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Abstract. Cyber-physical systems (CPSs) rely on computing compo-
nents to control physical objects, and have been widely used in real-world
life-critical applications. However, a CPS has security risks by nature
due to the integration of many vulnerable subsystems, which adversaries
exploit to inflict serious consequences. Among various attacks, sensor
attacks pose a particularly significant threat, where an attacker mali-
ciously modifies sensor measurements to drift system behavior. There is
a lot of work in sensor attack prevention and detection. Nevertheless, an
essential problem is overlooked: recovery—what to do after detecting a
sensor attack, which needs to safely and timely bring a CPS back. We
aim to highlight the need to investigate this problem, outline its four key
challenges, and provide a brief overview of initial solutions in the field.
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1 Introduction

Cyber-physical systems (CPSs) integrate computing units and physical compo-
nents, involving a feedback control loop. The computing units indicate control
signals for actuators and guide the physical components. These systems heav-
ily rely on multiple sensors that constantly monitor internal system states (e.g.
speed and position) and observe environmental conditions (e.g. obstacles).

Given the significance of sensors in CPSs, sensor attacks become a threat-
ening risk. An attacker can alter sensor data to negatively interfere with the
physical world. Compromised sensors may give false readings and misperceive
the targets, and thus deceive the controllers to yield misleading control demands
and cause serious consequences.

Extensive efforts have been made to defend against sensor attacks, most of
which focus on prevention and detection. On the one hand, attack prevention
assumes that CPSs might be under attack and aims to minimize the impact of
attacks by proactive measures, for instance, attack-resilient sensor fusion, state
estimation, and hidden attack defense [6]. On the other hand, attack detection
usually allows attacks (if occur) to affect the system and identifies attacks using
the caused impact. For example, many works perform detection by tracking
anomalies between sensor measurements and expected values, based on system
models [12] or sensor correlation [2,4].

Despite these efforts, a critical problem—what to do after detecting an attack,
remains elusive. We name this post-detection problem as sensor attack recovery.
Addressing this problem is essential because a CPS may keep drifting if contin-
uing to act on the malicious sensor data. Misleading control demands caused by
the attack may eventually drive the system to unsafe states if no proper actions
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are taken. The recovery needs to stop the drifting and reverse the negative im-
pact caused by the attack [7-10]. Despite this importance, much less attention
is paid to sensor attack recovery, compared to attack detection [1].

We thus attempts to draw attention from both researchers and practitioners
to investigate the sensor attack recovery problem. For this goal, we present i) the
recovery problem description in Section 2, ii) four key challenges to address this
problem in Section 3, iii) initial works that have been done so far in Section 4.

2 Problem Description

Sensor attack recovery is a post-detection problem that aims to bring a system
back to target states after detecting a sensor attack. Note that the recovery
problem here is to restore the physical state of a system, which is different from
the cyber recovery that restores cyber states such as values of variables [11].
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Fig. 1. Attack Recovery Workflow. Fig. 2. An Illustrative Example.

As shown in Fig. 1, the physical state space of a system is divided into three
sets: unsafe, contingent, and target sets. The unsafe set is a set of physical states
that a system must not reach; otherwise, serious consequences may occur. The
target set is defined as a set of states that the recovery needs to bring a system
into after the detection of an attack. The contingent set refers to a set of states
that a system can stay in when there are no attacks but cannot when sensors are
compromised. The contingent and target sets together are called the safe set.

We consider two operational modes: normal and recovery. A system operates
in the normal mode when there are no attacks, and switches to the recovery
mode after attack detection. In the recovery mode, appropriate recovery methods
need to be applied and drive the system to the target set. Fig. 1 illustrates the
transition from the normal to recovery modes. The system operates normally
before t,. An attack starts at t, and is detected after some time, i.e. at t4. Then,
the system transits to the recovery mode, and is steered back to the target set at
t,, as shown by the green solid curve. Note if no recovery is applied, the system
may keep drifting and reach unsafe set at t,, shown by the red dotted curve.

