

JGR Biogeosciences

RESEARCH ARTICLE

10.1029/2022JG006846

Key Points:

- The Tocantins River adds water and biogeochemical constituents to the Amazon River plume, but these fluxes have not been directly measured to date
- The Tocantins River contributes 2.8% of Dissolved organic carbon, 2.8% of Dissolved inorganic carbon, and 3.7% of Total dissolved nitrogen fluxes to the Amazon River plume
- In the rainy season, organic matter sources are predominantly terrigenous and in the dry season, the source is predominantly algal and bacterial

Supporting Information:

Supporting Information may be found in the online version of this article.

Correspondence to:

V. Neu, bioneu@yahoo.com.br

Citation:

Neu, V., Araújo, M. G. d. S., Guedes, V. M., Ward, N. D., Ribeiro, M. M., Richey, J. E., & Krusche, A. V. (2023). Composition and flux of dissolved and particulate carbon and nitrogen in the lower Tocantins River. *Journal of Geophysical Research: Biogeosciences*, 128, e2022JG006846. https://doi.org/10.1029/2022JG006846

Received 8 FEB 2022 Accepted 25 MAY 2023

Author Contributions:

Conceptualization: Vania Neu, Alex V. Krusche

Data curation: Vania Neu, Maria G. da S. Araújo, Victor M. Guedes Project Administration: Vania Neu,

Alex V. Krusche

Resources: Vania Neu, Maria G. da S. Araújo, Victor M. Guedes, Maridalva M. Ribeiro

Writing – original draft: Vania Neu, Maria G. da S. Araújo, Victor M. Guedes Writing – review & editing: Nicholas D. Ward, Maridalva M. Ribeiro, Jeffrey E. Richey, Alex V. Krusche

© 2023. American Geophysical Union. All Rights Reserved.

Composition and Flux of Dissolved and Particulate Carbon and Nitrogen in the Lower Tocantins River

Vania Neu¹, Maria G. da S. Araújo², Victor M. Guedes³, Nicholas D. Ward^{4,5}, Maridalva M. Ribeiro⁶, Jeffrey E. Richey⁵, and Alex V. Krusche²

¹Instituto Sócio Ambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Belém, Brazil, ²Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil, ³Secretaria Estadual de Meio Ambiente, Belém, Brazil, ⁴Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, USA, ⁵School of Oceanography, University of Washington, Seattle, WA, USA, ⁶Museu Paraense Emílio Goeldi, Belém, Brazil

Abstract The Tocantins River contributes ~5% of the total flux of water to the Amazon River plume in the Atlantic Ocean. Here, we evaluate monthly variability in the composition and abundance of carbon, nitrogen, and suspended sediment in the lower reaches of the Tocantins River from 2014 to 2016. Dissolved organic carbon concentrations generally increased during periods of high discharge and are ~1.5 times lower than average concentrations at the mouth of the Amazon River. Dissolved inorganic carbon similarly increased during periods of high discharge. Total dissolved nitrogen and individual nitrogen species followed a similar temporal pattern, increasing during high water. NO₂ predominated the dissolved inorganic nitrogen pool, followed by NH₁, and NO₂, characteristic of environments with a relatively low anthropogenic impact. Dissolved fractions represented 92% of the total carbon exported and 78% of the total nitrogen exported. The suspended particulate sediment flux was 2.72×10^6 t yr⁻¹, with fine suspended sediment dominating (71.3%). Concentrations of carbon relative to nitrogen indicate a primarily terrigenous source of organic matter and CO₂ derived from in situ respiration of this material during the rainy season and a primarily algal/bacterial source of organic matter during the dry season. Considering past estimates of dissolved carbon and nitrogen fluxes from the Amazon River to the Atlantic Ocean, the Tocantins River contributes 3% and 3.7% to total fluxes to the Amazon River plume region, respectively. While this contribution is relatively small, it may be influenced by future changes to the basin's land use and hydrology.

