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Abstract—In Cyber-Physical Systems (CPS), sensor data in-
tegrity is crucial since acting on malicious sensor data can cause
serious consequences, given the tight coupling between cyber
components and physical systems. While extensive works focus
on sensor attack detection, attack diagnosis that aims to find out
when the attack starts has not been well studied yet. This tempo-
ral sensor attack diagnosis problem is equally important because
many recovery methods rely on the accurate determination of
trustworthy historical data. To address this problem, we propose
a lightweight data-driven solution to achieve real-time sensor
attack diagnosis. Our novel solution consists of five modules, with
the attention and diagnosis ones as the core. The attention module
not only helps accurately predict future sensor measurements but
also computes statistical attention scores for the diagnosis module.
Based on our unique observation that the score fluctuates sharply
once an attack launches, the diagnosis module determines the
onset of an attack through monitoring the fluctuation. Evaluated
on high-dimensional high-fidelity simulators and a testbed, our
solution demonstrates robust and accurate temporal diagnosis
results while incurring millisecond-level computational overhead
on Raspberry Pi.

Index Terms—cyber-physical systems, sensor attacks, real-
time, detection, diagnosis

I. INTRODUCTION

Cyber-Physical Systems (CPS) couple of computing and
communication parts with sensing and actuation to interact
with the physical world. CPS has been evolving from isolated
control systems to being complex, heterogeneous, and con-
nected to offer advanced functionalities. This evolution enables
new applications such as autonomous vehicles, unmanned
aerial vehicles and smart manufacturing that promise enor-
mous benefits. Meanwhile, potential security vulnerabilities
arise in modern CPS due to their open architectures [1]–[5].

Compared to conventional IT systems, challenges in CPS
security are distinct in terms of not only consequences in case
of security breaches but also attack surfaces [6]–[9]. Attacks
on CPS might cause damage to the physical property and
even endanger human lives, as results of plant explosion [10],
[11], power cutoff [12] and car accidents [13]. Sensors act
as an interface between the cyber and physical space, and
thus their data integrity is critical to CPS security. Sensor
data can be spoofed both in the cyber space such as software
and network attacks [14] and in the physical space such as
transduction attacks [7], [15]. Sensor spoofing by transduction

attacks or physical tampering sensors may bypass conventional
intrusion detection systems which mainly monitor computing
and networking devices [15]–[17].

These security threats have motivated many research efforts
on data integrity of sensor measurements [7], [8], [18]–[20].
One major focus is on determining whether sensor mea-
surements are compromised, called sensor attack detection.
Existing works can be categorized into two groups. The
first group relies on domain knowledge of CPS, usually the
mathematical model of the physical system such as a linear and
non-linear system model [7], [15], [21]–[23]. The detection
uses statistical methods such as χ2 and kernel density estima-
tion, to identify anomalies by tracking the difference between
the observed and predicted sensor values. However, as CPS
becomes more complex and attacks are more sophisticated
(e.g., stealthy attacks [24]), these methods tend to require
more domain knowledge and become insufficient to ensure
the overall sensor data integrity in CPS [19].

To handle the high dimensionality in both spatial (i.e., large
number of sensors) and temporal (i.e., long time series) as-
pects, the second group of works employ Deep-Learning (DL)
based methods to detect sensor attacks in CPS [19]. Current
studies have explored various neural network architectures
such as Autoencoder (AE) [3], [25], Variational Autoencoder
(VAE) [26], Convolutional Neural Network (CNN) [27], [28],
Long Short-Term Memory (LSTM) [29]–[31], and Generative
Adversarial Network (GAN) [32], [33], to detect sensor attacks
in different CPS applications such as autonomous vehicles [3],
[34], aerial systems [35], [36], smart grids [37], and industrial
control systems [26], [38].

In spite of these extensive efforts on attack detection, sensor
attack diagnosis has been inadequately addressed so far. Note
that attack diagnosis differs from attack detection: the former
aims to not only identify “who”: which sensors are under
attack, but also find out “when”: when the attack starts.
Diagnosis is equally important because many attack recovery
works rely on historical sensor data to estimate the current
system state [39]–[46]. Using corrupted historical data will
lead to a failed recovery which drives a system to unsafe
states. The diagnosis needs to tell not only which sensors are
trustworthy but also until when their data are trustworthy. In
short, after the attack is detected, attack diagnosis is activated
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to identify the trustworthy data that attack recovery can use.
Although some existing detection works may be extendable

to identify the “who”, but none can do the “when” [7], [8].
For example, we may set a threshold for the difference be-
tween the predicted value and observed measurement of each
individual sensor, and then recognize a sensor as corrupted if
the difference is greater than its threshold [15], [23], [47],
[48]. However, attack detection is not attack diagnosis, and it
is unable to determine when the attack starts. Because using
the detection time, i.e. the moment when an attack is detected,
as the attack start time, is far from accurate. The reason is that
a detector may take some time, i.e. the detection delay, to find
out an attack after it starts.

This paper is right focused on diagnosing the “when”,
i.e., the temporal sensor attack diagnosis problem. However,
solving this problem is challenging because attacks can deviate
a system in an accumulative and unpredictable way. For
example, stealthy attacks usually attempt to hide themselves
from attack detectors by making small and gradual modifi-
cations to sensor measurements such as at a scale of sensing
noise [24], [49], [50]. Thus, it might have taken a considerable
amount of time when such an attack is detected. Tracing
back the difference between the predicted value and observed
measurement will not work for deciding when the attack starts,
because at that time, the difference is small and has not become
greater than the threshold yet. Therefore, we need a diagnosis
method that is sensitive (and robust, as always) to attacks.

To address the challenge, we propose a new real-time
diagnosis system for CPS sensor attacks. The system consists
of multiple data-driven modules that are trained offline and
run online, providing temporal sensor attack diagnosis. Our
diagnosis solution explores novel uses of recently-proposed
attention mechanisms [51], [52], and the foundation is our
observation that the attention mechanism is sensitive to input
changes. Our proposed system’s main advantages are four-
fold: 1) it diagnoses sensor attacks with zero knowledge of
the corresponding CPS and is not confined to certain types of
attacks; 2) it uses historical data and does not depend on sensor
redundancy; 3) it can easily take in most existing data-driven
models as an enhancement to diagnose sensor attacks; 4) it
is light-weight and only requires millisecond-level computing
time in edge devices such as Raspberry Pi. To be specific, the
contribution of this work is summarized as follows:

• We bridge the significant research gap in temporal sensor
attack diagnosis for CPS by proposing a real-time and robust
diagnosis solution based on attention mechanisms. By leverag-
ing the sensitivity of the attention mechanism to input changes,
it can accurately diagnose the starting time of sensor attacks,
reducing the potential damage caused by malicious attackers.

• We implement our proposed diagnosis system and conduct
extensive validation using high-fidelity quadrotor simulators
from Ardupilot [53] and multiple numerical simulators on
Raspberry Pi. The experimental results demonstrate that our
solution can robustly and accurately diagnose the attack start
time while requiring minimal computational overhead. This
validates the effectiveness and practicality of our proposed

solution for real-world CPS applications.
The rest of this paper is organized as follows. Section II

discusses related work. Section III presents preliminaries.
Section IV describes the system overview. Section V details
the design for each system module. Section VI evaluates the
proposed solution. Section VII concludes the paper.

