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Abstract—Loosely-coupled and lightweight microservices run-
ning in containers are likely to form complex execution dependen-
cies inside the system. The execution dependency arises when two
execution paths partially share component microservices, result-
ing in potential runtime performance interference. In this paper,
we present a blackbox approach that utilizes legitimate HTTP
requests to accurately profile the internal pairwise dependencies
of all supported execution paths in the target microservices
application. Concretely, we profile the pairwise dependency of
two execution paths through performance interference analysis
by sending bursts of two types of requests simultaneously.
By characterizing and grouping all the execution paths based
on their pairwise dependencies, the blackbox approach can
derive a clear dependency graph(s) of the entire backend of
the microservices application. We validate the effectiveness of
the blackbox approach through experiments of open-source
microservices benchmark applications running on real clouds
(e.g., EC2, Azure).

Index Terms—Microservices, performance analysis, depen-
dency

I. INTRODUCTION

Web application architecture is gradually evolving from
the traditional monolithic multi-tier-based to loosely-coupled
and lightweight microservices [14]. This trend is due to the
special advantages of the microservice architecture in many as-
pects, such as fine-grained scalability, cross-team development,
friendly deployment, etc. However, decomposing the originally
monolithic architecture into hundreds to thousands of fine-
grained microservices creates complex internal communica-
tion dependencies among different microservice components,
causing significant challenges for performance prediction and
management [14], [19]. For example, to manage performance
and reason about system behavior, Google’s recent work [10]
discussed how to explicitly track microservice dependencies
through proactive control or passive measurements.

In this paper, we present a blackbox approach that utilizes
legitimate and public HTTP requests to profile the dependen-
cies of the runtime execution paths inside the system. A typical
execution path is triggered by an incoming HTTP request,
which traverses through a series of microservice components
to accomplish a transaction. For example in an e-commerce
application, the order execution path may involve inventory,
pricing, and credit card processing microservices. The depen-
dency between two execution paths arises when they share
some microservice components. A recently released Alibaba
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Fig. 1: Call graph is topologically similar to a tree. Execution
paths that share upstream components have performance in-
terference and can be grouped together.

trace [14] shows that 5% microservices (called “hotspot”
microservices) are shared by 90% execution paths in their
application, showing that execution dependency widely exists
in a production system.

The pairwise dependency can be profiled through perfor-
mance interference analysis by sending bursts of two types of
requests simultaneously. Specifically, we conclude that depen-
dency exists between two execution paths when the normal la-
tency of one type of requests are significantly prolonged by the
burst of the other type of requests. By applying performance
interference analysis to all the execution paths, we can divide
them into multiple performance dependency groups. Execution
paths within the same group have dependency mutually while
execution paths across dependency groups have no depen-
dency. In the later sections, we will demonstrate how we con-
duct performance interference analysis through experiments of
an open-source microservices benchmark application running
on real clouds (e.g., EC2). Our hypothesis is that precise
profiling of runtime dependency of microservices applications
will help system administrators to better reason about system
abnormal behaviors and manage system performance under
real-world bursty workload in production.

II. DEPENDENCY IN MICROSERVICE CALL GRAPH

A microservice call graph is topologically similar to a
tree [14]. The root component of the tree is the gateway
microservice that dispatches user requests to mid-tier/backend
components. The mid-tier/backend components then further



HTTPS://example.com/path/baz?foo=bar

Protocol Domain Path Query

Param

Path 

Param

Unique Path

Fig. 2: Structure of a URL for example.com. Typically, pa-
rameters can be sent both in the URL and in the body of the
HTTP request. We ignore the parameters to find the unique
paths.

dispatch requests to multiple downstream components, which
are also organized in a subtree structure. Each user request
will trigger an execution path that traverses from the gateway
to some downstream components as shown in Fig. 1. Different
user requests accessing the same subtree must share microser-
vice components, which creates potential performance inter-
ference between them. For example, when a shared bottleneck
microservice component is overloaded, the performance of all
execution paths sharing the same component will be degraded.

