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ABSTRACT 
Learning from Demonstration (LfD) is a powerful method for non-
roboticists end-users to teach robots new tasks, enabling them to 
customize the robot behavior. However, modern LfD techniques do 
not explicitly synthesize safe robot behavior, which limits the de-
ployability of these approaches in the real world. To enforce safety 
in LfD without relying on experts, we propose a new framework, 
ShiElding with Control barrier fUnctions in inverse REinforcement 
learning (SECURE), which learns a customized Control Barrier 
Function (CBF) from end-users that prevents robots from taking 
unsafe actions while imposing little interference with the task com-
pletion. We evaluate SECURE in three sets of experiments. First, 
we empirically validate SECURE learns a high-quality CBF from 
demonstrations and outperforms conventional LfD methods on sim-
ulated robotic and autonomous driving tasks with improvements 
on safety by up to 100%. Second, we demonstrate that roboticists 
can leverage SECURE to outperform conventional LfD approaches 
on a real-world knife-cutting, meal-preparation task by 12.5% in 
task completion while driving the number of safety violations to 
zero. Finally, we demonstrate in a user study that non-roboticists 
can use SECURE to efectively teach the robot safe policies that 
avoid collisions with the person and prevent cofee from spilling. 

CCS CONCEPTS 
• Computing methodologies → Learning from demonstra-
tions; • Theory of computation → Inverse reinforcement 
learning; • Software and its engineering → Software safety. 
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Figure 1: This fgure shows an example of a person providing 
safety demonstrations from which the robot learns a cus-
tomized safety function that shields it from unsafe actions. 

1 INTRODUCTION 
Recent advances in robot learning have ofered the potential to aid 
people in a range of applications, including driving [47], manufac-
turing [48], and household tasks [10], like tidying up or serving 
someone a drink. Reinforcement learning (RL) has become a ubiq-
uitous approach to develop robot controllers; however, defning 
the reward function to elicit desired behaviors can be difcult, and 
engineered reward functions might overft to particular RL algo-
rithms [7]. Instead, the feld of Learning from Demonstration (LfD) 
seeks to empower non-roboticist end-users to teach robots skills 
and customized behaviors through demonstrations [13, 14, 23, 39]. 

Like RL, LfD research has yielded strong results in laboratory 
settings [13, 14, 36], but few techniques exist for LfD that enable 
robots to learn safe policies, hindering the deployment of LfD with 
end-users in the real world. Recently, Brown et al. [8] provided 
high-confdence bounds for quality of the inferred human intention 
as a proxy of safety. While promising, such approaches do not allow 
specifying constraints on the learned policy to explicitly prevent 
the robot from taking unsafe actions. 

To ensure safety, Control Barrier Functions (CBFs) are a state-of-
the-art method for designing safe robotic controllers that adhere 
to explicit safety constraints. CBFs have successfully been applied 
in RL and HRI settings [3, 4, 16, 29, 30, 35, 46], and we hypothesize 
that CBFs could similarly help learned LfD policies to avoid unsafe 
states. However, conventional CBF approaches would still require 
experts to formally defne and construct such constraints. Instead, 
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we aim to enforce safety in LfD settings without relying on experts 
by allowing users to defne safety via demonstration. 

We present SECURE, a novel Safe Learning from Demonstra-
tions (LfD) framework that learns personalized CBFs from end-
user demonstrations. In contrast to approaches solely focusing on 
physical safety, SECURE acknowledges the variability in individ-
uals’ safety preferences [24, 38]. This user-centric approach not 
only enhances perceived safety but also ensures physical safety, as 
demonstrated in a cofee serving task where safety demonstrations 
defne minimum distance and maximum cup angle to avoid spills 
(see Figure 1). Our contributions in this work are four-fold: 
(1) We propose a new framework named ShiElding with Control 

barrier fUnctions in inverse REinforcement learning (SECURE), 
that learns a CBF from human demonstrations. We then develop 
two techniques, namely CBF Shield and Adaptive Resampling, 
which shield the LfD policy to be safe and enhance the sample 
efciency of SECURE for improved usability in HRI; 

(2) We demonstrate SECURE’s ability to learn a high-quality CBF, in 
comparison to an expert-designed CBF in 2D Double Integrator 
system. Empirical evaluation on simulated robot control tasks 
showcases SECURE’s task performance on par or exceeding 
Learning from Demonstrations (LfD) baselines, while signif-
cantly reducing safety constraint violations by up to 100%. 

(3) We demonstrate that roboticists can leverage SECURE to syn-
thesize safe policies from demonstrations on a real-world knife-
cutting, meal-preparation task. SECURE outperforms conven-
tional LfD approaches by 12.5% in task completion and elimi-
nates 100% unsafe cases (i.e., “cut” human arms); 

(4) We further conduct a user study in which participants frst 
provide demonstrations in a cofee-cup placing task and then 
work on a secondary task in the robot’s proximity. SECURE 
can efectively learn user-specifc safe policies from provided 
demonstrations to enable the robot to complete its task while 
being perceived as safe by users operating in its proximity. 