II. RELATED WORKS AND THEIR LIMITATIONS

Few works exist on addressing the temporal sensor attack
diagnosis problem in CPS, to the best of our knowledge. Thus,
we focus on discussing sensor attack detection works and their
limitations on temporal diagnosis. Note that the diagnosis is
activated after the detection of an attack, and thus our method
can work with most existing detection works.

A. DL Models in Detection

Deep learning prediction models typically employ structures
such as fully-connected networks (FCN), recurrent neural
networks (RNN), AE, and CNN. FCN is a fast yet general
model that learns entangled sensor relations, classifies in-
puts to be attacked or not [54], [55], reconstructs states to
distinguish attacked inputs, or predicts successive measure-
ments and keeps track of residuals from actual values. AE
(regarded as a special type of FCN), RNN, and CNN are
more competitive in reconstruction and prediction. AEs are
used to learn the correlations among sensors and raise alarms if
new measurements deviate from reconstructions [3], [25], [56],
and VAEs as an advanced AE are used for more generative
reconstructions [57]. LSTM, capturing long and short term
relationships, is a representative of RNNs that can generate
sensor predictions using a long sequence of historical data.
Thus attacks are detected if the residual between predictions
and measurements exceeds the threshold [29], [30], [58].
CNN, naturally good at image recognition, is also widely used
for attack detection [28], [59]. Other structures, such as GAN
[32], can also be applied for attack detection, but usually as
supporting roles.

The attention mechanism [52] gains a reputation for general
improvements on multiple tasks. Therefore, some works com-
bine it with FCN, CNN [27], and RNN [30] for better attack
detection. However, these attention-based models do not fully
exploit the advantages of the attention mechanism to diagnose
attacks and only treated it as an enhancement in learning. Our
model is also attention-based, but we extend the vanilla self-
attention mechanism and use the extension to fulfill the gap
of attack diagnosis, along with other novel enhancements.

B. Limitations of Detection

Extensive studies exist in attack detection, setting goals to
be high accuracy, few false alarms, shorter inference time, etc.
However, most works do not derive from system perspectives
nor provide attack diagnosis. Typical works [5], [26], [28],
[36] usually choose publicly available datasets, slice their
data series into samples, evaluate models on the test set that
mixed with less positive (attacked) and more negative (normal)
samples, and analyze the results in terms of accuracy, F1
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score, etc. Some work [28] augment the attacked samples by
flipping, rotating, or manually modifying data to prevent the
well-known problem of accuracy cheating, which occurs when
the model achieves high accuracy on an unbalanced dataset.

Following their workflows leads to three main drawbacks: 1)
publicly available datasets contain too few attacked samples
for training and testing; 2) the augmented attacked samples
violate the system running pattern and do not contribute to
model performances in the real world because those samples
will never occur; and 3) heavily focusing on optimizing the
conventional metrics constrains their models from practical
use. The third drawback can be attributed to the fact that
their workflows do not prioritize early detection and attack
diagnosis. Usually, if a model raises an alarm for an attack
sample, regardless of the relative timing of the attack within
the sample, the test is considered a true positive. This approach
does not provide sufficient information on when an attack
occurs and how severe it is, making it difficult to take ap-
propriate countermeasures. Put differently, detecting an attack
sample where the majority of the sample is already under
attack signifies a late detection, which can result in severe
consequences for the system. Because untimely defense is just
as damaging as no defense [8], [23], [60], [61].

We acknowledge that attack forensics, which aims to iden-
tify the cause and extent of attacks through logs and other
records, may seem deceptively similar to sensor attack di-
agnosis in CPS. However, most attack forensics system runs
offline and are incapable of identifying attacks in real-time
while the proposed system runs online, providing accurate
temporal attack diagnosis. That is, our real-time diagnosis
system can be nicely integrated with the online recovery works
(e.g. [40], [41], [44], [46]) to achieve a holistic defense system.
In addition, existing approaches that utilize redundancies are
compatible with and benefit our proposed method.

In summary, the lack of solutions for accurate temporal
diagnosis of sensor attacks in CPS motivates this work. Our
approach is able to address this significant research gap and
provide a practical solution for real-world CPS applications.

III. PRELIMINARIES

This section presents the scope of this paper, the system
model, and the threat model.

A. Scope of Work

As mentioned above, extensive studies exist in the literature
on detecting sensor attacks. However, those methods cannot
be used for diagnosis because they only alert when the system
is under attack, but do not suggest how long an attack
has affected the system. Note that the detection delay is
not fixed, rather varies on attack magnitudes. The expected
detection delay for large-magnitude attacks is not applicable
for diagnosis because it becomes long under attacks such as
stealthy attacks. Thus need arises for attack diagnosis.

This work thus focuses on the temporal diagnosis. The pro-
posed method decides the attack starting point after detection.
It is not a replacement for attack detection; instead, it works

with most existing data-driven attack detection models. Fur-
ther, combing detection and diagnosis to identify trustworthy
data makes recovery from attacks possible. Addressing how to
improve detection performance or how to recover from attacks
is out of the scope of this work. Interested readers may refer
to [3], [23], [41], [44], [46], [48], [62].

B. System Model

We consider a CPS where a physical system is supervised
by a controller to follow reference states. The controller
executes periodically. At each control step (or time step),
the controller first reads sensor measurements (e.g. velocity,
pressure, etc.), and then uses a control policy to compute
control demands/signals (e.g, throttle, etc.) that are applied
to the actuators to drive the physical system.

System states are modeled as a N -dimensional multivariate
time series X. We use subscript i and superscript t to denote
ith dimension and time step t, and use x and X with double
superscripts t, w to denote ith univariate time series and the
entire multivariate time series with a window size of w:

xi = {x1
i , .., x

t
i}T ∈ R

N×1, xt = {xt
1, ..., x

t
N} ∈ R

1×N ,

xt,w
i = {xt−w

i , ..., xt−1
i }T ∈ R

w×1,

Xt,w = {xt−w, ..., xt−1}T ∈ R
w×N .

Specially, we consider control demands and sensor readings
separately in this work, and C and S are used for repre-
sentations: xt = {ct, st} = {ct1, ..., ctNc

, st1, ..., s
t
Ns

}, where
N = Nc + Ns, and Nc and Ns are the numbers of control
channels and sensors. Similarly, ct,w and st,w are the ith

control channel and ith sensor univariate time series with a
window size of w, while Ct,w and St,w denote the entire
control channels and sensors multivariate time series.

C. Threat Model

We consider a malicious attacker who can launch sensor
attacks that alter measurements received by the controller.
Thus, the controller may produce misleading commands to
deviate the physical system from the reference state. Typical
attacks include transduction attacks, attacking state estimator
or code, and attacking sensor-controller communication (e.g.
I/O driver in-between or injecting malicious packets). Other
code or components such as the control code or controller,
controller-actuator communication, and actuators are intact.
The attacker can compromise the integrity of sensor data:
Ŝ
τ,ŵ

= Sτ,ŵ ± Vτ,ŵ, where τ and ŵ denote the attack end
and duration, and Ŝ

τ,ŵ
and Vτ,ŵ are the compromised value

and attack magnitude from time step τ−ŵ to τ−1. This threat
model is widely used in CPS and security papers [8], [14]–
[17], [19], [23], [50], [63]. Defense usually focuses on one
attack vector (such as sensor attacks in this paper), because one
single defense for all kinds of attacks is generally impractical.
Consequently, this paper is focused on sensor attacks, with the
presumption that the remaining components are unaffected.