Plain Language Summary Rivers are important environments that connect the continents to the oceans. The Tocantins basin, which drains part of the Amazon and Cerrado biomes is a hydrographic region typically considered separate from the Amazon basin. This important, but often overlooked, region has experienced increasing anthropogenic pressure from agricultural and hydroelectric development, which can directly affect water quality, biogeochemical fluxes to the ocean, and coastal productivity, and nutrient cycling in the Amazon River plume. In this study, the composition and transport of carbon, nitrogen, and suspended sediment from the Tocantins River were quantified. We found that terrestrial ecosystems were the primary source of carbon and nitrogen to the river during the rainy season in contrast to aquatic sources during the dry season. Although carbon, nitrogen, and sediment fluxes were an order of magnitude lower than from the Amazon River, they may nonetheless influence productivity in the plume and changes to these fluxes due to continued anthropogenic perturbation remains uncertain.

1. Introduction

The Tocantins River is the easternmost large tributary in the Amazon basin, draining into the Atlantic Ocean south of Marajó Island, mixing with the Pará River and Amazon River water via the Breves channel (Figure 1). The basin has a drainage area of 920×10^3 km², the second largest in Brazil, representing 11% of the Brazilian territory with two distinct transition zones. The main tributary and longest (1,670 km) channel is the Araguaia River, with a drainage area of 385×10^3 km², and an annual average discharge of 6,500 m³ s⁻¹, approximately 60% of the basin's total flow (Coe et al., 2011; Mérona et al., 2010).

This outflow is combined with the discharge from the Amazon River to the north of Marajó Island, and entrained into the Amazon plume (Ward et al., 2015). The Tocantins River, and the neighboring Tapajós and Xingú rivers, have their origin in the cerrado region of the Central Brazilian archaic shield, and together represent 25% of the

NEU ET AL. 1 of 17

21698961, 2023, 6, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JG006846 by University Of Washington, Wiley Online Library on [30/06/2023]. See the Terms and Condi

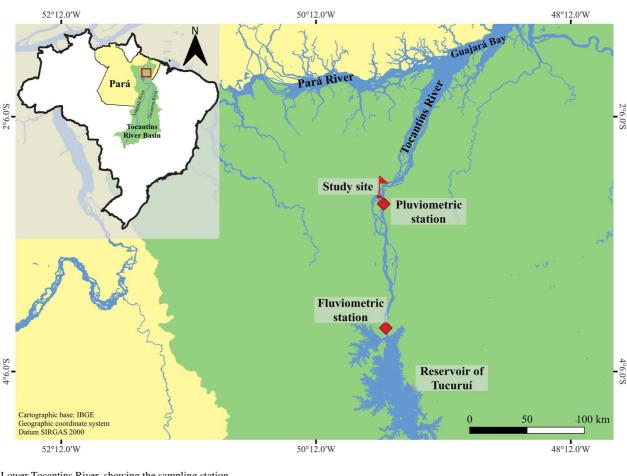


Figure 1. Lower Tocantins River, showing the sampling station.

overall land area of the Amazon basin. By the original classification of Sioli (1951), they are considered clearwater rivers, with low concentrations of sediments and solutes. Their lower courses all have extensive mouth-bays, or drowned valleys, formed during the Pleistocene.

The Tocantins basin is one of the most anthropogenically impacted in the Amazon biome, with 58% of its area occupied by agricultural activity (Coe et al., 2009). The conversion of native vegetation to other uses impacts the region's hydrology and alters the basin's water production (Costa et al., 2003). When the loss in native vegetation cover is less than 50% of the basin's coverage, the amount of rainfall over the region generally remains stable. However, when vegetation cover changes exceed 50% of the native cover, models indicate a reduction in rainfall and discharge rates of rivers (Costa et al., 2003). Under optimistic scenarios with intense government control over deforestation rates, estimates indicate that the Tocantins-Araguaia basin may lose about 80% of its native vegetation cover. But under scenarios of low government control, the region could experience a loss of up to 93% of the native vegetation cover (Coe et al., 2009). These changes will result in significant modifications to the region's hydrological regime, with reduced precipitation and outflow from the Tocantins-Araguaia basin (Coe et al., 2009; Costa et al., 2003).

