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Abstract—Safe reinforcement learning (RL) has been recently
employed to train a control policy that maximizes the task reward
while satisfying safety constraints in a simulated secure cyber-
physical environment. However, the vulnerability of safe RL has
been barely studied in an adversarial setting. We argue that
understanding the safety vulnerability of learned control policies
is essential to achieve true safety in the physical world. To fill
this research gap, we first formally define the adversarial safe
RL problem and show that the optimal policies are vulnerable
under observation perturbations. Then, we propose novel safety
violation attacks that induce unsafe behaviors by adversarial
models trained using reversed safety constraints. Finally, both
theoretically and experimentally, we show that our method is
more effective in violating safety than existing adversarial RL
works which just seek to decrease the task reward, instead of
violating safety constraints.

I. INTRODUCTION

Cyber-physical systems (CPS) employ computing and net-
working components to interact with the physical world via
sensors and actuators. Recently, CPS has been starting to
integrate more intelligence that enables promising applications
such as autonomous vehicles, drones, and other robotic sys-
tems [1]. Meanwhile, the increased autonomy comes with new
security and safety issues for CPS [2]-[6].

The great success of deep reinforcement learning (RL) in
recent years has motivated many research efforts that adopt it
to synthesize control policies (i.e. learning-enabled controllers)
for CPS. However, it is challenging to ensure safety when
deploying them to the real-world CPS. Safe RL thus is drawing
much attention, of which the goal is to maximize the task
reward while satisfying safety constraints. There are two major
research threads of safe RL. One thread handles the problem
by solving a constrained optimization, where they rely on
the knowledge of a mathematical model that characterizes
the system dynamics [7]-[10]. The other thread needs no
such knowledge and instead, is guided by a set of formal
specifications using linear temporal logic (LTL) [11] or signal
temporal logic (STL) [12].

Both research threads above take advantage of the power of
neural networks. However, neural networks have been shown
to be vulnerable to adversarial attacks, i.e. a small perturbation
of the input may cause the output to vary drastically [13].
This may cause safety violations when deploying a neural
network RL control policy to CPS. On the one hand, existing
safe RL methods work well to respect safety constraints in
simulated secure environments, but their vulnerability has been
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barely studied under adversarial perturbations. We consider an
adversarial setting where the observation perturbations come
from the physical world such as sensing noises and sensor
attacks [14]. We believe that studying the vulnerability of safe
RL in the adversarial setting will be essential to achieving true
safety in the physical world.

On the other hand, existing adversarial RL works are not
suitable to address the vulnerability of safe RL. Their robust-
ness concept and training methods follow standard RL settings,
where attacks of observation perturbations aim to decrease
their rewards as much as possible [15]-[17]. However, safe
RL has an additional dimension that captures the cost of safety
constraint violations. We argue that the cost should be more
critical than the task reward in the safe RL setting because
the constraint violations can cause catastrophic consequences
in real-world CPS. Consider an example where the navigation
task of an autonomous vehicle has the reward as ‘to reach
a target as soon as possible’ and the safety constraint as ‘to
avoid obstacles’ [18]. Existing adversarial RL methods, which
reduce the reward, may cause the vehicle to arrive at the
target late or steer away from the target. However, they do
not necessarily make the vehicles violate the safety constraint,
e.g. to crash into obstacles, which is more critical after all.

Given the research gap, we thus investigate the vulnerability
of safe RL with adversarial observation perturbations. This
paper focuses on the formal specification guided safe RL
and its safety specification (i.e. formally specified safety
constraints) violations. Unlike traditional RL, which relies on
hand-engineered reward functions, formal specification guided
RL automatically transfers task and constraint specifications
to reward and cost functions for policy training. This has
been proved to be effective by recent works such as [19]-
[22]. We aim to address two key questions i) How vulnerable
will a learned control policy be under adversarial observation
perturbations? ii) how to design effective and stealthy attacks
to violate safety specifications? To answer these questions,
we first formally define the adversarial formal specification
guided RL problem and describe how to analyze the safety
vulnerability of a learned control policy. Then, we propose
diverse safety violation attacks that can drift a system to the
unsafe region. We also discuss possible mitigation methods to
address the vulnerability in the end. Our major contributions
are summarized below.

o Targeting signal temporal logic, we formally analyze

the vulnerability of control policies in STL-guided safe
RL and show that the optimal policies of safe RL are
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vulnerable to adversarial observation attacks.

o« We propose multiple safety violation attacks that ap-
ply to adversaries with different levels of knowledge
about the system. Our method novelly reverses the STL
specifications to train adversarial models that provide
attackers with observation perturbations to induce unsafe
behaviors. We also present a formal analysis to show
that existing adversarial RL works of minimizing the task
reward do not always work on violating safety.

¢ We conduct extensive experiments using multiple bench-
marks including the OpenAl Safety Gym. The evaluation
results show that our method is much more effective in
violation safety than existing adversarial RL works while
staying stealthy.

The rest of the paper is organized as follows. Section II
discusses related work. Section III introduces preliminaries.
Section IV defines the problem and proposes safety violation
attacks with theoretical analysis. Section V evaluates the
proposed method. Section VI discusses the limitations of our
work and mitigation. Section VII concludes the paper.