Note that our proposed method is not confined to specific
kinds of attacks. Below just lists three example types of
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attacks (modified from [64]) used for the evaluation. A typical
attack is bias attack, where the attacker modifies measure-
ments by adding or subtracting fixed values, causing a stable
drift: vti = vτ−ŵ

i , where t ∈ (τ − ŵ, τ). The second type
is stealthy attack that changes sensor readings little by little
starting from a negligible magnitude: vti = vt−1

i + vτ−ŵ−1
i ,

where t ∈ [τ − ŵ, τ) and vτ−ŵ−1
i = 0. The last is random

attack that changes sensor readings of two successive time
steps randomly, representing sudden and unpredictable attacks:
vti = vt−1

i +U(0, ν), where t ∈ (τ−ŵ, τ) and U(0, ν) denotes
a uniform distribution. ν is scale, which is smaller than vτ−ŵ

i .

IV. SYSTEM DESIGN OVERVIEW

This section presents the overview of our real-time sensor
attack diagnosis system. Fig. 1 depicts the system design.

At each time step, the diagnosis system takes in the sensor
readings, detects if there is an attack, and diagnoses an attack
if it is detected. Our system has five modules working in
sequence: preprocessing module, attention module, prediction
module, detection module, and diagnosis module. There are
two phases: offline and online. For the offline phase, we collect
normal data from an application such as the ArduCopter drone
in our evaluation, train the corresponding modules, and tune
the parameters in all the modules. All module settings are fixed
for a specific application once it starts to run. For the online
phase, we implement all the modules in the control loop,
which run online at every time step for real-time diagnosis.
As mentioned, our diagnosis system requires little domain
knowledge and is not confined to specific attack types.

The first task in the offline phase is to train the atten-
tion module and prediction module, which we jointly name
as sensor reading predictor. The predictor is trained using
collected normal or benign data from a CPS such that it
accurately predicts sensor measurements when the CPS is
running normally. After an attack is launched, the prediction
deviates from readings, which is the basis for attack detection
and diagnosis. Also, though the other three modules are trained
in the offline phase, their parameters are determined using
offline data or results before the online phase. Specifically, the
maxima and minima of the training data are recorded for the
preprocessing module, and the overall validation performance
of the predictor is preserved for the detection module. The
following briefly introduces each module.

The preprocessing module normalizes the system inputs.
The reason is that different sensors and control channels have
various value ranges, and overlarge values will dominate others
in neural networks if no normalization. Hence, the module
records the maxima and minima of the training data for all
input dimensions and uses them for normalization.

The attention module is one of the two core modules in this
system that exploits the attention mechanism to learn underly-
ing relationships and potential attention transfer strategies. At
every control step, it takes the scaled data as input and gener-
ates two outputs: latent representation and statistical attention
score. The latent representation is the attended input that is
embedded with the system running logic and correlations,

which will be a better starting point for sensor prediction.
On the other hand, the statistical attention score is the refined
information of attention weights (or attention matrix) that will
be used for attack diagnosis in the diagnosis module.

The prediction module takes as inputs of the latent represen-
tations and predicts the next time step’s sensor measurements.
Note that it does not predict control signals as we assume
actuators remain intact. The prediction module can be instan-
tiated as various forecasting neural networks, and most state-
of-the-art can be adapted here. We do not claim novelty of
this module. The prediction module accurately predicts sensor
readings due to careful neural network layer design.

The detection module uses both the predicted and actual
sensor readings to compute and monitor the residuals, or
differences, between them. By analyzing these residuals, the
detection module can detect any deviations from the expected
sensor behavior and raise an alarm if they exceed a certain
threshold, which typically indicates an attack.

Another core module of our proposed solution is the diagno-
sis module, which provides temporal attack diagnosis. Timing
diagnosis is based on our observation that input changes tend
to trigger fluctuations in attention weights. Thus, this module
monitors the statistical attention score, records all possible
attack onsets, and determines the most likely onset after an
attack is detected. Considerable fluctuations in the attention
score typically characterize possible onsets of attacks.

V. ATTACK DIAGNOSIS SYSTEM

As noted, our diagnosis system consists of five modules.
This section first presents the design details of the two core
modules, and then briefly describes the other three supporting
modules. We only claim the novelty of the two core modules
for temporal diagnosis, and design the supporting modules
based on standard approaches. Actually, supporting modules
are not strictly confined as presented, and other applicable
models can be adopted instead. The modules’ design and
corresponding notations are shown in Fig. 2.

A. Attention Module

The attention module is a novel designed neural network
that is based on the multi-head attention mechanism (MHA)
[52]. We present the vanilla attention mechanism, our novel
designs upon it, and the statistical method for attention score.

1) Vanilla MHA: At every time step, the MHA projects
inputs Xt,w to query Qt,w, key Kt,w, and value Vt,w by
different fully-connected layers with weights Wq , Wk, and Wv

while maintaining the same shapes. Then it uses dot product to
compute attention weights At between Qt,w and Kt,w, which
denotes the attention paid from Qt,w to Kt,w at individual
time steps. The attention weights are used to reweight Vt,w

and compute latent representation Ot,w. Formally, we have:

Qt,w = Xt,wWq ,Kt,w = {Xt,wWk}T ,Vt,w = Xt,wWv ,

At = softmax(Qt,wKt,w) ,Ot,w = AtVt,wWo ,

where Qt,w, Vt,w, and Ot,w ∈ R
w×N . Kt,w ∈ R

N×w. At ∈
R

w×w. Wq , Wk, Wv , and Wo ∈ R
N×N .
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Fig. 1: Sensor Attack Diagnosis System Overview. A sensor reading predictor is trained using collected normal data during
the offline phase. It is employed in our attack diagnosis system during the online phase and provides attack diagnosis for CPS
sensor attacks along with other modules. The proposed system works in the control loop and reads measurements from sensors.

  Preprocessing Module

X

   Attention Module
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Scalers
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 Prediction Module  Detection Module
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Fig. 2: Module Design. The core attention module splits
input X into control signal C and sensor measurement S, and
uses cin-attention MHA, skip-connection, and split and attach
mechanism to generate latent representation O. Statistical
attention score a is also recorded for temporal diagnosis.

The MHA allows various attention strategies for different
sets of dimensions by dividing the inputs into distinct groups.
If multiple heads are enabled, the Qt,w, Kt,w, and Vt,w are
split into H (the number of attention heads) subsets. Different
heads compute the A and O individually. The final A are
averaged from all the heads while O is the concatenation.

Rationale of using MHA. MHA is known to greatly
extend neural networks’ generalization ability and thus enables
them to make precise and accurate predictions [65]–[68].
Moreover, the fundamental reasons that we apply MHA for
attack diagnosis are 1) it interprets what the neural network
focuses [69]–[71], and 2) it out-stands input fluctuations. The
first reason is the basis of determining attack onsets. The
second one can be partly understood in two ways: 1) matrix
multiplication magnifies the changes, and 2) the well-trained
attention network learns to focus more on the fluctuations.

