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Abstract—Industries are embracing information technology
and constructing more robust machines known as Cyber-Physical
Systems(CPS) to automate processes. CPSs are envisioned to be
pervasive, coordinating, and integrating computation, sensing,
actuation, and physical processes. CPSs have various applications
in life-critical scenarios, where their performance and reliability
can have direct impacts on human safety and well-being. How-
ever, CPSs are vulnerable to malicious attacks, and researchers
have developed detectors to identify such attacks in different
contexts. Surprisingly, little work has been done to detect attacks
on the actuators of CPS. Furthermore, actuators face a high
risk of optimal hidden attacks designed by powerful attackers,
which can push them into an unsafe state without detection.
To the best of our knowledge, no such attacks on actuators
have been developed yet. In this paper, we design an optimal
hidden attack for actuators and evaluate its effectiveness. First,
we develop a mathematical model for actuators and then create
a linear program for convex optimization. Second, we solve the
optimization problem and simulate the optimal attack.

Index Terms—Cyber-physical Systems, Stealthy Attack, Opti-
mal Hidden Attack.

I. INTRODUCTION

In the 4th Industrial Revolution, cyber-physical systems
(CPS) enable effective and efficient task performance by
integrating sensing, actuation, computation, and networking.
This integration reduces risks in manufacturing and finished
products. For example, the automotive industry’s CPS ad-
vancements detect obstacles for forward collision, lane, blind-
spot detection, and parking assistance. Many other realms
are advancing rapidly with the integration of CPS including
energy, healthcare, defense, and smart cities.

Many widely used sensors in the automotive industries,
like MEMS, ultrasonic, LiDARs, cameras, radars, etc. are
highly vulnerable to physical invariant-based attacks. These
attacks are also referred to as transduction attacks, in which
the attacker focuses on altering how sensors capture real-
world data. This involves injecting false sensor readings or
even manipulating the physical environment around the sen-
sor to produce a deceptive actuation action [1]-[4]. In [5],
authors devised a context-aware attack called the frustum
attack and demonstrated its stealthiness. By formulating the
attack generation as an optimization problem, two attack
scenarios that could potentially compromise road safety and

mobility were constructed and evaluated by the authors in [6].
Additionally, researchers in [7] explored the adverse impact
of injecting out-of-band acoustic signals into MEMS inertial
sensors. They formulated non-invasive attacks, manipulated
the sensor output, and used the derived inertial information
to deceive control systems. Authors in [8] conducted a similar
attack, targeting the drones’ gyroscope and disrupting it with
intentional sound noise. Authors in [9]-[11] illustrated spoof-
ing, jamming, and acoustic cancellation attacks successfully on
ultrasonic sensors. In most cases, the attack detection models
compare the sensor measurement with the predicted value and
test the residual through stateless methods, like Chi-Square, or
stateful ones, such as cumulative sum (CUSUM) [12], [13].

While the detectors mentioned above demonstrate promising
detection capabilities, hidden attacks can still bypass them
and remain stealthy. These concealed attacks are intentionally
formulated by malicious actors who possess full knowledge
of the system and the deployed detectors [13]-[15].

In recent studies referenced in [15]-[17], researchers
avoided specific attack functions. Instead, these works formu-
late an optimization problem, with its solution representing
the “worst-case” stealth attack. Authors in [18] considered
optimization-based attacks on sensors that reduced a state’s
safe distance from an unsafe zone, but their work did not
consider actuators for such attack formulation.

This study demonstrates that a malicious actor can devise
sophisticated attacks that pose significant threats to the system,
causing maximum deviation in its state while evading detec-
tion. The CPS could be linear or non-linear, and it is possible
to develop sophisticated attacks that will evade both stateful
and stateless detectors. In our research, we propose an optimal
hidden actuator attack that takes into account a system with
an estimator and CUSUM score-based stateful attack detector,
aiming to manipulate the control input after the controller. Our
work includes the following major contributions:

o We define and propose a novel optimal hidden actuator
attack based on the system’s full knowledge including the
parameters of the detector.

« We evaluate the proposed optimal hidden actuator attack
on a numerical benchmark.



The rest of the paper is organized as follows. Section II
includes the definitions and basic terms we use in this work.
Section III presents the attack generation methodologies. Sec-
tion IV shows the experimental evaluation of our approach.
The paper concludes with Section V.

