2023 IEEE Real-Time Systems Symposium (RTSS) | 979-8-3503-2857-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/RTSS59052.2023.00017

2023 IEEE Real-Time Systems Symposium (RTSS)

Learn-to-Respond: Sequence-Predictive Recovery
from Sensor Attacks in Cyber-Physical Systems

Mengyu Liu Lin Zhang Vir V.Phoha Fanxin Kong
University of Notre Dame University of Pennsylvania Syracuse University University of Notre Dame
mliu9 @nd.edu cpsec@seas.upenn.edu vvphoha@syr.edu fkong@nd.edu

Abstract—While many research efforts on Cyber-Physical
System (CPS) security are devoted to attack detection, how to
respond to the detected attacks receives little attention. Attack
response is essential since serious consequences can be caused if
CPS continues to act on the compromised data by the attacks.
In this work, we aim at the response to sensor attacks and adapt
machine learning techniques to recover CPSs from such attacks.
There are, however, several major challenges. i) Cumulative error.
Recovery needs to estimate the current state of a physical system
(e.g., the speed of a vehicle) in order to know if the system has
been driven to a certain state. However, the estimation error accu-
mulates over time in presence of compromised sensors. ii) Timely
response. A fast response is needed since slow recovery not only
comes with large estimation errors but also may be too late
to avoid irreparable consequences. To address these challenges,
we propose a novel learning-based solution, named sequence-
predictive recovery (or SeqRec). To reduce the estimation error,
SeqRec designs the first sequence-to-sequence (Seq2Seq) model
to uncover the temporal and spatial dependencies among sensors
and control demands, and then uses the model to estimate
system states using the trustworthy data logged in history. To
achieve an adequate and fast recovery, SeqRec designs the second
Seq2Seq model that considers both the current time step using
the remaining intact sensors and the future time steps based on
a given target state, and embeds the model into a novel recovery
control algorithm to drive a physical system back to that state.
Experimental results demonstrate that SeqRec can effectively and
efficiently recover CPSs from sensor attacks.

Index Terms—cyber-physical systems, recovery, sensor attacks

I. INTRODUCTION

Cyber-Physical Systems (CPS) incorporate computational
and communication components with physical processes via
sensing and actuation. Integrating cutting-edge technology
increases CPS autonomy and facilitates applications like au-
tonomous cars and drones [1], [2]. In the meanwhile, the
development brings new security vulnerabilities that may be
exploited by attackers with malicious intentions [3]-[8].

In this paper, we investigate one of the most significant
security threats in CPS, which is called a sensor attack. Besides
compromising control software and networks, attackers can
also non-invasively modify sensor values via spoofing or
transduction attacks [6], [9]-[12]. In this type of assault, an
attacker attempts to interrupt the functionality of a physical
system by manipulating with sensor data. Taking action based
on compromised sensor data can drive the physical system
into unsafe states and bring dangerous effects [10], [13]-[16].

For instance, an attacker may spoof GPS signals to misguide a
vehicle [17]-[20], or use sound waves to affect accelerometers
[21], [22].

These new threats have motivated many research efforts
on sensor attack detection [9], [13], [23]-[30]. However,
a critical question, ‘how to respond to an attack after the
detection of it’, receives less attention. If the system continues
to operate based on malicious sensor data, it will continue
to drift. The response must stop the deterioration and even
reverse the attack’s detrimental effects [10], [15], [25], [31].
Despite this importance, much less attention is paid to attack
response, compared to the rich literature of attack detection.
Recent surveys such as [25], [26], [32]-[34] also confirm this
significant research gap of attack response. Thus, this paper
focuses on this sensor attack response problem.

Recently, researchers start to make more efforts on studying
how to respond to sensor attacks after detection in CPS.
Several attempts to this end use a common method, that is, to
discard the corrupted sensors and then derive state estimates
for them based on a pre-known mathematical model of the
physical system (e.g., linear time-invariant model) [14], [35],
[36] or a learned model [24], [37]. However, these works do
not present a specific recovery control and instead continue
to use the original controller to supervise the physical system,
which thus may not yield a timely response. To solve this
issue, a real-time attack recovery framework is proposed in
[10], [15], where a specific recovery controller is developed
to drive the physical system back to target states in a timely
manner. However, these works are confined to model-based
designs, i.e., rely on the knowledge of the mathematical
system model, and thus is hard to apply to black-box systems.
Also, it is challenging to apply the model-based methods
to complex system in real-time due to the large computing
overhead. Further, the recovery control here is different from
conventional robust control. The latter is usually good at
handling bounded errors but is incapable to handle sensor
attacks which can incur unbounded modifications [38], [39].

In this paper, we aim to overcome these above limitations
by jointly considering physical state estimation and recovery
control. However, several key challenges remain unaddressed
for the pursuit of learning-based recovery as response to sensor
attacks in CPS.

e First, the recovery needs an accurate estimation of the
current state of the physical system, e.g., the speed of a car

2576-3172/23/$31.00 ©2023 |IEEE 78
DOI 10.1109/RTSS59052.2023.00017
Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

and the altitude of a drone, in order to know if it has been
driven to a certain state. The estimation error accumulates over
time in presence of compromised sensors.

e Second, in terms of timing, a timely response is required.
A slow recovery not only has large estimation errors, but also
may be too late to avoid irreparable consequences. Both cases
may result in a failed recovery in the end.

e Last, attack detection usually comes with a certain detec-
tion delay, i.e., the time interval between the onset of an attack
and the detection of it. The recovery needs to accommodate
this delay in the design [10], [15], [29], [40].

To address these challenges, we propose a novel learning-
based framework, named sequence-predictive recovery (or
SeqRec). SeqRec employs the encoder-decoder architecture to
design two learning models: one for system state estimation
and one for recovery control. Specifically, to reduce the
estimation error, SeqRec has the first sequence-to-sequence
(Seq2Seq) model to uncover the temporal and spatial de-
pendencies among sensors and control demands. The model
is used to estimate the physical system states using the
trustworthy data logged in history. To achieve an adequate
and fast recovery, SeqRec has the second Seq2Seq model that
considers both the current time step using the remaining intact
sensors and the future time steps based on a given target state.
The model is then embedded into a novel control algorithm to
generate a sequence of control demands to drive the physical
system back to the target state. SeqRec is a model-free method
without knowing the system dynamics details. And it can be
applied to complex systems in real-time since the learning
models are good at capturing the complex dynamics of the
system and the inference speed are short due to the boosting
development of graphic cards. Finally, we evaluate the pro-
posed SeqRec using multiple simulators including linear and
non-linear numerical benchmarks as well as a high-fidelity
simulator, SITL with ArduPilot [41]. Moreover, we implement
SeqRec on a 4-wheel vehicle testbed to show its effectiveness.
Specifically, the contribution of this work is as follows:

e We propose a novel sequence-predictive recovery frame-
work to respond to sensor attacks in CPS. We propose a
Seq2Seq model for the system state estimation to reduce the
estimation error in presence of sensor attacks. We propose
another Seq2Seq model to achieve fast recovery. And we
embed the model into a novel sequence-predictive recovery
control algorithm to drive the system back to target state.

e We conduct extensive simulations and experiments on var-
ious CPSs with varying levels of complexity and nonlinearity
to demonstrate the effectiveness and efficiency of SeqRec at
recovering CPS from sensor attacks. The proposed method is
also implemented on a 4-wheel testbed.

The rest of this paper is organized as follows. Section II
presents preliminaries. Section III gives an overview of our
recovery framework. Section IV and Section V describe the
two Seq2Seq models and the control algorithm. Section VI
describes the experiment settings. Section VII evaluates our
method. Section VIII discusses the scope of application.
Section IX concludes the paper.

79

II. PRELIMINARIES

In this section, we first present the system and threat models,
and then briefly describe the encoder-decoder architecture of
Seq2Seq learning and Recurrent Neural Networks.

