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Abstract— In this paper, we present a novel Model Predictive
Control method for autonomous robot planning and control
subject to arbitrary forms of uncertainty. The proposed Risk-
Aware Model Predictive Path Integral (RA-MPPI) control uti-
lizes the Conditional Value-at-Risk (CVaR) measure to generate
optimal control actions for safety-critical robotic applications.
Different from most existing Stochastic MPCs and CVaR
optimization methods that linearize the original dynamics and
formulate control tasks as convex programs, the proposed
method directly uses the original dynamics without restricting
the form of the cost functions or the noise. We apply the
novel RA-MPPI controller to an autonomous vehicle to perform
aggressive driving maneuvers in cluttered environments. Our
simulations and experiments show that the proposed RA-MPPI
controller can achieve similar lap times with the baseline MPPI
controller while encountering significantly fewer collisions. The
proposed controller performs online computation at an update
frequency of up to 80 Hz, utilizing modern Graphics Processing
Units (GPUs) to multi-thread the generation of trajectories as
well as the CVaR values.

I. INTRODUCTION

Model Predictive Control (MPC) is a control approach
that optimizes the control input at the current time while
taking the future evolution of the system states and the
corresponding controls into account. Compared with more
traditional approaches, MPC controllers can handle com-
plicated interactions between the inputs and outputs while
satisfying the given constraints. Moreover, the MPC’s ability
to predict future events based on the simulated trajectories
makes it more responsive to dynamic environments than
other methods. In recent years, MPC controllers have gained
popularity in robotics as the massive computational power
offered by modern computers allows the ability to perform
fast computations on-the-fly.

MPC methods can be categorized into three types, namely,
deterministic MPC (DMPC), stochastic MPC (SMPC), and
robust MPC (RMPC), with increasing robustness levels.
DMPC assumes that the dynamics are noise-free [1], [2], thus
they lack the ability to analyze the uncertainties present in the
planning phase and are especially vulnerable to unexpected
disturbances. RMPC generates the safest solutions among
the three types of controllers because it avoids the worst-case
scenarios induced by potential disturbances, albeit at the cost
of overly conservative solutions [3]. SMPC can handle dy-
namical systems with stochastic uncertainty subject to chance
constraints [4], [5], [6]. SMPC generally produces more cost-
efficient solutions compared to RMPC, and achieves more
robust planning compared to the DMPC. Although SMPC
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possesses a superior ability to utilize the probabilistic nature
of uncertainties, most SMPC approaches suffer from several
limitations when it comes to performance guarantees. First,
the optimization process is usually designed for a specific
form of stochastic noise [7]. As a result, robustness is
greatly diminished when the environment changes and the
assumptions about the form of the noise become invalid.
Secondly, many SMPC approaches assume the dynamics
to be linear and require linearization of the system during
implementation [7], [8], [9], which slows down computation
and imposes strong limitations on these controllers due to the
fact that the linearized system can only capture the behavior
of the real systems in a small region. Thirdly, the chance
constraints used by most stochastic MPC approaches do not
account for the seriousness of violating the constraints or
the severity of potential accidents. In other words, chance
constraints limit the probability of constraint violations,
but they fail to distinguish the different costs at stake for
violating the constraints.

In this paper, we propose the Risk-aware MPPI (RA-
MPPI) algorithm that uses Conditional Value-at-risk (CVaR)
[10] to solve the aforementioned problems of existing SMPC
methods. The MPPI is a simulation-based nonlinear con-
troller that solves optimal control problems in a receding
horizon control setting. Compared with most other MPC
methods, MPPI has fewer restrictions on the form of the
objective functions and dynamics. Specifically, it can ac-
cept non-convex, and even gradient-free costs and nonlinear
dynamics. MPPI samples thousands of control sequences
by injecting Gaussian noise to a mean control sequence,
then it rolls out simulated trajectories following the sampled
controls. It then computes the optimal control sequence by
taking the weighted average of the costs of the sampled
trajectories. Using the parallel computing abilities of modern
GPUs, MPPI can achieve on-line planning with a control
frequency sufficient for time-critical tasks such as aggressive
off-road autonomous driving [11].