II. BACKGROUND

1) Attack Vector: Figure 1 illustrates the general structure
of a CPS where it integrates machines and information tech-
nology where the electro-mechanical parts include controllers,
actuators, physical processes, sensors, etc. CPS also includes
an element management system called supervisor or configu-
ration management, used for making configuration changes
to any element in the CPS network. For any given target,
the controller provides control input to the actuator, and the
actuator runs the physical process. The sensor measures the
output state of the physical process and feeds it back to the
controller. Based on this feedback, the controller generates new
control inputs to keep the plant under control. A malicious
actor can compromise each element in the CPS or the com-
munication path between two elements to forge an attack. The
defender observes the whole CPS and keeps track of its states.
It calculates the CUSUM score for each state and compares it
with its predefined threshold to detect abnormal behavior of
the CPS. In this work, we chose to work with actuator attacks.

2) System Modeling: A physical process, which is also
known as the plant, is considered the CPS model in this
work. This plant is controlled by a computer program or
controller, which operates at every constant time, known
as a control step. The desired output state of the plant is
given by x,.; and the output state of the plant is T. We
assume that the transfer function of the filter and sensor is
1, which yields y = z. The difference between these two
is known as error, e, where ¢ = I,y — 2. The controller
reads the sensor measurement at the onset of each step ¢ and
computes the state estimate of the plant. These estimates are
represented by the values of a set of real-valued variables
[ = Z[1]s, [2]¢], Z[3]t, ..., Z[n]t, where n is the number
of states in the system. Subsequently, the controller computes
the control input u; = u[l]s, u[2]¢, u[3]¢, - .., u[m]:, with m
denoting the number of actuators in the system. The actuators
then act upon the control inputs to drive the system toward the
specified reference or target point. For the sake of clarity in
presentation, it is assumed that the plant is entirely observable
to the sensors, implying that the sensors can provide all the
state estimates of the plant. It is important to keep in mind
that, the system encompasses three distinct types of states,
i.e., (1) the actual physical states of the system, denoted by
z, (2) the sensor-measured states of the system, denoted as
Z, which are not necessarily governed by the dynamics f,
and (3) estimated states, denoted as &, are calculated from
preceding measurements through f. In a concise notation, the
actual state, expected state, and the state estimate at time ¢y,
are also expressed as zy, Ty, Ty, where k € Ny
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Fig. 1. Expanding the scope of the attack vector in CPS, the depicted model
illustrates two competing players engaging with a shared CPS [19], [20].

III. ATTACK DESIGN

1) The Plant: We utilized a state-space control design tech-
nique to develop our model, incorporating dynamic compensa-
tion by directly engaging with the state-variable representation
of the system. The state equations can be represented in the
state-variable form as the vector equation:

x = Ax + Bu (1
y = Cx + Du 2)

where x is the state of the system, u is the control input, and
y is the output of the system respectively. Here, the state of
the system is represented by the column vector x, containing
elements for an nth-order system. The matrix A is an (n X n)
system matrix, B is an (n x 1) input matrix, C is a (1 x n)
row matrix denoted as the output matrix, and D is a scalar
known as the direct transmission term.

2) The Controller: To steer the system to the desired
state, we used an optimal Linear Quadratic Regulator (LQR)
controller. The infinite-horizon cost function of LQR is given
by below equation:

J= / [T Qz + u" Ru) dx (3)
0

where, 27Qxz > 0,V and «"Ru > 0, Vu. Here, Q and
R denote the state cost matrix and the control cost matrix
respectively. The optimal control law for the LQR controller
is given by [21]:

=K (Tref — ). “)
A. Mathematical Model of Optimal Hidden Attack

We examine the actuator attack scenario, wherein a mali-
cious attacker manipulates the control input after the controller
transmits it to the actuator. To analyze the optimal hidden
actuator attack aiming to deviate the system states further
from reference states, we assume that the attacker possesses
complete knowledge of:

o The system dynamics, given by & = f(x,u), induce a
finite change in each dimension of the state per unit of
time, expressed as |z| < AZ, where the inequality holds
dimension-wise.

o The system is equipped with a state estimator that predicts
the state & by forward propagation from a (not necessarily
trustworthy) cached state on dynamics f.

« The system incorporates a detector ¢(Z, &), taking both
a state estimation and a physical measurement as input.
An attack is identified at time ¢ when g(&, &) > 0.
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Figure 2 illustrates a simplified concept of optimal hidden
actuator attack. The total state of the system consists of a
safe zone, a conditionally safe zone, and an unsafe zone. The
attacker aims to reduce the state of the system between the
current state £ and an unsafe set shown in the red zone. As
this work aims to reduce the distance between the system state
and the unsafe state, we can choose a target function that
measures the distance between a point and a line. For a one-
dimensional system, the shortest distance d from a point (state)
to the unsafe state is defined below equation:

|3 di * (#n]i])) — g
> (di%)

where the unsafe set is D& < ¢, D = [dy,da,ds,. .., d;]
This can be achieved with a convex optimization technique that
minimizes the convex functions over convex sets. To minimize
this function, we must bind it with some constraints.