II. RELATED WORK

Safe RL focuses on developing RL algorithms that incor-
porate safety constraints during both the learning and testing
phases. The main objective of Safe RL is to ensure that the
agent’s learning and decision-making processes do not lead to
unsafe or undesirable outcomes. In this section, we discuss
literature related to safe RL, especially STL-guided safe RL.
Furthermore, we also introduce existing works about how to
design adversary attacks to break RL safety.

Temporal logic guided safe RL. Temporal logic provides a
precise and unambiguous expression of the system’s intended
behaviors. Aside from the liveness(something good happens
eventually) properties, the safety(something bad never hap-
pens) constraints can be formed into explicit specifications
and must be strictly adhered to [23]. Donze et al. propose
quantitative semantics to map the degree of the robustness of
an STL specification to a real value [24]. This mapping enables
STL-guided safe RL without the need to manually craft the
reward function. Existing works focus on using STL-guided
RL to complete control tasks such as reach&avoid and achieve
liveness and safety at the same time [18], [21], [25].

Temporal logic offers the capability to tailor safety con-
straints according to scenarios and settings. Liu et al. and
Li et al. form the safety as a specification of not entering
a ball-shaped unsafe set during the navigation to the target
set [18], [25]. Singh et al. define safety as a specification of
not entering an unsafe set which is a conjunction of half-
spaces [21]. Researchers in [19] define safety with formal
specifications and human demonstrations jointly.

Adversary attack on RL. Adversary attack refers to sit-
uations where an external agent (the adversary) intentionally
manipulates the environment or the input data to mislead the
RL agent. Some existing works focus on attacking the obser-
vation space [15], [16], [26]. Researchers of [15] apply the
Fast Gradient Decent method (FGSM) to generate adversarial
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observations to mislead the agent. Researchers of [27] apply a
universal perturbation on observation at every step. Zhang et
al. proposed an adversary attack on the observation that causes
maximum action difference [16].

Some other works focus on designing attacks to affect the
rewarding process which provides feedback to the learning
agent in the form of rewards [17], [28]. Pattanaik et al.
propose a method that integrates the information from the
value function and the information from the loss function
to degrade the agent’s performance [17]. Researchers of [28]
propose TrojDRL which generates backdoor attacks for DRL
by taking advantage of hacking the rewards.

It is also important to make the attack stealthy to detectors to
make it adversarial [29], [30]. Liu et al. design a framework to
attack safe RL by maximizing the cost to enlarge the effect and
maximizing the rewards to keep stealthy [29]. Researchers of
[30] propose two attacks utilizing the control and observation
information with predictive models to keep the attack stealthy.

As safety concerns have become increasingly apparent,
[29] is the first study to address attacking safe RL during
the training phase, compromising the obtained control policy.
Our research diverges from this work as we concentrate on
attacking a well-trained safe RL policy and demonstrating its
vulnerability to observation attacks.

III. PRELIMINARIES

This section provides a brief introduction to the preliminary
concepts utilized in the paper. We start with the signal temporal
logic, then define the safe reinforcement learning problem
model by constraint Markov Decision Process and define
formal specification guided RL. Finally, we discuss the threat
model used in the paper.

A. Signal temporal logic

STL serves as a logical framework for expressing temporal
properties concerning signals with real-valued data. STL for-
mulas are defined using Boolean formulas that combine sub-
formulas recursively or through the application of temporal
operators to sub-formulas [24]. In this paper, we consider
the system behavior specified by the STL with the following
fragment:

D = pl=0l¢ A d|GPIFP | p1U¢, M

where the A and — are logic conjunction and negation. G, F,
and U are the always, finally, and until operators respectively.
Operators U, G and F' can be transformed from each other,
for example G¢ = — (F—¢) [31].

The STL uses quantitative semantics to compute the robust-
ness value that maps the signal to a real value. The quantitative
semantics functioned by p transform the boolean specification
of the STL into a real value that measures how much satis-
faction the system meets the STL formula. A positive value
of the function p at time ¢ the system observation s; indicates
satisfaction with the specification, whereas a negative value
implies a violation of the system’s specification. We show the
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function p in terms of a robustness value as below refer to
[18], [24]:

p(5e, (f(5) < d)) =d— f(s)

p(gtv “d)) = _p(‘§7 ¢a t)

p (8,01 A ¢2) =min (p (5, ¢1), p(5t, ¢2))

4 (gtv ¢1 \% ¢2) = max (IO (gh ¢1) s P (gh ¢2))

P (3¢, Fitg to1110) = e p (56, ¢) ?)
p (56, Glig to4+11¢) = te[tg&(ﬂﬂ p(5¢,9)

P (§t7 ¢1U[t0,t0+T]¢2)

= iz (min (0590 s 0 G )

Where ¢ty and T are the time that the task starts and the
duration of the task respectively, 5 is a trajectory containing
continuous system states in discrete time.

B. Safe reinforcement learning

Definition IIL.1. A Finite Horizon Constraint Markov De-
cision Process (CMDP) is defined as a tuple M
(S,U,p,r,¢,7) , where S C R" is the state space, U C R™
is the action space. p : S x U x S — [0, 1] is the transition
function that represents the probability p (s;41 | S¢,ue) from
state s; to ;41 by taking action u;. 7 : S x U x S — R is the
reward function. S x U x .S — [0, Cy,] is the cost function that
measures the cost once the violating the constraint, where C,,
is the maximum cost. 7 € [0, 1] is the discounting parameter.