Despite its attractive properties, MPPI is still a determin-
istic control design method, thus it does not account for
dynamical noise, not to mention the risks induced by external
disturbances. To alleviate this situation, Tube-MPPI [12]
uses iLQG as an ancillary controller to track the nominal
trajectory generated by the original MPPI. However, Tube-
MPPI does not allow explicit assignment of risk levels during
planning, making it difficult to specify the desired trade-off
between risk and robustness. As a remedy, Robust MPPI
(RMPPI) [13] improves upon Tube-MPPI by introducing
an upper bound on the free-energy growth of the system
to describe a task constraint satisfaction level, however, the
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free-energy bound does not provide an intuitive interpretation
of risk. Moreover, both Tube-MPPI and RMPPI use the
linearized system dynamics to solve another ancillary opti-
mization problem, which is problematic because linearizing
the original dynamics is time-costly for real-time applications
and is only accurate within a small region. RMPPI can allevi-
ate this problem by replacing iLQG with Control Contraction
Metric (CCM) [14], which is a feedback controller that
provides exponential convergence guarantee for nonlinear
systems [13]. However, CCM cannot be computed in real-
time either. On the other hand, CVaR is a risk metric
that has gained popularity in many engineering problems
recently, due to its appealing ability to measure and prevent
outcomes that hurt the most [15]. However, most existing
CVaR optimization algorithms share the same problem with
the current SMPC approaches, namely, they normally assume
convex objective functions and constraints[16], [17], thereby
limiting their applicability. Other approaches utilize dynamic
programming to optimize time-consistent modifications of
CVaR [18], [19], [20], which requires careful interpretation
of their practical meanings.

Overall, the main contribution of this paper is threefold:
First, we propose the novel RA-MPPI controller, which
improves the baseline MPPI controller by making it account
for the control risks in terms of CVaR. The novel RA-MPPI
controller neither limits the form of the state-dependent costs
nor restricts the type of system noise. Second, the proposed
RA-MPPI utilizes a novel, general control architecture that
can be easily modified to adapt various risk metrics other
than CVaR. For example, it can be integrated with chance
constraints [21] or some other time-consistent risk metric
[22], [23], [24]. Third, we demonstrate the proposed con-
troller by testing it on challenging autonomous racing tasks
in cluttered environments. Our simulations and experiments
show that the proposed RA-MPPI runs on-line at about 80 Hz
using a dynamic vehicle model with tire dynamics, and it
outperforms the MPPI controller in terms of collisions while
maintaining approximately the same lap time, given various
assigned risk levels.

II. MPPI REVIEW

Consider a general discrete nonlinear dynamical system,

xk+1 = F (xk, uk), (1)

where xk ∈ Rnx is the system state and uk ∈ Rnu is
the control input. Within a control horizon K, we denote
the trajectory x = [x⊺

0 , . . . , x
⊺
K ]

⊺ ∈ Rnx(K+1), the mean
control sequence v =

[
v⊺0 , . . . , v

⊺
K−1

]⊺ ∈ RnuK , the injected
Gaussian control noise ϵ =

[
ϵ⊺0 , . . . , ϵ

⊺
K−1

]⊺ ∈ RnuK , and
the disturbed control sequence u = v + ϵ.

The original Model Predictive Path Integral control
(MPPI) solves the following problem,

min
v

J(v) =

E

[
ϕ(xK) +

K−1∑
k=0

(
q(xk) +

λ

2
v⊺kΣ

−1
ϵ vk

)]
, (2a)

subject to

xk+1 = F (xk, vk + ϵk), (2b)
x0 = x(0), ϵk ∼ N (0,Σϵ), (2c)

where x(0) is the measured current state. Note that the
state-dependent cost q(xk) can take an arbitrary form. The
MPPI controller is derived by minimizing the KL-divergence
between the current controlled trajectory distribution and the
optimal distribution [12] to solve the problem (2). It samples
a large number of simulated trajectories to synthesize the
optimal control sequence during each optimization iteration.
Assuming MPPI samples trajectories m = 0, . . . ,M in
simulation at each iteration, the cost Sm of the mth sample
trajectory is evaluated as,