Anthropogenic activities influence both the hydrology and biogeochemistry of the region. The high concentration of suspended sediment (i.e., above 300 mg L^{-1}), observed in parts of the Araguaia River, is linked to these disturbances (Lima et al., 2005). Most of the deposition of these sediments is taking place in the confluence region of the Tocantins and Araguaia rivers, with average daily deposition of ~40,000 t day⁻¹ of sediment. This has led to the formation of sandbanks in the backwater region of the Tucuruí Hydroelectric Power Plant reservoir (Lima et al., 2005), the largest Brazilian hydropower dam (E. D. Miranda & Meireles Filho, 2016), with a flooded area of 2,850 km² (ANA, 2009). The Tocantins basin naturally has clear waters, with a low concentration of suspended sediment, low turbidity, visibility limits greater than 4 m deep (Sioli, 1985) and high rates of primary

NEU ET AL. 2 of 17 production. This contrasts with Amazonian tributaries that drain the Andean region such as the Solimões River, which have high sediment loads. However, anthropogenic activities in the Tocantins basin may impact suspended sediment loads and influence the productivity and biogeochemistry of the river network. The Tocantins basin generates ~16% of the total Brazilian hydroelectric power, with a cascade of seven dams (Akama, 2017). The first and largest dam is the Tucuruí hydroelectric dam, which started in 1976 and closed in September 1984 (Barrow, 1988). The total flooded reservoir area varies from 1,500 to 2,500 km² throughout the year. Following this dam, the region has seen an expansion of a series of medium to large hydroelectric dams between 1996 and 2012. Tucuruí and Serra da Mesa are storage (impoundment) dams, while the rest are run-of-the-river reservoirs. In addition to the dams already installed, another 13 are planned to be built in the coming years. As would be expected, this sequence of dams produces pronounced changes in overall floodplain hydrology (Swanson & Bohlman, 2021), water footprint (Coelho et al., 2017), and flow regime (Timpe & Kaplan, 2017). Upstream of the Tucuruí hydroelectric dam, the formation of sandbanks is indicative of the changes underway (Lima et al., 2004).

At the confluence of the Tocantins and Araguaia rivers, there is daily sediment deposition of around 40,000 t day⁻¹, which has led to the formation of sandbanks upstream of the Tucuruí hydroelectric dam (Lima et al., 2004).

The contribution of the Tocantins to carbon and nitrogen fluxes to the ocean is not known, representing a gap in biogeochemical observations on both regional and global scales. Further, there are implications for offshore responses. Recent observations of new blooms of Sargassum in the tropical Atlantic south of the Sargasso Sea (Lapointe et al., 2021; Oviatt et al., 2019) have been attributed in part to nutrient enrichment due to deforestation and fertilizer use in agriculture in the Amazon (Y. Wang et al., 2020).

Here we provide the first detailed examination of carbon and nitrogen cycling and fluxes in the lower Tocantins River. We hypothesize that the lower Tocantins River still maintains the biogeochemical features of clearwater rivers but with interference in nitrogen concentrations and sediment transport. In the function of predicted changes in the basin, resulting from anthropogenic activities, it is essential to quantify the flux of carbon and nitrogen which have never been estimated.

We carried out a study with interannual monitoring of nitrogen and carbon in the lower Tocantins River with the aim of characterizing the biogeochemistry of this system and enabling future evaluation of changes in river biogeochemistry due to increasing anthropogenic impacts. Understanding the ecology, structure, and biogeochemical functioning of this basin is important for evaluating the impact of future development and planning for mitigation and remediation where necessary.

2. Materials and Methods

2.1. Study Site

The study was conducted in the lower Tocantins basin, Mocajuba municipalities, Pará state—Brazil (49°40′44.7″W, 02°39′09.6″S). The lower Tocantins River is characterized by a complex series of channels and islands (Mérona et al., 2010). For this reason, we collected samples at a location that maintains one well-constrained channel, which is 130 km downstream of the Tucuruí hydroelectric dam (Figure 1). This river reach has a semi-diurnal tidal effect that alters river hydrodynamics while maintaining purely freshwater (Mérona et al., 2010). These tidal effects increase the water's residence time and provide enhanced connection between the riparian zone, flood-plains, and the main river channel (Gagne-Maynard et al., 2017).

The Tocantins watershed is covered by savanna (65%) and evergreen tropical forest (35%). This basin is the second largest in Brazil, representing 11% of the Brazilian territory with two distinct transition zones. The cerrado (i.e., savanna) of the central Amazon rainforest transition zone, is in the most critical situation due to continuing deforestation. The other area is the transition from the Amazon rainforest to the caatinga (i.e., arid shrublands and forest) (ANA, 2009).