2 RELATED WORK 
Ensuring safe and reliable robot operation, particularly in interac-
tions with human users, is of paramount importance [9]. In the RL 
realm, safety challenges arise due to the learning process’s explo-
ration in unknown environments, where various safety approaches 
tailored to RL have emerged, including constrained policy opti-
mization [1, 17, 32, 40, 43], safe exploration [20, 33, 34], learning a 
safety critic [5, 41, 44], risk-averse RL [45, 51], and shielding [2, 11]. 
Shielding, in particular, is a framework that ensures the safety of a 
control policy by verifying that each action applied keeps the sys-
tem within a predefned safe set of states [6]. CBFs are mathematical 
functions utilized in control theory to enforce safety constraints 
by defning a safe set of states [3, 4]. CBFs are a popular technique 
to shield robots from unsafe actions, as they enforce the system to 
always remain within a set of safe states. 

To develop safe controllers, prior work has explored synthesizing 
CBFs from data, including expert demonstrations [26, 27, 37, 42]. 
However, these approaches work with expert demonstrations, lim-
iting their applicability with end-users, which is central in LfD. 
Researchers have also explored tuning specifc CBF parameters 
according to user data [18, 25, 31, 46]. In the context of RL safety, 
researchers have investigated the utilization of expert-designed 

CBFs to synthesize control policies that confne the system within 
safe states [15, 16, 29, 30, 35]. Recent eforts have also focused on 
leveraging data-driven methods to learn CBFs within the RL frame-
work for safety assurance [50]. However, these approaches have 
been limited to RL and have not been extended to LfD methods 
where robots directly learn from and interact with humans. 

While a recent method extended CBF to the domain of imitation 
learning [19], it requires a manually-designed CBF to supplement 
the Behavioral Cloning (BC) policy, which is not practical for real-
world LfD settings. Castañeda et al. [12] proposes to construct a 
CBF from data to detect out-of-safe-distribution cases. Still, the 
approach risks being overly conservative. To the best of our knowl-
edge, our study is the frst to successfully integrate CBFs with 
IRL algorithms and efectively increase policy performance while 
mitigating potential safety concerns. 

3 PRELIMINARIES 
In this section, we introduce three building blocks of SECURE: 
Markov Decision Process, Inverse Reinforcement Learning, and 
Control Barrier Function. 
Markov Decision Process: We model the environment as a Markov 
Decision Process (MDP) [49], M = ⟨S, A, �,� ,�, �0⟩. S and A 
denote the state and action space, respectively. � : S → R is the 
reward of a given state. � : S×A → S is a deterministic transition 
function that gives the next state, � ′, for applying the action, �, in 
state, � . � ∈ (0, 1) is the temporal discount factor. �0 : S → R 
denotes the initial state probability distribution. A stochastic policy 
� : S×A → R is a mapping from states to probabilities over actions. 
A trajectory, � = (�0, �0, · · · , �� , �� , · · · ), is generated by executing 
the policy within the environment: �0 ∼ �0, �� ∼ � (�� ), �� +1 = 
� (�� , �� ) ∀� ≥ 0. The expected discounted return of a policy, � , is �Í∞ �
calculated by � (�) = E� ∼� =0 �

� �(�� ) . The objective for RL is � 
to fnd the optimal policy, �∗ = arg max� � (�). 
Inverse Reinforcement Learning (IRL) infers a reward function, �̂, 
from a set of demonstration trajectories, D = {�� }�

� 
=1. Our method 

is based on adversarial IRL (AIRL) [21], which consists of a gen-
erator (i.e., a policy) to imitate the demonstrator and a discrim-
inator to distinguish the generator’s behaviors from the demon-
strator’s. The discriminator � is trained to minimize the cross 
entropy loss, LDiscriminator = −E� ∼D,(�,�,� ′ )∼� [log � (�, �, � ′)] − 
E�∼�� ,(�,�,� ′ )∼� [log(1 − � (�, �, � ′))]. The generator policy, �� (� |�), 
is trained by optimizing the policy loss, Lpolicy = −�� (�� ), to max-
imize the pseudo reward function which is given by �� (�, �, � ′) ≜ 
log �� (�, �, � ′) − log(1 − �� (�, �, � ′)). 
Control Barrier Functions (CBFs) defne a set of safe states, S� , 
and a set of unsafe (or dangerous) states, S� . A CBF, ℎ, needs 
to satisfy the following three requirements (R1-R3) [3, 28]: R1: 
∀� ∈ S� , ℎ(�) ≥ 0; R2: ∀� ∈ S� , ℎ(�) < 0; R3: ∀� ∈ {� |ℎ(�) ≥ 0}, 
ℎ (� (�,�� (� ) ) )−ℎ (� ) + � (ℎ(�)) ≥ 0, where � (·) is a class-K function,

