtained from the RSS, which is generally affected by multi-path effects and NLoS propagation. Furthermore,
the location of the UAV can be ideally determined in 2D space with the use of the three GBSs. In general, the
average received power %: associated with the :th GBS can be modeled in dB form as

%: = %0 − 10U:;>6103: + 4'((,: , : = 1, 2, ..., # , (4)

where %0 is the reference received average power at a reference distance of 1 meter, U= denotes the path loss
exponent, and 4'((,= represents the error of the RSS measurements. Assuming that %0 and U: , : = 1, 2, ...,  are
given, the distance between the UAV and each of the GBSs can be estimated. Therefore, the RSS measurement
model that comes from the :th GBS and received by the UAV can be derived as follows

A'((,: = %: − %0, (5)
@'(( (p: ,w) = −10U:;>6103: , (6)

A'((,: = @'(( (p: ,w) + 4'((,: , : = 1, 2, ..., # . (7)
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where A'((,: denotes the RSS measurement associated with the :Cℎ GBS, @'(( (p: ,w) is a nonlinear function which
contains all necessary information to calculate the location of the UAV, and 4'((,: represents the measurement
error. The main task of RSS-localization is to estimate w based on the obtained {A'((,: } :=1 in (7).
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Fig. 5. RSS values from UAV to GBS.

In Figure 5, we show the RSS measurements from  GBSs at different locations received by the UAV. Typically,
solving nonlinear equations requires the application of nonlinear estimators, which include the nonlinear least
squares (NLS), weighted nonlinear least squares (WNLS), and maximum likelihood (ML) estimators [48]. Based
on the RSS model (7), the cost function of the NLS estimator can be expressed as [9]

&#!( (w) =
 ∑
:=1

(A'((,: − @'(( (p: ,w))2

= (r − q(w))) (r − q(w)), (8)

where r = [A'((,1, ..., A'((, ]) and q(w) = [@(p1,w), ..., @(pK,w)]) . The solution of NLS estimator corresponds to
the estimated location ŵ that minimizes the cost function (8), i.e.,

ŵ = argmin
F
&#!( (w). (9)

The NLS estimator does not rely on any assumption about the error statistics. However, when the covariance of
the error vector w = [41, ..., 4 ]) is available, we can obtain the WNLS estimator, which can be expressed as [28]

ŵ = argmin
F
&,#!( (w)

= argmin
F

(r − q(w)))C−1 (e)(r − q(w)), (10)

where C(e) = E[eeT] represents the covariance of e, and E[.] denotes the expectation operation. In addition,
when error probability distribution %4 (e) is known, the ML estimator can be used for location estimation [4],[5]

ŵ = argmin
F
&"! (w)

= argmin
F

log %4 (e) (r − q(w)). (11)
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The errors follow the zero-mean Gaussian distribution, and the WNLS and ML estimators have the same
performance. To solve the optimization problems in (9), (10), (11), several approaches exist. For instance, grid
search is a reliable method to find the point ŵ that minimizes the objective function & .
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Fig. 6. The map elements of the system.

Moreover, the main advantage of RSS-based localization lies in that time synchronization among different
GBSs is not required and RSS measurements are readily available in almost all practical wireless systems. On
the other hand, the main drawback of RSS-based approaches is the poor localization accuracy. Also, RSS-based
distance estimation can be challenged due to the unpredictable variations of the channel behavior. However, due
to inaccuracy in the RSS localization, we consider a larger obstacle to covering the issue, as shown in Figure 6.
RSS-based Trilateration.
Trilateration determines the location of the UAV under attack using distance-related signal measurements for

multiple GBSs. In other words, the UAV would be located at the intersection of the three circles with the centers
being the locations of the GBSs and radii equal to the distances from the UAV to each of the GBSs. The locations of
the GBSs are known and their distances to the UAV can be determined based on the RSS measurements [15, 43–45].
Furthermore, the RSS measurements from all GBSs are calculated and then converted into distances. Based on
this distance, the system trilaterates the UAV location as illustrated in Figure 7. The trilateration method uses RSS
measurement values to calculate the distance between the UAV and GBSs. The location of the UAV [GD, ~D] needs
to be computed, then the formulated circles are calculated using mathematical computations. Assuming I = 0
and to simplify the calculations, the equations are formulated so that the intersection of circles occurs at the
Cartesian plane. The equation for each circle can be expressed as [27]