Depending on the relative location of bottleneck compo-
nents among different paths, performance interference cre-
ates different execution dependencies. Fig. 1 illustrates two
representative execution dependencies among different paths
that have shared components. In subtree 1, the bottleneck
component of the blue execution path is upstream of the
bottleneck component of the orange execution path (called
sequential dependency). Once the blue path is overloaded,
the bottleneck component of the blue execution path will
block the execution of both the blue and the orange execution
paths. On the other hand, if the orange path is overloaded,
the bottleneck component of the orange path could start to
have cross-tier queue overflow to the upstream component that
is shared by both blue and orange paths [22], which blocks
the execution of the two paths. In subtree 2, the bottleneck
components of the pink and the green execution path are
located in different branches of the subtree (called parallel
dependency), while they have a shared upstream component.
Performance interference occurs when either of the execution
paths is overloaded and the bottleneck component causes
queue overflow to the shared upstream component.

By employing systematic profiling, our approach can deduce
the execution dependencies among various paths and catego-
rize them into distinct dependency groups.

III. OVERVIEW OF THE DEPENDENCY PROFILER

Our approach behaves as an external user that accesses the
target microservice application through public HTTP requests
without having any prior knowledge about the backend struc-
ture. We profile the target microservice application with the
proposed Pependency Profiler by sending different types of
HTTP requests and recording the end-to-end response time
of each request. By analyzing the existence of performance
interference between any pair of requests under different
conditions, the Profiler can identify the pairwise execution
dependency (i.e., parallel and sequential) and then construct

TABLE I: Website pages crawled in our experiments.

Name # of crawled URLs # of unique paths Total time
Amazon 5,000,000+ 96 15 hours
BestBuy 4,000,000+ 83 14 hours
NYTimes 1,000,000+ 116 8 hours

SocialNetwork 1,000,000+ 32 6 hours
SockShop 500,0000+ 18 4 hours

the dependency groups based on the pairwise dependencies
with the following four steps.
Extracting supported execution paths via public URLs. In a
microservice-based web application, each type of user request
would traverse among multiple components and trigger one
execution path. Hence, we can profile the public URLs of the
target application to retrieve all supported user requests, and
we label the execution path with the request name. Website
scraping tools [1], [2] can profile all supported HTTP requests
of a target system. In our implementation, we use similar
approaches introduced in the work [21] by using the script-
based web browser PhantomJS to retrieve and distinguish
dynamic requests from static ones automatically. For some
dynamic requests that require input (e.g., POST request), we
may need to provide some initial values for associate input
forms (e.g., user name and password).

Typically, modern large-scale websites may contain more
than millions of public URLs due to mixed combinations of
different URL parameters. However, the number of unique
execution paths without considering input parameters is small.
As illustrated in Fig. 2, a URL usually consists of four parts:
protocol, domain, path, and parameters [16]. We consider
URLs with the same protocol, domain, and path but with
different input parameters as sharing the same execution path
in the system and use a unique path to represent them. While it
is true that a single path with varying parameter combinations
can lead to different execution paths in the microservices
backend (e.g., due to cache effects), we opt for a broader
approach. Specifically, we identify parameter combinations
that consistently yield stable response times, considering them
as representative instances of a ”unique path. Table I shows
representative websites crawled in our experiments1. For each
unique path, we sample one valid URL parameter combination
for the further steps.
Testing existence of performance interference. Based on
all extracted valid unique paths, we need to test whether
any two execution paths have performance interference before
we identify the dependencies. Fig. 3 shows our pairwise
performance interference testing. We first profile each exe-
cution path by sending a burst of single type requests as
baseline (see. Fig. 3a(i)). Next, we send a pair of execution
paths successively in one burst for interference testing (see.
Fig. 3a(ii)). Finally, we analyze the response time of each
execution path under different cases. Fig 3b shows example

1We compliant the “robots.txt” of the target commercial websites (e.g.,
Amazon, BestBuy) during our crawling to avoid any ethical problem, thus
the number may vary in different scenarios.
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(a) Performance interference testing setup.
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(b) Boxplot of the target path response time when it conducts pair-
wise dependency testing with other paths. We use SVM to determine
the cases with significantly larger response time than the baseline as
the existence of performance interference (e.g., ComposePost and
ComposeText have performance interference).