We suppose that a control problem for a CPS a is a process
of finding an optimal policy 7* : S — A that maximizes the
expected cumulative reward and minimizes the total cost:

T-1

7% = arg maxE" E 7t7"(3t7at,8t+1)
4 t=0
T—1

7% = argminE” E e (se, as, siv1)
4 t=0

3

“)

We use horizon(M) =T as the time horizon that represents
the max execution time steps for the CMDP. E™ is the expected
reward(cost) returned by 7.

In this CPS context, we consider the real state s; as
challenging to directly access. Instead, the system’s state is
estimated on sensor observations, which inherently come with
bounded noise. For simplicity, we assume negligible noise in
this paper and henceforth use “observation” interchangeably
with St.

C. Formal Specification Guided RL

Using formal specification for safe exploration to guide the
RL has been explored. The existing work uses the robustness
value of the quantitative semantics as the reward function.
So the RL problem is to find a policy that maximizes the
robustness value or increases the probability of satisfying the
STL specification. This approach largely reduces the difficulty
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of designing specific reward functions in complex tasks or
environments.

In this paper, we focus on safety-critical CPSs characterized
by a pre-defined task objective and multiple safety constraints.
To illustrate, in the case of an autonomous vehicle, the task
objective might be reaching a specific destination eventually,
while the constraints would involve avoiding obstacles. Simi-
larly, in a robot arm control scenario, the controller’s objective
is to control the arm to grab a box while ensuring it doesn’t
collide with any other objects. We consider using STL to
specify the goal and safety constraint. These requirements can
be formally expressed as :

Definition IIL2 (Goal). The goal is the set ¢, of STL
specifications which specify the system’s control objective.
Given the start time ¢, and time horizon horizon(¢g) = T,
the system achieves its goal only if the p(5:, Fiy, 1, +77¢0g) > 0

Definition IIL.3 (Safety constraint). The goal is the set
¢. of STL specifications which specify the system’s safety
constraint. Given the start time ¢y and time horizon
horizon(¢g) = T, the system satisfies the safety constraint
as long as p(5s, Gy to41)%c) > 0

According to the above definition, the STL specification of
such a task with goal and safety constraints can be expressed
as the following:

© = Fiy.10+171P9 N Glig,t0+1)Pc (5)

Based on the Equation 5, the system is required to satisfy
¢4 before time tg + 71" and also satisfy the safety constraints
specified by ¢. during the time horizon horizon(®) = T.
Then We define an STL-guided safe-RL task which aims
to find the optimal policy 7* that maximizes the robustness
degree of the STL specification. The STL specification of the
safe-RL agent is presented as:

Definition III.4. (STL-guided RL) Given an STL specification
O = Fiyy 1041199 Gto 1o+ P With a horizon horizon(®) =
T, a CMDP M := (S, A,p,r, ¢,~v) with unknown p and an
initial state trajectory sg.r, the STL-guided RL problem is
to find a policy 7* that maximize the expected cumulative
robustness value of the specified STL specification ®:

T

7 = argmax E™ Z v p(5,, ®)
t=0

(6

D. Threat model

In this paper, we consider various scenarios with different
levels of known system knowledge of the adversary. Specifi-
cally, the adversary can access the system’s transition function
p and the control policy 7. If the adversary possesses knowl-
edge of the p, the adversary can approximate the subsequent
s¢+1 of the system given the action and current observation s;.
If 7 is accessible to the adversary, they can derive the action
u; based on the observation s;.

Attacker’s knowledge. Regarding the adversary knowl-
edge, we consider three scenarios: (1) White-box attack: The
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attacker has full access to both the system’s control policy and
transition function. (2) Grey-box attack: The attacker knows
either the system’s control policy or transition function. (3)
Black-box attack: The attacker has no access to either.

Attacker’s capability. We assume that the adversary knows
the STL specification ® used by the system when training the
control policy. The adversary can also access all the sensors
of the system and can modify all the sensor values.

IV. SAFETY VIOLATION ATTACK

In this section, we introduce our framework for adversary
attacks on the STL-guided RL-based control policy. We also
provide the theoretical analysis to prove that our framework
is effective.

A. Problem Formulation

We assume that there is an adversary that maliciously
changes the observation value of the system observation s;
to s, = h(s;) where h is the adversary policy. We define
the effectiveness and stealthiness of the adversary problem to
better understand the property of the safety violation attack.

Definition IV.1 (Attack Effectiveness). Given the safety con-
straint ¢, start time ¢¢ and time horizon horizon(¢.) = T,
denote the §' as the trajectory of perturbed observation s from
to to T. the attack is effective if p(5', Gy 1o+1)%c) < 0.

The effectiveness describes that the adversary’s objective is
to force the system to violate the safety constraint of STL
specification. Then we introduce another metric to measure
the attacker’s stealthiness.

Definition IV.2 (Attack Stealthiness). Denote the 5 as the
trajectory of perturbed observation s, from ¢y to 7. The
perturbation range is limited within a ¢_-ball around the initial
observation where 5 (s¢) 1= ||s; — s¢||, < € and € is the size
of the perturbation range. Given the manipulated observation
trajectory § and a perturbation range (¢ (s), the attack is

stealthy if p(5}, dg) > p(St, dg).