2) Cin-attention MHA: The vanilla attention mechanism
uses the same inputs Xt,w for Qt,w, Kt,w, and Vt,w, which
is called self-attention. Our novel design is to use different
inputs for Qt,w, Kt,w, and Vt,w, and we name it cin-attention.
The cin-attention projects control signals Ct,w to Qt,w using a
full-connected layer with weights Wq ∈ R

Nc×Ns , and projects

sensor measurements St,w to Kt,w and Vt,w by full-connected
layers with weights Wk ∈ R

Ns×Ns and Wv ∈ R
Ns×Ns . Ac-

cordingly, Ot,w ∈ R
w×Ns and Wv ∈ R

Ns×Ns . The proposed
cin-attention offers several advantages over self-attention:

• Firstly, it reduces computation overheads by shrinking the
input dimensions from N to Ns and Nc. This reduction in di-
mensionality enables our solution to process sensor and control
data more efficiently, with little sacrificing performance.

• Secondly, cin-attention fully exploits the correlation be-
tween control signals and sensor measurements by projecting
them as Q and K and V. This allows our solution to more
effectively capture the complex relationships between sensor
readings and control signals, leading to improved performance.

• Finally, cin-attention reduces interference in attention
weights by avoiding the placement of the same components
(C or S) in Q and K. This is important because there may be a
certain lag between C and S, and if Q or K contains both C and
S, it becomes difficult for the attention weights to effectively
address both two phases. By avoiding this interference, cin-
attention enables attack temporal diagnosis (see experiments
in Section VI-D7 and rationale in Section VI-D8).

3) Skip connection: Since the main knowledge of O is from
sensor measurements S, we design a skip-connection from
S to O to help to learn: Ô

t,w
= SiLU(AtVt,wWo + S),

where SiLU [72] is a recently proposed activation function
that has been shown to outperform other commonly used
activation functions. By allowing S to flow directly to the latent
representation, the skip connection help prevent the vanishing
gradient problem and promote a stable training process.

4) Split and attach: Another novel aspect of our design
is the concatenation of control signals Ct,w to the attention
latent representation: Ot,w = {Ct,w, Ô

t,w}. Its design follows
the objective of enriching the latent representation with a more
comprehensive understanding of control signals. Though the
latent representation already conveys some degree of control
information because it is reweighted by control signals, the
concatenation allows for a more complete representation. The
split and attach approach leads to improved accuracy and
robustness in the proposed system and its effectiveness is
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proved by our ablation study. The ”split”, on the other hand,
refers to the splitting of C and S before applying the cin-
attention. Note that the split and attach mechanism is not
another attention type nor an independent component. Instead,
it is an enhancement of the proposed cin-attention mechanism.

5) Statistical attention score: The statistical attention score
a is designed to represent attention weights, and it plays
a critical role in our proposed solution, providing accurate
timing diagnosis of attacks. The attention weights A are
observed to fluctuate as input changes, and if equipped with
the specially designed cin-attention, the fluctuations become
discernible, aligning their movement with that of the inputs.
Furthermore, our exploration has revealed the following: 1)
fluctuations typically disrupt the previously stable pattern
within A, influencing neighboring time steps by either attract-
ing or redistributing weights; 2) The distribution of weights
across dimensions within these fluctuations is uneven and lacks
predictability. Consequently, the need arises for a metric that
can identify the time steps when fluctuations manifest in their
corresponding A. We term this metric the ”statistical attention
score.” Crafting such a metric is challenging, as it must
adeptly capture the fluctuations, thereby facilitating precise
temporal diagnosis while carefully balancing the associated
computational overhead. We find that keeping track of the
maxima and minima in A is an effective approach that
balances these factors. The inclusion of minima is essential
because the attention mechanism may allocate small attention
weights to attacks at the beginning in certain attack settings,
which are not easily predictable. Formally:

at = {atu, atl} = {max(At)− 1/w, 1/w −min(At)},
where atu and atl denote the maxima and minima in the
attention weights at time step t, and 1/w is the average weights
under the softmax function. The term 1/w is a baseline to
reduce variance. If the softmax is replaced and 1/w is no
longer meaningful, a moving average can be used instead.

In summary, by carefully defining and tracking sudden
fluctuations in attention weights, we can effectively record
the possible attack onsets and provide accurate temporal
diagnoses. The process to diagnose and reduce misdiagnosis
is implemented in the diagnosis module.

B. Diagnosis Module

The novel-designed diagnosis module provides temporal
attack diagnosis after attack detection by analyzing statistical
attention score a. Note that the diagnosis module keeps analyz-
ing a and recording the most possible attack onset φ but only
provides diagnosis after attack detection because providing
misleading diagnoses for undetected attacks is meaningless.

The statistical attention score a varies in a small range when
the CPS is running normally and greatly fluctuates after attacks
because the attacked inputs do not conform with the model’s
learned knowledge and thus allocate more attention to abnor-
mal time steps, leading to polarized attention weights. Thus to
diagnose attacks temporally, the diagnosis module keeps track
of all time steps where a suddenly increases or decreases. The

diagnosis module maintains two moving windows for each
dimension of a and computes the fluctuation by comparing
the current statistical attention score at to the averages of
these two windows. When fluctuation exceeds threshold λ,
the time step t is recorded as the current estimation of
attack start. λ is a hyper-parameter fine-tuning the diagnostic
sensitivity. The determination of its optimal value often entails
a trial-and-error approach. An iterative process involving data
collection, λ adjustment, and performance evaluation can be
employed to pinpoint its optimal range. While distinct attack
types might necessitate varied λ values to exploit diagnostic
efficacy, generally, one should opt for a λ that accommodates
noise-induced effects rather than targeting specific types. We
conclude by experiments that its optimal value range can
be readily ascertained by starting at a modest λ value and
employing a straightforward technique (e.d. bisection method).

Algorithm 1: Sensor Attack Temporal Diagnosis

Input: λ, w′ ; // λ: threshold; w′: max
length of moving window

Output: φ ; // φ: attack diagnosis
1 φ ← 1, ψ ← 1; ; // ψ: latest fluctuation
2 while t ≥ 2 do

3 t′ ← max(ψ, t− w′) ; // t′: window start
4 foreach i in {u, l} do // Iterate a

5 mi ←
∑t−1

τ=t′ a
τ
i

t− t′
; // Average of a

6 fi ← |ati −mi|
mi

; // Relative change

7 if fi ≥ λ then

8 if t > ψ + 1 then // If change
exceeds threshold and isn’t a
continuation of previous one.