A. System Model

We consider a CPS that consists of a physical system
controlled by a computer program or controller. The controller
operates at a predetermined time interval, called a control step.
At each control step ¢, the controller reads sensor readings
and estimates the current state of the physical system or
the physical state. The physical state is denoted by a vector
of real variables x(t) = {zi(t),...,2,(t)}T, where n is
the dimension of the vector. Then, the controller computes
control demands, denoted as u(t) = {ui(t),...,un(t)}%,
using a control algorithm u(t) g(x(t),x,(t)), where m
is the dimension of the control demand vector, x, is the
pre-defined reference or target state, g is the control law of
the controller. Then the control demands are applied to the
actuators which drive the physical system to follow the target
state. For ease of presentation, we assume that the physical
system is fully observable to the sensors, i.e. all state estimates
can be obtained from sensor measurements. Further, we use
x, X, and ¥ to denote the real physical state, the observed
sensor measurements, and the estimated physical state by our
Seq2Seq model, respectively.

B. Threat Model

The threat model considered in this paper is as follows.
An attacker can launch sensor attacks by compromising the
integrity (e.g., spoofing and transduction attacks) and avail-
ability (e.g., DoS attacks) of sensor data or measurements.

Acting on the corrupted values, the controller may drift the
physical system from the target state to unsafe states. Formally,
sensor attacks make x(t) # x(t), and the difference is denoted
as e(t) = x(t) — x(t). The sensors can be partially or fully
affected, that is, the number of non-zero dimensions of e; or
lo norm of e; is 0 < |les||lo < m, or ||es]|o = n. Further,
we assume that there is a sensor attack detector already in
place and it can identify which sensors are under attack. The
detector may have some detection delay, but the detector is
responsible to diagnose when did the attack start.

Given that attack detection is not our focus, exiting detection
methods such as [9], [13], [40] satisfy this assumption and
thus can be applied. Note that the capability of recovery
heavily depends on the attack detector, e.g., if it fails to
detect an attack, the recovery will not be activated and thus
offer no help to defend against the attack. Further, this work
pursues a black-box solution and needs little knowledge of the
mathematical model or dynamics of the physical system. It is
possible that the system diverges again after the recovery. This
work focusing on how to recover the physical system to the
target state. For example, if a car’s IMU is attacked, we can
recover it and drive it to the shoulder and stop there. There
is a very important question to be noticed: how to control
the system after the recovery? This question is out of scope

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

Recovery
Control

Calculation

Not detected

(wait for next step) /No recovery
_

Fig. 1: Illustration of the SeqRec Framework.

of this paper, our recovery ends when the current estimate
falls into the target set. The estimation error is small for low
recovery time which will be shown in VIIL. Even if it was large,
our recovery still gives cushion time for the operator (e.g. the
driver) to react. Furthermore, we assume the detector keeps
running. When no attack is detected anymore, the controller
resumes to use observed values.

C. Introduction on Seq2Seq Learning

Encoder-Decoder Architecture. The encoder-decoder ar-
chitecture is typically designed for sequence-to-sequence
learning. A neural network under this architecture consists of
two main parts: the encoder and the decoder. The encoder
represents a sequence of input features as a hidden state
vector, which then is forwarded to the decoder to generate
an output sequence. In general, the encoder is composed of a
stack of recurrent units, each of which accepts an element of
the input sequence, represents the element as a hidden state,
and forwards it to the next unit. The hidden vector is the
final hidden state produced by the encoder, which aims to
encapsulate the information for all input features so as to help
the decoder make better predictions. The decoder also contains
a stack of recurrent units, each of which accepts a hidden state
from the previous unit and produces an output element and its
own hidden state.

Recurrent Neural Networks. The encoder/decoder can be
a Recurrent Neural Network (RNN). Simple RNNs suffer from
the problem of vanishing gradients, which makes it difficult to
learn long sequences. To solve this problem, Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU) were
proposed, which are the most widely used RNNs nowadays.

GRU cells have fewer parameters than and different gating
design from that of LSTM. A GRU cell maintains only a
hidden state and no cell state. Please refer to [42], [43] for
more details on Seq2Seq learning.

III. SEQUENCE-PREDICTIVE RECOVERY FRAMEWORK

This section presents the sequence-predictive recovery
framework or SeqRec, and the idea of using recurrent units
and the encoder-decoder architecture in SeqRec.

Framework Overview. Fig. 1 illustrates key components of
SeqRec. SeqRec has two key components: state estimation and
recovery control. Attacked sensors may incorrectly reflect the

80

physical state. Thus, during recovery, the corrupted sensors are
not used and the first component estimates the physical state in
presence of them. Both the historical sensor data and control
commands are required to do the state estimation. Due to the
detection delay, the physical system may already drift away
from the target state when the attack is detected. Therefore,
the recovery requires the reconstructed states as inputs since
the compromised sensor readings are not trustful anymore.
Thus, the second component computes a control sequence to
drive the physical system back to the target state. The recovery
continues until the system is back to the target stare.

We assume there is an existed detector in the system
monitoring the sensors of the physical plant. When the detector
detects attacked sensors, SeqRec is activated to supervise the
system; otherwise, the original control does the supervision
and the procedures in the dashed-green box are not processed
at this time. Note that though SeqRec follows the simplex
architecture [10], [15], [44]-[46], the design of the recovery
controller is different. Specially, we propose to use Seq2Seq
learning models for the design.

Framework Workflow.The workflow of SeqRec is as fol-
lows. As shown in Fig. 2, suppose that a sensor attack starts
at time to and is detected at time ¢, i.e., the detection delay
is t, — to. Before time t(, the system runs normally and the
measurements are trustworthy, i.e., uses the original controller,
and tracks the target state, as shown by the black curve. After
time o, the system starts drifting and the measurements of
attacked sensors are not trustworthy, as shown by the red
curve. From time ¢, to t;. SeqRec takes over to control and
drives the physical system back to the target set. The blue
curve shows the recovery trajectory between ¢, and ¢,.

Idea of Using Seq2Seq Learning Models. The motivation
of this idea, i.e., using recurrent units and the encoder-
decoder architecture, is as follows. The first is to reduce the
estimation/prediction error in state estimation and recovery
control. If the prediction is made step-by-step, its error will
accumulate very fast. By contrast, a sequence of recurrent units
in the encoder/decoder can better capture the temporal and
spatial dependencies among sensor measurements and control
demands, and thus reduces the error accumulation. Although
some papers such as [47]-[51] also use recurrent units and
sequence learning for state estimation, they do not consider
control demands and thus have degraded performance. Sec
VII will show the gain and cost of including control demands
to the sequence learning. Second, for the recovery control,
a sequence of recurrent units in the decoder allows looking
ahead to the future time points. That is, for each time of
prediction, a sequence of control demands will be computed
and the demands are related to each other. Compared to a
step-wise controller, i.e., computing a single control demand
at each control step, this look-ahead control will help on timely
recovery, and also allows to include the intact sensors in each
time of prediction. To the best of our knowledge, this method
is the first sequence-predictive model-free method to recover
CPSs. Note that the performance gain by this idea is also
validated in the evaluation. The novel designs of realizing this

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

x(1)

|
recovery :
trustworthy |
l» o : Target

| | State
[!
| | |
!] |

0 t, t, t+l t+2 t, t

Fig. 2: Workflow of the SeqRec Framework.

idea are detailed in Section IV and Section V.

IV. RECOVERY CONTROL DESIGN

In this section, we detail the design of the recovery control
component in SeqRec. This component needs the estimated
system states obtained from the state estimation component,
which will be detailed in the next section. The following first
presents our novel sequence-predictive control algorithm then
we explain how to use Seq2Seq model for recovery control.

A. Sequence-Predictive Control Algorithm

Our control algorithm mimics the principle of model-
predictive control (MPC) (details on MPC in [52]). At each
control step, given the state estimate, MPC looks ahead and
generates control demands for multiple steps in future, but
only the control demand at the current step will be applied to
the actuator. MPC relies on the knowledge of the mathematical
model in order to formulate an optimization problem, solving
which gives the control demand sequence. By contrast, our
algorithm is a black-box solution and uses the Seq2Seq model
designed above. That is, at each control step, our algorithm
uses the Seq2Seq model to generate a sequence of control
demands and then applies only the control demand at the
current step. Doing this allows us to use sensor measurements
at each step. However, given attacked sensors, their measure-
ments cannot be used. The difficulty here is how to utilize the
intact sensors in presence of those corrupted ones.

To address this difficulty, we propose to replace the com-
promised sensor measurements by the corresponding state
estimates from the state estimation component. The idea is
described as follows. Without loss of generality, suppose that
¢ sensors are compromised, i.e., {Z1(t), - ,Z,(¢)} is not
trustworthy, and {Z441(t), -+ , Z,(t)} is. We first use the state
estimation component (detailed in the next section) to estimate
the current system state x(¢). Then we assemble the following
vector X as the state estimate for time ¢.