The climate is tropical with strong seasonality. The dry season is normally from August to November and the rainy season from December to July. Annual average rainfall is 2,533 mm and annual average air temperature is 26°C. The topography of the region consists of broad, gently sloping upland plateaus distant from the rivers and gentle slopes to the waterways. The predominant soils consist of Oxisols (24%), Ultissol (17%), Entisols (23%), and Entisol Plinthic (14%) (ANA, 2009).

NEU ET AL. 3 of 17

10.1029/2022JG006846

2.2. Sample Collection and Analysis

Water was collected for analysis using a Shurflo submersible pump with a 297 µm mesh at 60% river depth and from the surface. This depth was determined based on nautical charts (Centro de Hidrografia da Marinha, 2022). Average values from the two depths are presented considering there were not significant differences between the two depths. River depth varied from 1.1 to 9.3 m during our sampling period. Dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), total dissolved nitrogen (TDN), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN) species (NO₂, NO₃, NH₄) were measured monthly from September 2014 to November 2016 in the Tocantins River. DOC samples were collected in triplicate, filtered through pre-combusted (500°C, 5 hr) GF/F glass fiber filters (Whatman 0.7 µm nominal pore size) and stored into 25 mL pre-combusted glass vials washed with acid, closed with Teflon lids and preserved in the field with 25 µL of 50% HCl. DIC, TDN, nitrate, nitrite, and ammonium were determined from a single sample, filtered through a 0.45 µm cellulose acetate filter, into acid-washed 60 mL HDPE bottles with no headspace to avoid degassing and preserved with thymol (100 mg/1,000 ml of solution). Samples were kept in the dark during transport to the lab. DOC, TDN, and DIC were determined separately using a Shimadzu total carbon analyzer (Model TOCVCPH). Nitrate, nitrite and ammonium were analyzed by flow injection analysis and DON was calculated by the difference between DIN and TDN. Dissolved O₂ concentrations were measured in the field, using a YSI 55 probe submerged in an overflowing graduated cylinder. pH was similarly measured using a Thermo Orion 4-star meter. Specific conductivity was determined with Amber Science (model 2052) probes.

Concentrations of coarse particulate organic carbon (CPOC) and coarse particulate organic nitrogen (CPON) were measured by passing water through a 63 µm mesh. The retained material was weighed and analyzed for total carbon and nitrogen content. Fine particulate organic carbon (FPOC) was measured by filtering the sieved water through pre-weighed and combusted 0.7 µm GF/F filters. For determination of total carbon, nitrogen and carbon isotopic composition, coarse and fine samples were dried and acid furnigated prior to analysis. The analyses were conducted on a Fisons EA 1110 CHNS connected to a Finnigan DeltaPlus mass spectrometer. The 13C/12C ratio was defined through the equation: $\delta^{13}C = \{R_{sample} - R_{standar}\}^*1000/R_{standard}$, expressed in δ (%e). This value indicates the deviation of the isotopic ratio of a given material in relation to its standard. The international standards compared was, from the Pee Dee Formation of the Grand Canyon region of the United States. Particulate organic carbon (POC) and particulate organic nitrogen are the sum of the fine and coarse fractions, which were sampled monthly. The C:N ratio is related to the species' ratio, for example, when about dissolved, is about DOC:DIN and etc.

Due to the sensitive connection between hydrologic and biogeochemical flows, we divided years into four hydrological periods for the sake of data interpretation: low, rising, high, and falling water. Low water represents the dry season from July to October (with monthly precipitation lower than 100 mm), and high water corresponds to January to April. The two transitional periods are rising water, from November to December, and falling water, from May to June. Discharge data were obtained from the fluviometric ANA station (Agência Nacional das Águas) localized in Tucuruí about 130 km upstream from the sampling station and rainfall data from the nearest ANA (Agência Nacional de Águas) pluviometric station, situated in Baião about 14.3 km upstream of the sampling station.