Fig. 3: Testing for performance interference
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Fig. 4: Illustration of different execution dependencies

results of response time analysis. If pair-wise performance
interference exists, the response time of the sample execution
path should be significantly higher than the baseline. In our
implementation, we adopt a one-class Support Vector Machine
(SVM) classifier [4], [20] to systematically observe the exis-
tence of pair-wise performance interference.
Identifying dependency type between two execution paths.
Given any two execution paths, we identify the dependency
type by analyzing the triggering conditions of performance
interference. Similar to testing the performance interference,
we send bursts consisting of two types (namely req. a and b)
of requests with different volumes and sending orders. Then
we check whether the changes in volumes or sending orders
affect the existence of performance interference.

Parallel Dependency exists when the two execution paths
have different bottleneck components while sharing an up-
stream (see Fig 4a), which indicates that type a requests can
affect type b requests only when cross-tier queue overflow
to the shared upstream component. For example, if the two
types of requests are sent successively in an order of a → b,

the performance of the type b requests will be degraded if
the bottleneck in path a causes its local queue to fill up and
further the queue overflows to the shared upstream component.
Then the next incoming requests (type b) will be blocked at
the shared upstream component due to the cross-tier queue
overflow (thus performance interference occurs).

However, if the bottleneck in the path a does not cause
cross-tier queue overflow due to low volume, the incoming
type b requests would directly reach its downstream compo-
nents without blocking. Then we could not observe perfor-
mance interference between paths a and b. Hence, we send a
series of bursts of requests a and b and gradually increase the
volume of requests (type a) from low to high until we reach a
predefined maximum volume limitation (to avoid a shutdown
of the target system). During the process, (1) if no performance
interference is observed at any volume, we consider that the
two execution paths have no dependency; (2) if the existence
of performance interference varies with the volume (e.g., no
interference at low volume and interference arises when vol-
ume increased), we consider that the two paths have a parallel
dependency relationship; (3) if the performance interference
exists persistently (does not vary with the volume), we move
to the next step Sequential Dependency testing.

Sequential Dependency exists when the bottleneck compo-
nent of one execution path is an upstream component of the
other path (see Fig 4b). In contrast to the parallel dependency,
the upstream path (e.g., a) would always have performance
interference with the downstream path (e.g., b) no matter how
much volume of the first type of request was sent. This is
because the bottleneck triggered by the upstream path happens
on the shared upstream component, which can block the
incoming requests (type b) directly without queue overflow.

However, if we change the sending order of profiling
requests (e.g., b → a), the first arrived requests (type b)
would reach its bottleneck component, and we can not observe
the performance interference on the next incoming requests
(type a) unless cross-tier queue overflow occurs to the shared
upstream component. Hence, we send a series of bursts
consisting of the two types of requests with small volumes that
cannot cause cross-tier queue overflow in path b with different
sending orders. If we observe the performance interference
between path a and b vanishes after switching the sending
order, it suggests a sequential dependency between paths a
and b. We notice that if the volume of requests b can cause
queue overflow to the shared upstream, we may wrongly
consider a parallel dependency as a sequential dependency.
To prevent such a case, we still need to send a series of bursts
by gradually decreasing the volumes to void queue overflow.
If the reversed order of requests always leads to different
performance interference, we can label the paths a and b have
a sequential dependency.
Constructing the dependency groups. After identifying the
pairwise dependency, we can construct the dependency group
based on the pairwise dependencies. We use an arrow to con-
nect execution paths with sequential dependency (see Fig. 5a)
while using connected arrows to illustrate execution paths with
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Fig. 5: Construction of dependency groups. (a) Sequential
dependency. (b) Parallel dependency. (c) Shared sequential
dependencies. (d) Shared parallel dependencies.

parallel dependency (see Fig. 5b). In addition, the execution
paths that have a connection mutually form a dependency
group. We construct the dependency group based on the
pairwise dependencies with the following two principles.