B(t) = {21(t), -, 2(t), Tqpa(t), -, Ta(D)}T

That is to abandon the ¢ compromised dimensions in X(t)
and replace them by that in x(¢). Finally, we do the above
assembling for all steps in the encoder sequence and will
obtain

ey

Xp(t) = {x(t —ne + 1), ¥t - 1),X()}. (2

81

Algorithm 1: Sequence-Predictive Control

Input: ne, ng, me, ma, to, ta, q, R(), S()

/* me,ng: length of the encoder and
decoder of the recovery control
model in Fig. 3;

me,Mg: length of the encoder and
decoder of the state estimation
model in Fig. 4;

to,ta,q: attack start time,
detection time, and the number of
compromised sensors,
given by the detector;

*/
/%

x/
/%

respectively,
x/
/* */

/%

Ne =mqg =1tq —to;
R(),S(): the recovery control and
state estimation models in Fig. 3
and Fig. 4;
Output: u(t, + k)
/* u(ty+k): the control demand at time
to +k; */
1 X, (t, +k) =
S ((Yp(ta +k—mq),Up(te+k— md)) ;Up(ta + k)),
2 Assemble X,,(t, + k) using Eq. (1) and Eq. (2);
3U(t, + k)=
R((Xp(ta +k),Up(ta +k)) ; Xp(ta + k));
4 return u(t, + k);

*/

X, (t) in the above equation will be used as X, (¢) input to
the encoder in Fig. 3. Hence, now using the Seq2Seq model
above can generate control demands in presence of corrupted
Sensors.

Based on the idea above, we present our sequence-predictive
control algorithm as shown in Algorithm 1. Line 1 estimates
the physical state using the state estimation model S() in the
next section. The encoder sequence length, i.e., that of X, (¢, +
k—mg) and Up(t, +k —mq), is me. Xp(ta +k —myq) is also
obtained by Eq. (1) and Eq. (2). The decoder sequence length
estimates, i.e., the length of estimated states X, (¢, + k), is
myg. Line 2 assembles X, (¢, + k) whose length is n.. Note
that our design lets n, = myq = t, — o, i.e., the detection
delay. Line 3 uses the recovery control model R() to generate
a control demand sequence U, (t, + k), starting at ¢, + k and
with a length of ny. Line 4 returns the first control demand in
U, (t,+k), which is u(t,+k) and then applied to the actuator.

B. Seq2Seq Model for Control

Problem Description. The focused problem here is to
compute control demands that supervise the physical system
to follow the target state. We formulate it as a multivariate
time series forecasting problem. That is, given a sequence of
state estimates and control demands in history, the objective is
at the current control step, to generate a sequence of control
demands for future steps.

Design. Fig. 3 depicts the design of the Seq2Seq model for
generating control demands. The model employs the encoder-

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

Target states X,

(t)
TRNN | W‘ RNN

Hidden
Vector

Hidden Vector

U, (t)
Commands
Time Series Data

(Xp(1), Up(8))

Encoder Decoder

Fig. 3: Sequence-predictive Recovery Seq2Seq Model.

decoder architecture as mentioned above. For the encoder,

it consists of a sequence of recurrent units (such as GRU

and LSTM). At the current time step ¢, its input, denoted

as (X, (t),Up,(t)), is the historical or past state estimates and

control demands between time ¢ — n. and time ¢. That is,
(Xp(1), Up(t)) ={ (F(t — ne + 1),u(t —nc +1)),

) (i(t - 1)7u(t - 1))) (i(t)vu(t)) }7
where 7, is the length of the encoder sequence. The encoder
captures the dependencies between state estimates and control
demands as well as among control steps. Each recurrent unit
h.(k), k € (1,n.] updates its state vectors based on the input
and the previous hidden states passed into it. The hidden state
of the last unit, he(ne), can be considered to represent the
summary of the input sequence. This hidden vector is then
forwarded to the decoder. For the decoder, it also consists of
a sequence of recurrent units. At the current time step ¢, its
input, denoted as X,-(¢t) = {x(¢t +1),x(t+2), - ,x(t+nq)},
is a sequence of target states for the subsequent steps in
future, where ng is the length of the decoder sequence.
This sequence gives a reference for the model to achieve,
in other words, we want the Seq2Seq to output a serie
of control signals can make the system reach the targets.
The hidden vector together with this input will guide the
decoder to output a sequence of control demands, denoted as
U.(t)={u(t),u(t+1), - ,u(t+mnqg—1)}, that can recover
the system to target states. For clarity of notation, subscript
“p” is for the past control steps and “r” is for the future
control steps, as to time ¢.

For ease of presentation, we abstract the recovery con-
trol model in Fig.3 as a function R(), ie., U.(t)
R ((X,(0), Uy (£)) : X, ().

V. STATE ESTIMATION DESIGN

In this section, we detail the design of the state estimation
in SeqRec. The following describes the focused problem and
then presents the Seq2Seq model for state estimation.

Problem Description. The focused problem is to estimate
the physical states, and is also formulated as a multivariate
time series forecasting problem. That is, given a sequence of
state estimates and control demands in history, the objective
is to produce a sequence of state estimates from a past control
step to the current step.

82

Design. Fig. 4 shows the design of the Seq2Seq model.
This model also employs the encoder-decoder architecture as
discussed above. Although this model looks similar to that in
Fig. 3, there are several major differences as follows. First, the
encoder consists of a sequence of recurrent units, and at the
current step ¢, its input, denoted as (X, (t — mgq), Up(t — mq)),
is a sequence of past state estimates and control demands
between step t — my — m,. and step t — my. That is,

(Xp(t = ma), Up(t — ma))
:{(Xt(t—md—me—l—l),u(t—md—me—l—l)),-u ,

x(t—mg—1),u(t —mg—1)), Xt —mq),u(t —my)) },
where m. and my are the lengths of the encoder and decoder,
receptively. Second, the model here estimates system states till
the current time ¢ and does not predict for future control steps.
The decoder also includes a sequence of recurrent units, and
at the current step ¢, its input, denoted as U (¢) is a sequence
of control demands from time ¢t — my + 1 to time ¢. That is,
U,(t) = {u(t—mg+1),--- ,u(t—1),u(t)}. The output of the
decoder is X, = {#((t —ma+1),--- ,%((t — 1),%((£)}. Note
that we focus on sensor attacks and all control demands are
trustworthy. If we let my be equal to the detection delay, then
the input sensor measurements to the encoder are also trust-
worthy. Thus, all state estimates during the detection delay can
be generated by this model, which are then used to replace the
compromised sensor measurements. For ease or presentation,
we abstract the state estimation model in Fig. 4 as a func-
tion S(), i.e., Xp(t) = S (Xp(t — ma), Up(t —mq)); Up(t)),
which is already referred to in Algorithm 1.

Several points worth to note are follows. The first is the
problem of how to log trustworthy sensor measurements,
state estimates, and control demands. The logging protocols
presented in [10], [15], [29] can be applied here. The log-
ging protocols use checkpoints to make the historical system
data trustworthy. Second, applying Seq2Seq models for state
estimation can mitigate the accumulative error compared to
single-step prediction models. This fact is also validated in
the evaluation. Third, the Seq2Seq model here can learn the
correlation among sensor measurements/state estimates and
control demands. In other words, the model can learn the
system dynamics of the system. And this is also the reason
why our method does not require attack data during the
training. Therefore, our method is different from the methods
in [40], [50] though similar neural networks have been applied.
It is possible to use only sensor measurements/state estimates,
without control demands, for estimation or prediction such as
[40], [50]. However, this method comes with lower estimation
accuracy. We have compared the performance of SeqReq with
that of above methods which do not use the control demands
in section VII-B.

VI. EXPERIMENTAL SETTINGS AND IMPLEMENTATION

The experiments are tested on three numerical CPS sim-
ulators [53]-[55], a high-fidelity drone simulator [41] and a
4-wheel testbed. We collected data under normal operation
from each simulator and the testbed and inject sensor attack

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

Control Demands

2 U,(t)
Merge with RNN

RNN
Hidden i
Vector X,(t)
Hidden Vector
Estimates
Time Series Data
(Xp(t — mg), Uyt — ma))
Encoder Decoder

Fig. 4: State Estimation Seq2Seq Model.

in the testing phase, the details of each system and its dataset
are given below. Additionally, the hardware and software
configuration and the neural network hyper-parameters are
described in details.