(GD − G: )2 + (~D − ~: )2 = 32: . (12)

where (G: , ~: ) denotes the location of the :th GBS.
The intersection of three circles is obtained by solving systems of linear equations for two variables simultane-

ously. Hence, by solving the linear systems, the location of [GD, ~D] can be determined. The accuracy of coordinate
[GD, ~D] depends on the measurement of RSS values.
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4.2 UAV Estimated Location Based On Three GBSs
Given the three GBSs coordinates,1 = [G1, ~1],,2 = [G2, ~2],,3 = [G3, ~3] and the distance measurements 31,
32, and 33 as shown in Figure 7. The UAV coordinates !D = [GD, ~D] can be calculated by finding the solution to
the following system of quadratic equations: [23]

(GD − G1)2 + (~D − ~1)2 = 321 (13)

(GD − G2)2 + (~D − ~2)2 = 322 (14)

(GD − G3)2 + (~D − ~3)2 = 323 (15)

Equations (13), (14), and (15) can be rearranged and represented in matrix as:
1 −2G1 −2~1
1 −2G2 −2~2
1 −2G3 −2~3



G2 + ~2
G

~

 =

321 − G21 − ~21
322 − G22 − ~22
323 − G23 − ~23

 (16)

Thus, (16) is the matrix equation and which can be written as:

A0.x = b0; x ∈ � = {(G0, G1, G2, G3)) ∈ R4 : G0 = G
2
1 + G22 + G23} (17)

The UAV flies each time step updating its coordinate at different locations. Therefore, equation (17) does not lie
on a straight line and the solution can be given by:

x1 = xk + C1xi (18)
x2 = xk + C2xi (19)

where C1 and C2 are real parameters that can be calculated using a quadratic equation C1,2 = −1±
√
12−402
20 . G: and G8

are the particular and homogeneous solutions, respectively. The solution for the trilateration estimation values
for the UAV based on three GBSs locations is given by

*�+1 = x1.I *�+2 = x2.I. Fℎ4A4 I =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (20)
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4.3 RCA-APF Algorithm
Artificial Field Algorithm.The Artificial Potential Field (APF) method offers a straightforward yet efficient
technique for the motion planning of unmanned vehicles. The APF algorithm is capable of encapsulating compre-
hensive environmental data, including obstacles, the destination, and other entities within the vicinity. Our focus
is on a solitary UAV navigating towards a target point within a three-dimensional space, assuming a relatively
uncomplicated setting characterized by a singular objective and several obstacles. To address the issue of local
minima, we employ the strategy outlined in [46], incorporating extra terms for the attractive potential field and
adjusting the potential field configuration to ensure the UAV circumvents any halt between obstacles and the
target. The UAV navigates along the horizontal plane, maintaining a 2D position denoted as LD = [GD (C), ~D (C)])
at any time C . The destination is stationary, located at L6 = [G6, ~6]) . Consequently, the attractive potential
function for a single UAV is defined as per [30].

�0CC (LD) = @0CC
(LD − Lg)2

2
. (21)

The single UAV case is similar to the attractive potential function of the traditional APF. The attractive force of
the UAV �0CC (LD) is the negative gradient of the attractive potential function given as

�0CC (LD) = −∇�0CC (LD) = −@0CC (LD − Lg). (22)

The additional field function helps the UAV to avoid the local minimum point by pulling it toward the target. The
additional field force �033 (LD) is given by [46]

�033 (LD) =

@033

2

[
(Lu − Lg) − padd

]2
, ‖ Lu − Lg ‖≤ padd ,

0 , ‖ Lu − Lg ‖> padd .
(23)

where @033 is the additional field coefficient, ‖ Lu − Lg ‖ is the distance between the UAV and the goal, padd is
the impact of the field on the distance between the UAV and the goal.
The additional field force �033 (LD) is represented as follows:

�033 (Lu) = −∇[�033 (Lu)] =

@033

[
(Lu − Lg) − padd

]
, ‖ Lu − Lg ‖≤ padd ,

0 , ‖ Lu − Lg ‖> padd .
(24)

The modified repulsive potential function, which takes the relative distance between the UAV and the target
into consideration is given as

�A4? (Lu) =

@A4?