�� 
i.e., � (·) is strictly increasing and � (0) = 0. Intuitively, the three 
requirements ensure trajectories to stay inside the superset, Cℎ = 
{� ∈ S : ℎ(�) ≥ 0}, and never visit unsafe states where ℎ(�) < 0. 
In order to obtain a CBF, ℎ(·), and a safe policy, �� (·), that meet 
the three requirements, we formulate an objective similar to Qin 
et al. [35], as shown in Equation 1. R1-R3 are satisfed when we 
fnd ℎ(·) and �� (·) such that � (ℎ, �� ) > 0, i.e., our optimization 
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Figure 2: This fgure illustrates SECURE’s architecture. End-users contribute demonstrations and near-dangerous states to 
train the policy, �� (·), and CBF, ℎ� (·). CBF Shield prevents the IRL policy from entering dangerous states while minimizing 
interference with task completion. Adaptive sampling introduced in CBF Shield generates safe and task-aware actions efciently. 

objective is to maximize �. n 
� (ℎ, �� ) ≜ min inf ℎ(�), inf −ℎ(�), 

� ∈S� � ∈S� 

ℎ(� (�, �� (�))) − ℎ(�) o (1) 
inf + � (ℎ(�)) 

{� |ℎ (� )≥0} �� 

4 METHOD 
We describe SECURE in three steps: In Section 4.1, we frst describe 
how SECURE learns a CBF, represented by a neural network, from 
user-provided safety demonstrations (Figure 2, top). Second, Sec-
tion 4.2 describes how SECURE utilizes a shielding mechanism 
with the learned neural CBF to prevent the robot from entering 
dangerous states while still allowing for task completion (Figure 2, 
middle). Finally, in Section 4.3, we introduce a novel adaptive sam-
pling method for SECURE that improves the efciency in fnding 
safe and task-aware actions (Figure 2, bottom). 

4.1 Safe LfD with CBF 
To enable end-users to defne customized safety boundaries, we 
seek to learn user-specifc safety constraints, represented by a CBF, 
from user demonstrations. To learn the CBF, we need access to 
the safe states set, S� , and the unsafe states set, S� . While we can 
construct the safe state set with demonstrations: S� = {� |� ∈ � ∈ 
D}, we should not request demonstrators to take the risk of hurting 
themselves to provide unsafe demonstrations. Instead, we defne 
the near dangerous state set, S�� , as a set that the robot has to pass 
before entering S� , shown in Equation 2. 

′ ∀� with �0 ∈ S� , � > 0 ��� ∈ S� s.t. ∀0 < � < �, �� ′ ∉ S�� (2) 

Intuitively, S�� would be a set that “wraps” the actual physically 
unsafe states, e.g. collisions. For instance, if a robot helps a person 
with serving a cup of cofee, the person can demonstrate near-
dangerous states by moving their arms around the static robot arm 

holding the cup of cofee at distances that they perceive as near-
dangerous. Note that one user may defne a large distance as “near” 
dangerous even if the expected harm may be low, and SECURE 
respects such user-defned safety concepts. 

Having defned S�� , we amend the CBF’s second requirement 
as R2′: For ∀� ∈ S�� , ℎ(�) < 0. As a corollary of the CBF property 
introduced in Section 3, if R1, R2′, and R3 are satisfed, the policy 
cannot enter S�� , which further means the policy cannot enter the 
dangerous state set, S� , according to the defnition of S�� . While 
R2′ is a stricter requirement than R2, it allows people to personally 
demonstrate what they deem as unsafe. We replace S� in Equation 1 
to be S�� , resulting in Equation 3. n 

� ′ (ℎ, �� ) ≜ min inf ℎ (� ), inf −ℎ (� ), 
� ∈S� � ∈S�� 

(3)oℎ (� (�, �� (� ) ) ) − ℎ (� )
inf + � (ℎ (� ) ) 

{� |ℎ (� ) ≥0} �� 

Finding a solution of ℎ and � for � ′ > 0 will satisfy CBF require-
ments and ensure that the agent does not enter dangerous states 
or near dangerous states. One observation to maximize � is that 
the frst two terms are only dependent on the CBF, ℎ, while the 
third term relies on �� . Although one can jointly optimize ℎ and 
�� , such an optimization sufers from empirical difculty because 
�� is chasing the moving ℎ. To show this, we conduct an empirical 
experiment in the demolition derby domain (see Section 6). Joint 
optimization of ℎ and �� yields a 32.3% ± 11.0% success rate with a 
high 77.7% ± 3.4% occurrence of dangerous cases. SECURE instead 
takes a two-stage approach: 1) optimize the CBF, ℎ, to satisfy R1 and 
R2′; 2) modulate �� to satisfy R3 by the CBF shield we introduce 
in Section 4.2. As a result, SECURE achieves a high 52.3% ± 2.5% 
success rate and a low 3.3% ± 1.2% occurrence of dangerous cases. 

For Stage 1, we formulate the loss function Lbarrier as shown in 
Equation 4, where ℎ� (·) is a neural network parameterized by � . 
Intuitively, minimizing Lbarrier provides an ℎ� (·) that can discrim-
inate safe states which have positive ℎ values and near-dangerous 
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Figure 3: This fgure shows that CBF Shield identifes an ac-
tion that is safe and does not hinder task completion. 