Hardware and Software Configurations The SeqRec
models for numerical simulators and the high-fidelity simula-
tor are running on a powerful PC with an Intel(R) Core(TM)
i7-10700KF CPU @ 3.80GHz, a Nvidia GeForce GTX 3080
GPU and 64 GB RAM. Our implementation uses Python with
Keras API under Tensorflow deep learning framework [56].

A. Numerical CPS Simulators

We use two linear simulators including DC motor position
(DC) and Quadcoptor (Quad), and one non-linear simulators,
Inverted Pendulum on Cart (IPC).

« DC is to maintain the rotation angle of the motor shaft.
The system state has two dimensions: x; = rotation angle
and x4 = rotary angular velocity, and the control demand
is u = voltage given to the motor.

o Quad is to supervise its altitude. The system state has 12
dimensions: (x1,z2,x3), (¥4, 5, x¢) = linear and angu-
lar position, and (z7, zs, x9), (10, 11, Z12) = linear and
angular velocity, and the control demand is v = thrust.
The original controls(Orig) of the two simulators above
are both PID controller.

o IPC is to balance an inverted pendulum on a cart. The
system state has four dimensions: x; = angle between
the pendulum and the horizontal direction, x5 = location
of the cart, x3 velocity of the cart, and x4
velocity of the pendulum, and the control demand is
u = the horizontal force. The original controller of IPC
is a linear—quadratic regulator (LQR). Details of these
simulators can be found in [53]-[55].

Dataset. The datasets are collected from the running results
of the three simulators above. For each simulator, 20,000
data points are collected and the dataset is split into 60/20/20
proportions for training/validation/testing. Further, we do the
data preprocessing as follows. The scale of each state di-
mension and control demand may vary, and thus a normal-
ization is used before training. We rescale all data to the
range [—1,1] using the following normalization, Xnorm =
(X - Xmean)/(xmax - Xmm)~

83

B. High-fidelity Simulator

To further validate the effectiveness and efficiency of our
method, we implement our SeqRec on the high fidelity simu-
lator, SITL with ArduPilot [41]. ArduPilot can provide control
support for simulators such as SITL, Gazebo, Xplane, etc.
ArduPilot has been applied in various research fields such as
adaptive control, security, CPS, etc. SITL can simulate various
scenarios for real-world CPS systems such as quadcopters
and rovers. The environment factors, such as noise, wind and
vibration, can be also considered in the settings to maintain
high fidelity.

1) Setting: In this experiment, we simulate a copter as
marked in Fig. 10. ArduPilot applies multiple controllers
to keep the system stable. To facilitate setting attacks and
recovery, we change some default parameters of the simulator.
First, the frequency is set to 100Hz, i.e., the control step is
10 milliseconds. Second, ArduPilot uses a PID controller to
supervise the copter’s altitude, i.e., to reduce the gap between
its altitude and the target altitude. We increase the p of the PID
to make the copter more responsive to attacks and recovery.

Dataset. The copter is equipped with IMU and GPS sensors
and four motors as actuators. We collect the sensor readings
and control demands as follows. For the dateset, we collect
80,000 continuous samples from the copter model in the SITL
simulator. For each sample in the dataset, the control demand
has five dimensions including one for each motor (there are
four motors) and one for the main control. The system state has
15 dimensions including three for the copter’s position, three
for the velocity on x,y,z-axis respectively, yaw, pitch, roll, the
angles of yaw, pitch, and roll, and the angular velocities of
yaw, pitch, and roll. There is no attack happened when we
collect the training data, i.e., all the training data are normal
data. These data are in different controller settings that have
different values for the p parameter. Its range is from 1 to 3
and a larger p value means a more aggressive PID controller.

C. 4-wheel testbed

In this subsection, we will cover the implementation details
and configurations of the 4-wheel vehicle testbed.

1) Settings: As illustrated in Fig. 5 , the vehicle testbed
is composed of four major components: a STM32F4 board,
a Raspberry Pi Model 4B, a motor, and a servo. The speed
sensor and voltage sensor were embedded on the STM32
board. The control period of this testbed is 50ms which is
sufficient to tolerate the computation overhead. Different from
the numerical simulators and the high-fidelity simulator, the
Seq2Seq models were deployed on a lab computer with 16GB
RAM, Intel i5-9600 3.1GHz cpu and a NVIDIA GTX1660
GPU. There are 2 PID controllers on the testbed to control
the speed and turning of the vehicle.

Fig. 5 shown the basic architecture of the testbed. A virtual
local area network(VLAN) was created by ZeroTier and we
use ROS2 framework for the communication between the
boards and the lab computer through WiFi. There is a camera
and a indoor positioning block on the testbed, the camera
captures pictures in real-time and run a vision algorithm to

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

Server
(SeqRec)
SR
oomro& Stat%
Control,
|
‘ STM32 ‘

tate -

Raspberry Pi

Camera | m3g°, 3
(Vision)

e
£

Fig. 5: Testbed Design

process them on the Raspberry Pi to maintain the car running
through a straight line. We did not use the servo readings and
the images for our model. The lab computer served as the
server which run the SeqRec at this time, it reads the states
message sent from the Raspberry Pi and send control messages
to it. The Raspberry Pi is the core of the communication and
holding the simple vision algorithm. The STM32 board is in
charge of the testbed’s real-time control and read senor values.
For the turning experiment, we replace the camera with a
indoor locating module to keep the testbed at the center of
the road. We place locating four modules at the corners of the
track as fixed anchor points, and the position of the testbed
can be efficiently computed.

Fig. 6 shown an example recovery process on the testbed.
We selected 6 frames from the demo video in the additional
materials to show the recovery workflow on the testbed. The
points in the plot represent the speed of the testbed at that
frame. The first frame is not under attack, the second and the
third frame is undering attack and the attack was not detected
yet. The fourth frame is during recovery, the fifth and the last
frame is after recovery. The data points are the approximation
of the testbed speed since it is unavailable to match the frames

and the collected with no error.

W\ X " : e
Nt N NN
s\ R ER = N j

-\ \ ““ \)

w
£ 0425
= 0.400
80375
Q

Fig. 6: Testbed Recovery Example

Dataset.The testbed equipped with IMU, gryoscope, 2
motors and a servo for turning. The system state have 10
states, the throttle(the average of the left motor and left
motor), the speed on the X,y,z-axis, the acceleration on the
X,y.z-axis, the pictch, yall, roll. For the second case study,
we also collected the 2D-coordinates provided by the indoor
localization modules. A dataset of 20000 continuous samples
was collected from the testbed.

Scenarios. We consider two scenarios for the testbed: First,
the testbed is controlled to run at a constant speed 0.36m/s.
And we inject a bias attack which is -0.06m/s to the speed
sensor measurement. The attack starts after the 200 control

84

steps when the testbed already reaches the speed 0.36m/s.
Second, the testbed is controlled to run at the center of the
track, we inject bias attack to the readings from the localization
modules. The goal of this attack is to make the testbed deviate
from the center of the track. The recovery starts a number of
control steps after the attack starts, where the number is the
length of the sequence in our models.

D. Learning Configuration

All experiments are conducted using recurrent network
models with a single hidden layer, a recurrent layer in the
encoder and a recurrent layer in the decoder. The Exponential
Linear Unit (ELU) is used as the activation function for o,
in LSTM cells. For training, we use the Mean Absolute Error
(MAE) as our loss function. Note that we also try the Mean
Square Error (MSE), but it turns out that MAE is more robust
in our experiment. Further, all training data are normal data,
not attacked data, since our models are general to learn how
to estimate states and control the physical system instead of
confining to certain attacks. Furthermore, each model is trained
for 100 epochs with a learning rate of 0.001 using Adam
optimizer with betal = 0.9, beta2 = 0.999, which are the
initial decay rates used when estimating the first and second
moments of the gradient and epsilon = le — 08. We apply
batch normalization with momentum of 0.6 after the last cell
state and hidden state of the encoder. For fair comparison,
dropout rate of the linear transformation of the inputs layer
and dropout rate of linear transformation layer of the recurrent
state in recurrent layers are set to 0.2, hidden size h, which is
the number of LSTM units in each cell, is trivally set to 100
for all experiments.