Sm = ϕ(xm
K) +

K−1∑
k=0

q(xm
k ) + γ(vmk )⊺Σ−1

ϵ (vmk + ϵmk ), (3)

where xm
k ∈ Rnx is the system state, ϵmk ∈ Rnu is the control

noise of the mth sampled trajectory, and γ ∈ [0, λ] is the
weight for the control costs. The MPPI algorithm calculates
the optimal control v+ by taking the weighted average of all
sampled control sequences,

v+ =
M∑

m=1

ωmum/
M∑

m=1

ωm, (4)

where um = v + ϵm is the control sequence corresponding
to the mth simulated trajectory. The corresponding weight
wm for um is determined by,

ωm = exp
(
− 1

λ
(Sm − β)

)
, (5)

where β = minm=1,...,M Sm, is the smallest trajectory cost
among the M sampled trajectories, and it is used to prevent
numerical overflow while keeping the solution the same [13].
The mean control v for the next receding horizon control
iteration is then set to be v = v+.

III. RISK-AWARE MPPI
The MPPI problem formulation in (2) only minimizes

the cost for the expected performance of a system injected
with some Gaussian control noise ϵk, and it follows a
deterministic dynamical system (1) without considering risk
induced by dynamical noise explicitly in the loop. To take
risks into account, we consider a more general, stochastic
system,

x̃k+1 = F̃ (x̃k, uk, wk), x̃0 = x0, (6)

where x̃ = [x̃⊺
0 , . . . , x̃

⊺
K ]⊺ ∈ Rnx(K+1) is the trajectory

realization following the disturbed dynamics (6), and wk is
some noise of arbitrary form. In this work, we are interested
in minimizing the objective function (2a) while preventing
worst-case, catastrophic scenarios. To this end, the proposed
RA-MPPI solves the following problem,

min
v

J(v), subject to (2b), (2c) and, (7a)

CVaRα(L(x̃)) ≤ Cu, (7b)

x̃k+1 = F̃ (x̃k, vk, wk), x̃0 = x0, (7c)
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Fig. 1: The proposed RA-MPPI control architecture. The set U =
{u0, . . . ,uM} contains all the sampled control sequences, and the set
S = {S0, . . . , SM} includes their corresponding trajectory costs. The
set S̃ = {S̃0, . . . , S̃M} contains the modified trajectory costs which are
obtained by adding the CVaR constraint violation costs evaluated using the
disturbed dynamics (6) to the original MPPI sampled trajectory costs S.

where the parameter α ∈ (0, 1) is the CVaR confidence
level, and Cu determines the upper bound of the CVaR
constraint of the state-dependent risk cost L(x̃) defined by
(8) in Section III-A. Figure 1 illustrates the RA-MPPI control
architecture. Section III-A discusses the evaluation of CVaR,
and Section III-B introduces the details of applying CVaR to
filter sampled trajectories such that the proposed RA-MPPI
generates risk-aware controls satisfying the constraint (7b).

A. Monte-Carlo CVaR Evaluation

We define the trajectory risk cost L(x̃) in (7b) as,

L(x̃) =
K−1∑
k=0

ℓ(x̃k), (8)

where ℓ(x̃k) is the step risk cost. The Conditional Value-at-
Risk is then defined as,

CVaRα(L(x̃)) = E[L(x̃) |L(x̃) ≥ VaRα(L(x̃))], (9)

where the value at risk (VaR) is defined as [15],

VaRα(L(x̃)) = min{t |P(L(x̃) ≤ t) ≥ α}, (10)

that is, the risk cost L(x̃) has a probability of 1 − α to be
greater than VaRα(L(x̃)). It follows that the CVaR value (9)
can be interpreted as the expected risk cost of the trajectory
x̃ among the worst 1 − α quantile of the cost distribution
L(x̃). In addition to sampling M noise-free trajectories using
the nominal system (1) as the original MPPI, the proposed
RA-MPPI controller quantifies the risk of the mth noise-free
trajectory by simulating another N trajectories following the
disturbed system (6), for m = 0, . . . ,M − 1.