Algorithm 1: CBF shield Action Choice 
Input : Learned CBF ℎ� (·), Policy �� (·|�), Current state � , 

Sampling batch size � , Safe action percentage 
requirement �0 

1 �, � ← �� (·|�) 
2 {�� }�

� 
=1 ∼ N(�, �)Í� 

=1 I(� (�)>0)3 while � 
� ≤ �0 do 

4 �, � ← AdaptiveResampling (�, �) 
5 {�� }�

� 
=1 ∼ N(�, �) 

6 � ← 1 Í 
�
� 
=1 [I(�(�) > 0) · �� ]� 

7 if �(�) > 0 then 
Output :� 

8 else 
9 e ∥� − �∥� ← min�∈{�� |� (�� )≥0}� 

�=1 
Output :�e 

states which have negative ℎ values, when trained on the safe and 
near-dangerous states specifed through demonstrations. ∑ ∑ 
Lbarrier (�) = max(−ℎ� (�), 0) + max(ℎ� (�), 0) (4) 

� ∈S� � ∈S�� 

4.2 Shielding Unsafe Actions 
After learning the CBF, ℎ� (·), from human demonstrations for 
encoding safe and near-dangerous states, one naïve way to avoid 
danger is to choose actions with ℎ� > 0. However, this approach 
is myopic which can lead to danger. Consider a scenario where 
a fast-moving vehicle approaches unsafe states: merely choosing 
actions with ℎ� > 0 results in the vehicle approaching the unsafe 
boundary and inevitably entering an unsafe state. In contrast, CBF 
R3 (Equation 5, where � ∼ �� (·|�)) enables SECURE to assess the 
gradual decline of ℎ� from safe to unsafe states, ensuring the agent 
never enters unrecoverable states. Therefore, SECURE employs the 
CBF Shield to fnd actions aligned with R3. 

ℎ� (� (�, �) ) − ℎ� (� ) ) Lderivative (� ) = � (�) ≜ + � (ℎ� (� ) ) ≥ 0 
�� (5) 

∀� �.� . ℎ� (� ) ≥ 0 

CBF shield directly fnds safe actions that satisfy R3, i.e., Lderivative ≥ 
0. We summarize the CBF shield procedure in Algorithm 1. For each 
safe action choice, we begin by sampling a batch of actions {�� }� 

�=1 
from the AIRL policy (lines 1-2). Specifcally, the policy output is 

Yue Yang et al. 

modeled as a Gaussian distribution with �� (�) and �� (�), and the 
action is sampled by �� ∼ N(�� (�), �� (�)). Next, a straightforward 
approach could be randomly selecting one safe action from the 
batch of actions. However, while the selected action is safe, it is 
possible that the action interferes with the task completion (yellow 
arrows in Figure 3). Instead, CBF Shield aggregates multiple safe 
actions (green arrows in Figure 3) to better refect the policy’s in-
tention of accomplishing the task. As such, we calculate the ratioÍ� 

=1 I(� (�)≥0)� of safe actions within a sampled action batch, � = ,
� 

where � is the sampled batch size. When the ratio � exceeds a 
threshold, �0, we have more confdence that the average of the 
safe actions aligns well with the policy mean output (i.e., aims at 
accomplishing the task). Thus, we aggregate safe actions within 
this batch (Line 6). When � ≤ �0, it suggests that the current batch 
does not contain enough safe actions and we resort to the Adaptive 
Sampling method (Section 4.3) to explore and fnd more safe actions 
efciently (Line 4-5). 

To ensure the safety of the executed action, we aggregate the 
safe actions by averaging frst, � = 1 Í 

�
� 
=1 [I(�(�) ≥ 0) · �� ]�

(Line 6). If the averaged action (brighter green arrow in Figure 3) 
is deemed safe, �(�) ≥ 0 (Line 7), � is returned for execution. 
Otherwise, we select the closest action from the safe action set, 
�e = min�∈{�� |� (�� )≥0}� ∥� − �∥ (Line 9). In summary, the proce-

�=1
dure of CBF shield ensures the satisfaction of R3 (i.e., policy safety) 
by always returning an action � such that �(�) ≥ 0 while also being 
task-aware, which helps the agent to accomplish the task while 
respecting personalized safety defnitions. 

4.3 Adaptive Resampling 
The CBF Shield introduced in the Section 4.2 assumes a minimum 
percentage of safe actions to be in the sampled action batch in order 
to obtain an action that is both safe and task-aware. However, the 
AIRL policy may be overly confdent in a task-oriented but unsafe 
action, and thus it might not sample an action batch containing even 
a single safe action, let alone enough for safe action aggregation. 
Therefore, there is a need to devise a strategy for greater exploration 
within the action space. To address this, SECURE modifes the 
policy action distribution, N(�� , �� ), and conducts resampling 
from the modifed distribution. To preserve the task completion goal 
represented by the action mean, �� , we refrain from modifying it to 
avoid disrupting the task. Instead, we amplify the standard deviation 
in certain directions. To reduce the probability of generating safe 
but undesired actions, we selectively increase the standard deviation 
specifcally along the directions identifed as unsafe. 