The concept of stealthiness, as defined in previous studies,
takes on various perspectives. For example, [32] characterizes
it as the range of perturbations around the original observation.
On the other hand, for those works focus on the system safety
[33] [34] [35], stealthiness is assessed in systems equipped
with a detector, which implies avoiding detection. The work
by [29] introduces an additional level of stealthiness called
reward stealthiness. They consider the reward stealthiness as
’the agent might easily detect a dramatic reward drop’, which
inspires us that, in the CPS domain, if there is a huge drop
in the robustness of ¢,, the system may notice the anomaly
behavior and detect there is an adversary.

We add a new dimension of stealthiness within the context
of STL-guided safe RL. The Definition IV.2 considers an
attack as more stealthy if it can maintain the robustness
value of ¢, from Equation 2 after the attack. Therefore, it
cannot be detected by monitoring the robustness score of
¢g. Additionally, we introduce the perturbation set 3,(s) to
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confine s’ within specified bounds, thus delineating that the
perturbation in observation adheres to established standards
of stealthiness, as prior literature [15] [29]. In general, the
problem is that the adversary wants to find the observation
perturbation s} to force the system to take a malicious action
u’ which minimizes the robustness of the safety specification
p(8¢+1, ¢.) bounded by the stealthiness.
sy = argmin p(S11, ¢c)
St

st] sh — s la< e

p(§;7 ¢g) > P(S_f,, ¢g)

up = 7(st)

se+1 = p(st, Ufg)

While adversary attacks directed at RL-based control have

been extensively researched, our specific problem remains
distinct and relatively unexplored. Previous studies have pri-
marily concentrated on manipulating system observations to
reduce the overall rewards, primarily impacting agent perfor-
mance. These approaches often do not account for the crucial
safety constraints of the system. We denote these methods as
reward(value) decreasing (RD) methods and we show these
methods can’t achieve attack effectiveness.

)

Theorem IV.1. Suppose there is a RD adversary policy h,q
method manipulates the observation as s, = s; + hpq(se).
The adversary policy h,q cannot guarantee to achieve attack
effectiveness.

We provide proof for the Theorem IV.1 in subsection IV-C.
To address the problem, we propose the Safety Violation
Attack (SVA) framework where the adversary deliberately
forces the system to violate the safety constraint under the
limitation of stealthiness.

B. Safety Violation Attack Framework

White-box attack. We begin with the white-box attack.
Since the adversary knows the transition function p and control
policy 7, the process can be formalized to an optimization
problem as below:

However, directly solving the optimization function in Equa-
tion 7 is hard since an NN-based control policy is typically
nonlinear and nonconvex [36]. We construct an alternate way
of solving the s;. We divided Equation 7 into two parts. First,
The attacker initiates the process by obtaining a malicious
action u} which is designed to compromise the robustness of
the safety constraint in the STL specification:

uy = argmin p(Se+1, dc)
uf

st41 = p(St, “2)

The w} serves as a targeted action to guide the subsequent
observation perturbation. The next step involves executing the
observation perturbation to induce the system to perform ac-
tion u;. Then the observation perturbation s’ can be generated
using solvers like FGSM [37] and PGD [32] by minimizing
l(ug,uy) where ¢ is a distance function that measures the

®)
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distance between current action u; with the adversary desired
uj. We present our SVA framework under the white-box
setting in Algorithm 1.

Algorithm 1: SVA(White-box version)

1 Input: The observation s;, control policy m, STL
specification ¢, and ¢., distance function /, update
budget n, step size 7

Output: Observation perturbation s/

uj < argmin p(S¢11, ¢c)

D(st)  {s11p(5, ;) > p(1, 6,)}

B(st) < B5(s:) N (s¢)

for i =0:n do

up = 7(s})

grad =V g€ (ug, uy)

sy = s, —n*ex sign(grad)
sp < Projps,) [s1]

end

return s,

M-I Y B S

— =
R = o

Line 3 in Algorithm 1 calculates the optimal action wu}
that maliciously forces the system to violate ¢.. Line 4
computes the I'(s;) which is the set of s’ that is constrained by
stealthiness. Line 5 gets the final admissible set B(s;) which
is the intersection of I'(s;) and the set of the perturbation
range (< (s¢). Note that the set I'(s;) is available because
we have assumed the adversary knows the predefined STL
specification. Line 7 computes the current malicious action u;
and line 8 obtains the gradient of the 2-norm pairwise distance
between wu} and uj to the s;. Line 9 iteratively updates the s}
and line 10 projects the s} within the admissible set B(s;).
Finally, the algorithm returns the observation perturbation s}
at time ¢.

Grey-box attack and Black-box attack. We consider the
situation when the adversary has no knowledge of one of these
two or has no knowledge of both defined in section III.

The grey-box attacks refer to the scenario in section III
where the transition function or the control policy is unknown,
the black-box attack scenarios assume both the transition
function and the control policy are unknown.

In cases where the adversary lacks knowledge of the control
policy, but has access to the transition function, a common
solution is to train a surrogate control policy 7’ to substitute
the 7. This approach has been widely known [15] [38] as the
transferability for an adversarial attack on supervised learning
neural networks and RL policy. Since we assume the adversary
can access the environment and the STL specification, the
adversary can train such a surrogate control policy 7’ without
knowing the origin control policy’s algorithm and parameters.