9 φ ← t ; // t is attack start

10 ψ ← t ; // Update ψ

The diagnosis algorithm, Algorithm 1, takes λ and w′

as inputs and outputs φ as the temporal diagnosis after the
attack is detected. Though the basis of temporal diagnosis is
fluctuations, we cannot directly use the latest fluctuation as
the diagnosis because an attack tends to invoke continuous
fluctuations that last multiple time steps. Thus φ only points to
the first time step in the continuous fluctuations and ψ is used
as an indicator pointing to the latest fluctuation. After initiation
in line 1, the algorithm runs at every time step. We use a
moving window with dynamically-changing length to record
the historical average attention score (line 5). This dynamic
moving window ensures that the algorithm captures subtle
fluctuations. The start of the dynamic window is obtained in
line 3, and it depends on the latest fluctuation and w′. If the
relative change between the current statistical attention score
and the moving average (line 6) exceeds λ (line 7), the current
time step t is considered as a fluctuation, and the algorithm
updates ψ (line 10). If this fluctuation is not a continuation of
the previous ones, the algorithm updates φ (line 9), which is
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the attack diagnosis after the attack is detected.
Note attention scores fluctuate both when attacks start and

the reference state changes. However, the latter case is not
caused by attacks, and detection will not raise an alarm and
thus the diagnosis will not be triggered. Recorded fluctuations
provide diagnosis only after detection.

C. Preprocessing Module

This module scales the inputs into a range of [0, 1] with
respect to the maxima and minima in the training set:

x̂t
i = (xt

i −min(x̃i)/max(x̃i)−min(x̃i)),

where x̂ and x are the scaled and original value, and x̃ denotes
data in the training set. This module records and retains the
maximum and minimum values, and uses the same values to
scale all inputs during both training and online running. Given
the same value in the same dimension of inputs, the module
outputs the same normalized value. In the rest of the paper, we
use X to denote the scaled inputs when not causing confusion.

D. Prediction Module

The prediction module utilizes a neural network to forecast
the sensor reading at the next time step. We acknowledge
that designing adaptable prediction neural networks can be
challenging, but our work does not focus on novel network
architectures. Thus, we select three commonly used models
(FCN, RNN, and CNN) as representatives of prediction mod-
els. These models have a strong track record in time series
prediction and demonstrate good performance on various
datasets. By implementing these representative models, we
can assess the effectiveness of our solution across different
neural network architectures and showcase its compatibility
with existing data-driven models. The prediction module takes
the attention latent representation Ot,w as input and generates
a forecast yt for the sensor reading at the tth time step.

Please note that neural network architectures are task-
specific, but the purpose of this work is to show compatibility
of the proposed diagnosis system. The comparison is fair as
long as the same architecture is used. The hyper-parameter
choices and architecture optimizations are out of the scope.

1) FCN: Fully connected networks (FCN), or feed-forward
networks, consist of multiple layers with a weight matrix and
a bias matrix for computing hidden states. Our implementation
sequentially extracts temporal and spatial information. We em-
ploy an L-layer FCN to condense temporal information and an
L′-layer FCN to extract spatial knowledge. The output of the
first FCN is flattened and serves as input to the second FCN.
SiLU activation is used for all layers. The output dimension
of each layer is 60% (rounded down) of its previous layer for
condensing, and the last layer has an output dimension of Ns.
The values of L and L′ are task-specific.

2) RNN: Long Short-Term Memory (LSTM) [73] is a
famous variant of RNN that holds multiple hidden gates and
states. We employ a 2N -dimensional LSTM with a length
of w, and its final output is fed into a 2-layer FCN (layer
dimensions are N and Ns; activated by SiLU).

3) CNN: The Convolutional Neural Network (CNN), in-
troduced by [74], applies convolutions to parts of the input
and slides filters to cover the entire input. Our CNN imple-
mentation consists of two parts. The first part consists of L
blocks, each composed of a 1D-convolution layer, a SiLU
activation layer, and an average pooling layer. The last block’s
convolution layer has a spatial dimension of 2N and uses a
kernel size of 3 with a padding length of 1 on both sides. The
parameters of the previous layers increase linearly based on
the value of L. The average pooling layers average every two
consecutive time steps. The second part is an L′-layer FCN
with SiLU activation. Each layer reduces the dimensions by
half, except for the last layer, which has a dimension of Ns.
L′ depends on the dimension of the flattened layer.

E. Detection Module

Similarly, various methods can be applied in detection
module such as [75]–[78]. The Cumulative Sum (CUSUM)
method is used to balance the effectiveness, accuracy and
overhead [15]. It computes residuals by element-wise squared
error and assigns CUSUM score for each dimension:

eti = (yti − sti)
2, d0 = 0, dti = max(0, dt−1

i + eti − ωi),

where i ∈ [1, Ns], 0 is a vector of zeros, dti is the CUSUM
score for sensor i at time step t, and ω is the drift to filter out
noises and reduce false alarms. When dti exceeds threshold ηi,
the detection module resets dti to 0 and raises an alarm, and
thus detects the attack. In this work, we fix the ω and η after
offline training. How to adapt the drift and threshold on-the-fly
is out of the scope, but adaptive methods such as [23], [61] can
be easily applied. We determine the drift for each sensor as
the minimum value that exceeds 99% of its prediction errors
on the validation set. Then, the threshold is calculated by
multiplying the drift with a ratio: η = Rω. The R mainly
determines the detection sensitivity. Decreasing R universally
increases sensitivity for all systems. However, as this work
primarily focuses on sensor attack temporal diagnosis, we use
a fixed value for R and do not explore its optimization.

VI. EXPERIMENT

We conduct extensive experiments using a high-fidelity
simulator and two numerical ones to avoid the unrealistic
attack limitation discussed in Section II. A new metric, ATDE,
is proposed for better evaluation of diagnosis errors. We
evaluate the system performance by ATDE along with other
suitable metrics, and experimental results show that our system
provides accurate diagnosis with less than 2.4ms additional
overhead on resource-limited Raspberry Pi.

A. Implementation

The sensor reading predictor (including the attention module
and prediction module) is implemented under PyTorch v1.13.1
and CUDA v11.6, and its parameters are optimized by Adam
[79]. The optimization target is to minimize the total prediction
residual by adjusting model weights. After each epoch of
training, the predictor is evaluated on the validation set. If
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its average validation loss (i.e. prediction residual on the
validation set) stops decreasing, it reaches a local minimum.
We set the initial learning rate to 1×10−3 and scale it down to
its one-twentieth (5×10−5) after the predictor reaches a local
minimum for the first time. We stop training and finalize the
predictor after the second time it reaches a local minimum.

To ensure the generalization of our approach, we train every
system five times and then evaluate the performance by taking
the average of their results. We keep the evaluation on the same
platform that is equipped with Intel i7-8086K CPU @ 4.00
GHz and NVIDIA GeForce RTX 3080. Also, a Raspberry Pi 4
Model B is used when evaluating the computational overhead.

B. Datasets

We employ an ArduCopter drone [53] to collect a high-
fidelity dataset, two numerical simulators [80] to collect nu-
merical datasets, and a testbed for real-world evaluation. The
key parameters are shown in Table I.