2.3. Statistical Analysis

Shapiro-Wilk normality hypothesis tests were performed with significance levels (p-value) higher than 0.05. Due to the non-normality of some variables, we used the non-parametric statistical Kruskal Wallis test to evaluate differences between depths and seasons. This test was complemented with the Nemenyi post hoc test to verify which seasons differed significantly from each other. Considering the statistical similarity between the studied sampling depths, we considered data from all depths for the seasonal variability test, using the mean concentration between the sampled depths. Significance levels (p-value) of 0.05 were considered in both tests (Table S1 in Supporting Information S1). Non-parametric Spearman correlation was used, at significance levels below 0.05, to study the correlation between parameters (Supporting Information S1). All statistical tests, analyses and construction of graphs were performed in the software RStudio, version 1.1.453.

2.4. Flux Estimates

For dissolved organic, inorganic carbon and nitrogen (DOC, DIC, DON, DIN, NO₂, NH₄, NO₃), coarse and fine particulate organic C and N (CPOC, FPOC, CPON, Fine Particulate Organic Nitrogen (FPON)) fine and Coarse

NEU ET AL. 4 of 17

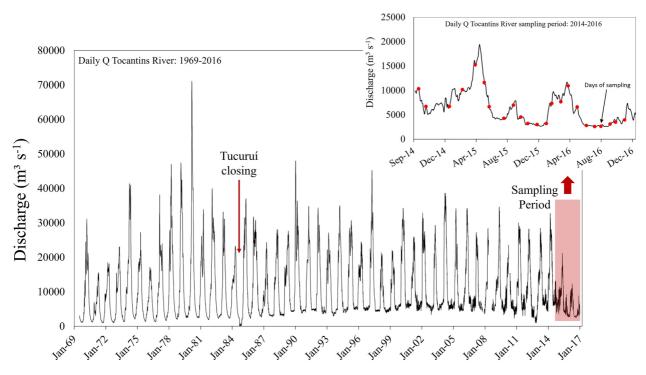


Figure 2. Daily discharge between 1969 and 2016 from Tucuruí station (29700000). Data source: ANA (2017).

Suspended Sediment (CSS) (fine suspended sediment (FSS), CSS) the flux were modeled using daily discharge measurements from 2014 to 2016, and monthly concentration data input into the FORTRAN Load Estimator (LOADEST) program (Runkel et al., 2004). The annual flux was obtained by sum of daily flux and, finally, an average was obtained for the period under study.

3. Results and Discussion

3.1. Climatic and Hydrological Variability

The annual average precipitation over the period of record (1985–2020) at the gauging station nearest to the sampling site (Baião) station was 2,743 mm yr $^{-1}$, or 229 mm mo $^{-1}$, with average peak of 623 mm mo $^{-1}$. The mean monthly from 1985 to 2008 was 238 mm mo $^{-1}$, with a peak of 682 mm mo $^{-1}$, and a periodicity of \sim 4 years. Following a high in 2008 of 411 mm mo $^{-1}$ with a peak of 1,243 mm mo $^{-1}$, the average 2009–2016, including the period of sampling, was 196 mm mo $^{-1}$, a reduction of 18% from the 1985–2008. The peak precipitation for 2009–2016 was reduced by 34%, relative to 1985–2008. Precipitation rose back to 1985–2008 levels in 2017–2020.

The annual average discharge (historical series 1970–2016) at the Tucuruí guaging station was $10,800~\text{m}^3~\text{s}^{-1}$ (ANA, 2017), with systematic trends. The main tributary and longest channel is the Araguaia River, with a drainage area of $385 \times 10^3~\text{km}^2$, and an annual average discharge of $6,500~\text{m}^3~\text{s}^{-1}$ (Coe et al., 2011; Mérona et al., 2010). Prior to the closure of the Tucuruí dam (1970–1983), the annual average was $10,600~\text{m}^3~\text{s}^{-1}$, with minimum and maximum flows of $1,700~\text{and}~34,600~\text{m}^3~\text{s}^{-1}$, respectively. When the dam closed in 1984, the flow was substantially reduced to an annual of $8,000~\text{m}^3~\text{s}^{-1}$, with a maximum of $23,200~\text{m}^3~\text{s}^{-1}$ and minimum of $40~\text{m}^3~\text{s}^{-1}$. From 1985 to 2016, the annual average of 11,000~was comparable to prior, but the hydrograph became more dampened, with minimum discharge increasing to $3,600~\text{m}^3~\text{s}^{-1}$ while the maximum decreased to $30,500~\text{m}^3~\text{s}^{-1}$. However, during the period of sampling, September 2014–November 2016, discharge was $6,520~\text{m}^3~\text{s}^{-1}$, or about 60% of the long-term average. The overall timing of the minimum flows was in late September with little variance between 1970 and 1986. The timing of minimum flows had greater fluctuation from 1987 to 2016, ranging from early July to late December. The period from 1986 to 1990 had anomalously early maxima in the respective water years (Figure 2). The period of the sampling reported here had substantially reduced precipitation and reduced discharge. Relative to the long-term mean, the reduction in precipitation was more slight than the discharge, which that one besides being more accentuated there was a progressive reduction.