The state estimator takes the measurement of the state = and
the control input @, for timestamp (n), and forecasts the state
for timestamp n + 1. The difference equations of the system
and the state estimate are given by:

®)

distance =

in—&-l = A"En + Bun (7)

where Z, Z, u, and u represents the sensor measurement of the
ground truth, state estimate, control input from the controller,
and forged control input respectively. Without the appropriate
system dynamics, it will be difficult to get an accurate estate
estimation. Therefore, there is no guarantee that the attack will
not trigger the detector.

By substituting the values of z,, and control law, u, =
—K (&ycy — &) in equation 5, we can formulate the final
distance function.

Now, the attacker aims to conceal himself from the detector.
So, the attack will be stealthy, and the deviated state will
remain below the detector threshold 7. The detector calculates
the CUSUM (cumulative sum) score for the state. For each
control step, the estimator will estimate the state (Z) and the
sensor will provide the actual state of the plant (Z). The
residue, r is the difference between these two states. The

CUSUM (cumulative sum) statistic computes the CUSUM
score S by comparing the state estimates with expected states
over time. The CUSUM can be represented by the below
equation:

Sy =Tpn —Tp —nd <T (8)

where n is the number of control steps, and d is a parameter
representing the drift that can avoid the increase of the
CUSUM score when there is no attack.

The attacker also chooses the control input in such a way,
that it remains between the control limit. Typically, a control
limit is established based on the physical characteristics of the
actuator. Formally,

ﬂ'lowe’r < ai < auppe’r' (9)

Now, we have our target function and constraints and our
convex optimization can be formulated as the following:

Minimize (5)
(8) A (9)

Here, the target function (equation 5) and all the constraints
(equation 8 and 9) are linear. Therefore, this is a linear
programming problem and there are many efficient solvers
(Gurobi, LP_Solve, GLPK, MOSEK, CONELP, etc.) [22]. It
is essential to note that, as indicated by the authors in [18], it
is possible to design a real-time alert system that can more
effectively defend our system against the optimal actuator
attack outlined.

10
Subject to (19)

IV. RESULTS

Throughout this chapter, we justify our hypothetical analysis
by using one linear simulator of CPS and provide a detailed
experimental result analysis.

1) Simulation Setting: The experiments were conducted on
a PC with 8GB memory and an Intel(R) core(TM) i7-8056U
CPU @ 1.90GHz 2.10 GHz. All the results were produced by
the GLPK solver and CVXOPT library in Python.

To explore the possibility and its adverse effect on the
CPS, we considered the vehicle turning equation as our
plant. Authors in [23], [24] modeled the turning of a vehicle
changing the speed of each wheel differently. The physical
dynamics of the system are given by:

2
= —§x+5u (11)
Output,y = = (12)

Here, & represents the change in speed difference, x signifies
the speed difference between the wheels, while u denotes the
control input, representing the voltage difference applied to
the motors that control the two wheels. The objective is to
sustain the speed difference at a reference value of 1 meter per
second. Comparing equations 11, 12, 1 and 2, we find the value
of A,B,C and D matrices as following: A = [-2}], B =
[5], C = [1], and D = [0]. We used the Python control library
to calculate the LQR gain for the system using the penalty
matrices Q = [1] and R = [1].
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Fig. 3. Plot of the attacked state against time for Vehicle Turning

2) Evaluation: We employed CVXOPT and GurobiPy to
solve the optimization problem defined in equation 10. Using
the Python control library, we simulated the vehicle’s turning
system and analyzed the closed-loop system’s response to the
surge, bias, geometric, and optimal hidden attacks, presenting
the results in Figure 3. We initiated all attacks at the same time
(at t = 420), except for geometric attacks (started at ¢ = 0),
and observed the behavior of the state. The bias attack led to
a constant state increase with minimal deviation. The surge
attack caused rapid state deviation without fully pushing the
system into the unsafe zone. Conversely, the optimal control
input, derived from convex optimization, most significantly
and quickly deviated from the reference point. After the surge
attack, the state quickly realigned with the reference point,
while the optimal hidden actuator attack took longer to reset,
making it the most severe compared to the baseline attacks.

V. CONCLUSION

In this paper, we propose an optimal hidden attack on
actuators, evaluate the impact of such attacks, and compare
the result with baseline attacks. The experimental results show
that the optimal hidden attack can deviate the system most
within the shortest possible time while the attacker remains
stealthy. Since this work focused on one-dimensional systems
for optimal hidden actuator attacks, it will be interesting to
explore such attacks for multidimensional linear and non-
linear systems. In future studies, we will also investigate
how various types of noise affect the state space model.
Also, enthusiastic researchers can consider developing similar
attacks based on stateless detectors.
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