2

(
1

Lu − L0
− 1
p0

)2
, ‖ Lu − L0 ‖≤ p0 ,

0 , ‖ Lu − L0 ‖> p0 .
(25)

The repulsion force function �A4? (Lu) for the single UAV is given by

�A4? (Lu) = −∇[�A4? (Lu)] =

@A4? (

1
Lu − L0

− 1
p0

) 1
(Lu − L0)2

, ‖ Lu − L0 ‖≤ p0 ,

0 , ‖ Lu − L0 ‖> p0 .
(26)
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As demonstrated in equations (25) and (26), the formulations closely mirror the original APF. The pivotal
modification lies in the introduction of an extra force, ensuring the UAV’s evasion of local minimum points. The
complete potential field encountered by the UAV at each step can be expressed as follows:

�Lu =

8∑
A=1

�A4? (A ) +
C∑
;=1

[�0CC (;) + �033 (;)] (27)

where 8 is the number of obstacles, and C is the number of the goals. Similarly, the total force that affects the UAV
and applies to multiple targets and obstacles is given as follows:

�Lu =

8∑
A=1

�A4? (A ) +
C∑
;=1

[�0CC (;) + �033 (;)] . (28)

There are other factors that can affect the performance of the RCA-APF algorithm.
Drawing from the equations outlined in the preceding section, we have devised an iterative algorithm to

determine the optimal UAV trajectory using the RCA-APF method. At each iteration, the UAV computes the
attractive and repulsive potential field functions, thereby gathering essential data regarding the location of the
target, obstacles, and Ground-Based Stations (GBS). Within a compact grid of size [B × B], the UAV deliberates its
subsequent maneuver. The operational geographic expanse of our system is demarcated as [" × / ].
The UAV is equipped with a repertoire of eight possible movements to navigate from its starting point to the

intended target. The matrix’s rows and columns correspond to the UAV’s GD and ~D coordinates, respectively. The
intricacies of the algorithm are encapsulated in Algorithm 1. It is important to note that this algorithm evolves
from the conventional APF algorithm.

4.4 Algorithm Description
Based on the equations in the previous sections, we construct an iterative RCA-APF algorithm for the best UAV
path planning. Initially, we calculate the UAV path planning using a modified version of the traditional artificial
potential field algorithm. Specifically, at every move of its journey, the UAV actively computes the attractive and
repulsive potential field functions. This process enables the UAV to assimilate critical data regarding the positions
of the target, any obstacles in the vicinity, and Ground-Based Stations (GBSs). Operating within a confined
grid space measured at [@ × @], the UAV assesses and selects its forthcoming course of action. The system’s
operational terrain is designated as [" × / ]. From the onset of its mission, the UAV is presented with a selection
of eight directional choices to navigate towards its ultimate goal. At this point of the RCA-APF algorithm, the
UAV coordinates (GD, ~D) will get calculated and updated for the next iterative loop. The UAV coordinates will be
constructed as a matrix representing GD values for the rows and~D values for the column, respectively. We calculat
the UAV positions at each time step and we use the trilateration estimation localization technique to estimate the
location of the UAV. The implementation of the trilateration algorithm is combined with the RCA-APF algorithm.
For the fixed coordinate values of each of the GBSs, we calculated the distances from the UAV at each time step
to the GBSs. In addition, we computed the received signal strength between UAV and GBSs. From the measured
distances for each GBS, the algorithm finds the coordinates that minimize the error function and returns the most
optimal solution of the estimated location coordinates (GD4B , ~D4B ) of the UAV. The specifics of the algorithm are
concisely explained in Algorithm 1. It is noteworthy to mention that this algorithm evolves from the conventional
Artificial Potential Field (APF) algorithm. The path planning is computed to be used as a reference to the UAV
simulator. In the final iteration of the RCA-APF algorithm, we applied both calculated and estimated coordinates
of the UAV as input to an open-source UAV simulator implementing UAV path planning scenarios. The UAV
simulator is based on Python Dynamics, which is a toolkit made to enable the study of multibody dynamics. The
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Algorithm 1: RCA-APF Algorithm for single UAV
Input: For given position of initial location Ls, position of final location Lg, position of GBS,: , position

of obstacles Lo, the attraction gain coefficient @0CC , the repulsive gain coefficient @A4? , additional
field coefficient @033 , the UAV height �D , RSS-based Trilateration measurement values