VII. PERFORMANCE EVALUATION

In this section a brief description of the performance metrics
is given, followed by the recovery performance and real-
time property evaluation of the proposed method SeqRec.We
compare multiple approaches including existing ones and the
variants of our proposed method.

The performance metrics we consider include i) recovery
performance: how well and how fast the system recovered
to the target state, ii) state estimation and recovery accuracy,
and iii) overhead of our Seq2Seq models. First, to the best of
our knowledge, there is no previous work like our sequence-
predictive control, therefore, we make comparison between the
methods as follows.

o Orig. This method uses the original controller with state
estimates generated by our state estimation model in
Fig. 4 as input to the controller, this technique also know
as virtual sensor which provides readings or estimates of
quantities without relying on direct measurements from
physical sensors.

o SeqRec. Our sequence-predictive recovery proposed in
this paper. The recovery control is produced by a Seq2Seq
model based on the reconstructed state estimated by
another Seq2Seq model.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

« NoRec. No recovery is applied after the detection, i.e.,
the attack continues to affect the system.

Second, we compare different types of recurrent units includ-
ing (simple) RNN, LSTM and GRU. Third, we compare our
state estimation method to existing ones such as [40], [50]
which do not use control demands. Fourth, we also conduct
sensitivity analysis, for example, comparing different lengths
of sequences in our Seq2Seql models. Single-step LSTM is
also considered whose sequence length can be seen as one.

A. Recovery Performance

Original Controller vs SeqRec. The original con-
troller(Orig) is the existed controller in the CPS such as
PID. We don’t compare our recovery performance with the
methods in [10], [15] since they assume the system dynamics
is known which is different from our model-free assumption.
A continuous bias attack (i.e., adding perturbation to sensor
measurements) is injected to the rotation angle sensor in DC,
altitude sensor in Quad, and the angle sensor in IPC. The
attack runs from time 4 to 14. Note that the attack pattern is
not important since we focus on recovery, not detection, and
the compromised sensors are not used. In other words, SeqRec
does not change its procedures due to the attack patterns, it
only use trustworthy historical data. At time 9, the attack is
detected and then the recovery starts. Fig. 7 shows the results,
where blue, golden and red lines represent the state trajectories
of SeqRec, Orig, and NoRec, respectively. We only plot till
time 14 since as noted above, how to control the system after
recovery is out of scope of this paper.

Several key observations are as follows. First, though both
our SeqRec and Orig can drive the system back to the
target set, it is worth to note that our method results in a
faster recovery, as shown by the arrows in the figure. The
reason is that SeqRec synthesizes a controller that captures
the individual system dynamics instead of a general controller,
and also the target state sequence is directed used as the input
for the decoder. Second, by NoReq, i.e., no recovery after
detection, the system continues to drift further, which validates
the importance of attack response. Third, our state estimation
model can well estimate the system states, as shown by the
lines between time 4 and 9. More results on our Seq2Seq
model accuracy follow the similar trend.

For the high-fidelity drone simulator, we consider a scenario
that the copter is controlled to fly at a constant altitude of 100
meters or 100m. We inject a bias attack to the GPS z-axis,
i.e., the altitude, which is -20m perturbation to the sensor.
For example, if the sensor measurement is 100m, the sensor
value given to the controller is 80m. The attack starts from
when the copter reaches the altitude of 100m. The recovery
starts a number of control steps after the attack starts, where
the number is the length of the sequence in our models. In
Fig. 10, we annotate the copter on the map, and also mark the
current altitude above ground level (AGL) by the red boxes.
The three consoles show the running status of the copter for the
three cases. The target state/altitude is 100m, and the sequence
lengths of both the encoder and decoder are set as 40. First, for

85

=)
<
= Attack starts Recovetly starts
& eqRec Orig
g 290 —————— =T S
) 2 4 6 8 10 12 14
Time (step)
(a) DC Motor Position
~2.1
g Attack starts Recoverty starts
3 Y eqRec Orig |
E 2.0 e - .13-1-..2..__.
<
0 2 4 6 8 10 12 14
Time (step)
(b) Quadcoptor
~3.16
3 Attack starts Recovery star
E SeqRec Orig
23 14— e ——— =SS ..
<
0 2 4 6 8 10 12 14
Time (step)

(c¢) Inverted Pendulum

Fig. 7: Recovery Comparison. Blue line: SeqRec; Golden:
original controller; Dotted green: target state; Red: NoRec

no recovery, the AGL will increase to over 110m after some
time, which validates the importance of attack response, and it
keeps increasing for there is no response to the sensor attack.
Second, we can see that both Orig and SeqRec can recover the
copter to the target altitude. For Orig, the exact current AGL
reading is 99.67m and the last updated value is 100.17m. For
SeqRec, the exact current AGL reading is 99.83m and the last
updated value 100.03m. Note that the values are not 100m
sharp because of the noise we put in the simulation. SeqRec
can better supervise the altitude, i.e., closer to 100m, than
Orig, even with the noise.

Fig. 8 shows the recovery trajectories for Orig and Se-
gqRec with two different sequence lengths (both encoder and
decoder) of 10 and 40. We can see that our SeqRec can
faster recover the system than Orig. For example, comparing
Fig. 8(a) and Fig. 8(c), SeqRec already drives the copter to
the target set, 100m, at 20th control step, while Orig does not.

For the 4-wheel testbed, we consider two scenarios: First,
the testbed is controller to run at a constant speed 0.36m/s.
And we inject a bias attack which is -0.06m/s to the speed
sensor. The attack starts after the 200 control steps when the
testbed already reaches the speed 0.36m/s. The recovery starts
a number of control steps after the attack starts, where the
number is the length of the sequence in our models. Second,
we inject a bias attack with -0.5m the locating module readings
which contains the deviation from the center of the road, at
this time, speed sensor is not attacked. The servo is controlled
by a stanley controller for the turning of the testbed.

Fig. 11 shows the recovery comparison between SeqRec
and Orig for the first scenario. From the 200th timestep, a

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

2100041 |
i’, 10002 Atk starts
< 10000 tmeflmmnmmo oo S —— |
0 10 20
Time (step)
(a) Orig, seql0
& 10004
Q
Z 10002
< 10000+

Time (step)

(c) SeqRec, seql0

2100407 !
§ 1 Atk starts Rec starts \
100207 |
“r0000l el |
0 40 80
Time (step)
(b) Orig, seq40
= 100407 ! -
§ 1 Atk sta Rec starts
100201 | 5
< 100004 _jgl e b |
0 40 80
Time (step)

(d) SeqRec, seq40

Fig. 8: Recovery comparison between SeqRec and Orig on High-fidelity Simulators. Green dotted line: target state; Blue:
recovery trajectory. Atk: attack; Rec: recovery. seq#: the sequence length is #.

(b) SeqRec

Fig. 9: Recovery Comparison for the 4-wheel testbed turning,
using original controller will have a collision with an obstacle
due to slow recovery

continuous bias attack is injected to the speed sensor, velocity
of the x-axis. At the 200 + ¢ where ¢ is the length of
the sequence, we assumed the attack was detected and the
recovery starts. We only plot till the recovery is done, how to
control the system after recovery is out of the scope of this
paper. Several main observations are as follows. First, both
Orig and SeqRec can recover the system back to the target, and
SeqRec results in faster recovery which is similar to the results
shown in Fig. 7. Second, there are some minor drifts and
the curve is not as smooth as the results on simulators. This
is caused by multiple reasons such as environmental noise,
sensor noises and some errors caused by the scenarios. We
tried to make the 4-wheel testbed run through a straight line
marked as black on a track(made from nylon curtains). And
sometimes there are small folds on it so the resistance and

86

AULHOLD ARM CPSIOKG(10) \cc500 Radioi- INS MAG AS RNG AMRS EKF LOG I
Batt: 0%/12.59V 28.1A iinid 89855 pkts, Olost, 0.00s delay)

Hdg z/145 Alt110m Airspeed1m/s GPsspeed1m/s Thr34 Rollo Pitcho wind
FO Distanceon @ BPom(H) AspdErrorom/s(H) FlghtTime :31 ETRO:00 Param

