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Abstract—Safe reinforcement learning (RL) has been recently
employed to train a control policy that maximizes the task reward
while satisfying safety constraints in a simulated secure cyber-
physical environment. However, the vulnerability of safe RL has
been barely studied in an adversarial setting. We argue that
understanding the safety vulnerability of learned control policies
is essential to achieve true safety in the physical world. To fill
this research gap, we first formally define the adversarial safe
RL problem and show that the optimal policies are vulnerable
under observation perturbations. Then, we propose novel safety
violation attacks that induce unsafe behaviors by adversarial
models trained using reversed safety constraints. Finally, both
theoretically and experimentally, we show that our method is
more effective in violating safety than existing adversarial RL
works which just seek to decrease the task reward, instead of
violating safety constraints.

I. INTRODUCTION

Cyber-physical systems (CPS) employ computing and net-

working components to interact with the physical world via

sensors and actuators. Recently, CPS has been starting to

integrate more intelligence that enables promising applications

such as autonomous vehicles, drones, and other robotic sys-

tems [1]. Meanwhile, the increased autonomy comes with new

security and safety issues for CPS [2]–[6].

The great success of deep reinforcement learning (RL) in

recent years has motivated many research efforts that adopt it

to synthesize control policies (i.e. learning-enabled controllers)

for CPS. However, it is challenging to ensure safety when

deploying them to the real-world CPS. Safe RL thus is drawing

much attention, of which the goal is to maximize the task

reward while satisfying safety constraints. There are two major

research threads of safe RL. One thread handles the problem

by solving a constrained optimization, where they rely on

the knowledge of a mathematical model that characterizes

the system dynamics [7]–[10]. The other thread needs no

such knowledge and instead, is guided by a set of formal

specifications using linear temporal logic (LTL) [11] or signal

temporal logic (STL) [12].

Both research threads above take advantage of the power of

neural networks. However, neural networks have been shown

to be vulnerable to adversarial attacks, i.e. a small perturbation

of the input may cause the output to vary drastically [13].

This may cause safety violations when deploying a neural

network RL control policy to CPS. On the one hand, existing

safe RL methods work well to respect safety constraints in

simulated secure environments, but their vulnerability has been

* denotes equal contribution.

barely studied under adversarial perturbations. We consider an

adversarial setting where the observation perturbations come

from the physical world such as sensing noises and sensor

attacks [14]. We believe that studying the vulnerability of safe

RL in the adversarial setting will be essential to achieving true

safety in the physical world.
On the other hand, existing adversarial RL works are not

suitable to address the vulnerability of safe RL. Their robust-

ness concept and training methods follow standard RL settings,

where attacks of observation perturbations aim to decrease

their rewards as much as possible [15]–[17]. However, safe

RL has an additional dimension that captures the cost of safety

constraint violations. We argue that the cost should be more

critical than the task reward in the safe RL setting because

the constraint violations can cause catastrophic consequences

in real-world CPS. Consider an example where the navigation

task of an autonomous vehicle has the reward as ‘to reach

a target as soon as possible’ and the safety constraint as ‘to

avoid obstacles’ [18]. Existing adversarial RL methods, which

reduce the reward, may cause the vehicle to arrive at the

target late or steer away from the target. However, they do

not necessarily make the vehicles violate the safety constraint,

e.g. to crash into obstacles, which is more critical after all.
Given the research gap, we thus investigate the vulnerability

of safe RL with adversarial observation perturbations. This

paper focuses on the formal specification guided safe RL

and its safety specification (i.e. formally specified safety

constraints) violations. Unlike traditional RL, which relies on

hand-engineered reward functions, formal specification guided

RL automatically transfers task and constraint specifications

to reward and cost functions for policy training. This has

been proved to be effective by recent works such as [19]–

[22]. We aim to address two key questions i) How vulnerable

will a learned control policy be under adversarial observation

perturbations? ii) how to design effective and stealthy attacks

to violate safety specifications? To answer these questions,

we first formally define the adversarial formal specification

guided RL problem and describe how to analyze the safety

vulnerability of a learned control policy. Then, we propose

diverse safety violation attacks that can drift a system to the

unsafe region. We also discuss possible mitigation methods to

address the vulnerability in the end. Our major contributions

are summarized below.

• Targeting signal temporal logic, we formally analyze

the vulnerability of control policies in STL-guided safe

RL and show that the optimal policies of safe RL are
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vulnerable to adversarial observation attacks.

• We propose multiple safety violation attacks that ap-

ply to adversaries with different levels of knowledge

about the system. Our method novelly reverses the STL

specifications to train adversarial models that provide

attackers with observation perturbations to induce unsafe

behaviors. We also present a formal analysis to show

that existing adversarial RL works of minimizing the task

reward do not always work on violating safety.

• We conduct extensive experiments using multiple bench-

marks including the OpenAI Safety Gym. The evaluation

results show that our method is much more effective in

violation safety than existing adversarial RL works while

staying stealthy.

The rest of the paper is organized as follows. Section II

discusses related work. Section III introduces preliminaries.

Section IV defines the problem and proposes safety violation

attacks with theoretical analysis. Section V evaluates the

proposed method. Section VI discusses the limitations of our

work and mitigation. Section VII concludes the paper.

II. RELATED WORK

Safe RL focuses on developing RL algorithms that incor-

porate safety constraints during both the learning and testing

phases. The main objective of Safe RL is to ensure that the

agent’s learning and decision-making processes do not lead to

unsafe or undesirable outcomes. In this section, we discuss

literature related to safe RL, especially STL-guided safe RL.