In cases where the transition function p is not available to
the adversary, it is infeasible to obtain a malicious action u’
by solving equation 8. Existing studies like [26] [39] form
this to a MDP problem and apply RL to train the adversary
model to obtain an adversarial control input v’ = Taqy(St).
The adversary’s objective is to reduce the reward earned by
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the system. Therefore, an adversary policy is trained using
the reward function 7y = —r; [39] where r; is the reward
function of the victim policy. Instead of reducing the reward
to degrade the control performance, we propose an alternative
approach that leverages the control policy and reverses safety
constraints.

Definition IV.3 (Safety Violated Adversary model). Given a
CMDP M := (S,A,p,r,¢) and an STL-guided RL policy
7 with STL specification ¢ = Fly; 141109 AN Gleo,to+1]Pes
a safety violated adversary policy 7,4, can be trained using
the reversed version of the safety specification Fi;, yo4+7]%adv
where ¢qq4, = —¢.. The adversary policy can always obtain
the malicious action u} = maay(s:) that forces the system to
violate the safety constraint.

The Definition IV.3 gives a solution to obtain the malicious
action when the adversary does not access the transition
function. The malicious action u; is used to compute the s}
as the Algorithm 1 lines 4-8 does. We provide the details of
the algorithm in Algorithm 2.

When the attacker lacks both the knowledge of the transition
function and control policy, we refer to it as a black-box
scenario. In this case, the adversary can employ both the afore-
mentioned methods (surrogate control policy and adversary
model) to implement the SVA framework.

Algorithm 2: SVA(Black-box version)

1 Input: The current system state s;, STL specification
¢4 and ¢, surrogate control policy n’, adversary
model 7,4, distance function ¢, update budget n,
step size 7

Output: Observation perturbation s}

u% < Madv (St)

U(se) < {si]p(5}, dg) > p(5¢, 0g)}

B(St) — Bg(st) N P(S{»)

for i =0:n do

ug = 7' (s})

grad =V gl (ug, uy)

sy = s, —n e x sign(grad)
sy < Projp(,,) [si]

end

return s,

N-I-CREEN B Y N L ]
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C. Theoretical Analysis

We conduct a comparative analysis between the proposed
Safety Violation Attack (SVA) and the reward decreasing
(RD) attack introduced by existing works [40] [39] [16]. We
demonstrate an actor-critic RL algorithm (DDPG, SAC, and
A2C) to show that reward-decreasing(RD) attack can’t violate
the safety specification effectively. The underlying intuition of
the RD attack is to induce a sub-optimal action characterized
by a lower observation-action value function Q(s,a) output
by the critic network. Next, we explain why SVA achieves
better attack performance than RD attack.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:21:29 UTC from IEEE Xplore. Restrictions apply.



We denote h,.q as the reward-decrease adversary algorithm.
The adversary h,q is a group of methods such as Researchers
in [40] leverage the gradients of the critic network to guide
the observation adversary towards minimizing the value func-
tion (s, a). Researchers in [16] learn an NN-based model
Qr(s,a) to reflect the action value.

We start with the Bellman Equations and a basic victim
policy 7 where the policy is trained with the STL specification
from Equation 5. Despite different RD attack algorithms, the
Bellman equations under such adversary can be obtained as
follows:

Definition I'V.4. (Bellman equations with adversary). Given a
victim control policy 7w : & — P(.A) and adversary algorithm
hrq€h:8—8', we get

T
Vion(s) = Eron Z 'th(gfn o)
t=0

The Definition IV.4 gives the value function V when there
is an adversary h who manipulates the observation s to s'.
Based on the definition of the STL specification ¢ from the
Equation 5, we have:

VTFO}L(S)

T
=Eron Z ~" min (p(s¢, Flo.094), p(5t, G[o,t])¢c)
t=0

max (P(§;7¢g)), min (p(3, Pc)))

T
=FE ! min
ol ; " (t’e[o,t] €0,

denote this term A, denote this term By

We consider the initial state of the agent to be safe but not
satisfy the goal yet, i.e. it satisfies the ¢. but not ¢, then the
original robustness values A; < 0 and B; > 0 without attacks.
We give an example of how the RD adversary changes the
value function. For a specific time step ¢, the value function
under the adversary attack is the following:

t—1

VWO}L(St1) - E‘rroh Z ’YtAt + thp(gtl 3 CD)
t=0

Note that Equation 9 shows the value function when there is no
attack at time step ¢;. For the time step ¢1, the RD adversary
finds the s; to minimize the value function that:

hea(sy,) = arg’min p(8,, @)
Sty

hrd(st,) = argminmin(Ay, , B,)
5;1

As claimed before, A;, < 0 and B;, > 0, we have:

hra(st,) = argmin Ay,
s;l
Note that the A, is related to the ¢, instead of ¢., which

shows that the RD attack only decreases the robustness of ¢,
but can’t guarantee to minimize the robustness of ¢.. In other
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Figure 1: The PointGoal (left) and CarCircle (right) bench-
marks.

words, the RD adversary influences the goal completion not
violating the safety constraint.

Instead, our SVA denoted as hg,, finds sgl to reduce the
robustness of the ¢.:

hsva(st) = argminp(gh ¢c)
5%

Although there is no guarantee that SVA can violate the
safety constraint for every trajectory s, in section V, evaluation
results show that SVA is more efficient than the existing
methods.