Merge principle 1, shared sequential dependencies. If two
sequential dependency pairs have a shared upstream path, the
two downstream paths have a parallel dependency. Then the
three paths can be merged with the upstream path connecting
the two downstream paths, as shown in Fig. 5c.

Merge principle 2, shared parallel dependencies. If three
paths have a mutual parallel dependency on any pair of them,
the three paths can be merged with connected arrows, as shown
in Fig. 5d.

IV. RESULTS

Experimental setup. To evaluate the feasibility of our Profiler
in real cloud production environments, we deploy an open-
source microservice application SocialNetwork [11] on two
popular commercial cloud platforms (Amazon EC2 [5], Mi-
crosoft Azure [6]). SocialNetwork implements a broadcast-
style social network website with uni-directional follow rela-
tionships, where users can create, view, and comment on posts.
We use separate containers to deploy microservice components
in Docker Swarm Mode, where each is hosted by one container
with at least a dedicated vCPU. To simulate normal users
accessing the application as baseline workloads, we adopt
RUBBoS workload generator [3]. Each user follows a Markov
chain model to navigate among web pages, with an average
7-second Poisson distributed thinking time between every two
consecutive requests from the same user. By controlling the
number of concurrent users who access the target system, we
can simulate different workloads.
Results. Fig 6 shows the topology and profiling result of
dependency groups in the SocialNetwork application. The
top part illustrates the topology of the SocialNetwork mi-
croservice application. A user request to the application will
be dispatched by the frontend gateway and trigger a series
of microservice components, which form a call graph. The
internal communication between microservices and call graph
is invisible to external users and our Profiler. The bottom
part shows the dependency groups constructed by the Profiler,
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Fig. 6: Dependency groups constructed by our Profiler for the
SocialNetwork benchmark application.

where each element represents one execution path and the ar-
rows connect paths with sequential dependency. For instance,
execution paths ReadHomeTimeline and GetFollower
have a sequential dependency while GetFollower and
ReadHomePost have a parallel dependency.

V. RELATED WORK

Distributed tracing has garnered significant attention within
the open-source community, with numerous active projects
dedicated to its implementation, such as Pinpoint [18], Zip-
kin [24], and Jaeger [12]. As the adoption of distributed tracing
grows in complex distributed systems, it has given rise to
specifications like OpenTracing [8] and OpenCensus [17]. Dis-
tributed tracing finds widespread utility in tasks like anomaly
detection (as demonstrated in CRISP [23], Canopy [13], and
Pivot tracing [15]), resource management (e.g., FIRM [19]),
and evaluating microservice architecture (as seen in the work
of Engel et al. [9] and Bogner et al. [7]).

Despite the precision of distributed tracing in uncovering
execution dependencies within microservices, it fundamen-
tally relies on intrusive white-box approaches. These methods
necessitate deep involvement from service developers and
require the instrumentation of each individual microservice
component, as well as a complex infrastructure for collecting
and processing trace data. Our research demonstrates that
even a black-box approach, utilizing publicly accessible HTTP
requests, can yield a significant amount of valuable runtime
execution dependency information from the backend microser-
vices system. This approach empowers system administrators
and potential adversaries alike to gain profound insights into



the system’s architecture and vulnerabilities in a non-intrusive
manner.

VI. CONCLUSION

In this paper, we introduce a black-box methodology for
accurately profiling the internal pairwise dependencies within
a target microservices application using legitimate external
HTTP requests. Our approach involves analyzing the perfor-
mance interference between execution paths by simultaneously
sending bursts of two distinct request types and monitoring
latency variations. By categorizing and clustering execution
paths based on their pairwise dependencies, our blackbox
approach constructs comprehensive dependency groups for the
entire backend of the microservices application. To validate
its effectiveness, we conducted experiments on open-source
microservices benchmark applications deployed on real cloud
platforms such as EC2 and Azure. The runtime profiling of
microservices dependencies enabled by our approach empow-
ers system administrators to gain deeper insights into system
anomalies and enhance performance management, especially
when dealing with real-world bursty workloads in production
environments.
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