For simplicity, we drop the brackets in (9), (10), and use
CVaRm

α , VaRm
α to denote the CVaR and VaR values for

the mth noise-free trajectory. To this end, CVaRm
α can be

approximated from,

CVaRm
α =

1

No

N−1∑
n=0

1CVaRα(L(x̃
m,n))L(x̃m,n), (11)

where the simulated trajectories Xm = {x̃m,0, . . . , x̃m,N−1}
are sampled using the mth sampled control sequence um and

following the disturbed dynamics (6), given the initial state
x̃m,n
0 = x0. In (11), No is the number of trajectories among

Xm with cost L(x̃m,n) ≥ VaRm
α , and the indicator function

is defined as,

1CVaRα
(L(x̃m,n)) =

{
1, if L(x̃m,n) ≥ VaRm

α ,
0, otherwise. (12)

In case α approaches 1, the method in [25] can be used to
improve the sampling efficiency for the CVaR evaluation.
The proposed control architecture is illustrated in Figure 1.
Note that the red block in the figure evaluates the CVaR risk
metric using the Monte-Carlo sampling method, and thus can
be easily integrated with other risk metrics such as chance
constraints.

B. Soft Trajectory Filtering using CVaR
The RA-MPPI filters the MPPI sampled trajectories by

adding their corresponding CVaR values as penalty costs
to the original MPPI trajectory costs evaluated by (3), thus
penalizing MPPI sampled trajectories with high risk. Let us
define the CVaR constraint violation cost Jm

C for the mth

noise-free trajectory,

Jm
C = ACVaRm

α 1Cu
(CVaRm

α ), (13)

where,

1Cu
(CVaRm

α ) =

{
1, if CVaRm

α > Cu,
0, otherwise. (14)

Note that the coefficient A in (13) adjusts the magnitude
of the CVaR cost, and the parameter Cu in (14) determines
how strong the CVaR constraint (7b) is. Inspired by [26], we
obtain the modified cost for the mth trajectory by adding (13)
to (3), to fulfill the constraint (7b),

S̃m = Jm
C + ϕ(xm

K) +

K−1∑
k=0

q(xm
k ) + γvk

⊺Σ−1
ϵ um

k . (15)

It follows from (5) that the updated weight for the mth

sampled control sequence um is,

ω̃m = exp
(
− 1

λ

(
S̃m − β̃

))
, (16)

where β̃ = minm=1,...,M S̃m and the resulting control
sequence can be obtained by using (4).

C. Risk Cost Sensitivity Scaling
In case Jm

C is relatively small compared to S̃m in (15), a
change in the CVaRm

α value in (13) has limited impact on the
relative change of S̃m, thus the resulting controls could be-
come insensitive to risk variations. Increasing the coefficient
A in (13) can potentially alleviate the situation, however,
adjusting only the value of A may cause Jm

C to dominate
(15), leading to overly conservative solutions. A simple
remedy to this problem is to scale up the variance of the
risk costs while maintaining their mean value. To this end,
given a set of risk costs Lm = {L(x̃m,0), . . . , L(x̃m,N−1)}
in (11) for the mth noise-free trajectory, we can obtain the
updated risk costs with adjusted variance by,

La(x̃
m,n) = B (L(x̃m,n)− L̄m) + L̄m, (17)
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where L̄m is the mean of the original set Lm, given by,

L̄m =
N−1∑
n=0

L(x̃m,n), (18)

and where B is a scaling factor. Increasing B will make the
proposed RA-MPPI more sensitive to risk level changes. We
can then use the adjusted risk costs Lm

a instead of Lm in
(11) to evaluate CVaRm

α .