No Recovery

ALT_HOLD ARM GPS: om(m) Ve 5.00 Radioi- INS MAG AS RNG AHRS EKF LOG F

Datt: 0%/12.59V 38.2A - - 57464 pkts, 0 lost, 0.00s delay)

dg355/167 Alt 100m Airspeed3m/s CPSspeed2m/s Thr48 Rollo PitchC Wind
PO DistanceOm BeS W¥n(l) AspdError Om/s(H) FlightTime 432 ETR0O:CO Param

Original Controller

ALT_HOLD ARM GPS: oxo(w) VCC5.00 Radioi- INS MAG AS RNG AHRS EKF LOG f
Datt: 0%/12.59V 39.5A Skt 6946 pkts, 0 lost, 0.00s delay)

dg355/169 Alt 100m ACI.99m/1oom Airspeed2m/s CPSSpeed2m/s Thr29 Rollo Pitche Wind
Bt WP¥m() AspdErrorOm/s(H) FlightTime 431 ETR0:00 Param

SeqRec

Fig. 10: Sampled Results on High-fidelity Simulator, the top is
the copter on the map, the bottom are the monitoring terminals.

slope would change which affected the speed of the testbed.
Also, the line-keeping algorithm could be a minor reason.
Since we deployed a simple vision algorithm to control the
servo making sure the testbed is running through the line, if
the testbed is a little bit deviated from the center of the line,
the algorithm will produce a control command to the servo
to adjust it, the frequent servo control adjustment is the main
reason of the drifts. The speed of the testbed would be affected
a little bit during the adjustment, too.

Fig. 9 shows the recovery comparison between SeqRec
and Orig for the second scenario. We record the recovery
experiments and stack four frames to one picture to show the

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

g 0.45
e Attack
E 0.40 -./\/\-
@035~ ~7
190 195 200 205 210 215 220
Time (step)
(a) SeqRec, seql0
2045
=040 Attac
g 0.35{ T
190 200 210 220 230 240
Time (step)
(c) SeqRec, seq20
2045
g
=0.40 Attack
3 M
&035
200 220 240 260 280
Time (step)

(e) SeqRec, seq40

—~
©n
=

=
el
Q

Q
&
wn

0.45
0.40 Attack
035 ——"—~""— =
190 195 200 205 210 215 220
Time (step)

(b) Orig, seql0

Attack
Nt DN
190 200 210 220 230 240
Time (step)
(d) Orig, seq20
0.45
0.401Attack
035777

240
Time (step)

(f) Orig, seq40

Fig. 11: Recovery Comparison of 4-wheel testbed, sequence length of 10, 20, 40, attack starts at the 200th time step.

recovery trajectories, the body of the testbed is surrounded by
red dashed box in the figure. We set a white box to represent
an obstacle. Both SeqRec and Orig have intent to recover the
testbed to the center of the road. But the recovery from the
original controller is not fast enough which causes a collision
as shown in Fig. 9(a). The right front of the testbed hits the
obstacle at the end.

B. Accuracy Performance

In this subsection, we discuss the accuracy performance of
our model by in quantitative ways in terms of MAE.

Average Error of Our Seq2Seq Models. Table I shows the
average state estimation and recovery error (i.e., MAE), which
is also calculated from 4000 sequence examples. First, we can
see that the average errors are reasonably small, i.e., accurate
estimation and recovery sequence generation. This indicates
that the learnt Seq2Seq models can accurately capture the
system dynamics. Second, the average error becomes larger as
the length of the generated sequence increases. This increment
is still quite small, which infers that our Seq2Seq models
can perform well for a relatively long sequence. Thus, our
models are sufficiently good for CPS which usually does not
require too long sequences. Third, the average error grows as
the system becomes more complex. For example, Quad has a
12 dimension state which is larger than that of DC and IPC,
and thus the former’s error is higher. However, the increment
is not exploding since learning-based methods can well handle
high-dimensional data.

Comparison of RNN, LSTM, and GRU. Fig. 12 shows the
average state estimation and recovery error for three different

87

o0l2
é 008 ERNN ®mLSTM ®GRU
0 - - - - -
DC Quad IPC
(a) State Estimation
0.12
ERNN ®LSTM ®GRU
=008
= 004
. [1| - .
DC

Quad IPC

(b) Recovery Sequence Generation

Fig. 12: State estimation and recovery sequence generation
errors with a sequence length of 10 using three different
recurrent neural networks.

recurrent units over all three simulators. The error is MAE
with a sequence length of 10 and averaged over 4000 sequence
examples. First, we can see that simple RNN has the worst
performance among all for both state estimation and recovery.
Note that worse state estimation usually results in worse
recovery sequence generation. Simple RNN does not have
gate mechanisms and suffers from the problem of vanishing
gradients, and thus cannot well capture the information over
multiple control steps. Second, LSTM performs slightly better
than GRU, and thus, in the following, we show the experi-
mental results mainly on LSTM.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

TABLE 1. Average State Estimation and Recovery Errors.
seq#: the sequence length is #.

Average Estimation Error Average Recovery Error

seqS seql10 seq20 seqS seq10 seq20
DC 0.0112 | 0.0163 | 0.0225 | 0.0183 | 0.0228 | 0.0242
Quad | 0.0146 | 0.0193 | 0.0394 | 0.0197 | 0.0243 | 0.0431
1PC 0.0133 | 0.0171 | 0.0271 | 0.0141 | 0.0202 | 0.0253

Single-step LSTM vs Seq2Seq Models. To validate the
motivation of using sequence models, we compare single-
step LSTM and our Seq2Seq models. Table II shows the
average MAE over 4000 examples for state estimation. First,
Seq2Seq has lower error than single-step LSTM. The reason is
that Seq2Seq models are good at sequence forecasting, while
single-step LSTM suffers from the accumulated error due to
recursive prediction. Second, as the sequence length increases,
the performance gap between Seq2Seq and single-step LSTM
becomes larger. The gap increment is not linear since the
accumulated error does not follow a linear increasing trend.

TABLE II: Single-step LSTM vs Seq2Seq on MAE for state
estimation. S-LSTM: single-step LSTM; Seq len: sequence
length.

Estimates only Estimates and control
demands

Seq len | S-LSTM | Seq2Seq | S-LSTM Seq2Seq
DC 5 0.0269 0.0184 0.0237 0.0141
Quad 5 0.0543 0.0203 0.0433 0.0145
IPC 5 0.0694 0.0202 0.0653 0.0133
DC 20 0.2012 0.0319 0.1731 0.0203
Quad 20 0.2736 0.0495 0.2133 0.0347
IPC 20 0.2334 0.0427 0.1428 0.0245

C. Computational Overhead

To validate that our models can be deployed for on-line use,
we measure the inference time of the Seq2Seq models, which
are the main source of the computational overhead for SeqRec.
Table III shows the inference time for single-step LSTM, our
Seq2Seq models, and recovery sequence generation. First, we
can see that all inference time is in several milliseconds and
is much shorter than the length of a control step which is
20 milliseconds. Second, Seq2Seq has longer inference time
than single-step LSTM, but the difference is not large. The
reason is that the former has more parameters, and the former
produces a sequence while the latter just does a single data
point. It is possible to reduced the number of parameters of
Seq2Seq models by reducing the number of hidden units in
the LSTM cells. However, if we look at the total inference
time for producing a sequence, Seq2Seq will be much shorter
than single-step LSTM. The reason is that Seq2Seq produces
a sequence by one time inference, while the latter needs to
predict multiple times (i.e., the number of data points in the
sequence) in order to predict a sequence. Third, the inference
time grows, but not much, as the sequence length increases.
For example, for Quad, the sequence length increases from 5
to 20, but the inference time only increase around 30%.

TABLE III: Inference time of models in milliseconds. seq#:
the sequence length is #.

Estimates only Estimates and con- | Recovery
trol demands
Seq | LSTM | Seq2Seq | LSTM | Seq2Seq | Seq2Seq
len
DC 5 0.7284 1.1291 0.7791 1.1364 1.1921
Quad | 5 1.2161 1.5186 1.2203 1.5688 1.7117
1PC 5 0.8936 1.2667 0.9177 1.3091 1.3004
DC 20 0.7284 1.4013 0.7791 1.4021 1.4381
Quad | 20 1.2161 1.9974 1.2203 1.9722 2.0373
IPC 20 0.8936 1.5128 0.9177 1.5073 1.4986

TABLE IV: Inference time in milliseconds and overhead in
percentage for SeqRec on ArduPilot.