Output: path planning of the UAV V
for j = 1 : J do

for s = 1 : S do
calculate equation (21), (23) and (25) for given input
calculate the total force potential field (28)
while 3: (C), 3 9 (C) ≥ [@ × @] do

for each UAV step do
Update GD (C) and ~D (C)
if GD (C), ~D (C) < 0 or GD (C), ~D (C) > [" × / ] then

Break;
Update UAV coordinate GD (C) and ~D (C) ;

end
end
if the UAV have reached the final location Zg then

Break ;
end
return xu, ~u ;
for i = 1 : I do

each UAV (xu, ~u) step; calculate distances using equations (13), (14), and (15)
calculate the RSS values (7)
for each UAV RSS value do

calculate UAV estimated value (xues, ~ues) equation (11)
end

end
return xues, ~ues

for calculated inputs (xu, ~u) and (xues, ~ues) start to implement the path planning using an
open-source simulator

end
return V

simulator is built on multiple packages. The main functionality of the UAV simulator is to initialize the UAV with
various parameters and conditions. Also, the simulator includes a control algorithm that is strongly inspired by
the PX4 multicopter control algorithm. It is a cascade controller, where the position error (difference between the
desired position and the current position) generates a velocity setpoint, the velocity error then creates a desired
thrust magnitude and orientation, which is then interpreted as a desired rotation (expressed as a quaternion).
Figure 8, depicts the workflow of the proposed RCA-APF algorithm.

5 SIMULATION RESULTS AND ANALYSIS
In this section, we show the UAV’s behavior with GPS permanent faults and the effectiveness of the pro-
posed algorithm by conducting experiments and simulations on different path planning of the UVA at different
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Fig. 8. Architecture of the proposed approach.

environment setups. Also, we consider the UAV communicates with the nearest GBS to receive all the information
about the current location of the UAV at each time step.

To illustrate the concepts and the algorithm discussed in this paper, we present and show simulation results to
demonstrate how the RCA-APF algorithm operates. We conduct multiple experiments and set up the appropriate
values for the parameters. To facilitate the simulation, the UAV is set to fly at a known altitude, which is fixed
throughout the entire simulation. We run the simulation using an open-source UAV simulator. Also, we provide
2D plan implementation of the UAV path planning. In the simulations, the UAV path is generated based on an
input to the UAV simulator, v ≤ 5</B , and flight altitude is 60<. In addition, the time flying off the UAV varies
based on the path planning time delay. We have further explained the robustness of our UAV path-planning
algorithm, particularly focusing on its obstacle avoidance capabilities, which, alongside permanent fault detection
and recovery, stands as one of its primary functionalities. To this end, we have designed and executed several
additional experiments under a variety of environmental conditions. The outcomes of these experiments are
comprehensively detailed in Table 1.

Table 1 shows the success rates of UAVmissions conducted across various scenarios, each uniquely characterized
by a varying number of obstacles while maintaining a constant configuration of three Ground Base Stations
(GBSs). The presence of three GBSs across all scenarios is a strategic choice, reflecting a realistic density of
navigational aids that a UAVmight typically have access to. Moreover, we define the success rate as the proportion
of missions in which the UAV successfully navigates to its intended destination without incurring collisions or
deviating significantly from its planned trajectory. To ensure the reliability and accuracy of our success rate, we
ran our algorithm to a rigorous testing protocol, executing the experiment a total of 100 times for each obstacle
scenario. Upon analyzing the data, we observed a clear trend: as the number of obstacles increased, the success
rate tended to decrease. This was expected, as more obstacles present a greater navigational challenge.