Algorithm 2 and Figure 4 show how our approach fnds unsafe 
directions and adjusts the standard deviation. First, we sample � 
probing actions (the blue and green arrows in Figure 4) uniformly 
from action space (Line 1). To determine the unsafe action direction, 
we compute a weighted average of unsafe probing actions (i.e., 
green arrows in Figure 4, identifed by ℎ� (·) < 0) where the weights 
are given by the negative ℎ values (Line 2). We can then adjust the 
standard deviation (i.e., the purple lines) by taking a small step with 
size � , in the normalized direction of the unsafe actions (Line 3-4). 
A new batch of actions is sampled for a subsequent verifcation 
loop conducted by CBF shield. Our Adaptive Sampling approach 
provides an efcient way to fnd safe and efective actions. 
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Figure 4: For Adaptive Resampling, we amplify the standard 
deviation, � , by Δ� while keeping the action mean, �. The 
amplifcation is greater in the direction of suspected near-
dangerous regions. 

Algorithm 2: Adaptive Resampling 
Input : Learned CBF ℎ� , Current state � , Policy output 

distribution mean � and standard deviation � , 
Probing extent �, Probing batch size � , Action 
dimention �, Standard deviation update step size � 

1 {� � }� 
=1 ∼ U� ( [−�, �]� )
� 

2 �unsafe ← 
Í�

�=1 [� � · max(0, −ℎ� (� (�, � � )))] 
|�unsafe |3 Δ� ← ∥�unsafe ∥ , where | · | denotes element-wise absolute 

value and | | · | | denotes the two-norm 
′ 4 � ← � + �Δ� 

′Output : �, � 

Figure 5: This fgure illustrates the 2-D double integrator do-
main. The robot needs to go to the goal avoiding the obstacle. 
The blue curve is a feasible path for the robot. 

5 VALIDATION OF SECURE’S LEARNED CBF 
Notably, a known ground-truth CBF, defned by ℎ = � [(� −�obst)2 + 
(� − �obst)2 − � 2 �¤ + (� − �obst) · �¤], serves as a obst] + 2[(� − �obst) · 
reference to evaluate the performance of learned CBF, where (�,�)
is the current coordinate, (�,¤ �¤) is the current velocity vector, and 
(�obst, �obst, �obst) represents the obstacle’s position and radius. 

We collect a dataset comprising of 800 safe states and 800 unsafe 
states by sampling from the state space and labeling each state 
with the ground-truth CBF to separate the impact of data quality 
and the CBF learning process itself. To test the learned CBF, we 
discretize the state space with a grid size of 0.1 within the ranges 
[0, 10], [0, 10], [−1.5, 1.5], [−1.5, 1.5], for � , �, �¤, �¤, respectively. As 
such, we obtain 100 × 100 × 30 × 30 = 9, 000, 000 test states. We 
summarize the evaluation results in Table 1, which shows a low 

Table 1: The table shows the means and standard deviations 
of the learned CBF’s performance with fve diferent random 
seeds for training on the 2D double integrator domain. 

Predicted 
Ground-truth 

Safe States Unsafe States 

Safe States 98.1% (1.0%) 4.1% (2.2%) 
Unsafe States 1.9% (1.0%) 95.9% (2.2%) 

overly-conservative rate (1.9%) and a low under-conservative rate 
(4.1%). We observe that SECURE is efective in learning a high-
quality approximation of the ground-truth CBF with limited data. 
Additionally, SECURE strikes a good balance between being over-
conservative and under-conservative. 

6 SIMULATION EXPERIMENTS 
We evaluate SECURE in the following simulated domains: 

Demolition Derby Domain: a car is tasked to reach a target 
location while avoiding 16 other randomly moving cars (Figure 6). 
We utilize the approach from Qin et al. [35] to collect safe demon-
strations by fltering out trajectories with collisions. We generate 
near-dangerous states by collecting states where the distance be-
tween the car and an obstacle is below a predefned threshold. 

Panda Arm Push Domain: the objective is to push a block 
with a high center of gravity to a target location without toppling 
it [22] (Figure 7). We collect demonstrations by teleoperation via a 
keyboard. We collect three near-dangerous scenarios that knock 
down the block: a) pushing the upper part of the block (count: 442), 
b) pushing with high velocity (count: 590), and c) pushing the upper 
part of the block with high velocity (count: 444). 

The number of safe and near-dangerous states for training the 
CBF, the number of demonstrations to train the policy, and the ar-
chitecture of the neural network CBFs is tabulated in Table 2. Please 
refer to the supplementary for auxiliary details for the experiments. 

6.1 Results 
We develop two metrics to evaluate task completion and safety: 
“Success Rate," which quantifes the rate of successful task comple-
tion, and “Dangerous Rate," which is the rate of hazardous scenarios 
encountered. We evaluate both metrics across 100 trajectories with 
ten random seeds for both domains. Since SECURE is the frst 
method to address safety issues for IRL, there is no existing bench-
mark tailored for the same task. Therefore, we select two baselines: 
1) behavior cloning (BC), as BC remains a prevalent approach; 2) 
the state-of-the-art IRL approach, AIRL, as it has strong capability 
to imitate demonstrated behaviors. 