Furthermore, we also introduce existing works about how to

design adversary attacks to break RL safety.

Temporal logic guided safe RL. Temporal logic provides a

precise and unambiguous expression of the system’s intended

behaviors. Aside from the liveness(something good happens

eventually) properties, the safety(something bad never hap-

pens) constraints can be formed into explicit specifications

and must be strictly adhered to [23]. Donze et al. propose

quantitative semantics to map the degree of the robustness of

an STL specification to a real value [24]. This mapping enables

STL-guided safe RL without the need to manually craft the

reward function. Existing works focus on using STL-guided

RL to complete control tasks such as reach&avoid and achieve

liveness and safety at the same time [18], [21], [25].

Temporal logic offers the capability to tailor safety con-

straints according to scenarios and settings. Liu et al. and

Li et al. form the safety as a specification of not entering

a ball-shaped unsafe set during the navigation to the target

set [18], [25]. Singh et al. define safety as a specification of

not entering an unsafe set which is a conjunction of half-

spaces [21]. Researchers in [19] define safety with formal

specifications and human demonstrations jointly.

Adversary attack on RL. Adversary attack refers to sit-

uations where an external agent (the adversary) intentionally

manipulates the environment or the input data to mislead the

RL agent. Some existing works focus on attacking the obser-

vation space [15], [16], [26]. Researchers of [15] apply the

Fast Gradient Decent method (FGSM) to generate adversarial

observations to mislead the agent. Researchers of [27] apply a

universal perturbation on observation at every step. Zhang et

al. proposed an adversary attack on the observation that causes

maximum action difference [16].

Some other works focus on designing attacks to affect the

rewarding process which provides feedback to the learning

agent in the form of rewards [17], [28]. Pattanaik et al.

propose a method that integrates the information from the

value function and the information from the loss function

to degrade the agent’s performance [17]. Researchers of [28]

propose TrojDRL which generates backdoor attacks for DRL

by taking advantage of hacking the rewards.

It is also important to make the attack stealthy to detectors to

make it adversarial [29], [30]. Liu et al. design a framework to

attack safe RL by maximizing the cost to enlarge the effect and

maximizing the rewards to keep stealthy [29]. Researchers of

[30] propose two attacks utilizing the control and observation

information with predictive models to keep the attack stealthy.

As safety concerns have become increasingly apparent,

[29] is the first study to address attacking safe RL during

the training phase, compromising the obtained control policy.

Our research diverges from this work as we concentrate on

attacking a well-trained safe RL policy and demonstrating its

vulnerability to observation attacks.

III. PRELIMINARIES

This section provides a brief introduction to the preliminary

concepts utilized in the paper. We start with the signal temporal

logic, then define the safe reinforcement learning problem

model by constraint Markov Decision Process and define

formal specification guided RL. Finally, we discuss the threat

model used in the paper.

A. Signal temporal logic

STL serves as a logical framework for expressing temporal

properties concerning signals with real-valued data. STL for-

mulas are defined using Boolean formulas that combine sub-

formulas recursively or through the application of temporal

operators to sub-formulas [24]. In this paper, we consider

the system behavior specified by the STL with the following

fragment:

Φ ::= μ|¬φ|φ ∧ φ|Gφ|Fφ | φ1Uφ2 (1)

where the ∧ and ¬ are logic conjunction and negation. G, F ,

and U are the always, finally, and until operators respectively.

Operators U , G and F can be transformed from each other,

for example Gφ = ¬ (F¬φ) [31].

The STL uses quantitative semantics to compute the robust-

ness value that maps the signal to a real value. The quantitative

semantics functioned by ρ transform the boolean specification

of the STL into a real value that measures how much satis-

faction the system meets the STL formula. A positive value

of the function ρ at time t the system observation st indicates

satisfaction with the specification, whereas a negative value

implies a violation of the system’s specification. We show the
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function ρ in terms of a robustness value as below refer to

[18], [24]:

ρ(s̄t, (f(s̄) < d)) = d− f (st)

ρ(s̄t,¬φ) = −ρ(s̄, φ, t)

ρ (s̄t, φ1 ∧ φ2) = min (ρ (s̄t, φ1) , ρ (s̄t, φ2))

ρ (s̄t, φ1 ∨ φ2) = max (ρ (s̄t, φ1) , ρ (s̄t, φ2))

ρ
(
s̄t, F[t0,t0+T ]φ

)
= max

t∈[t0,t0+T ]
ρ (s̄t, φ)

ρ
(
s̄t, G[t0,t0+T ]φ

)
= min

t∈[t0,t0+T ]
ρ (s̄t, φ)

ρ
(
s̄t, φ1U[t0,t0+T ]φ2

)
= max

t∈[t0,t0+T ]

(
min

(
ρ (s̄t, φ2) , min

t′′∈[t,t′)
ρ (s̄t′′ , φ1)

))

(2)

Where t0 and T are the time that the task starts and the

duration of the task respectively, s̄ is a trajectory containing

continuous system states in discrete time.

B. Safe reinforcement learning

Definition III.1. A Finite Horizon Constraint Markov De-

cision Process (CMDP) is defined as a tuple M :=
(S,U, p, r, c, γ) , where S ⊆ R

n is the state space, U ⊆ R
m

is the action space. p : S × U × S → [0, 1] is the transition

function that represents the probability p (st+1 | st, ut) from

state st to st+1 by taking action ut. r : S×U ×S → R is the

reward function. S×U×S → [0, Cm] is the cost function that

measures the cost once the violating the constraint, where Cm

is the maximum cost. γ ∈ [0, 1] is the discounting parameter.