TABLE I: Dataset Key Parameters

Dataset Plant Hz Nc Ns

high-fidelity ArduCopter drone 20 14 45

numerical
aircraft pitching 20 1 3
quadrotor taking-off 10 1 9

testbed Ackermann car 1 3 12

1) High-fidelity Dataset: We operate the drone within
a defined area, specified by latitude ([40.76368, 40.76729]),
longitude ([−113.81360,−113.80882]), and altitude ([10, 50])
ranges. We gather 1.1 million time steps of benign data
for analysis. Out of these, 1.04 million time steps involve
the drone following rapidly changing references to explore
all possible system behaviors. The remaining data are taken
with references set close to the area edges to capture terrain
information. To create training and validation sets, we split
the data with a 4:1 ratio. For the test set, we subject the drone
to three types of sensor attacks (bias attack, stealthy attack,
and random behavior attack) on six sensors (velocities in three
directions on two IMUs). Each test record consists of 400 time
steps of normal operation, followed by a 200-time step attack
period (ŵ = 200). For the first two directions, vti = 2× 10−2

for the bias attacks, where t ∈ [τ − ŵ, τ); vτ−ŵ
i = 6× 10−5

for stealthy attacks, and vτ−ŵ
i = 1× 10−2, ν̂ = 3× 10−3 for

random behavior attacks, where i denotes the attacked sensor.
The third direction has a small noise level, so we scale down
all the magnitude by half. As a reference, the noise level of
the three directions are 9× 10−3, 4× 10−2, and 2× 10−3.

2) Numerical Dataset: Both simulators are restricted to
safe sets during operation. We gather 200,000 seconds of
training data and 50,000 seconds of validation data for each
simulator. Additionally, we perform sensor attacks of varying
magnitudes on three sensors for the aircraft simulator and four
sensors for the quadrotor simulator. These attacks are used to
construct test sets. Each test record comprises 400 time steps
of normal operation, followed by a 200-time step attack period.

3) Testbed Dataset: We use an Ackerman car, depicted
in Figure 3, to gather the testbed dataset. It employs an
STM32 and a Raspberry Pi for control. The STM32 operates at

10Hz, acquiring data from onboard sensors (e.g. IMU, wheel
speed) and managing motors and servos. Communication
between the STM32 and Raspberry Pi occurs via UART. The
Raspberry Pi runs Robot Operating System (ROS) and em-
ploys Proportional-Integral-Derivative (PID) controllers. The
proposed diagnosis system is implemented on the Raspberry
Pi to provide temporal diagnoses. The car rests on a stage,
with wheels free to move. 5700 seconds of training data are
collected, and 1/4 of them are split out as the validation set.
Random forces are enforced on the right back wheel as attacks.

C. Baselines and Metrics

Since there is no other system capable of handling temporal
sensor attack diagnosis, we establish baselines that are lack of
attention and diagnosis modules but share the same other three
modules. The baselines use the detection time as their temporal
diagnosis results. They are representations of existing common
sensor reading predictors that cannot provide diagnoses.

Because temporal diagnosis is a new field and existing met-
rics cannot perfectly evaluate diagnosis models, we propose a
new metric for evaluation:

• Average Temporal Diagnosis Error (ATDE): the absolute
error between the attack starting time step and φ. When
the system fails to deliver a temporal attack diagnosis, the
corresponding ATDE is instead assigned the value of the total
attack duration. While a small ATDE may not always be
attainable for attacks of small magnitude (like the ones we
are evaluating), a proficient temporal attack diagnosis system
aims to minimize the ATDE. This showcases its ability to
accurately diagnose the starting point of the attack.

Besides ATDE, three conventional metrics are considered
for evaluation. However, given the difference between real-
time continuous tasks (where we focus) and discrete machine
learning tasks, some adjustments are made. We first describe
the real-time tasks and then present the adjusted metrics. Every
record contains a normal operation period followed by an
attack period. The evaluated system runs at every time step.
The record is false positive if the system raises alarms before
the attack, and is true positive if the alarms are after the attack.
The system does not stop after alarms, and it continues until
the record ends. Thus it is possible for a record to be both
false and true positive at the same time. Also, the system may
raise multiple false (true) alarms for a single record, but such
a record will still be considered as one false (true) positive
record. As mathematical results, there is no true negative in
this setting, and the sum of false negative rate and true positive
rate is 1. The adjusted metrics are as follows:

• Average Detection Delay (ADD). The detection delay
refers to the delay from the attack starting point to the earliest
alarm from the detection module. If the system fails to detect
the attack in a test record, the corresponding detection delay
is set to the total duration of the attack.

• False Positive Duration (FPD): the ratio of the accumu-
lated false alarm time steps to the total normal operation time
steps. The FPD equals the false positive rate (FPR) used in
discrete machine learning tasks.
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Fig. 3: Testbed Architecture.
Fig. 4: System Diagnosis Performance. ADD: average detection delay. ATDE: average timing
diagnosis error. The proposed diagnosis system provides accurate timing diagnosis, with up
to 60.0% average improvement from baselines.

• True Positive Rate (TPR): TPR = T+/M , where T+ is
the number of true positive records, and M is the number of
total records. False positive rate (FPR) equals 1− TPR; thus
we omit FPR in the evaluation.

D. High-fidelity Simulator Dataset Experimental Results

We set the window length w to 60, detection threshold ratio
R to 10, diagnosis threshold λ to 0.1, and diagnosis max length
of moving window w′ to 20. For the systems using FCN as
the prediction module, L = L′ = 4. Thus the spatial output
dimensions (last axis) of the first part are 36, 21, 12, and 7,
while the temporal output dimensions (second last axis) equal
w. Inputs being flattened, the output dimensions of the second
part are 252, 151, 90, and 45. The systems using CNN have 3
blocks in the first part. Among them, the spatial dimensions
of convolution layers are 78, 97, and 118, kernel sizes are 7, 5
and 3, and the padding lengths are 3, 2, and 1. Thus the output
dimensions of the 4-layer FCN are 472, 236, 118, and 45.

TABLE II: System Detection Performance and Sensor

Diagnosis. FPD: false positive duration. TPR: frue positive
rate. Rnd Behavior: random behavior. ”Attention” denotes the
proposed attention and diagnosis module.

Attack Bias Stealthy Rnd Behavior
Metric(%) FPD TPR FPD TPR FPD TPR
FCN 0.44 100.00 0.58 100.00 0.69 100.00
Attention FCN 0.46 100.00 0.62 100.00 0.72 100.00
LSTM 0.07 99.44 0.37 100.00 0.36 100.00
Attention LSTM 0.20 100.00 0.46 100.00 0.49 100.00
CNN 0.04 97.33 0.35 100.00 0.35 100.00
Attention CNN 0.02 100.00 0.34 100.00 0.33 100.00

1) Validating attack diagnosis: We validate the proposed
diagnosis system on three types of attacks and present the
results in Figure 4 and Table II. Figure 4 illustrates the average
timing diagnosis errors of the proposed systems, where FCN,
LSTM, and CNN are used in prediction module, as well
as their respective baselines. The average detection delay
of the proposed system is also shown as a comparison. It
is clear that our diagnosis system is capable of providing
accurate timing diagnosis on sensor attacks, with an average
of 32.8% (FCN) to 60.0% (LSTM) improvement on ATDE
from baselines. It’s worth noting that the attack magnitude is
small, requiring at least seventeen time steps for detection.

As a result, the noise can obscure attacks, making it difficult
for the diagnosis system to provide further accurate timing
diagnosis. Table II displays other metrics, indicating that the
proposed system typically results in a limited increase in false
positive duration. The FPD even decreases for systems using
CNN. This experiment concludes that the proposed temporal
diagnosis system provides accurate diagnosis while incurring
negligible overheads.