The results are summarized in Table 3, showcasing the excep-
tional performance of SECURE. With BC displaying the lowest 
performance, our results analysis focuses on comparing SECURE 
and AIRL. In the demolition derby domain, AIRL and SECURE have 
similar success rates (two one-sided t-test with bound=10, � < .01) 
but SECURE achieves signifcantly less dangerous cases (71.2% less, 
Mann-Whitney � = 0, � < .001). In the Panda Arm Push domain, 
SECURE not only eliminates all instances of the block toppling over 
(comparing with AIRL, Mann-Whitney � = 0, � < .001) but also 
achieves a 43.7% improvement in the successful rate, signifcantly 
outperforming AIRL (Mann-Whitney � = 99.5, � < .001). 
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Table 2: Number of safe and near-dangerous states for CBF training, number of task demonstration states for policy learning, 
and neural network CBF’s architecture in simulated and real-robot domains. CNN refers to Convolutional Neural Networks 
and FC refers to Fully-Connected networks with hidden layer node numbers specifed in the parentheses. 

Demolition Derby Panda Arm Push Cofee Placing Knife-cutting 
Safe states 1024 1476 2500 (per participant) 450 

Near-dangerous states 1024 1476 2500 (per participant) 450 
Task demo states 52612 246 ≈2000 (per participant) 2000 

(user demonstration lengths vary) 
CBF NN CNN akin to [35] FC (32, 128, 128, 256, 256, FC (64, 64) FC (32, 128, 128, 256, 256 

256, 256, 128, 128, 32) 256, 256, 128, 128, 32) 

Figure 6: This fgure shows the Demo-
lition Derby domain. 

Figure 7: This fgure illustrates the 
Panda Arm Push domain. 

Figure 8: This fgure shows the setup 
for the real-robot banana-cutting task. 

Table 3: This table shows the comparison of SECURE (ours) with BC and AIRL in three domains. The standard deviation is 
calculated with ten runs of diferent random seeds for each algorithm. Bold denotes best performing algorithm. 

BC AIRL SECURE (ours) SECURE Comparison with AIRL 

Demolition Derby Domain 
(Evaluated on 100 Episodes) 

Success Rate 
(Stdev) 

17.9% 
(3.6%) 

46.8% 
(4.7%) 

49.2% 
(5.6%) 

+2.4% 
(TOST � < .01 with bound=10) 

Dangerous Rate 
(Stdev) 

65.7% 
(4.1%) 

75.4% 
(4.9%) 

4.2% 
(1.2%) 

-71.2% 
(Mann-Whiteney � = 0, � < .001) 

Panda Arm Push Domain 
(Evaluated on 100 Episodes) 

Success Rate 
(Stdev) 

22.7% 
(3.2%) 

52.9% 
(22.6%) 

96.6% 
(5.3%) 

+43.7% 
(Mann-Whiteney � = 99.5, � < .001) 

Dangerous Rate 
(Stdev) 

72.3% 
(3.5%) 

31.3% 
(17.9%) 

0.0% 
(0.0%) 

-31.3% 
(Mann-Whitney � = 0, � < .001) 

Kitchen Cutting Domain 
(Evaluated on 10 Episodes) 

Success Rate 70% 80% 90% +10% 
Dangerous Rate 100% 100% 0% -100% 

6.2 Ablation Study of Resampling Method 
To evaluate each component’s contribution in SECURE, we conduct 
ablation studies in simulated domains. In the frst ablation study, 
to examine the importance of averaging the safe actions within 
the shield, we randomly select a safe action from the batch instead 
of averaging all safe actions. For the second ablation study, we 
removed the adaptive resampling approach. Instead, we keep re-
sampling with the policy output until a predetermined resampling 
limit is reached, upon which a random action is selected. The second 
ablation allows us to assess the efect of not adapting for resampling. 

The results of the ablation study are presented in Figure 9, show-
ing the signifcant impact of CBF Shield and the adaptive resampling. 
In the demolition derby domain, SECURE achieves a signifcant 
improvement (18.0% and 68.2%) in safety with respect to the two 
ablations (Kruskal-Wallis � (2) = 16.25, � < .001; pairwise posthoc 

comparisons using Dunn’s test indicates SECURE signifcantly 
outperforms both ablations with � < .01 and � < .001, respec-
tively), while maintaining similar or higher task performance. In 
the Panda Arm Push domain, SECURE eliminates all unsafe execu-
tions (Kruskal-Wallis � (2) = 17.33, � < .001, DUNN posthoc shows 
SECURE signifcantly outperforms both ablations with � < .01 
and � < .001, respectively) as well as achieves a signifcant task 
performance gain of 28.2% and 43.8% with respect to the two abla-
tions (Kruskal-Wallis � (2) = 14.56, � < .001, Dunn posthoc shows 
SECURE signifcantly outperforms both ablations with � < .01 and 
� < .001, respectively). These fndings validate our design. 