Sequence length | State estimation | Recovery | Total %

5 2.2977 2.3348 4.6325 | 46.33%
10 2.3735 2.3911 4.7646 | 47.65%
40 2.7386 2.7846 5.5232 | 55.23%
50 2.8341 2.8712 5.7053 | 57.05%

With or Without Control Demands. We also compare the

MAE and inference time of state estimation for the cases using
control demands and not in learning models. This comparison
is to show the cost and gain of including control commands
feature to learning. Table II and Table III show the results.
We can see that using control demands results in much better
estimation than not, and the two cases have similar inference
time. For example, for IPC, using control demands performs
1.75X better in terms of estimation error while there is only
~0.006 millisecond difference.
Table IV shows the overhead of our method by the inference
time in milliseconds as well as the percentage on the high-
fidelity simulaotr. The percentage is the total inference time
of state estimation and recovery sequence generation, over
the control step size. We can see that the inference can
be done within a control step. Though the inference time
increases as the sequence length grows, the percentage is
around 50%. Since CPS systems usually do not require a
very long sequence, the sequence length of 50 is more than
sufficient and its overhead percentage is just 57.05%. Thus,
we conclude that SeqRec can be used on-the-fly.

Table V shows the overhead by the inference time in
milliseconds as well as the percentage. The percentage is the
total inference time over the control step which is 50ms on
the testbed. Be noticed the inference time increases with the
increment of the recovery sequence length. But the inferences
can be finished in a single step and the percentage is around
52.89%. The inference time is highly related to the hardware,

TABLE V: Inference time in milliseconds and overhead in
percentage of SeqRec on the 4-wheel testbed.

Sequence length | State estimation | Recovery | Total %

5 7.6312 7.4428 15.0740 | 30.15%
10 8.5197 8.6412 17.1609 | 34.32%
20 10.2163 10.3729 20.5892 | 40.57%
40 13.0685 13.3753 26.4438 | 52.89%

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

especially the configuration of memory, CPU and GPU. In
other words, the inference time could be reduced if the models
are running on a more powerful machine such as the one we
run the simulators. Thus, we conclude that SeqRec can be
applied to real CPSs.

VIII. DISCUSSION

In this section, several critical topics of our method will
be discussed to specify the scope of application including the
security argument, the scalability of our method, applying our
method to real-world CPS and some practical considerations.

Attacks on sensor measurements can be recovered using
SeqRec in real-time if the attack start time has been diagnosed
and the attacked sensors are known. The types of sensor
attacks do not affect the recovery scheme since the attacked
measurements will not be considered as inputs to SeqRec. For
example, SeqRec does not care the sensor attack is bias attack,
replay attack or other attacks since the compromised sensor
measurements will be discarded.

In this work, we evaluates SeqReq on 3 numerical CPSs, a
high fidelity simulator and a real 4-wheel testbed on different
settings. We also examined the length of the sequence for
recovery to indicate the proposed method is scalable. We
have studied the feasibility of SeqRec in terms of inference
time under the real-time scenario and different settings which
also points out the scalability and applicability of SeqRec.
The time overhead mainly has two parts: state estimation
and recovery control sequence computation. The first part is
needed whether using the original controller or our recovery
controller. The second part is only needed by our method.
We have tested the method on a 4-wheel testbed to show its
effectiveness. However, deploying the method on a testbed
is different from applying it to a real-world CPS with more
harsh settings and extreme environments. For example, there
is a possibility that the control messages sent from the PC are
missing. Also, the communication between the devices might
be delayed due to the environment such as electromagnetic
noise and network congestion. Furthermore, the recovery may
fail if the existing detector in the system missed an attack
or the diagnosis of the attack is inaccurate. Additionally, our
method relies on checkpointing protocols such as [14], [15] to
ensure trustworthy historical data.

The recovery performance is highly depends on the accurate
state reconstruction and trustworthy historical data. We assume
the detector can identify which sensors are under attack and
it can diagnose when did the attack starts. If the diagnosis
of attack start time is inaccurate, the state reconstruction
accuracy will be directly affected since some untrustful data
are trusted. If the attacked sensor is mistrusted, the whole state
reconstruction will be deviated. Therefore, it is very important
to develop detection algorithms for the recovery. Our method
does not treat false-positives differently, but triggers recovery
as for true-positives and this will cause unnecessary recovery.
This may decrease the usability of the system and make it
more conservative but safety is not violated. Reducing false-
positives is one of the most important focuses of detection.

89

Recovery needs to work with detection and thus is subject
to its accuracy. Recently, there are some works focus on the
stealthy attack detection and diagnosis [30]. Unfortunately,
hidden attacks [6], which cannot be detected by the detectors,
violate the assumption and SeqRec can not handle it since no
trustworthy historical data are provided.

It is required to have enough computing resources to deploy
the proposed method to real-time systems, either on mobile
devices or an edge server. Ideally, the computation can be
finished onboard and no communication between devices are
required. However, if the onboard resources are not met the
computing needs, it is flexible to deploy SeqReq on an edge
server. Currently, we set a lab computer which is responsible
for the computing tasks and the control commands are sent to
the testbed since the Raspberry Pi is not capable for the online
inference due to the limited resource.

Attacks studied in this paper manipulate the sensor measure-
ments by adding constant values to the sensor measurements.
If there is no recovery scheme deployed on the system, the
system might be driven to unsafe states after a period of
time. In this work, we only evaluate SeqRec when one of the
sensors is under attack. If more sensors are attacked, the state
reconstruction and attack detection will be more challenging
since there are less trustworthy historical data that can be used.

We address two timing issues in this work. The first is to
reduce recovery time, i.e. to pursue fast recovery. The longer a
system runs under attack, the more risk it will have. Reducing
recovery time will reduce the risk and result in successful
recovery. The second is to lower computational overhead,
i.e. timely computed results for online use. Comparing the
proposed method with the recovery using original controller,
the proposed method can recover the system in a shorter time
in general. A shorter recovery is desired since the system may
become unsafe before the recovery is finished. On the other
hand, there is no free cake, SeqRec requires more computing
resources to maintain in real-time since SeqRec needs to run
two Seq2Seq models and the virtual sensor techinque only
needs the state estimation network only.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel sequence-predictive re-
covery framework as response to sensor attacks. Our method
employs Seq2Seq learning models and an MPC-like control
algorithm to recover the system to the target state. We evaluate
our method using several non-linear simulators and also imple-
ment it in a high-fidelity simulator and a 4-wheel testbed. The
experimental results demonstrate that our method can rapidly
recover CPS to target states effectively and efficiently. In the
future, we plan to make the models light-weight and hold
the computing on the mobile devices with limited resources
such as Raspberry Pi and Nvidia Jetson Nano. It is also
interesting to deploy SeqRec on more complex non-linear real-
world systems such as drones, boats and underwater vehicles.
Another interesting research direction is adapting SeqRec to
recover CPSs from actuator attacks or other more complex
attack scenarios in practical real-world problems.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

X. ACKNOWLEDGEMENT

This work was supported in part by NSF CNS- 2333980.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of the National Science Foundation (NSF).

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
the next computing revolution,” in Design Automation Conference
(DAC). IEEE, 2010, pp. 731-736.

N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899-922, 2016.

A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards sur-
vivable cyber-physical systems,” in The 28th International Conference
on Distributed Computing Systems Workshops (ICDCSW). 1EEE, 2008,
pp. 495-500.

M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems
and internet-of-things systems,” Proceedings of the IEEE, vol. 106, no. 1,
pp. 9-20, 2017.

S. Chaterji, P. Naghizadeh, M. A. Alam, S. Bagchi, M. Chiang, D. Cor-
man, B. Henz, S. Jana, N. Li, S. Mou et al., “Resilient cyberphysical
systems and their application drivers: A technology roadmap,” arXiv
preprint arXiv:2001.00090, 2019.

M. Liu, L. Zhang, P. Lu, K. Sridhar, F. Kong, O. Sokolsky, and
I. Lee, “Fail-safe: Securing cyber-physical systems against hidden sensor
attacks,” in 2022 IEEE Real-Time Systems Symposium (RTSS). 1EEE,
2022, pp. 240-252.