NEU ET AL. 5 of 17

Table 1Overall and Seasonal Average of Specific Conductivity (μ S cm⁻¹), Dissolved Oxygen (mg L⁻¹), pH, and Temperature (°C) of Tocantins River Water

					Sampling	g season	
Parameters	Average	Minimum	Maximum	High	Falling	Low	Rising
Conductivity	42.7 ± 2.8	38.7	49.1	45.5 ± 2.7^{a}	40.5 ± 2.0^{b}	41.5 ± 1.7 ^b	42.2 ± 2.3^{ab}
Dissolved oxygen	6.5 ± 0.7	5.1	8.0	6.1 ± 0.5^{ab}	5.9 ± 0.4^{b}	6.9 ± 0.6^{a}	6.7 ± 0.6^{ab}
pH	7.18 ± 0.47	6.21	7.87	6.99 ± 0.57^{a}	6.98 ± 0.17^{a}	7.30 ± 0.41^{a}	7.52 ± 0.49^{a}
Temperature	30.2 ± 0.6	28.9	31.1	29.6 ± 0.7^{a}	30.6 ± 0.1^{a}	30.4 ± 0.5^{ac}	30.4 ± 0.4^{bc}

Note. Values with the same letters were not significantly different (p > 0.05) based on upon a Nemenyi post hoc test. The test was performed contrasting the mean season value within each parameters.

3.2. Terrestrial and In Situ Sources and Sinks of Carbon and Nitrogen

The specific conductivity of river water is a basic indicator of the extent to which groundwater interacts with soil and rocks while draining a watershed. The average specific conductivity during our study was $42.7 \pm 2.8 \,\mu\text{S cm}^{-1}$ and was significantly higher during rising and high water compared to falling and low water (p < 0.05; Table 1; Table S2 in Supporting Information S1). Though the seasonal differences observed here are fairly small, this trend contrasts observations in the Amazon River, where the highest conductivity values are observed during low water as a result of longer contact time of groundwater with soil and rocks during low water (Ker, 1997; Moline & Coutinho, 2015) and dilution during high water (Drake et al., 2021). This basic data demonstrates a fundamental difference in seasonal subsurface hydrological dynamics between the Amazon and Tocantins basins. pH, which is related to both in situ process (e.g., respiration and primary production) and soil/groundwater inputs, ranged from close to neutral (6.99 ± 0.57) during high water to slightly basic (7.52 ± 0.49) during rising water, with an average of 7.18 \pm 0.47. Seasonal differences in pH were not significant (p > 0.05; Table 1) and there was a significant negative correlation between pH and discharge (r = -0.64; p < 0.05; Figure S2 in Supporting Information S1). The slightly more basic pH values observed during lower discharge conditions is likely due to enhanced algal productivity, which is discussed in more detail below. In contrast, microbial decomposition of organic matter and release of organic acid and CO₂, along with acidic groundwater inputs to the stream may be responsible for the more acidic conditions during higher discharge periods (Oliveira et al., 2006; Sawakuchi et al., 2017). pH values in the Tocantins River were similar to those observed in the Tapajós River (7.44), a highly productive clearwater tributary of the Amazon River (R. G. Miranda et al., 2009).