We suppose that a control problem for a CPS a is a process

of finding an optimal policy π� : S → A that maximizes the

expected cumulative reward and minimizes the total cost:

π� = argmax
π

E
π

T−1∑
t=0

γtr (st, at, st+1) (3)

π� = argmin
π

E
π

T−1∑
t=0

γtc (st, at, st+1) (4)

We use horizon(M) = T as the time horizon that represents

the max execution time steps for the CMDP. Eπ is the expected

reward(cost) returned by π.

In this CPS context, we consider the real state st as

challenging to directly access. Instead, the system’s state is

estimated on sensor observations, which inherently come with

bounded noise. For simplicity, we assume negligible noise in

this paper and henceforth use ”observation” interchangeably

with st.

C. Formal Specification Guided RL

Using formal specification for safe exploration to guide the

RL has been explored. The existing work uses the robustness

value of the quantitative semantics as the reward function.

So the RL problem is to find a policy that maximizes the

robustness value or increases the probability of satisfying the

STL specification. This approach largely reduces the difficulty

of designing specific reward functions in complex tasks or

environments.

In this paper, we focus on safety-critical CPSs characterized

by a pre-defined task objective and multiple safety constraints.

To illustrate, in the case of an autonomous vehicle, the task

objective might be reaching a specific destination eventually,

while the constraints would involve avoiding obstacles. Simi-

larly, in a robot arm control scenario, the controller’s objective

is to control the arm to grab a box while ensuring it doesn’t

collide with any other objects. We consider using STL to

specify the goal and safety constraint. These requirements can

be formally expressed as :

Definition III.2 (Goal). The goal is the set φg of STL

specifications which specify the system’s control objective.

Given the start time t0 and time horizon horizon(φg) = T ,

the system achieves its goal only if the ρ(s̄t, F[t0,t0+T ]φg) > 0

Definition III.3 (Safety constraint). The goal is the set

φc of STL specifications which specify the system’s safety

constraint. Given the start time t0 and time horizon

horizon(φg) = T , the system satisfies the safety constraint

as long as ρ(s̄t, G[t0,t0+T ]φc) > 0

According to the above definition, the STL specification of

such a task with goal and safety constraints can be expressed

as the following:

Φ = F[t0,t0+T ]φg ∧G[t0,t0+T ]φc (5)

Based on the Equation 5, the system is required to satisfy

φg before time t0 + T and also satisfy the safety constraints

specified by φc during the time horizon horizon(Φ) = T .

Then We define an STL-guided safe-RL task which aims

to find the optimal policy π� that maximizes the robustness

degree of the STL specification. The STL specification of the

safe-RL agent is presented as:

Definition III.4. (STL-guided RL) Given an STL specification

Φ = F[t0,t0+T ]φgG[t0,t0+T ]φc with a horizon horizon(Φ) =
T , a CMDP M := (S,A, p, r, c, γ) with unknown p and an

initial state trajectory s0:T , the STL-guided RL problem is

to find a policy π� that maximize the expected cumulative

robustness value of the specified STL specification Φ:

π� = argmax
π

Eπ
T∑

t=0

γtρ(s̄t,Φ) (6)

D. Threat model

In this paper, we consider various scenarios with different

levels of known system knowledge of the adversary. Specifi-

cally, the adversary can access the system’s transition function

p and the control policy π. If the adversary possesses knowl-

edge of the p, the adversary can approximate the subsequent

st+1 of the system given the action and current observation st.
If π is accessible to the adversary, they can derive the action

ut based on the observation st.
Attacker’s knowledge. Regarding the adversary knowl-

edge, we consider three scenarios: (1) White-box attack: The
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attacker has full access to both the system’s control policy and

transition function. (2) Grey-box attack: The attacker knows

either the system’s control policy or transition function. (3)

Black-box attack: The attacker has no access to either.

Attacker’s capability. We assume that the adversary knows

the STL specification Φ used by the system when training the

control policy. The adversary can also access all the sensors

of the system and can modify all the sensor values.

IV. SAFETY VIOLATION ATTACK

In this section, we introduce our framework for adversary

attacks on the STL-guided RL-based control policy. We also

provide the theoretical analysis to prove that our framework

is effective.

A. Problem Formulation

We assume that there is an adversary that maliciously

changes the observation value of the system observation st
to s′t = h(st) where h is the adversary policy. We define

the effectiveness and stealthiness of the adversary problem to

better understand the property of the safety violation attack.

Definition IV.1 (Attack Effectiveness). Given the safety con-

straint φc, start time t0 and time horizon horizon(φc) = T ,

denote the s̄′ as the trajectory of perturbed observation s′t from

t0 to T . the attack is effective if ρ(s̄′, G[t0,t0+T ]φc) < 0.

The effectiveness describes that the adversary’s objective is

to force the system to violate the safety constraint of STL

specification. Then we introduce another metric to measure

the attacker’s stealthiness.

Definition IV.2 (Attack Stealthiness). Denote the s̄′ as the

trajectory of perturbed observation s′t from t0 to T . The

perturbation range is limited within a �
α

-ball around the initial

observation where βε
α(st) := ‖s′t − st‖α ≤ ε and ε is the size

of the perturbation range. Given the manipulated observation

trajectory s̄′ and a perturbation range βε
α(s), the attack is

stealthy if ρ(s̄′t, φg) > ρ(s̄t, φg).