IV. THE RISK-AWARE MPPI ALGORITHM

In this section, we introduce the RA-MPPI algorithm. In
Algorithm 1, line 2 gets the current estimate of the system
state x0. Line 4 to 15 samples the control sequences, rolls
out, and evaluates the simulated trajectories following the
deterministic system (1). Line 16 to line 23 samples the
simulated trajectories used for evaluating the CVaR values
following the disturbed dynamics (6), then line 24 to line 29
compute CVaR values and carry out trajectory filtering. More
specifically, line 8 produces sampled controls by adding
control noise to mean controls. Line 10 introduces some
zero-mean controls to help smooth the resulting controls
[11]. Line 24 scales up the sensitivity of the risk costs
following (17) and (18). Line 25 finds the set P that
contains the upper 1 − α quantile of the risk cost set
{L(x̃m,0), . . . , L(x̃m,N−1)}, and line 26 calculates CVaR
using (11). Line 28 adds the CVaR constraint (7b) violation
costs to the trajectory costs Sm to obtain the modified
trajectory costs S̃m using (13) and (15). Based on the
trajectories S̃ = {S0, . . . , SM} and the control sequence set
U = {u0, . . . ,uM}, line 31 computes the optimal control
sequence v+ using (5) and (4). Line 32 sends the first control
v+0 to the actuators, and line 33 sets the optimal controls to
be the mean controls for the next optimization iteration.

V. SIMULATION AND EXPERIMENTS

In this section, we demonstrate the proposed RA-MPPI
controller and compare it with the baseline MPPI controller
on an autonomous racing platform. We show that the novel
RA-MPPI significantly improves robustness against distur-
bances in challenging autonomous driving tasks by using
a variety of simulation and experiment examples. All the
simulation and experiment results are obtained by running
the controllers in real-time.

A. Controller Setup
In our simulations, both the proposed RA-MPPI controller

and the baseline MPPI controller evaluate the costs of their
sampled trajectories, using (15) and (3), respectively. For
both controllers, we use the following running cost,

q(x) = c1µbdry(x) + c2µobs(x) + c3qdev(x), (19)

where in the simulations the weights are c1 = 2, c2 =
1, c3 = 0.1, and the cost qdev(x) = e(x)2 penalizes the
lateral deviation e(x) between the vehicle’s CoM and the
track centerline. The differentiable boundary cost µbdry(x)
is,

µbdry(x) = max
{
0,

tan−1(−100d(x))
π

+ 1
2

}
, (20)

Algorithm 1: Risk-Aware MPPI Algorithm
Given: RA-MPPI Parameters γ, η, α,A,B,Cu;
Input : Initial control sequence v

1 while task not complete do
2 x0 ← GetStateEstimate();
3 for m← 0 to M − 1 in parallel do
4 xm

0 ← x0, Sm ← 0;
5 Sample ϵm ← {ϵm0 , . . . , ϵmN−1};
6 for k ← 0 to K − 1 do
7 if m < (1− η)M then
8 um

k ← vk + ϵmk ;
9 else

10 um
k ← ϵmk ;

11 end
12 xm

k+1 ← F (xm
k , um

k );
13 Sm ← Sm + qk(x

m
k ) + γvk

⊺Σ−1
ϵ um

k ;
14 end
15 Sm ← Sm + ϕ(xm

N );
16 for n← 0 to N − 1 in parallel do
17 x̃m,n

0 ← x0, L(x̃m,n)← 0;
18 Sample wm,n ← {wm,n

0 , . . . , wm,n
N−1}⊺;

19 for k ← 0 to K − 1 do
20 x̃m,n

k+1 ← F̃ (x̃m,n
k , um

k , wm,n
k );

21 L(x̃m,n)← L(x̃m,n) + l(x̃m,n
k );

22 end
23 end
24 Lm

a ← Scal({L(x̃m,0), . . . , L(x̃m,N−1)}, B);
25 P ←Max(Lm

a , 1− α);
26 CVaRm

α ← Average(P );
27 if CVaRm

α > Cu then
28 S̃m ← Sm +A · CVaRm

α ;
29 end
30 end
31 v+ ← CalculateOptimalControl(S̃, U);
32 ExecuteCommand(v+0 );
33 v← v+;
34 end

and the discrete obstacle cost µobs(x) is given by,

µi,obs(x) =

{
1, if di(x) < ri,
0, otherwise. (21)

Notice that (20) is a smooth approximation of the unit step
function that penalizes collisions with the track boundaries,
and d(x) is the signed distance from the nearest track
boundary to the vehicle’s CoM, which is a positive number
if the vehicle stays on the track. The term di(x) in (21)
measures the distance between the vehicle’s CoM to the
center of the ith circular obstacle with radius ri. The terminal
costs in both (3) and (15) are set the same as,

ϕ(x) = c4 − c5s(x), (22)

where we use the weights c4 = 0.6 and c5 = 2 such that
ϕ(x) ≥ 0 for all x in the simulations, and s(x) is the
distance traveled by the mth noise-free sampled trajectory
by the end of the control horizon along the track centerline.