Dissolved O_2 , which similarly reflects the balance between respiration and photosynthesis, was near atmospheric saturation (6.5 \pm 0.7 mg L⁻¹; Table 1) with similar values as observed in the Tapajós and Xingu clearwater Amazonian rivers, with average values of 6.9 \pm 0.8 and 6.1 \pm 0.5 mg L⁻¹, respectively (Gagne-Maynard et al., 2017). Other studies in the Tocantins River, which did not have as high of temporal resolution as this present study, observed O_2 concentrations between 6.6 and 7.7 mg L⁻¹ for the lower river (Mérona et al., 2010), and 7.9 mg L⁻¹ for the upper Tocantins River (savanna biome) (J. J. L. S. D. Silva et al., 2010). Dissolved oxygen varied significantly (p < 0.05) between falling and low water periods, where the lowest and highest mean values were observed, respectively. Generally, clearwater rivers have higher concentrations of dissolved oxygen relative to other water types (Gagne-Maynard et al., 2017; R. G. Miranda et al., 2009; J. J. L. S. D. Silva et al., 2010). The low suspended sediment levels permit light to penetrate further into the water column, stimulating photosynthetic activity, which results in oxygenated waters.

The inorganic fraction of DIC represents inorganic carbon both delivered to the river from the watershed and produced via respiration in the river. DIC concentrations showed a significant correlation with river discharge, explaining about 16% of the variation in DIC concentrations (r = 0.4; p < 0.05; Figure S1 in Supporting Information S1), which has also been observed by Richey et al. (1990) in the Amazon River mainstem. However, seasonal averages did not show statistical differences (p > 0.05) and the average concentration was 3.6 ± 0.5 mg L⁻¹. In a first order clearwater stream with clear waters, in Tanguro Ranch—Mato Grosso state (Transitional Biome Savanna-Amazon), Neu et al. (2011) observed DIC concentrations between 6 and 20 mg L⁻¹ Johnson et al. (2006, 2008) measured concentrations between 9 and 27 mg L⁻¹ in Juruena—Mato Grosso. Our observed DIC concentrations are likely lower due to the river hierarchy, that is, lower order streams generally

NEU ET AL. 6 of 17

Table 2

Average \pm Standard Deviation, Minimum, and Maximum Concentrations (mg L^{-1}) of Fine and Coarse Suspended Sediment (CSS) (Fine Suspended Sediment and CSS), Fine Particulate Organic Nitrogen (FPON) Content (% FPON), Coarse Particulate Organic Nitrogen (CPON) Content (% CPON), Fine Particulate Organic Carbon (FPOC) Content (% FPOC), Coarse Particulate Organic Carbon (CPOC) Content (% CPOC), Stable Isotopic Composition (‰) of Fine and Coarse Sediment of Tocantins River Water, and Carbon and Nitrogen Ratio (C:N) of Fine and CSS of Tocantins River Water

					Samplin	g season	
Parameters	Average	Minimum	Maximum	High	Falling	Low	Rising
FSS	3.9 ± 2.9	1	10.2	6.8 ± 2.5^{a}	4.8 ± 2.1^{a}	1.8 ± 0.7^{b}	1.6 ± 0.04^{bc}
CSS	0.3 ± 0.5	0.04	2.38	0.6 ± 0.9^{a}	0.2 ± 0.1^{a}	0.2 ± 0.1^{a}	0.1 ± 0.1^{a}
%FPON	2.5 ± 1.2	1	6	1.5 ± 0.7^{bc}	2.3 ± 0.9^{ac}	3.2 ± 1.3^{a}	3.1 ± 0.8^{a}
%CPON	1.0 ± 0.7	0.1	2.6	0.7 ± 0.6^{a}	1.4 ± 0.8^{a}	1.0 ± 0.7^{a}	1.2 ± 0.7^{a}
%FPOC	19.8 ± 8.6	7.7	42.5	11.4 ± 4.7^{bc}	17.9 ± 6.9^{ac}	24.9 ± 8.1^{a}	24.5 ± 6.7^{a}
%CPOC	7.8 ± 4.7	0.7	17.8	4.9 ± 3.5^{a}	10.4 ± 5.9^{a}	8.3 ± 4.3^{a}	9.9 ± 5.5^{a}
FPO ¹³ C	-29.3 ± 1.5	-32.4	-26.4	-27.6 ± 1.3^{bc}	-29.3 ± 0.5^{ac}	-30.2 ± 1.2^{a}	-30.2 ± 0.3^{a}
CPO ¹³ C	-28.1 ± 1.8	-31.6	-25.8	-27.3 ± 0.7^{a}	-29.1 ± 0.9^{a}	-28.7 ± 1.6^{a}	-27.1 ± 1.9^{a}
FSS (C:N)	7.9 ± 0.7	6.9	10	7.9 ± 1.2^{a}	7.9 ± 0.3^{a}	7.9 ± 0.8^{a}	7.9 ± 0.2^{a}
CSS (C:N)	8.7 ± 1.8	5.6	12.3	8.7 ± 2.2^{a}	7.7 ± 0.5^{a}	9.4 ± 2.0^{a}	8.5 ± 1.3^{a}