The concept of stealthiness, as defined in previous studies,

takes on various perspectives. For example, [32] characterizes

it as the range of perturbations around the original observation.

On the other hand, for those works focus on the system safety

[33] [34] [35], stealthiness is assessed in systems equipped

with a detector, which implies avoiding detection. The work

by [29] introduces an additional level of stealthiness called

reward stealthiness. They consider the reward stealthiness as

’the agent might easily detect a dramatic reward drop’, which

inspires us that, in the CPS domain, if there is a huge drop

in the robustness of φg , the system may notice the anomaly

behavior and detect there is an adversary.

We add a new dimension of stealthiness within the context

of STL-guided safe RL. The Definition IV.2 considers an

attack as more stealthy if it can maintain the robustness

value of φg from Equation 2 after the attack. Therefore, it

cannot be detected by monitoring the robustness score of

φg . Additionally, we introduce the perturbation set βε
p(s) to

confine s′ within specified bounds, thus delineating that the

perturbation in observation adheres to established standards

of stealthiness, as prior literature [15] [29]. In general, the

problem is that the adversary wants to find the observation

perturbation s′t to force the system to take a malicious action

u′ which minimizes the robustness of the safety specification

ρ(s̄t+1, φc) bounded by the stealthiness.

s′t = argmin
s′t

ρ(s̄t+1, φc)

s.t. ‖ s′t − st ‖α≤ ε

ρ(s̄′t, φg) > ρ(s̄t, φg)

u′
t = π(s′t)

st+1 = p(st, u
′
t)

(7)

While adversary attacks directed at RL-based control have

been extensively researched, our specific problem remains

distinct and relatively unexplored. Previous studies have pri-

marily concentrated on manipulating system observations to

reduce the overall rewards, primarily impacting agent perfor-

mance. These approaches often do not account for the crucial

safety constraints of the system. We denote these methods as

reward(value) decreasing (RD) methods and we show these

methods can’t achieve attack effectiveness.

Theorem IV.1. Suppose there is a RD adversary policy hrd

method manipulates the observation as s′t = st + hrd(st).
The adversary policy hrd cannot guarantee to achieve attack

effectiveness.

We provide proof for the Theorem IV.1 in subsection IV-C.

To address the problem, we propose the Safety Violation
Attack (SVA) framework where the adversary deliberately

forces the system to violate the safety constraint under the

limitation of stealthiness.

B. Safety Violation Attack Framework

White-box attack. We begin with the white-box attack.

Since the adversary knows the transition function p and control

policy π, the process can be formalized to an optimization

problem as below:

However, directly solving the optimization function in Equa-

tion 7 is hard since an NN-based control policy is typically

nonlinear and nonconvex [36]. We construct an alternate way

of solving the s′t. We divided Equation 7 into two parts. First,

The attacker initiates the process by obtaining a malicious

action u′
t which is designed to compromise the robustness of

the safety constraint in the STL specification:

u′
t = argmin

u′
t

ρ(s̄t+1, φc)

st+1 = p(st, u
′
t)

(8)

The u′
t serves as a targeted action to guide the subsequent

observation perturbation. The next step involves executing the

observation perturbation to induce the system to perform ac-

tion u′
t. Then the observation perturbation s ′ can be generated

using solvers like FGSM [37] and PGD [32] by minimizing

�(ut, u
′
t) where � is a distance function that measures the
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distance between current action ut with the adversary desired

u′
t. We present our SVA framework under the white-box

setting in Algorithm 1.

Algorithm 1: SVA(White-box version)

1 Input: The observation st, control policy π, STL

specification φg and φc, distance function �, update

budget n, step size η
2 Output: Observation perturbation s′t
3 u′

t ← argmin ρ(s̄t+1, φc)
4 Γ(st) ← {s′t|ρ(s̄′t, φg) > ρ(s̄t, φg)}
5 B(st) ← βε

α(st) ∩ Γ(st)
6 for i = 0 : n do
7 ut = π(s′t)
8 grad = ∇s′t� (ut, u

′
t)

9 s′t = s′t − η ∗ ε ∗ sign(grad)
10 s′t ← ProjB(st) [s

′
t]

11 end
12 return s′t

Line 3 in Algorithm 1 calculates the optimal action u′
t

that maliciously forces the system to violate φc. Line 4

computes the Γ(st) which is the set of s′ that is constrained by

stealthiness. Line 5 gets the final admissible set B(st) which

is the intersection of Γ(st) and the set of the perturbation

range βε
α(st). Note that the set Γ(st) is available because

we have assumed the adversary knows the predefined STL

specification. Line 7 computes the current malicious action u′
t

and line 8 obtains the gradient of the 2-norm pairwise distance

between u′
t and u′

t to the s′t. Line 9 iteratively updates the s′t
and line 10 projects the s′t within the admissible set B(st).
Finally, the algorithm returns the observation perturbation s′t
at time t.

Grey-box attack and Black-box attack. We consider the

situation when the adversary has no knowledge of one of these

two or has no knowledge of both defined in section III.

The grey-box attacks refer to the scenario in section III

where the transition function or the control policy is unknown,

the black-box attack scenarios assume both the transition

function and the control policy are unknown.

In cases where the adversary lacks knowledge of the control

policy, but has access to the transition function, a common

solution is to train a surrogate control policy π′ to substitute

the π. This approach has been widely known [15] [38] as the

transferability for an adversarial attack on supervised learning

neural networks and RL policy. Since we assume the adversary

can access the environment and the STL specification, the

adversary can train such a surrogate control policy π′ without

knowing the origin control policy’s algorithm and parameters.