L. Zhang, Z. Wang, and F. Kong, “Work-in-progress: Optimal check-
pointing strategy for real-time systems with both logical and timing
correctness,” in 2022 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2022, pp. 515-518.

F. Kong, O. Sokolsky, J. Weimer, and I. Lee, “State consistencies
for cyber-physical system recovery,” in Workshop on Cyber-Physical
Systems Security and Resilience (CPS-SR), 2019.

R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium (USENIX Security 20),
2020.

L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time recovery
for cyber-physical systems using linear approximations,” in 41/st I[EEE
Real-Time Systems Symposium (RTSS). 1EEE, 2020.

Y. Zhang and K. Rasmussen, “Detection of electromagnetic interference
attacks on sensor systems,” in IEEE Symposium on Security and Privacy
(S&P), 2020.

Y. Chen, T. Zhang, F. Kong, L. Zhang, and Q. Deng, “Attack-resilient
fusion of sensor data with uncertain delays,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 21, no. 4, pp. 1-25, 2022.
T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” in 57th Design Automa-
tion Conference. ACM, 2020.

F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). IEEE, 2018,
pp. 22-31.

L. Zhang, P. Lu, F. Kong, X. Chen, O. Sokolsky, and I. Lee, “Real-
time attack-recovery for cyber-physical systems using linear-quadratic
regulator,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 20, no. 5s, pp. 1-24, 2021.

A. Watson, J. Park, S. Pugh, O. Sokolsky, J. Weimer, and I. Lee,
“Medical cyber-physical systems: Iomt applications and challenges,” in
2022 56th Asilomar Conference on Signals, Systems, and Computers.
IEEE, 2022, pp. 998-1004.

A. H. Rutkin, “spoofers use fake gps signals to knock a yacht off course,”
MIT Technology Review, 2013, online; accessed May 2020.

A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal of
Field Robotics, vol. 31, no. 4, pp. 617-636, 2014.

90

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

N. O. Tippenhauer, C. Pépper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of
the 18th ACM conference on Computer and communications security,
2011, pp. 75-86.

J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim, “Tractor
beam: Safe-hijacking of consumer drones with adaptive gps spoofing,”
ACM Transactions on Privacy and Security (TOPS), vol. 22, no. 2, pp.
1-26, 2019.

T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Waging
doubt on the integrity of mems accelerometers with acoustic injection
attacks,” in 2017 IEEE European symposium on security and privacy
(EuroS&P). 1EEE, 2017, pp. 3-18.

Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,”
in 24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
881-896.

H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 801-816.

K. Vatanparvar and M. A. Al Faruque, “Self-secured control with
anomaly detection and recovery in automotive cyber-physical systems,”
in 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2019, pp. 788-793.

J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1-36, 2018.

F. Akowuah and F. Kong, “Physical invariant based attack detection for
autonomous vehicles: Survey, vision, and challenges,” in 4th Interna-
tional Conference on Connected and Autonomous Driving (MetroCAD).
IEEE, 2021.

A. Ganesan, J. Rao, and K. Shin, “Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection,” SAE Technical
Paper, Tech. Rep., 2017.

M. Miiter, A. Groll, and F. C. Freiling, “A structured approach to
anomaly detection for in-vehicle networks,” in 2010 Sixth International
Conference on Information Assurance and Security. 1EEE, 2010, pp.
92-98.

L. Zhang, Z. Wang, M. Liu, and F. Kong, “Adaptive window-based
sensor attack detection for cyber-physical systems,” in Proceedings of
the 59th ACM/IEEE Design Automation Conference, 2022, pp. 919-924.
Z. Wang, L. Zhang, Q. Qiu, and F. Kong, “Catch you if pay attention:
Temporal sensor attack diagnosis using attention mechanisms for cyber-
physical systems,” in 2023 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2023.

A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Proceedings of the 6th ACM symposium
on information, computer and communications security, 2011, pp. 355—
366.

R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 46,
no. 4, pp. 1-29, 2014.

J. Giraldo, E. Sarkar, A. A. Cardenas, M. Maniatakos, and M. Kantar-
cioglu, “Security and privacy in cyber-physical systems: A survey of
surveys,” IEEE Design & Test, vol. 34, no. 4, pp. 7-17, 2017.

X. Guo, S. Han, X. S. Hu, X. Jiao, Y. Jin, F. Kong, and M. Lemmon,
“Towards scalable, secure, and smart mission-critical iot systems: review
and vision,” in Proceedings of the 2021 International Conference on
Embedded Software, 2021, pp. 1-10.

H. Choi, S. Kate, Y. Aafer, X. Zhang, and D. Xu, “Software-based
realtime recovery from sensor attacks on robotic vehicles,” in 23rd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020), 2020, pp. 349-364.

R. Ma, S. Basumallik, S. Eftekharnejad, and F. Kong, “A data-driven
model predictive control for alleviating thermal overloads in the presence
of possible false data,” IEEE Transactions on Industry Applications,
vol. 57, no. 2, pp. 1872-1881, 2021.

F. Akowuah, R. Prasad, C. O. Espinoza, and F. Kong, “Recovery-
by-learning: Restoring autonomous cyber-physical systems from sensor
attacks,” in 2021 IEEE 27th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). 1EEE, 2021,
pp. 61-66.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

[38] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall
Upper Saddle River, NJ, 1998, vol. 104.

[39] M. Green and D. J. Limebeer, Linear robust control. Courier Corpo-
ration, 2012.

[40] F. Akowuah and F. Kong, “Real-time adaptive sensor attack detection
in autonomous cyber-physical systems,” in 2021 IEEE 27th Real-Time
and Embedded Technology and Applications Symposium (RTAS). 1EEE,
2021, pp. 237-250.

[41] ArduPilot, “https://ardupilot.org/,” Online; accessed May-2022.

[42] 1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[43] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep
learning,” arXiv preprint arXiv:2106.11342, 2021.

[44] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. Kumar, “The
simplex reference model: Limiting fault-propagation due to unreliable
components in cyber-physical system architectures,” in 28th IEEE In-
ternational Real-Time Systems Symposium (RTSS). IEEE, 2007, pp.
400-412.

[45] X. Wang, N. Hovakimyan, and L. Sha, “Llsimplex: fault-tolerant
control of cyber-physical systems,” in 2013 ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS). 1EEE, 2013, pp. 41—
50.

[46] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3a:
Secure system simplex architecture for enhanced security and robustness
of cyber-physical systems,” in Proceedings of the 2nd ACM international
conference on High confidence networked systems, 2013, pp. 65-74.

[47] P. Filonov, A. Lavrentyev, and A. Vorontsov, “Multivariate industrial
time series with cyber-attack simulation: Fault detection using an Istm-
based predictive data model,” arXiv preprint arXiv:1612.06676, 2016.

[48] P. Filonov, F. Kitashov, and A. Lavrentyev, “Rnn-based early cyber-

attack detection for the tennessee eastman process,” arXiv preprint

arXiv:1709.02232, 2017.

P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and

G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly de-

tection,” arXiv preprint arXiv:1607.00148, 2016.

N. Muralidhar, S. Muthiah, K. Nakayama, R. Sharma, and N. Ra-

makrishnan, “Multivariate long-term state forecasting in cyber-physical

systems: A sequence to sequence approach,” in 2019 IEEE International

Conference on Big Data (Big Data). 1EEE, 2019, pp. 543-552.

[51] N. Muralidhar, S. Muthiah, and N. Ramakrishnan, “Dyat nets: Dynamic
attention networks for state forecasting in cyber-physical systems.” in
IJCAI, 2019, pp. 3180-3186.

[52] E. E. Camacho and C. B. Alba, Model predictive control. Springer
science & business media, 2013.

[53] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Ma-
chine learning, dynamical systems, and control. Cambridge University
Press, 2019.

[54] F. Sabatino, “Quadrotor control: modeling, nonlinear control design, and
simulation,” Master’s thesis, KTH Royal Institute of Technology, 2015.

[55] K. Tan and Y. Li, “Performance-based control system design automation
via evolutionary computing,” Engineering Applications of Artificial
Intelligence, vol. 14, no. 4, pp. 473-486, 2001.

[56] Keras, “https://keras.io/,” 2022.

[49

A
2

91

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 09,2024 at 01:10:45 UTC from IEEE Xplore. Restrictions apply.