V. EXPERIMENTS

This section outlines our experimental methodology for
evaluating the SVA framework across various benchmarks. All
experiments were conducted on a machine equipped with an
Intel Core i7-13700F processor running at 2.10 GHz with 16
cores and 16 GB of RAM.

A. Benchmarks

Safety Gym. We first perform experiments on the OpenAl
platform, specifically using the Safety Gym environment [41]
PointGoal and CarCircle. The PointGoal task is to control
the point to reach the goal (green) while avoiding the hazard
(purple) shown in Fig 1. The CarCircle platform is to control
the car navigation inside the green circle and avoids colliding
with the wall (yellow).

For the PointGoal benchmark, the Point has sensors to
observe the distance to the goal and the unsafe region. We
set one goal and three hazards in the environment. We denote
the d, and d.. is the distance to the goal and the closest unsafe
region. We define the STL specification for the task as below:

O =F(dy <ry) NG(d, > 1¢)

Where the 7, and 7. are the radius of the goal and hazards.
Note that the PointGoal is a typical reach-avoid task. We use
the dense reward function from existing work [42] that returns
the robustness value every time step. The reward function is
defined as:

Rt = min
t’€[0,t]

min (dy — rh)>

<tmax (rg —dyg), Juin

’€(0,t]

The original reward function in the CarCircle benchmark
incentivizes the car to accelerate while ensuring it stays within
the circular track. However, the benchmark lacks a specific
directive regarding the car’s velocity, as STL cannot explicitly
formalize this requirement. To address this, we introduce an
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additional criterion: the car must attain a predefined baseline
velocity and maintain this speed once achieved. We consider
that the car colliding with the wall is the safety constraint. We
emulate this task in accordance with the STL specification as
outlined below:

&= F( v

——————— > ) AG(d. > 0)
|7'cm" - rcircle|
Where v is the current velocity of the car and vy is the required
velocity that the car would reach. 7., is the distance of the
car to the center of the circle. r.;,..i. 1S the radius of the circle.
d. > 0 is the requirement that the car should keep a distance
from the wall. We generate the reward function as:
v

o (" ) )

<t’€[0:t] |7“cm" - Tm',rcle| ’ ‘

For the two benchmarks, we train the control policy 7 using
PPO [43] for 10 million steps and the reach rate for the control
point is greater than 95% with less than 2% violation rate.

Classical control system. We also perform the SVA frame-
work to two classical control systems from the CPS commu-
nity: DC Motor Position [5], Bicycle [44]. DC Motor position
controls the motor angle to a desired position by using the
current as control input. The Bicycle has two control inputs:
acceleration and steering angle with the goal of speed and
steer angle.

We establish a control objective along with two designated
unsafe regions for each benchmark. For instance, in the case
of the DC Motor position, we define a target motor angle as
the objective and designate two other motor angles as unsafe
thresholds. The control policy’s task is to navigate the angle
toward the objective while steering clear of unsafe angles
within a predefined time horizon. We quantify the goal and
unsafe regions using the 2-norm Euclidean distance metric.

To train the control policy, we employ the Soft Actor-
Critic (SAC) algorithm. The training process is carried out
for 500,000 iterations, utilizing the reward function which is
the robustness of the STL specification similar to Equation 9.
Both of the control policies have a greater than 96% reach
rate and have less than 1% violation rate.

min (d,

R; = min .
t’€0,t]

t'€[0,t]

B. Experiment Setting

We first introduce the SVA performance details under differ-
ent adversary knowledge levels for the SVA framework. Then
we demonstrate the baseline methods for comparison.

SVA framework Setting. We set up SVA methods with
different levels of adversary knowledge: White box(WB), grey
box with known control policy(GB-C), grey box with known
transition function(GB-P), and black box(BB). For all the
experience, the set of perturbation set S (s) is defined as a
ls norm ball around s with the budget e. We set different
time horizons 7T for the four benchmarks: 10,000 steps for
PointGoal, 5,000 for CarCircle, and 50 for DC motor and
Bicycle. The adversary is considered to be effective when it
can violate the safety constraint within the predefined time
horizon 7". We use the SAC algorithm to train the surrogate
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control policy and PPO to train the adversary model for grey-
box and black-box attacks.

Gradient-based Attack. Gradient-based Attack(GA) refers
the group of methods from [16], [17]. GA minimizes the value
function of the critic Q™€ (s,a). It first gets the gradient:
grad = V;Q" (s,a) and updates the potential adversarial
state as s; = s — n; * ”‘;:7%“ where n; is the sampled noise.

Learning-based adversary attack. The learning-based ad-
versary attack (LAA) [39] [26] leverages the idea that a control
policy 7 with an observation adversary can be formalized to an
SA-MDP SA—MDPM = (S, A,r,B,p,~). The adversary’s
task can also be viewed as a MDP M = (S, A, 7, p, ) where
7#(- | ) = —r(- | -). The intuition behind this is that the
adversary policy wants to reduce the reward obtained by the
victim system resulting in a negative reward for the adversary
when the victim system obtains a positive reward.