In cases where the transition function p is not available to

the adversary, it is infeasible to obtain a malicious action u′

by solving equation 8. Existing studies like [26] [39] form

this to a MDP problem and apply RL to train the adversary

model to obtain an adversarial control input u′ = πadv(st).
The adversary’s objective is to reduce the reward earned by

the system. Therefore, an adversary policy is trained using

the reward function r̂t = −rt [39] where rt is the reward

function of the victim policy. Instead of reducing the reward

to degrade the control performance, we propose an alternative

approach that leverages the control policy and reverses safety

constraints.

Definition IV.3 (Safety Violated Adversary model). Given a

CMDP M := (S,A, p, r, c) and an STL-guided RL policy

π with STL specification φ = F[t0,t0+T ]φg ∧ G[t0,t0+T ]φc,

a safety violated adversary policy πadv can be trained using

the reversed version of the safety specification F[t0,t0+T ]φadv

where φadv = ¬φc. The adversary policy can always obtain

the malicious action u′
t = πadv(st) that forces the system to

violate the safety constraint.

The Definition IV.3 gives a solution to obtain the malicious

action when the adversary does not access the transition

function. The malicious action u′
t is used to compute the s′t

as the Algorithm 1 lines 4-8 does. We provide the details of

the algorithm in Algorithm 2.

When the attacker lacks both the knowledge of the transition

function and control policy, we refer to it as a black-box

scenario. In this case, the adversary can employ both the afore-

mentioned methods (surrogate control policy and adversary

model) to implement the SVA framework.

Algorithm 2: SVA(Black-box version)

1 Input: The current system state st, STL specification

φg and φc, surrogate control policy π′, adversary

model πadv , distance function �, update budget n,

step size η
2 Output: Observation perturbation s′t
3 u′

t ← πadv(st)
4 Γ(st) ← {s′t|ρ(s̄′t, φg) > ρ(s̄t, φg)}
5 B(st) ← βε

α(st) ∩ Γ(st)
6 for i = 0 : n do
7 ut = π′(s′t)
8 grad = ∇s′t� (ut, u

′
t)

9 s′t = s′t − η ∗ ε ∗ sign(grad)
10 s′t ← ProjB(st) [s

′
t]

11 end
12 return s′t

C. Theoretical Analysis

We conduct a comparative analysis between the proposed

Safety Violation Attack (SVA) and the reward decreasing

(RD) attack introduced by existing works [40] [39] [16]. We

demonstrate an actor-critic RL algorithm (DDPG, SAC, and

A2C) to show that reward-decreasing(RD) attack can’t violate

the safety specification effectively. The underlying intuition of

the RD attack is to induce a sub-optimal action characterized

by a lower observation-action value function Q(s, a) output

by the critic network. Next, we explain why SVA achieves

better attack performance than RD attack.
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We denote hrd as the reward-decrease adversary algorithm.

The adversary hrd is a group of methods such as Researchers

in [40] leverage the gradients of the critic network to guide

the observation adversary towards minimizing the value func-

tion Q(s, a). Researchers in [16] learn an NN-based model

Qπ(s, a) to reflect the action value.

We start with the Bellman Equations and a basic victim

policy π where the policy is trained with the STL specification

from Equation 5. Despite different RD attack algorithms, the

Bellman equations under such adversary can be obtained as

follows:

Definition IV.4. (Bellman equations with adversary). Given a

victim control policy π : S → P(A) and adversary algorithm

hrd ∈ h : S → S ′, we get

Ṽπ◦h(s) = Eπ◦h
T∑

t=0

γtρ(s̄t,Φ)

The Definition IV.4 gives the value function Ṽ when there

is an adversary h who manipulates the observation s to s′.
Based on the definition of the STL specification Φ from the

Equation 5, we have:

Ṽπ◦h(s)

= Eπ◦h
T∑

t=0

γt min
(
ρ(s̄t, F[0,t]φg), ρ(s̄t, G[0,t])φc

)

= Eπ◦h
T∑

t=0

γt min( max
t′∈[0,t]

(ρ(s̄′t, φg))︸ ︷︷ ︸
denote this term At

, min
t′∈[0,t]

(ρ(s̄′t, φc))︸ ︷︷ ︸
denote this term Bt

)

We consider the initial state of the agent to be safe but not

satisfy the goal yet, i.e. it satisfies the φc but not φg , then the

original robustness values At < 0 and Bt > 0 without attacks.

We give an example of how the RD adversary changes the

value function. For a specific time step t1, the value function

under the adversary attack is the following:

Ṽπ◦h(st1) = Eπ◦h
t1−1∑
t=0

γtAt + γt1ρ(s̄t1 ,Φ)

Note that Equation 9 shows the value function when there is no

attack at time step t1. For the time step t1, the RD adversary

finds the s′t to minimize the value function that:

hrd(st1) = argmin
s′t1

ρ(s̄t1 ,Φ)

hrd(st1) = argmin
s′t1

min(At1 , Bt1)

As claimed before, At1 < 0 and Bt1 > 0, we have:

hrd(st1) = argmin
s′t1

At1

Note that the At1 is related to the φg instead of φc, which

shows that the RD attack only decreases the robustness of φg

but can’t guarantee to minimize the robustness of φc. In other

Figure 1: The PointGoal (left) and CarCircle (right) bench-

marks.

words, the RD adversary influences the goal completion not

violating the safety constraint.