Fig. 2 shows an example to illustrate and motivate the recovery problem.
Consider an autonomous vehicle running on a two-lane road. The unsafe set is
the opposite lane (the red region), the contingent set is the system’s own lane
(the yellow region), and the target set is the shoulder (the green region). Note
that if the vehicle stays in the contingent set after attacks, it may end up being
unable to sense obstacles ahead due to the attack and crashing them. Thus, it
needs to be steered to the target set and stopped there for safety.
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3 Key Challenges

Sensor Data Credibility. The first challenge is data credibility, that is, after
detecting a sensor attack, how to determine trustworthy data that can be used
for recovery. Two primary sources are typically considered: measurements from
uncompromised sensors and historical data recorded before an attack starts.
For the first source, the attack detector needs to localize those reliable sen-
sors and use their readings for further system state estimation and recovery while
excluding interference from corrupted sensors. Failure to differentiate between
attacked and normal sensors can lead to recovery failure due to mixed readings.
False positives (correct sensors labeled as attacked) limit data for precise esti-
mation, while false negatives (corrupted sensors determined as normal) cause
risky state assessment and recovery failure. Regarding the second source, histor-
ical sensor data, it’s essential to precisely determine the attack onset. Reliable
sensor measurements before the attack can initiate state estimation and recov-
ery. Accurate attack onset diagnosis is crucial, as an erroneous diagnosis risks
unreliable and hazardous state estimation, undermining recovery efforts.

System State Estimation. The second challenge is system state estimation.
System estimation means using (a part of the) sensor readings to compute the
real /true system states, such as locations and speeds. Fast, accurate, and efficient
system state estimation is of great importance in system recovery, because the
recovery needs to know the current physical state of a vehicle in order to control
it to the target set. Under attacks, state estimation becomes significantly chal-
lenging. Attacks may have been launched quite some time ago, and the system
can only use old historical readings of a part of the sensors.

Solutions in this context depend on two factors: the proportion of sensors
that can be deemed trustworthy and the freshness of the historical data obtained
from these reliable sensors. Ample redundancy and relatively new data enable
the system to reconstruct its state with ease. However, in many instances, the
reconstructions of the system state carry a significant degree of uncertainty be-
cause of cost control (reducing redundancy) and the first challenge (sensor data
credibility). When uncertainty cannot be effectively reduced, a prudent approach
is to act conservatively. This entails utilizing the most pessimistic estimations
and generating control sequences that prioritize safety over other considerations.

Recovery Functionality. The third challenge is how to safely recover a system
to the target set. Safe recovery differs from the normal system running because a
control sequence that is benign for an unattacked system may not be applicable
for systems under attack. Thus inappropriate recoveries that derive from normal
system runnings may drive a system to an unsafe set and cause danger.

We need to consider proper physical constraints and safety requirements,
and the recovery should generate control sequences that do not violate them.
Further, due to the unpredictability of attacks, a system may sit in different
states when attacks are detected. The recovery needs to be able to dynamically
check and compute in order to accommodate this unpredictability.
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Satisfying the safety requirements is crucial for recovery functionality. If with
the knowledge of accurate system dynamics, model-based recovery methods can
embed the requirements in the controller design. By contrast, if without such
knowledge, data-driven methods such as machine learning techniques can be
applied. However, making data-driven methods satisfy the safety requirements
is already very difficult for a system running in normal mode. Developing such
methods in the context of sensor attacks will be even more challenging.

Recovery Speed. The last but not least challenge is the recovery speed. Recov-
ery speed refers to how fast it is to bring a vehicle to the target set. Determining
appropriate recovery speed is tricky due to two aspects as follows.

Generally, fast recovery is key, since uncertainties accumulate over time, po-
tentially causing recovery failure. Uncertainty stems from two sources: accumu-
lated sensor errors and unforeseen environmental factors, e.g., sudden obstacles.

On the other hand, one should not take “as fast as possible” for granted.
Users’ experience is also a factor. For example, as shown in Figure 2, trajectory
2 denotes a very fast recovery, while trajectory 1 is moderate, and trajectory 3
is slow. Trajectory 2 immediately reaches the target set with a sharp turn, thus
discomforting the passengers and causing other safety issues. Hence, moderate
recovery speed may be more reasonable, balancing the above aspects.

Several steps are needed to settle this challenge. First, recovery systems
should compute a recovery deadline, beyond which the system will fall into
an unsafe set. After calculating the deadline, the recovery system should select
the best target recovery speed considering objectives, scenarios, and user pref-
erences. At last, the recovery systems should dynamically adjust the recovery
speed according to changing environments.