Our evaluation primarily focuses on the improvement made
by our diagnosis system compared to the baselines. We do not
make direct comparisons among FCN, LSTM, and CNN since
we do not claim any novelty in their implementation. However,
we observe that the systems whose prediction module uses
CNN exhibit smaller false positive duration while maintaining
accurate timing diagnosis. Therefore, we solely consider the
use of CNN for some of the subsequent experiments.

2) Computational overhead: We compare the computa-
tional overhead introduced by the proposed diagnosis system
on the high-fidelity dataset and plot the result in Figure 5.
Inference, i.e. predicting sensor readings, takes up the most
computational time. The ”other” refers to various additional
computational costs, such as scaling inputs in the preprocess-
ing module, applying the split and attach design, preparing
data for devices, and conducting attack detection and diag-
nosis. We assess the additional computational overhead, i.e.
the difference in time usage between the proposed system
and its corresponding baseline. It is because the design of
the preprocessing module, prediction module, and detection
module is not restricted. While the total computational over-
head fluctuates as their designs, the additional computational
overhead remains consistent. The results also demonstrate that
the proposed system incurs an additional computational time
of less than 2.4ms on a Raspberry Pi 4 Model B, which is
less than 5% of a control time step of a CPS operating at a
frequency of 20Hz.

3) Comparison of diagnosis threshold: The diagnosis
threshold λ controls the sensitivity of the timing diagnosis,
and its choice depends on task and scenarios. We evaluate its
impact on all three attack types using CNN as the prediction
module to conclude a suggestion about how to choose it. The
λ varies in [0.06, 0.18] with a step length of 0.02.

As plotted in Figure 6, different attack types have their
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Fig. 5: Computational Overhead. RPi: Raspberry Pi. Blue arrows with red anno-
tations: additional computational overhead on Raspberry Pi. For reference, a typical
CPS controlled at a frequency of 20Hz has control time steps of 50ms.

Fig. 6: ATDE v.s. λ. Optimal λ ex-
ists and must derive from experiments.
Simple searching methods can be used.

respective optimal ranges of λ, but all of them are centered
around 0.1. The differences can be attributed to the diverse
nature of each attack type. Stealthy attacks gradually increase
in magnitude, while bias attacks have sudden but stable
modifications. Therefore, a larger λ can filter out more noise-
invoked attention score fluctuations and provide more accurate
timing diagnoses for stealthy attacks. Conversely, for bias
attacks, a smaller λ is optimal. Random behavior attacks fall
in between, with an intermediate optimal λ.

Even though an optimal value of λ leads to the best
diagnostic performance, one cannot presume the attack types
in real-world applications. Thus a conservative choice of λ
is generally suitable for a wide range of situations as the
difference among different λ is limited as long as the diagnosis
algorithm is applied. The optimal λ improves less than 9% on
ATDE than a conservative choice (0.06).

4) Comparison of the number of heads: We explore the
relationship between system performance and the number of
heads in MHA (H) and present the results in Table III.
The results are averaged from all test records. Since the
high-fidelity simulator is equipped with forty-five sensors, H
can be chosen from {1, 5, 9, 45} to keep the dimension of
every head integral in MHA. We observe that a small and
large H show similar performance, while an intermediate H
degrades temporal diagnosis. Therefore, we conclude that H
is a task-specific hyper-parameter that requires adjustment by
experiments based on the scenario and expectations.

5) Comparison of window size: The window size w is a
hyper-parameter that is highly dependent on tasks and systems.
We compare the performance on different window sizes and
the results are shown in Table IV. Please note that in this
experiment, we only adjust the window size parameter (w)
and do not adjust other parameters, such as the number of
layers in CNN (L and L′). We observe that setting w to 60
yields the best performance for our proposed diagnosis system.
The optimal window size may vary depending on the specific
scenario and the overall system settings. One general rule is
that a larger w means a larger amount of information in the in-
puts, which needs a more complex neural network architecture.
Thus increasing w without adjusting the network structure
accordingly cannot promise better performance. Also, a large
w along with a complex network incurs heavy overhead for

TABLE III: System Performance v.s. H . H: number of
heads in MHA. Different choices of H result in non-equal
performance. Intermediate H have worse temporal diagnoses.

H Attack ATDE(ts) ADD(ts) FPD(%) TPR(%)

1

Bias 10.67 17.38 0.02 100.00
Stealthy 13.42 23.09 0.34 100.00
Random behavior 15.26 22.79 0.33 100.00
Average 13.11 21.09 0.23 100.00

5

Bias 13.79 19.69 0.02 99.89
Stealthy 15.55 23.90 0.34 100.00
Random behavior 17.76 23.89 0.33 100.00
Average 15.70 22.49 0.23 99.96

9

Bias 13.54 18.73 0.02 100.00
Stealthy 18.43 24.27 0.35 100.00
Random behavior 19.49 24.77 0.33 100.00
Average 17.15 22.59 0.24 100.00

45

Bias 10.84 16.66 0.02 100.00
Stealthy 15.55 23.45 0.34 100.00
Random behavior 16.97 22.83 0.32 100.00
Average 14.46 20.98 0.23 100.00

edge devices. Therefore, it is important to carefully evaluate
and tune the window size parameter by experiments based on
the specific use case and requirements of the system.

TABLE IV: Comparison of window size. w: input window
size. Previous experiments set w=60.

Model w ATDE(ts) ADD(ts) FPD(%) TPR(%)

Attention CNN

40 16.10 23.19 0.23 100.00
50 16.13 23.88 0.22 100.00
60 13.11 21.09 0.23 100.00
70 13.95 22.05 0.25 99.63
80 14.71 22.63 0.21 100.00

6) Comparison of prediction module network architecture:
Similar to window size, network architecture in the prediction
module also depends on tasks and systems. Even though we
do not claim novelty in the prediction module, we compare
the system performance on different CNN architectures and
present the results in Table V. We conclude that too large or
too small a model results in worse prediction and thus larger
diagnosis error and detection delay. The optimal network
architecture derives from experiments.

7) Ablation studies: Ablation studies are conducted to val-
idate the improvement of our novel designs, i.e. cin-attention
and split and attach. We use CSS to denote the proposed
cin-attention because the Q, K, and V are C, S and S,
respectively. Five variants of the attention module are designed
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TABLE V: Comparison of CNN Architecture. L: number of
blocks in CNN. Previous experiments set L=3.

Model L ATDE(ts) ADD(ts) FPD(%) TPR(%)

Attention CNN
2 13.90 22.28 0.23 100.00
3 13.11 21.09 0.23 100.00
4 19.46 27.92 0.21 99.33
5 20.33 29.93 0.21 99.48

for comparisons: 1) SCC: Q = S, K = V = C, 2) AAA:
Q = K = V = X, 3) SSS: Q = C, K = V = S, 4) CCC:
Q = C, K = V = C, and 5) CSS−: using cin-attention
without split and attach (i.e., attaching C to O). The results are
shown in Figure 7 and Table VI. CNN is used as the prediction
module, and the results are averaged from all attack records., g

Fig. 7: Ablation Study. BL: baseline. CSS: cin-attention, i.e.
Q = C, K = V = S. SCC: Q = S, K = V = C. XXX: Q =
K = V = X. SSS: Q = K = V = S. CCC: Q = K = V = C.
CSS−: cin-attention without attaching C to O.