Maximal Action Difference Attack. Some works consider
decreasing the RL return reward by attacking the observation
resulting in the system taking suboptimal action. We consider
the Maximal Action Difference Attack (MAD) from [40]
which has proved to be efficient and simple. The MAD obtains
the s’ by minimizing: Lyap(s) —Dxr(m(s)||w(s"))
where Dyi, is the KL-divergence.

Noted, for a fair comparison, all three baseline observation
perturbations are constrained by the stealthiness requirement.
Additionally, the three baseline methods are under a black
box setting. For example, the GA uses the surrogate control
policy to compute the gradient to keep in the black box
scenario. This ensures that each method is evaluated under
consistent conditions, allowing for meaningful comparisons of
their effectiveness.

C. Result

We first show the attack results of our SVA and three base-
line methods on each benchmark. We evaluate SVA on each
benchmark with 500 experiments with random initial points
and show the percentage of violations within the time horizon
T varies with the perturbation range ¢ in Table II. The exper-
iment is ended if the system reaches the goal or violates the
safety. We use perturbation range ¢ € [0.01,0.05,0.10,0.15].
Results show that even with a small perturbation range, the
observation perturbation is still effective.

Observation 1: The white-box SVA demonstrates the high-
est rate of violations, outperforming all the other methods.
The SVA can successfully force the victim system into unsafe
even when the perturbation range e 0.01. Notably, the
WB SVA can achieve 90.4% violation rate with e = 0.15
for CarCircle while all the three baseline methods only have
less than 17% violation rate. The black-box SVA has the
worst performance within the four SVA scenarios but still
outperforms the three baselines, which meets our expectations.
The performance difference between BB and WB shows that
obtaining knowledge of the transition function and control
policy indeed increases the possibility of violating safety. This
observation also proves that the transition function and control
policy are useful to the adversary.
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. PointGoal CarCircle
WB GB-C GB-P BB GA LAA MAD WB GB-C GB-P BB GA LAA MAD
0.01 5.6% 4.6% 5.4% 5.2% 2% 3.6% 3.6% | 232% 14% 14.8%  12.8% 0% 5.6% 6.8%
0.05 14% 12% 10% 9.8% 6% 4.8% 4.8% | 488% 164% 172% 15.6% 3.4% 7.6% 8.4%
0.10 45% 342%  30.6% 208% @ 1.2% 6% 7.2% 84.2% 24.8% 21% 16.8% 9.2% 8% 9.2%
0.15  74.6% 62.4% 52% 38.6%  7.6% 6.8% 114% | 904% 32.6% 268% 192% 16.8% 12% 10.4%
DC Motor Bicycle
0.0l 188% 132% 156% 13.2% 5.6% 8.8% 9.6% 184% 164% 17.4% 13% 7.2% 8.8% 10.2%
0.05 194% 148% 162% 14.8% 6.4% 12.8% 14% 322%  24.6% @ 23.6% 20% 12.6% 12.6% 13.6%
0.10 33.6% 284% 22.8% 19% 132% 16.8% 16% 44.8% 38% 35% 25.8% 14% 16.8% 18.2%
0.15 46% 412% 244% 22.4% 18% 212% 164% | 46.2% 38.6% 35.6% 28.8% 23% 21.2% 20%

Table I: Attack performance measured by the violation rate. € is the perturbation range. The WB, GB-C, GB-P, and BB
represent our SVA framework under the white box, a grey box with a known control policy, a grey box with a known transition
function, and black box respectively. GA, LAA, and MAD are the three baseline methods introduced in the former subsection.
The higher the percentage, the better attack performance to violate the safety.

. PointGoal CarCircle

WB GB-C GB-P BB GA LAA MAD WB GB-C GB-P BB GA LAA MAD
0.01 864% 89.6% 89.6% 89.6% 932% 91.2%  93.6% 72% 84.4% 84% 86.4% 98% 92% 91.6%
0.05 828% 864% 864% 87.6% 91.2% 90% 90.8% 51% 81.6% 798% 82.6% 93.4%  89.6% 88%
0.10 52% 60% 80.8%  69.6% 90% 88% 90% 11.8% 71.6% 75.6% 80.4% 86.6% 87.4%  84.6%
0.15 19.6% 322% 424% 50.4% 88% 84% 85.4% 4.8% 62.6% 70.8% 77.4% 81% 82.8% 83.2%

DC Motor Bicycle

0.01 76% 792%  792%  79.6% 82% 86.8% 852% | 73.6% 79.8%  78.2% 83% 90.6%  86.8% 85.8
0.05 752% 80% 80% 804% 81.8% 824% 82.4% 64% 71.8%  73.2% 77% 852%  82.4% 78.6
0.10 56.8% 61.2% 73.6% 76% 724%  77.2% 82% 48.6%  59.4% 62% 72.4%  80.8%  11.2% 77.4
0.15 458% 484% 64.4% 684% 644% 66.8% 76% 46.2% 57% 35.6%  60.2% 72% 66.8% 76.8

Table II: The reach rate for each benchmark with different adversary algorithms. The lower percentage represents the adversary

has more impact on the task completion.

Note that although the SVA does not specifically target a
decrease in the reach rate, the SVA still has a significant impact
on the reach rate. The WB achieves the highest performance
in reducing the reach rate. The WB attack precisely found the
vulnerability of the system, making the system incapable of
reaching the goal and violating safety.