Instead, our SVA denoted as hsva finds s′t1 to reduce the

robustness of the φc:

hsva(st) = argmin
s′t

ρ(s̄t, φc)

Although there is no guarantee that SVA can violate the

safety constraint for every trajectory s̄, in section V, evaluation

results show that SVA is more efficient than the existing

methods.

V. EXPERIMENTS

This section outlines our experimental methodology for

evaluating the SVA framework across various benchmarks. All

experiments were conducted on a machine equipped with an

Intel Core i7-13700F processor running at 2.10 GHz with 16

cores and 16 GB of RAM.

A. Benchmarks

Safety Gym. We first perform experiments on the OpenAI

platform, specifically using the Safety Gym environment [41]

PointGoal and CarCircle. The PointGoal task is to control

the point to reach the goal (green) while avoiding the hazard

(purple) shown in Fig 1. The CarCircle platform is to control

the car navigation inside the green circle and avoids colliding

with the wall (yellow).

For the PointGoal benchmark, the Point has sensors to

observe the distance to the goal and the unsafe region. We

set one goal and three hazards in the environment. We denote

the dg and dc is the distance to the goal and the closest unsafe

region. We define the STL specification for the task as below:

Φ = F (dg < rg) ∧G(dc > rc)

Where the rg and rc are the radius of the goal and hazards.

Note that the PointGoal is a typical reach-avoid task. We use

the dense reward function from existing work [42] that returns

the robustness value every time step. The reward function is

defined as:

Rt = min
t′∈[0,t]

(
max
t′∈[0,t]

(rg − dg), min
t′∈[0,t]

(dh − rh)

)

The original reward function in the CarCircle benchmark

incentivizes the car to accelerate while ensuring it stays within

the circular track. However, the benchmark lacks a specific

directive regarding the car’s velocity, as STL cannot explicitly

formalize this requirement. To address this, we introduce an
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additional criterion: the car must attain a predefined baseline

velocity and maintain this speed once achieved. We consider

that the car colliding with the wall is the safety constraint. We

emulate this task in accordance with the STL specification as

outlined below:

Φ = F (
v

|rcar − rcircle| > v0) ∧G(dc > 0)

Where v is the current velocity of the car and v0 is the required

velocity that the car would reach. rcar is the distance of the

car to the center of the circle. rcircle is the radius of the circle.

dc > 0 is the requirement that the car should keep a distance

from the wall. We generate the reward function as:

Rt = min
t′∈[0,t]

(
max
t′∈[0,t]

(
v

|rcar − rcircle| − v0), min
t′∈[0,t]

(dc − rc)

)

For the two benchmarks, we train the control policy π using

PPO [43] for 10 million steps and the reach rate for the control

point is greater than 95% with less than 2% violation rate.

Classical control system. We also perform the SVA frame-

work to two classical control systems from the CPS commu-

nity: DC Motor Position [5], Bicycle [44]. DC Motor position

controls the motor angle to a desired position by using the

current as control input. The Bicycle has two control inputs:

acceleration and steering angle with the goal of speed and

steer angle.

We establish a control objective along with two designated

unsafe regions for each benchmark. For instance, in the case

of the DC Motor position, we define a target motor angle as

the objective and designate two other motor angles as unsafe

thresholds. The control policy’s task is to navigate the angle

toward the objective while steering clear of unsafe angles

within a predefined time horizon. We quantify the goal and

unsafe regions using the 2-norm Euclidean distance metric.

To train the control policy, we employ the Soft Actor-

Critic (SAC) algorithm. The training process is carried out

for 500,000 iterations, utilizing the reward function which is

the robustness of the STL specification similar to Equation 9.

Both of the control policies have a greater than 96% reach

rate and have less than 1% violation rate.

B. Experiment Setting

We first introduce the SVA performance details under differ-

ent adversary knowledge levels for the SVA framework. Then

we demonstrate the baseline methods for comparison.

SVA framework Setting. We set up SVA methods with

different levels of adversary knowledge: White box(WB), grey

box with known control policy(GB-C), grey box with known

transition function(GB-P), and black box(BB). For all the

experience, the set of perturbation set βε
α(s) is defined as a

l∞ norm ball around s with the budget ε. We set different

time horizons T for the four benchmarks: 10,000 steps for

PointGoal, 5,000 for CarCircle, and 50 for DC motor and

Bicycle. The adversary is considered to be effective when it

can violate the safety constraint within the predefined time

horizon T . We use the SAC algorithm to train the surrogate

control policy and PPO to train the adversary model for grey-

box and black-box attacks.

Gradient-based Attack. Gradient-based Attack(GA) refers

the group of methods from [16], [17]. GA minimizes the value

function of the critic Qtarget (s, a). It first gets the gradient:

grad = ∇sQ
target (s, a) and updates the potential adversarial

state as si = s− ni ∗ grad
‖grad‖ where ni is the sampled noise.

Learning-based adversary attack. The learning-based ad-

versary attack (LAA) [39] [26] leverages the idea that a control

policy π with an observation adversary can be formalized to an

SA-MDP SA−MDPM = (S,A, r,B, p, γ). The adversary’s

task can also be viewed as a MDP M̂ = (S, Â, r̂, p̂, γ) where

r̂(· | ·) = −r(· | ·). The intuition behind this is that the

adversary policy wants to reduce the reward obtained by the

victim system resulting in a negative reward for the adversary

when the victim system obtains a positive reward.