6.3 Sensitivity Analysis 
Due to the data-driven nature of SECURE, performance can be im-
pacted by the data size and quality. As such, we conduct sensitivity 
analysis for SECURE from three perspectives: 1) dataset size; 2) 
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Figure 9: This fgure shows the result for the ablation study. 
The error bars represent standard deviation. ** denotes � < 
.01. *** denotes � < .001. 

label imbalance; and 3) noisy labels, and show SECURE is robust to 
non-ideal data. 
Dataset Size: In the dataset size sensitivity test, we reduce the 
overall dataset size for CBF learning while preserving the ratio of 
safe and unsafe states. We observe SECURE is robust to dataset size 
in easier tasks, such as Demolition Derby, even with only 1% of 
the original dataset. The performance drops for harder tasks (e.g., 
Panda Arm Push) when the dataset size is reduced to 10%. 
Label Imbalance: In the label imbalance test, we reduce the num-
ber of unsafe states in observance of the relative difculty in col-
lecting near-dangerous demonstrations. The results demonstrate 
that SECURE is empirically robust to a data imbalance ratio of 1:2 
in Demolition Derby and a ratio of 1:4 in Panda Arm Push. Beyond 
these ratios, the learned CBF becomes under-conservative due to 
the overwhelming number of safe states within the dataset. 
Noisy Data: In the noisy data test, we consider the possible noisy 
data collection process with naïve user by fipping safe/unsafe labels 
within the dataset to examine SECURE’s robustness. The results 
show SECURE is robust to noisy data in both domains, exhibiting 
strong performance even when up to 50% of the labels are wrong. 

7 REAL-ROBOT EXPERIMENTS 
We conduct two real-robot experiments to demonstrate SECURE’s 
applicability to roboticists and users, respectively. In the frst case 
study, we (roboticists) provide demonstrations for a knife-cutting 
task and evaluate the success of SECURE in avoiding cutting our 
arms. In the second user study, we ask users to demonstrate in a 
cofee placing task and show SECURE’s success on users’ ratings on 
task completion, safety, and perceived safety. The number of safe 
and near-dangerous states for training the CBF for each domain, 
along with the number of demonstrations used to train the policy, 
and the size of the neural network CBF are tabulated in Table 2. 

7.1 Demonstration with Roboticists 
In this demonstration, we compare SECURE with benchmarks in a 
tofu-cutting task in close proximity to a human. We (roboticists) 
provide a set of safe demonstrations via kinesthetic teaching. Be-
cause of the possible danger the knife may pose, we collect 450 near 
dangerous states of close proximity of the robot and human arms 
from experimenters, ensuring they adhere to all necessary safety 

(a) Behavior Cloning: Robot ignores human arm, leading to arm-knife contact. 

(b) AIRL: Robot ignores human arm, leading to arm-knife contact. 

(c) SECURE (ours): Robot yields for human arm, then safely continues. 

Figure 10: Timelapse of execution of SECURE and baselines 
on kitchen cutting task. Unlike baselines, SECURE is able to 
succesfully fnish the task without cutting the nearby human. 

Figure 11: Setup for user study. Robot is tasked to place cofee 
to pink square, and human is tasked to get a book and turn 
to certain chapters. 

precautions. Following previous CBF literature [35], we assume the 
robot’s forward kinematics model is available. 

Similar to the simulated domain experiments, we evaluate SE-
CURE against BC and AIRL with ten episodes and calculate the 
success rate and dangerous rate metrics. In this cutting task where 
avoiding collision is of utmost importance, SECURE achieves zero 
collision cases and 9 successful episodes, surpassing the baseline 
methods, BC and AIRL (Table 3 and Figure 10). The results demon-
strate the safer execution of SECURE, efectively eliminating col-
lisions without compromising task completion. Recordings of SE-
CURE’s execution can be found in the supplementary video. 

7.2 User Study 
We conducted a user study to understand non-roboticist users’ abil-
ities to provide helpful demonstrations for SECURE. In this study, 
we create a context where the user needs to prepare for a lecture 
by reaching for one out of four books and turning to certain pages, 
while the robot serves cofee for the user (Figure 11). In the frst ses-
sion of the experiment, human participants frst demonstrate how 
to serve the cofee (i.e., the task) via kinesthetic teaching. The user 
then provides demonstrations for safe/unsafe human arm positions 
with respect to the robot and safe/unsafe cup tilt angles. Specif-
cally, to collect safe and unsafe demonstrations, we replay the user’s 
kinesthetic teaching trajectory on the robot, pause at four states, 
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Table 4: This table shows the task (out of 105), safety (out 
of 42), and perceived safety (out of 42) ratings in the user 
study for four conditions. The ratings are reported as mean 
(standard error). Bold denotes the highest score condition. 