Observation 2: There is an intriguing observation that
when € is small, GB-P demonstrates better efficiency than
GB-C. However, this trend does not hold for larger € values,
where GB-C is shown to be more efficient. We illustrate the
observation using the following claim:

o The adversary knows the control policy means that the
generated observation perturbation s’ is more potent in
reducing the robustness of the safety constraint compared
to the action obtained through the adversary model 7,4,
used in GB-P and BB setting.

o When the adversary knows the control policy, it signifies
that the produced observation perturbation s’ can induce
the system to take an action that is closer to the adver-
sary’s intended action, while a surrogate control policy
which may lead to an action that is not as closely aligned,
potentially due to neural network transferability prob-
lem. The adversarial perturbation can not always directly
transfer to another policy with different algorithms and
parameters.

When the perturbation range is small, it becomes challeng-
ing for the adversary to generate a corresponding observation
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Figure 2: The average distance to unsafe for the SVA with
four benchmarks under the white box (WB), a grey box with
control policy (GB-C), a grey box with transition function
(GB-P), and black box (BB).

perturbation s’ with given malicious action «/. This mitigates
the significance of knowing the control policy, resulting in
GB-C being less efficient compared to GB-P. However, when
the perturbation range is large, knowing the control policy
becomes crucial. This enables the generation of s that leads to
the precise malicious action, making the attack more effective.
Despite GB-P producing more serious action, the observation
perturbation generated from the surrogate control policy still
lacks some essential information.

Observation 3: Fig. 2 displays the average distance to the
unsafe in a whole trajectory with 100 experiments using four
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Figure 3: The stealthiness measured by the observed robust-
ness value of the goal ¢,. The dotted line is the observed
robustness after the attack, the solid line is the robustness
before the attack. The dotted lines in four attack scenarios
are all greater than the solid line which means that our SVA
keeps stealthiness.

SVA methods with € = 0.1. The figure shows that the WB
achieves the lowest average distance, which means that the
WB has the most probability of forcing the system towards
unsafe. The BB has the highest average distance indicating a
weak attack performance in four SVA scenarios which address
the same result as observation 1.

Observation 4: We verified the stealthiness of our SVA
and show the results in Fig. 3 using PointGoal and CarCircle
benchmarks. We show four different observation histories in
each figure in different attack scenarios. We assume the victim
system utilizes the manipulated observation to compute the
robustness of the goal ¢,. The dotted line represents the
robustness value after the attack, consistently equal to or
greater than the solid line. This confirms that all four SVA
scenarios maintain their stealthiness.

VI. DISCUSSION

In this paper, our proposed SVA framework targets the
attack on STL-guided RL. A pertinent question arises: Does
the SVA compromise the safety of heuristic RL employing
a hand-engineered reward function? We assert that, for any
safe reinforcement learning problem, the SVA framework has
the potential to lead the system into an unsafe region if the
adversary possesses knowledge of both safety constraints and
the control policy. However, if the adversary lacks access to
the control policy, training a surrogate control policy becomes
impractical, given the unknown reward function.

Limitation of the SVA. In the white-box attack of the
SVA framework, we consider the adversary using the transition
function p to obtain the malicious action for the next time step.
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However, such step-by-step action is not optimal even though
it achieves the optimal of the specific step. One of the possible
improvements of the solution is to leverage the transition
function to compute a sequence of actions u(, u}, ..., u}. The
sequence of malicious actions to achieve a particular objective
in this context can be viewed as a reachability problem, a topic
that has been explored in prior works [5]. However, these
works compute the attack sequence using a precise system
model and model-based controller with bounded noise, this is
not the primary focus of our paper.

Defense. While we show the SVA framework induces
malicious sensor attacks to force the CPS to take potentially
hazardous actions, it is important to note that the impact of
SVA can be mitigated or defended through some efforts. We
explore some possible solutions to defend against the Safety
Violation Attack in cyber-physical systems.

Robust training has been proven to be efficient in mitigat-
ing adversarial perturbation and improving policy robustness.
Many robust training frameworks rely on adversarial tech-
niques to manually generate attacks, enabling policies to be
trained against such adversaries. We consider that robustly
training a policy with the SVA adversary, which directly targets
sensor attacks that address safety, significantly enhances both
the controller’s robustness and the overall safety of the system.

Instead of ensuring safety in the training phase, using the
prior model to identify the unsafe is also a solution for the SVA
adversary. The utilization of formal verification establishes the
correctness of system behavior and identifies the unsafe state
and behavior, enabling the system to halt operations before
an adversary can compel it into an unsafe region. However,
it’s important to note that the efficacy of this method relies
on having an accurate system model. In situations where the
environment changes, the system may remain vulnerable to
threats if the identification of unsafe states is incomplete or
outdated.

VII. CONCLUSION

In this study, we introduced the Safety Violation Attack
(SVA) framework, which provides a novel approach to assess
the vulnerability of systems with an STL-guided RL controller.
We conduct different attack strategies based on the differ-
ent levels of the adversary knowledge. We analyze that the
existing adversarial attack on RL can not efficiently violate
safety. We evaluated the effectiveness of the SVA framework
on various benchmarks, including the OpenAl Safety Gym
platform. Our results demonstrate the potential risks of deploy-
ing STL-guided RL controllers, especially in safety-critical
applications. We observe that the SVA framework effectively
identified vulnerabilities, highlighting the need for enhanced
security measures in such systems.
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