TABLE VI: Ablation Study. CSS: the proposed model.

Type BL CSS SCC AAA SSS CCC CSS-
FPD(%) 0.25 0.23 0.23 0.23 0.24 0.26 0.25
TPR(%) 99.11 100.00 99.93 100.00 100.00 100.00 94.44

Figure 7 illustrates that our novel designs lead to the
smallest timing diagnosis error. The comparison between CSS
and XXX proves the advantage of splitting the entire inputs
X into control signals C and sensor measurements S as
different inputs for MHA, while the comparison between CSS
and CSS− demonstrates the vital role of C and the benefit
of attaching it to O. Combing these two observations, we
conclude that our novel split and attach mechanism yield
the best attack diagnosis performance. On the other hand,
Table VI indicates that the FPDs remain at a similar level
across all systems. It is noteworthy that our novel designs
result in a larger ADD compared to the XXX, as well as
a worse SDA compared to the SCC and CCC. The former
observation can be explained by the fact that information-rich
attention module outputs O (XXX) can lead to better sensor
predictions, but interference within the attention weights A
can impede timing diagnosis. This interference is due to the
different patterns and phases between control signals and
sensor measurements. Thus, directly applying MHA without
adjustment with this interference leads to discordant attention
scores, which impedes sensor attack diagnosis. The possible
reason for the second observation is that O in SCC and CCC
models are reweighted from C; thus, the prediction module
can digest the attached original S and become sensitive for

sensor diagnosis. The reason behind the second observation
could be that the attention module outputs O in SCC and CCC
models are reweighted from C, allowing the prediction module
to incorporate the original sensor measurements S (by split and
attach) and become more sensitive to sensor diagnosis.

8) Rationale of Cin-attention: We use a visual example
to illustrate why cin-attention is an innovative design that
empowers temporal diagnosis. Attention weights obtained
from the proposed diagnosis system using cin-attention and
from a baseline in the previous ablation study that uses self-
attention are plotted, when the systems run on a bias attack
test record. As shown in Figure 8, the attention weights on
the left column, i.e. cin-attention, are more sensitive to sudden
fluctuations and have less interference. However, the weights
on the right column, i.e. self-attention, present a scenario-
independent pattern that cannot distinguish normal inputs and
attacked inputs. It concludes that the novel designed attention
module along with the diagnosis module enables accurate
temporal sensor attack diagnosis.

fluctuationmaxima

continuation of
previous fluctuation

maxima

t1

t2

t0

cin-attention self-attention
Fig. 8: Rationale of Using Cin-attention. t0: 10 time steps
before attack; t1: when the attack happens; t2: 10 time steps
after attack. The left column explains why the novel-designed
cin-attention empowers temporal sensor attack diagnosis: it
aligns the movement of the attention weights with that of the
inputs. The annotated maxima that are invoked by the attack
help the statistic attention score a to record the fluctuation and
diagnose the attack.

E. Numerical Datasets Experimental Results

We set w = 60, R = 10, λ = 0.1, and w′ = 20. We
use CNN in the prediction module, which has 3 blocks in
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the first part, whose convolution spatial dimensions are 5, 6,
and 8 for aircraft; 13, 16, and 20 for quadrotor. Its kernel sizes
and padding lengths are the same as the ones used in the high-
fidelity dataset. Thus the output dimensions of the 4-layer FCN
are 32, 16, 8, and 3 for aircraft; 80, 40, 20, and 9 for quadrotor.

1) Comparison of attack magnitude: We evaluate the ATDE
of the proposed diagnosis system by attacks with nine attack
magnitudes and plot the results in Figure 9. The bias at-
tacks and random behavior attacks take [0.6, 0.65, ..., 0.95, 1.0]
times of the biggest magnitudes that are 2× 10−2, 6.5× 10−4

and 1.2× 10−2 for the three sensors. And the stealthy attacks
take [0.2, 0.3, ..., 0.9, 1.0] times of the biggest incremental that
are 2× 10−3, 8× 10−5 and 5× 10−3.

Fig. 9: ATDE V.S. Attack Magnitude. As attack magnitude
increase, the ATDE for all attacks decreases.

We observe that as the attack magnitude increases, the tem-
poral diagnosis accuracy improves. However, there are limits
to these metrics, as environmental uncertainty and noise can
contribute to less-than-perfect results. In some cases, extreme
or outlier records may yield results that are not representative
of the overall performance of the system.

Fig. 10: Computational Overhead V.S. Dimension. ACO:
additional computational overhead. 100D: a dummy 100-
dimensional simulator. Annotated red line is the mean.

2) Computational Overhead of Various Dimensions: We
present our diagnosis system’s computational overhead (on
Raspberry Pi) of all datasets we evaluated and a dummy simu-
lator that has 100 dimensions (Nc = 25, Ns = 75, denoted by
100D). CNN is used. The result is shown in Figure 10 and it
concludes that as the input dimension increases, the additional
computational overhead of the proposed diagnosis system
increases. However, even in a 100-dimensional highly complex

system, our design only incurs less than 2.4ms overhead,
concluding that the proposed system is lightweight.

F. Testbed Experimental Results
The CNN is used in the prediction module, and the set-

tings of hyper-parameters remain the same as the previous
experiments. A testbed experimental result is presented in
Figure 11. As the attack starts at time step 152, the fluctuation
is recorded by the proposed statistical attention score. Even
though the detection module alarms at time step 166, the
diagnosis module can provide an accurate temporal diagnosis.

Fig. 11: Testbed Sensor Attack Temporal Diagnosis. An
attack is launched at time step 152. Though it is not detected
until time step 166, our diagnosis system records and diag-
noses it accurately. The continuous fluctuation is omitted.

VII. CONCLUSION AND DISCUSSION
In this paper, we highlight the significance of sensor attack

diagnosis in the field of CPS. Accurately identifying the sensor
attack onset is a fundamental aspect ensuring CPS reliability
and security. It also enables further research, including system
estimation and attack recovery. Therefore, it is critical to de-
velop efficient and accurate sensor attack diagnosis techniques.

To address this problem, we propose an attention-based
novel sensor attack temporal diagnosis system that accurately
determines the timing of sensor attacks. The system provides
precise temporal diagnosis while incurring only minimal com-
putational overhead, making it suitable for deployment on
resource-limited edge systems. The proposed system is never
a fixed system and its prediction and detection modules are
easy to upgrade. State-of-the-art neural networks and detec-
tion methods can be applied as improvements. Our extensive
experiments demonstrate the effectiveness and robustness of
the proposed diagnosis system, highlighting its potential as a
reliable tool for enhancing the security of CPS.

The proposed approach, like most other DL based ones,
relies on comprehensive training datasets. Transfer learning,
incremental learning, active learning, domain adaptation, and
other techniques can be applied separately or jointly to mit-
igate dataset problems. We also notice that when the attack
magnitude is small, the proposed sensor attack diagnosis
system may record inaccurate attack onsets before the attack is
detected. This can be attributed to environmental uncertainties
and noise, which can mislead the system and lead to inaccurate
diagnoses. The quest for further improvement remains an open
problem, and various approaches such as denoising and pattern
recognition can be explored to enhance the performance of the
proposed temporal diagnosis system.
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