Maximal Action Difference Attack. Some works consider

decreasing the RL return reward by attacking the observation

resulting in the system taking suboptimal action. We consider

the Maximal Action Difference Attack (MAD) from [40]

which has proved to be efficient and simple. The MAD obtains

the s′ by minimizing: LMAD(s
′) := −DKL(π(s)‖π(s′))

where DKL is the KL-divergence.

Noted, for a fair comparison, all three baseline observation

perturbations are constrained by the stealthiness requirement.

Additionally, the three baseline methods are under a black

box setting. For example, the GA uses the surrogate control

policy to compute the gradient to keep in the black box

scenario. This ensures that each method is evaluated under

consistent conditions, allowing for meaningful comparisons of

their effectiveness.

C. Result

We first show the attack results of our SVA and three base-

line methods on each benchmark. We evaluate SVA on each

benchmark with 500 experiments with random initial points

and show the percentage of violations within the time horizon

T varies with the perturbation range ε in Table II. The exper-

iment is ended if the system reaches the goal or violates the

safety. We use perturbation range ε ∈ [0.01, 0.05, 0.10, 0.15].
Results show that even with a small perturbation range, the

observation perturbation is still effective.

Observation 1: The white-box SVA demonstrates the high-

est rate of violations, outperforming all the other methods.

The SVA can successfully force the victim system into unsafe

even when the perturbation range ε = 0.01. Notably, the

WB SVA can achieve 90.4% violation rate with ε = 0.15
for CarCircle while all the three baseline methods only have

less than 17% violation rate. The black-box SVA has the

worst performance within the four SVA scenarios but still

outperforms the three baselines, which meets our expectations.

The performance difference between BB and WB shows that

obtaining knowledge of the transition function and control

policy indeed increases the possibility of violating safety. This

observation also proves that the transition function and control

policy are useful to the adversary.
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ε
PointGoal CarCircle

WB GB-C GB-P BB GA LAA MAD WB GB-C GB-P BB GA LAA MAD
0.01 5.6% 4.6% 5.4% 5.2% 2% 3.6% 3.6% 23.2% 14% 14.8% 12.8% 0% 5.6% 6.8%
0.05 14% 12% 10% 9.8% 6% 4.8% 4.8% 48.8% 16.4% 17.2% 15.6% 3.4% 7.6% 8.4%
0.10 45% 34.2% 30.6% 20.8% 7.2% 6% 7.2% 84.2% 24.8% 21% 16.8% 9.2% 8% 9.2%
0.15 74.6% 62.4% 52% 38.6% 7.6% 6.8% 11.4% 90.4% 32.6% 26.8% 19.2% 16.8% 12% 10.4%

DC Motor Bicycle

0.01 18.8% 13.2% 15.6% 13.2% 5.6% 8.8% 9.6% 18.4% 16.4% 17.4% 13% 7.2% 8.8% 10.2%
0.05 19.4% 14.8% 16.2% 14.8% 6.4% 12.8% 14% 32.2% 24.6% 23.6% 20% 12.6% 12.6% 13.6%
0.10 33.6% 28.4% 22.8% 19% 13.2% 16.8% 16% 44.8% 38% 35% 25.8% 14% 16.8% 18.2%
0.15 46% 41.2% 24.4% 22.4% 18% 21.2% 16.4% 46.2% 38.6% 35.6% 28.8% 23% 21.2% 20%

Table I: Attack performance measured by the violation rate. ε is the perturbation range. The WB, GB-C, GB-P, and BB

represent our SVA framework under the white box, a grey box with a known control policy, a grey box with a known transition

function, and black box respectively. GA, LAA, and MAD are the three baseline methods introduced in the former subsection.

The higher the percentage, the better attack performance to violate the safety.

ε
PointGoal CarCircle

WB GB-C GB-P BB GA LAA MAD WB GB-C GB-P BB GA LAA MAD
0.01 86.4% 89.6% 89.6% 89.6% 93.2% 91.2% 93.6% 72% 84.4% 84% 86.4% 98% 92% 91.6%
0.05 82.8% 86.4% 86.4% 87.6% 91.2% 90% 90.8% 51% 81.6% 79.8% 82.6% 93.4% 89.6% 88%
0.10 52% 60% 80.8% 69.6% 90% 88% 90% 11.8% 71.6% 75.6% 80.4% 86.6% 87.4% 84.6%
0.15 19.6% 32.2% 42.4% 50.4% 88% 84% 85.4% 4.8% 62.6% 70.8% 77.4% 81% 82.8% 83.2%

DC Motor Bicycle

0.01 76% 79.2% 79.2% 79.6% 82% 86.8% 85.2% 73.6% 79.8% 78.2% 83% 90.6% 86.8% 85.8
0.05 75.2% 80% 80% 80.4% 81.8% 82.4% 82.4% 64% 71.8% 73.2% 77% 85.2% 82.4% 78.6
0.10 56.8% 61.2% 73.6% 76% 72.4% 77.2% 82% 48.6% 59.4% 62% 72.4% 80.8% 77.2% 77.4
0.15 45.8% 48.4% 64.4% 68.4% 64.4% 66.8% 76% 46.2% 57% 35.6% 60.2% 72% 66.8% 76.8

Table II: The reach rate for each benchmark with different adversary algorithms. The lower percentage represents the adversary

has more impact on the task completion.

Note that although the SVA does not specifically target a

decrease in the reach rate, the SVA still has a significant impact

on the reach rate. The WB achieves the highest performance

in reducing the reach rate. The WB attack precisely found the

vulnerability of the system, making the system incapable of

reaching the goal and violating safety.