7940

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 09,2024 at 01:57:10 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2 demonstrates the physical meaning of the variables
e(x), s(x), d(x), di(x) in (19)-(22) with a track schematic.

Fig. 2: Track schematic.

For both the RA-MPPI and the MPPI controllers, we set
the control horizon to K = 30, the inverse temperature λ in
(5) and (16) to be λ = 0.35, and the portion of the zero-mean
control trajectories η in Algorithm 1, Line 7 to be η = 0.2.
For the proposed RA-MPPI controller, we set the number
of sampled noise-free trajectories to be M = 1024, and for
each such trajectory, we sample N = 300 to evaluate its
corresponding CVaR value using (11). As a result, the RA-
MPPI samples 3.072× 105 trajectories in total at each time
step. We further let the weight A of the CVaR constraint
violation cost in (13) be A = 10, and the running risk cost
ℓ(x̃k) in (8) be the same as the state-dependent cost (19),
such that ℓ(x̃k) = q(x̃k). The number of sampled trajectories
for the baseline MPPI is set to be equal to the total number
of sampled trajectories of the RA-MPPI, in order to make a
fair comparison between the controllers.

B. Aggressive Driving in Cluttered Environments Subject to
Disturbances

Our simulations use a 0.6 m wide track with a centerline
of length 10.9 m, and each corner of the track has a turning
radius 0.3 m. There are 10 circular obstacles of the same
radius ri = 0.1 m scattered randomly on the track. The track
is shown in Figure 3. In addition, we use a combination of
the discrete obstacle cost (21) and the continuous boundary
cost (20) for the track to test the robustness of the controllers,
and the controllers are set up to drive the vehicle as fast as
possible.

We run both the proposed RA-MPPI and the original
MPPI controllers with system (6) using Gaussian noise
wk ∼ N (0, 0.2I), in order to compare their performance
in the presence of dynamical disturbances. Each controller
runs the vehicle for 100 laps and Figure 3 shows the resulting
trajectories.

The RA-MPPI trajectories show strong awareness to avoid
collisions in this aggressive driving setting, resulting in 80%
fewer collisions than the MPPI controller, while achieving
approximately the same lap time. This result indicates that
the RA-MPPI can prevent worst-case scenarios without sac-
rificing the average performance of the controller.

As the proposed control architecture in Figure 1 utilizes
Monte-Carlo sampling to evaluate CVaR, the RA-MPPI
controller accepts arbitrary forms of disturbances wk in (6).
To this end, we examined the robustness of the proposed
RA-MPPI controller by repeating the simulations in Figure 3
using various forms of wk. Specifically, in addition to the

Fig. 3: Samples of RA-MPPI and MPPI trajectories on the race track. The
trajectories in red are generated by the proposed RA-MPPI controller, and
the trajectories in green are generated by the baseline MPPI controller.

normally distributed disturbance wk ∼ N (0, 0.2I), we also
use uniformly distributed noise wk ∼ U[−0.2,0.2] and a form
of impulse/jump noise disturbance wk that has a 2% chance
to give the system state x̃k+1 in (6) a sudden change of
magnitude 0.45 in arbitrary directions. We define a collision
to be a situation when the vehicle state is inside some
infeasible region, such as the space occupied by obstacles or
areas outside of the track. The simulation results are shown
in Figure 4.

Fig. 4: The average number of collisions per lap for the RA-MPPI and
MPPI controllers subject to various forms of noise. The RA-MPPI controller
outperforms the MPPI controller by reducing the number of collisions by
at least 50% for all of the three selected types of noise.