Data Policy Individual Grouped 
For CBF Individual Grouped Individual Grouped 

Task 73.3 (5.35) 77.1 (4.61) 81.6 (5.68) 73.6 (5.72) 
Metric Safety 31.3 (3.31) 33.3 (2.74) 35.4 (2.20) 35.3 (2.48) 

Perceived 
Safety 33.2 (2.92) 35.4 (2.14) 36.4 (1.83) 35.8 (2.04) 

and invite the participant to provide safe/unsafe demonstrations 
for arm positions by moving their arm around the robot and for cup 
tilts by changing the robot end efector tilt angles which is holding 
the cup. We collect fve kinesthetic teaching trajectories and the 
entire session lasts less than one hour for each participant. As such, 
we obtain task demonstrations and the user’s defned safe/unsafe 
demonstrations in the frst session of the experiment. 

Once we fnish the demonstration collection in the frst session 
with all participants, we prepare four diferent setups of data to 
train SECURE’s policy and CBF. In order to see how diferent com-
ponents within SECURE respond to amount of data available and 
whether data is personalized for each user, we consider a 2 by 2 
within-subject design with the two factors being policy training 
data (grouped vs. individual) and CBF training data (grouped vs. 
individual). The grouped condition represents pooling all partici-
pants’ data for training, while the individual condition means only 
using one participant’s own data for training. As such, we obtain 
two behavior-cloning trained policies and two CBFs. 

In the second session of the experiment, the participant is tasked 
to accomplish the task to reach for a book while the robot places 
the cofee. We test twelve episodes with each participant, with 
three episodes corresponding to each of the four conditions. After 
each episode, the participant evaluates the robot’s task completion, 
safety, and perceived safety via a 10-item Likert Scale. We depict 
the experiment procedure in the supplementary video for a better 
visual understanding of the setup. 

The user study was approved by the Institutional Review Board 
and we recruited twelve participants (ten male, two female, three 
within age range 18-25 and seven within age range 26-35). We sum-
marize the results in Table 4. In all four conditions, we demonstrate 
SECURE successfully accomplishes the task (i.e., cofee placing) 
while being safe with the human subjects who reach for books and 
have close interaction with the robot, evidenced by the high ratings 
in task, safety, and perceived safety. Comparing the four conditions, 
the grouped policy and individual CBF yields the highest ratings on 
all three metrics. We hypothesize the result may suggest the utility 
to learn policy from larger number of task demonstrations as well 
as the value of personalized training for CBF. Users commented on 
executions with individual CBF as “P10: exactly how I defned my 
comfort zone” and “P12: it is not unsafe nor overly safe” compared 
with their comments regarding grouped CBF as “P7: it felt like the 
robot was aiming the cofee cup to my face” and “P2: the robot is 
overly safe - as long as my arm is visible, it tries to avoid me even 
if there is large distance”. However, due to the limited number of 
subjects in our study, we could not reach a conclusion regarding the 

performance of grouped vs. individual SECURE without obtaining 
statistical signifcance, but we believe our study still demonstrates 
that that SECURE is successful in the hands of users. 

8 DISCUSSION AND LIMITATIONS 
The success of SECURE shown in previous sections is grounded in 
the novel integration of neural CBFs, IRL, and adaptive sampling. 
SECURE enables the robot to acquire an efective barrier function, 
which plays a crucial role in shielding the system from dangerous 
states. By incorporating CBF Shield, SECURE ensures that the sys-
tem remains within a safe state and avoids potential hazards, and 
that the action executed is in line with the task objective. Further-
more, our adaptive sampling increases the efciency in fnding safe 
actions. Overall, the proposed SECURE method stands out among 
all the ablations and design choices and presents a promising par-
adigm for empowering end-users to teach robots new behaviors 
while maintaining their defnition of safety. 

SECURE operates under a foundational set of assumptions. SE-
CURE assumes all states within the task demonstrations are safe, 
which could be invalid if the user provides demonstrations con-
taining undesirable behaviors. Additionally, SECURE assumes that 
users can provide a collection of undesired states. Nonetheless, we 
acknowledge that this presumption might not be feasible in certain 
domains (e.g., autonomous driving, where demonstrating undesir-
able states could jeopardize human safety). Therefore, the proposed 
algorithm, SECURE, ofers empirical safety assurances rather than 
absolute safety guarantees. Additionally, SECURE relies on access 
to the transition dynamics of the domain to assess the safety of 
proposed actions. We recognize that establishing these transition 
dynamics in complex domains can present considerable challenges. 

In future work, we aim to explore methods to enable active in-
quiries about uncertain regions, opening up possibilities for proac-
tive learning and further enhancing safety. Another future direction 
is to investigate user’s perception towards grouped vs. individual-
ized policies and safety modules in a larger-scale user study. 

9 CONCLUSION 
We introduce a novel Safe LfD framework, SECURE, which com-
bines Control Barrier Functions (CBF) with Inverse Reinforcement 
Learning (IRL) methods to learn a safe policy from demonstrations. 
By integrating a learned CBF function from human demonstrations, 
SECURE establishes a CBF Shield that ensures the IRL policy avoids 
unsafe regions. Through empirical evaluations in two simulated 
domains and two real robot tasks, we demonstrate the efectiveness 
of SECURE. SECURE achieves comparable or superior task per-
formance compared to traditional IRL methods while signifcantly 
reducing the number of unsafe cases. 
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