In Figure 9, we demonstrate a 2D path planning design of a single UAV. The UAV flies from an initial location
to its final destination with obstacle collision avoidance integrated into the system. The obstacles are generated
in a way that fits with the setup framework. Furthermore, the framework includes the GBSs located at fixed
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Number of obstacles Number of GBSs Number of Iteration Success Rate

10 3 100 98%
25 3 100 85%
50 3 100 74.5%
75 3 100 60%
100 3 100 50%

Table 1. Success/Failure Rates of the UAV.

0 20 40 60 80 100 120

X-axis distance [m]

0

20

40

60

80

100

120

Y-
ax

is 
di

st
an

ce
 [m

]

Real UAV Trajectory
Obstacles
Goal
GBSs
Initial location

0 20 40 60 80 100 120

X-axis distance [m]

0

20

40

60

80

100

120

Y-
ax

is 
di

st
an

ce
 [m

]

Real UAV Trajectory
Obstacles
Goal
GBSs
Initial location

Fig. 9. The path planning of the UAV with a different number of obstacles.

positions to maintain connectivity with the UAV during the mission. The figures show a different number of
obstacles. Indeed, the obstacles are randomly distributed with mean and variance. We run the experiment with 25
and 75 obstacles. In an environment with more obstacles, the UAV has failed to reach the final location. Indeed,
the obstacles are randomly distributed with mean ` = 0and variance f = 0.01.

In Figure 10, we illustrate two distinct scenarios of UAV path-planning. These scenarios compare the actual UAV
path planning with a trajectory estimated using the RSS-trilateration method. Specifically, Figure 10 (a) depicts
the intended UAV trajectory in blue, while the estimated trajectory derived from RSS-trilateration is shown in
red. The comparison demonstrates the efficacy of the RSS-trilateration estimation algorithm, as it closely mirrors
the desired trajectory.
Extending this analysis to Figure 10 (b), we observe a scenario where, despite the UAV’s inability to reach its

final destination, the RSS-trilateration estimation remains accurate and reliable. This is evidenced by the red
trajectory, which is based on RSS-trilateration, closely following the actual path taken by the UAV until its early
termination. The consistency of the RSS-trilateration algorithm’s performance in both scenarios underscores its
robustness and potential applicability in real-world UAV navigation systems.

5.1 UAV Simulator
To validate our results, we used an open-sourceQuadcopter simulator. In that simulator, we implemented a simple
scenario with a single UAV flying from the initial location to the final destination. The Quadcopter simulator
provides a simple working simulation of the quadcopter’s dynamics and a simple controller that can handle
position control and supports minimum snap (but also minimum velocity, acceleration, and jerk) trajectory

ACM Trans. Cyber-Phys. Syst.

 



Path Planning for UAVs Under GPS Permanent Faults • 17

20 30 40 50 60 70 80 90 100 110 120

X-axis distance [m]
(a)

10

20

30

40

50

60

70

80

90

Y-
ax

is 
di

st
an

ce
 [m

]

Real UAV Trajectory
Estimate UAV Trajectory
Goal

20 30 40 50 60 70 80 90 100 110 120

X-axis distance [m]
(b)

10

20

30

40

50

60

70

80

90

Y-
ax

is 
di

st
an

ce
 [m

]

Real UAV Trajectory
Estimate UAV Trajectory
Goal

Fig. 10. The path planning of the UAV with the estimated path planning.

generation. The UAV’s orientation is based on two frames: the first one is the - direction North, . East, and /
Down. The second frame is the - direction East, . North, and / Up. Also, the simulator uses the quaternion for
the UAV’s rotation. Different trajectories can be selected, for both position and heading. Using the simulator, we
can set the desired position and heading waypoints, and the time for each waypoint. We can select to use each
waypoint as a step, interpolate between waypoints, or generate a minimum velocity, acceleration, jerk, or snap
trajectory. The controller of the Quadcopter simulator is the most critical part. There are three controllers: one to
control XYZ positions, one to control XY velocities and Z position, and one to control XYZ velocities. In all 3
current controllers, it is also possible to set a Yaw angle (heading) setpoint. The control algorithm is strongly
inspired by the PX4 multicopter control algorithm. It is a cascade controller, where the position error (difference
between the desired position and the current position) generates a velocity setpoint, the velocity error then
creates a desired thrust magnitude and orientation, which is then interpreted as a desired rotation (expressed as a
quaternion). The source code is available at https://github.com/bobzwik/Quadcopter_SimCon.