Observation 2: There is an intriguing observation that

when ε is small, GB-P demonstrates better efficiency than

GB-C. However, this trend does not hold for larger ε values,

where GB-C is shown to be more efficient. We illustrate the

observation using the following claim:

• The adversary knows the control policy means that the

generated observation perturbation s′ is more potent in

reducing the robustness of the safety constraint compared

to the action obtained through the adversary model πadv

used in GB-P and BB setting.

• When the adversary knows the control policy, it signifies

that the produced observation perturbation s′ can induce

the system to take an action that is closer to the adver-

sary’s intended action, while a surrogate control policy

which may lead to an action that is not as closely aligned,

potentially due to neural network transferability prob-

lem. The adversarial perturbation can not always directly

transfer to another policy with different algorithms and

parameters.

When the perturbation range is small, it becomes challeng-

ing for the adversary to generate a corresponding observation

(a) PointGoal (b) CarCircle

(c) DC Motor (d) Bicycle

Figure 2: The average distance to unsafe for the SVA with

four benchmarks under the white box (WB), a grey box with

control policy (GB-C), a grey box with transition function

(GB-P), and black box (BB).

perturbation s′ with given malicious action u′. This mitigates

the significance of knowing the control policy, resulting in

GB-C being less efficient compared to GB-P. However, when

the perturbation range is large, knowing the control policy

becomes crucial. This enables the generation of s′ that leads to

the precise malicious action, making the attack more effective.

Despite GB-P producing more serious action, the observation

perturbation generated from the surrogate control policy still

lacks some essential information.

Observation 3: Fig. 2 displays the average distance to the

unsafe in a whole trajectory with 100 experiments using four
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(a) PointGoal

(b) CarCircle

Figure 3: The stealthiness measured by the observed robust-

ness value of the goal φg . The dotted line is the observed

robustness after the attack, the solid line is the robustness

before the attack. The dotted lines in four attack scenarios

are all greater than the solid line which means that our SVA

keeps stealthiness.

SVA methods with ε = 0.1. The figure shows that the WB

achieves the lowest average distance, which means that the

WB has the most probability of forcing the system towards

unsafe. The BB has the highest average distance indicating a

weak attack performance in four SVA scenarios which address

the same result as observation 1.

Observation 4: We verified the stealthiness of our SVA

and show the results in Fig. 3 using PointGoal and CarCircle

benchmarks. We show four different observation histories in

each figure in different attack scenarios. We assume the victim

system utilizes the manipulated observation to compute the

robustness of the goal φg . The dotted line represents the

robustness value after the attack, consistently equal to or

greater than the solid line. This confirms that all four SVA

scenarios maintain their stealthiness.

VI. DISCUSSION

In this paper, our proposed SVA framework targets the

attack on STL-guided RL. A pertinent question arises: Does

the SVA compromise the safety of heuristic RL employing

a hand-engineered reward function? We assert that, for any

safe reinforcement learning problem, the SVA framework has

the potential to lead the system into an unsafe region if the

adversary possesses knowledge of both safety constraints and

the control policy. However, if the adversary lacks access to

the control policy, training a surrogate control policy becomes

impractical, given the unknown reward function.

Limitation of the SVA. In the white-box attack of the

SVA framework, we consider the adversary using the transition

function p to obtain the malicious action for the next time step.

However, such step-by-step action is not optimal even though

it achieves the optimal of the specific step. One of the possible

improvements of the solution is to leverage the transition

function to compute a sequence of actions u′
0, u

′
1, ..., u

′
t. The

sequence of malicious actions to achieve a particular objective

in this context can be viewed as a reachability problem, a topic

that has been explored in prior works [5]. However, these

works compute the attack sequence using a precise system

model and model-based controller with bounded noise, this is

not the primary focus of our paper.

Defense. While we show the SVA framework induces

malicious sensor attacks to force the CPS to take potentially

hazardous actions, it is important to note that the impact of

SVA can be mitigated or defended through some efforts. We

explore some possible solutions to defend against the Safety

Violation Attack in cyber-physical systems.

Robust training has been proven to be efficient in mitigat-

ing adversarial perturbation and improving policy robustness.

Many robust training frameworks rely on adversarial tech-

niques to manually generate attacks, enabling policies to be

trained against such adversaries. We consider that robustly

training a policy with the SVA adversary, which directly targets

sensor attacks that address safety, significantly enhances both

the controller’s robustness and the overall safety of the system.

Instead of ensuring safety in the training phase, using the

prior model to identify the unsafe is also a solution for the SVA

adversary. The utilization of formal verification establishes the

correctness of system behavior and identifies the unsafe state

and behavior, enabling the system to halt operations before

an adversary can compel it into an unsafe region. However,

it’s important to note that the efficacy of this method relies

on having an accurate system model. In situations where the

environment changes, the system may remain vulnerable to

threats if the identification of unsafe states is incomplete or

outdated.
VII. CONCLUSION

In this study, we introduced the Safety Violation Attack

(SVA) framework, which provides a novel approach to assess

the vulnerability of systems with an STL-guided RL controller.

We conduct different attack strategies based on the differ-

ent levels of the adversary knowledge. We analyze that the

existing adversarial attack on RL can not efficiently violate

safety. We evaluated the effectiveness of the SVA framework

on various benchmarks, including the OpenAI Safety Gym

platform. Our results demonstrate the potential risks of deploy-

ing STL-guided RL controllers, especially in safety-critical

applications. We observe that the SVA framework effectively

identified vulnerabilities, highlighting the need for enhanced

security measures in such systems.
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