To further investigate the performance of the proposed
RA-MPPI controller with different user-specified risk levels,
we performed a grid search by varying the CVaR constraint
upper bound Cu, and the CVaR confidence level α in (7b).
The results are summarized in Figure 5. In the figure, the
proposed RA-MPPI algorithm tends to achieve fewer colli-
sions as the CVaR confidence level α increases, despite some
outliers resulting from the randomness of the simulations.
Moreover, as we tighten the CVaR constraint by decreasing
the constraint upper bound value Cu, the RA-MPPI shows
more robust performance and experiences fewer collisions.
Due to the fact that the CVaR is a time-inconsistent risk
metric [23], applying an overly strict CVaR constraint such
as setting Cu = 0.5 and α = 0.9 in (7b) puts a large
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weight on preventing risk evaluated at the current time while
aggravating the overall performance [23]. To alleviate this
situation, we can simply loosen the constraint by using
Cu = 0.6 and α = 0.7, or use a time-consistent modification
of CVaR [22].

Fig. 5: RA-MPPI and MPPI performance comparison. The numbers in this
chart shows the performance ratio (NR/NM ), where NR is the number of
collisions of the proposed RA-MPPI, and NM is the number of collisions
of the MPPI controller. Each data point is collected by running 100 laps.

C. Autonomous Racing Experiment
To validate the proposed RA-MPPI controller in the real

world, we implemented the algorithm on an autonomous
racing platform and tested its performance. Our experiment
uses the same track layout as the simulations described in
Section V-B. Figure 6 shows a snapshot of our autonomous
vehicle running on a real-world track. A schematic for this
autonomous racing system setup is illustrated in Figure 7.

Fig. 6: The Autonomous vehicle racing on the track.

The system uses ten Optitrack cameras to observe the race
track and the motion of a 1/28 scale race car on the track.
These cameras pass raw data to the Optitrack computer,
which then computes the state of the race car. The system
utilizes the Optitrack visual tracking system for state updates
of the vehicle. The state measurements are broadcasted on
a local network to the control computer. As observed in
the experiment video1 , the vehicle experiences disturbances,

1https://youtu.be/Ru6N8-qByGY

Fig. 7: Autonomous racing platform system schematic.

such as unstable network connection and unmodelled noises,
which cause wiggling maneuvers. The collected results in
Table I shows that the RA-MPPI experiences 57.7% fewer
collisions with approximately the same lap time.

TABLE I: RA-MPPI and MPPI experimental results.

Controller Type No.Collision/lap Avg. Laptime(s)
MPPI 2.53 7.47

RA-MPPI 1.07 7.56

The performance of the proposed RA-MPPI Algorithm 1
requires a parallel implementation of the control architecture
described in Figure 1. Compared to our previous implementa-
tion of MPPI in [11], we reduced the data exchange between
the GPU and CPU to a minimum by moving all necessary
computations to GPU. Specifically, our implementation of
the RA-MPPI controller computes the dynamics propagation,
including both the nominal and the disturbed dynamics, and
evaluates CVaR and the trajectory costs in parallel on the
GPU. On average, the resulting RA-MPPI can sample and
evaluate 1.024 × 105 trajectories at 81.6 Hz, 3.072 × 105

trajectories at 44.3 Hz and 5.120×105 trajectories at 27.8 Hz,
using an Nvidia GeForce RTX3090 GPU.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the RA-MPPI algorithm, a risk-
aware model predictive control scheme for general nonlinear
systems subject to disturbances. The proposed controller
accepts arbitrary forms of dynamical disturbances and car-
ries out risk-aware control by evaluating the CVaR values
using Monte-Carlo sampling. Our simulations show that
the RA-MPPI controller can effectively reduce the chances
of catastrophic scenarios without compromising the overall
control performance, even in time-critical applications such
as aggressive autonomous driving.

In the future, we can integrate chance constraints [7] and
time-consistent modifications of CVaR [22], [23] with the
RA-MPPI control architecture. Since different risk metrics
interpret risks from their own unique aspect, it would be
interesting to compare experimentally these risk-aware con-
trollers. In addition, we can further improve the RA-MPPI
control architecture by applying ideas similar to [11] to
achieve adjustable trajectory sampling distributions, hence
increasing the sampling efficiency of the proposed algorithm.
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