4 State-of-the-art Recovery Solutions

Shallow Recovery. Shallow recovery refers to the recovery that still uses the
original controller in the recovery mode; while deep recovery refers to the recov-
ery that has specific controllers in the recovery mode. This subsection presents
shallow recovery papers and the next subsection does deep recovery ones.

Ref. [5] is regarded as the sperm work that investigates the sensor attack re-
covery problem. It proposes a new concept of physical state recovery, where the
essential operation or behavior is defined as rolling the system forward from con-
sistent historical system states. This work develops a procedure that leverages
historical data to recover failed system states. It also designs a checkpointing
protocol that defines how to record system states for recovery. Specifically, the
protocol introduces a sliding window that accommodates attack detection de-
lay to improve the correctness of stored states. A similar idea has also been
applied to various systems including chemical processes, robotic vehicles, and
power systems. These works rely on the system model to do state estimation.
Different from them, Ref. [3] develops a data-driven attack recovery framework:
a deep learning-based prediction model that exploits the temporal correlations
estimates system states after attack detection.
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Deep Recovery. Deep recovery refers to the recovery that has specific con-
trollers in the recovery mode. The works above do not have such controllers,
instead mainly perform state estimation in the presence of sensor attacks. Thus,
they are unable to manage the recovery process. To address attack recovery,
Ref. [7] proposes a formal method-based attack-recovery control that includes
the removal of poisoned data, estimation of the current state, prediction of reach-
able states, and online design of a new controller to recover the system. This work
is regarded as the first one that deeps into the recovery control level. Specifi-
cally, it solves a reach-avoid problem for a Linear Time-Invariant (LTI) system
while considering in-negligible uncertainties. The computed recovery control is
guaranteed to work on the original system if the LTI model has less behavioral
difference with system dynamics than an error bound. In order to run online
with limited computational resources, this work builds a linear programming
restriction with constrained safety and target specifications and then finds a so-
lution through a linear programming solver. The results show that the proposed
recovery can steer a system back to a target state in a safe and real-time manner.

Ref. [9] significantly improves [7] by considering recovery trajectory oscilla-
tion, maintainable time, and computational overhead. Specifically, a real-time
recovery system that addresses the recovery speed was provided, using Linear-
Quadratic Regulator (LQR) based recovery control calculator that concerns tim-
ing and safety constraints can smoothly steer a system back to a target state set
before a safe deadline and maintain the system state in the set once it is driven to
it. Also, a checkpointer, a state reconstructor, and a deadline estimator are de-
signed to realize the in-time recovery. Compared to [7], Ref. [9] can significantly
reduce the oscillation of recovery trajectory and maintain the system in the tar-
get set for a while. The cost of this improvement is the increased computational
overhead, which is, however, acceptable by the experimental results.

While Ref. [7,9] focus on linear systems, Ref. [10] addresses non-linear system
recovery, which is more practical in real-world CPS applications. It incorporates
a state predictor that leverages Flow™, a tool specifically designed for efficient
non-linear reachability analysis. In addition, it regularly updates linear approxi-
mations based on the current state estimate, ensuring a high degree of accuracy
within a small range. Compared to Ref. [7,9], another feature of Ref. [10] is that
it can leverage uncorrupted sensor data to enhance recovery performance. Once
attacked sensors are diagnosed, the recovery control sequence generator uses un-
corrupted sensor measurements as feedback at each activation, which prevents
the uncertainty from exploding in the uncorrupted dimensions.

Toolbox. At last, a CPS attack recovery toolbox is developed in [8]. It mimics a
general CPS, where sensors gather system state data transmitted to observers.
Environmental uncertainties or sensor attacks can distort these observed states,
affecting estimates. Controllers use these estimates to generate control signals,
applied to plant simulators that update system states based on dynamics. The
toolbox accommodates various attack strategies, detectors, and recovery con-
trollers, making it a versatile platform for sensor attack recovery experiments.
More information is available at: https://sim.cpsec.org.
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Conclusion

We introduce CPS sensor attack recovery, highlighting its distinction from pre-
vention and detection. Driving CPSs towards target sets is the motivation for
recovery. We present four major challenges and present current solutions. A com-
prehensive view of attack recovery is offered. We highlight the importance and
challenges of CPS sensor attack recovery. Despite some preliminary work, the
field requires more development to achieve robust attack recovery solutions.
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