It should be noted that the UAV encounters a certain delay in detecting attacks, a critical metric that is essential
for assessing the effectiveness of our system. We have conducted additional experiments to measure this delay,
which is the time duration from the initial data point of an attack being observed to the point where our system
successfully identifies the attack. Particularly, we utilized an open-source simulation tool to implement and
test the attack/recovery scenario. It is important to note that the delay in attack detection observed in these
simulations is influenced by the performance capabilities of the computing device, particularly the GPU and CPU
specifications. To provide a more thorough insight into this aspect, for each system, we executed the simulation
10 times to ensure statistical reliability and to mitigate any anomalies or outliers in the data. After each run, we
meticulously recorded the time taken by the attack detection mechanism to identify the breach. This process
involved measuring the interval from the initial indication of an attack to the point where our system successfully
recognized and flagged the anomaly. Below, Table 2 summarizes the results of these experiments:

Processor GPU Specs CPU Specs Average attack detection delay

Intel Core i9 Intel UHD Graphics 630 2.4 GHz 8-core 16.32 sec
Apple M1 Max Integrated Apple GPU 10-core CPU 10.45 sec

Table 2. Attack delay table.
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The modeling of our attack detector is intricately designed around the RCA-APF algorithm. This setup encom-
passes a comprehensive environment configuration, precise parameter tuning, and a realistic representation of
potential obstacles. Utilizing an open-source simulator, we have meticulously adapted and fine-tuned various
parameters to accurately replicate scenarios where a UAV deviates from its intended flight path due to an external
attack. In these simulated scenarios, the attack detector is integrated into the UAV’s system. Its primary role
is to promptly identify any form of attack that causes trajectory deviation. The moment an attack-induced
diversion is detected, our RCA-APF algorithm is triggered to initiate an immediate recovery process. This process
is designed to swiftly reorient the UAV back to its original course, thereby mitigating the impact of the attack.
Our modifications to the simulator parameters include adjustments to the UAV’s response sensitivity to external
disruptions, the threshold levels for attack detection, and the dynamic recalibration of the UAV’s pathfinding
algorithms post-attack detection. These enhancements enable us to simulate with high fidelity the UAV’s behavior
under attack conditions and to rigorously test the efficacy of our attack detection and recovery mechanism. This
comprehensive setup not only demonstrates the robustness of our attack detector in identifying and responding
to trajectory deviations but also underscores the effectiveness of the RCA-APF algorithm in ensuring the UAV’s
swift return to its intended path post-attack.

In our experiments, the implementation of the attack detector, based on the RCA-APF algorithm, was conducted
in a controlled simulation environment designed to mimic real-world UAV operational scenarios. We utilized a
sophisticated open-source UAV simulator that allowed us to create the attack scenario. This includes a GPS attack,
which could potentially divert the UAV from its intended path. In addition, the attack detector was integrated
into the UAV’s onboard system within the simulator. This integration was crucial to ensure that the detector
had access to real-time flight data, including the UAV coordinates, flight speed, and trajectory information. Also,
we configured specific parameters within the simulator to define the attack detection threshold. This involved
setting up conditions under which the UAV would be considered under attack, such as sudden deviations from
the planned path. Following the detection of an attack, our RCA-APF algorithm was automatically activated. This
algorithm then recalculated the optimal path to ensure the UAV returned to its original trajectory. Throughout
the experiments, data was collected on the response time of the attack detector, the accuracy of attack detection,
and the effectiveness of the recovery path. This data was crucial for evaluating the performance of our system
under various parameters. The experiments were conducted iteratively, allowing us to refine the attack detection
parameters and recovery algorithms based on the outcomes of each test. This iterative process was key to
enhancing the robustness and reliability of our system.
In Figure 11, we present an overhead view of a 3D path planning simulation for a UAV navigating in an

environment with obstacles. This simulation is derived from an enhanced version of the original Quadcopter
Simulation and Control program, to which we have integrated a reference UAV path planning algorithm with no
attack. The modifications enable the simulator to generate a realistic depiction of the UAV’s trajectory based on
the provided input parameters.

Specifically, Figure 11 demonstrates the UAV’s path planning capabilities in an attack-free scenario. This allows
us to observe the UAV’s trajectory as it smoothly progresses from its initial location to the intended destination,
strictly adhering to the pre-calculated trajectory determined by our algorithm. The simulation, conducted in
such an idealized setting, serves as a benchmark for evaluating the UAV’s navigational proficiency and the path
planning algorithm’s efficacy under optimal conditions. In addition, the simulation results depicted in Figure 11
not only demonstrate the UAV’s adherence to the predefined trajectory but also underscore the precision and
robustness of our path planning algorithm. It is evident from the UAV’s flight pattern that the trajectory is
followed with remarkable accuracy, highlighting the algorithm’s capability to navigate with minimal deviation
from the set course. This fidelity to the planned route is indicative of the algorithm’s sophisticated design, which
accounts for various flight dynamics and environmental factors to ensure a seamless navigation experience.
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Fig. 12. UAV Path planning simulation with (a) attack and no recovery, (b) attack and recovery.

In Figure 12, we show a comparative visual analysis of two scenarios that highlight the resilience and adaptability
of our algorithm in UAV path planning simulations. Figure 12 (a) depicts the UAV’s path when it encounters a
hostile attack and lacks any recovery protocols. This particular depiction serves to illustrate the vulnerability of
the UAV’s trajectory to external disruptions, which can lead to significant deviations from the intended path or,
in some cases, result in the failure to complete the mission. The trajectory shown reveals the extent to which
adversarial interference can compromise the UAV’s operational integrity and underscores the necessity for
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robust countermeasures within the path planning framework. In contrast, Figure 12 (b) illustrates the UAV’s
trajectory under the condition of an external attack, which is initiated at a specific time and location during
the flight. The system is designed to detect such an attack within a brief time frame, triggering the activation
of the recovery protocol embedded within our algorithm. This sequence of events sets the stage for a critical
evaluation of the recovery mechanism’s robustness. The subsequent path of the UAV, as shown in Figure 12 (b),
serves as a testament to the resilience of the recovery protocol. Despite the initial disruption, the UAV is not
only able to detect and respond to the attack but also to recalibrate its course effectively. This realignment with
the pre-planned route is a crucial demonstration of the algorithm’s dynamic response capabilities. The UAV’s
successful navigation back to its intended trajectory and ultimate arrival at the target destination.

Moreover, the UAV’s successful completion of its mission, as shown in the simulation, is proof of the algorithm’s
operational effectiveness.The algorithm’s ability to guide the UAV through its journeywith or without interference
showcases its potential for real-world applications where reliability and precision are paramount. The UAV’s
performance, in this case, reflects awell-synchronized harmony between the algorithm’s theoretical underpinnings
and practical execution, paving the way for its deployment in more complex and dynamic environments.

6 CONCLUSIONS AND FUTURE WORK
As shown in this work, the cyber-physical nature of UAVs demands an extension to the scope of ordinary
vulnerability analysis for such systems. In addition to threats in the computational components such as the GPS
sensor and detectors, a largely overlooked class of vulnerabilities is fostered by the interactions between the
computational systems and electrical and mechanical components. Pondering the list of UAV attacks, we started
to investigate some of these computational threats where we have determined strategies and policies for path
planning of the UAV under GPS performant faults. In the considered setting, we have developed a path planning
procedure based on three stages: firstly, we use the modified artificial potential field algorithm to find the best
path planning of the UAV, which flies in a complex environment with obstacles and GBSs. Secondly, we used
the RSS trilateration localization approach to estimate the location of the UAV under GPS permanent faults. The
RSS trilateration localization measurements helped us to estimate the location of the UAV at every step. Finally,
combining the first two steps, we implemented the RCA-APF algorithm considering a single UAV. Simulation and
experiment results have demonstrated the path-planning conditions under which the UAV can reach its final
destination. Finally, we validate the feasibility of our design using a path-planning UAV simulator. Future work
will show more complex environments including multiple path planning for several UAVs.
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