have higher DIC concentrations (Johnson et al., 2008). The abundance of DIC is largely influenced by subsurface water contributions, biological processes in the river, and lithology/weathering in the drainage basin (Richey et al., 1990; Stallard & Edmond, 1983; Tundisi & Tundisi, 2008). About 60%-90% of DIC exists in bicarbonate form (HCO $_3^-$) depending on pH (Richey et al., 1990), and is influenced by autochthonous processes in the river. High algal photosynthetic rates remove CO $_2$ from the water and shift the pH to basic, favoring DIC in the form of bicarbonate (Melo et al., 2013).

Stable isotopic values observed during low and rising waters are one indicator for enhanced algal productivity during these time periods. δ^{13} C-FPOC had an average value of $-29.3 \pm 1.5\%$, and the most negative values (-32.4%) were observed during low water (Table 2) similar to other studies in Amazonian clearwater rivers with high productivity by phytoplankton such as the Tapajós River (Martinelli et al., 2009; Ward et al., 2015). DOC:-DON ratios also indicate a predominance of algal productivity during the fall and low tide (22.7) and flood (21.3).

As with all parameters discussed so far, DOC is also related to both in situ production and terrestrial inputs. The average DOC concentration was 2.8 ± 0.9 mg L⁻¹, similar to other clear waters rivers such as the Tapajós River $(1.8 \pm 0.1 \text{ mg L}^{-1})$ and lower than the mouth of the Amazon River $(4.2 \pm 0.9 \text{ mg L}^{-1})$; (white water) (Ward et al., 2015, 2016), and Amazonian black water rivers, where that ranging range from 7 to 10 mg L⁻¹ (Richey et al., 1990). DOC concentrations did not correlate with river discharge (p > 0.05); the lowest DOC concentrations were observed during low and rising water (Table 3). During the high and falling water periods, the river has a dominant input from the terrestrial environment. During low water, the pH was basic likely because of the high productivity of algae and aquatic macrophytes (Esteves, 1998), though it is also possible that increased organic acid inputs played a role similar to in the Congo River (Z. A. Wang et al., 2013). Algal blooms were apparent by the green coloration of the water during this period, this is an important flowpath for removing CO_2 from water and reducing acidity. But it is also an important source of autochthonous algal material, which is a labile carbon and nitrogen source (Groffman & Rosi-Marshall, 2015). During low water, relatively higher rates of respiration compared to high water are balanced by intense photosynthesis, which consumes CO_2 (Richey et al., 2009; Ward et al., 2013).

DOC and DON were the dominant carbon and nitrogen fractions when compared to POC and nitrogen matter, FPOC, CPOC, FPON, and CPON (Figure 3), similar to observations in the Amazon River by Ward et al. (2015), Hedges et al. (1994), and Lewis et al. (1999). DOC was positively correlated with DON (p < 0.05; r = 0.7; Table 3). DOC, DON, and pCO₂ decreased during low water (September to October) (Figure 4). The higher DOC and DON levels during high water indicates mobilization of carbon and nitrogen from the terrestrial landscape similar to the Amazon River (Drake et al., 2021).

NEU ET AL. 7 of 17

7									
	DOC	DIC	NOT	DON	DIN	NO_2^-	NO_3^-	$^{ m VH}_{\scriptscriptstyle 4}$	DOC:DON
This study									
Mean	2.8 ± 0.9	2.8 ± 0.9 3.6 ± 0.5	0.27 ± 0.08	0.12 ± 0.07	0.15 ± 0.02	0.01 ± 0.00	0.11 ± 0.03	0.03 ± 0.01	0.03 ± 0.01 40.0 ± 37.2
High water	3.2 ± 1.2^{a}	3.9 ± 0.5^{a}	0.30 ± 0.06^{a}	$0.15\pm0.07^{\rm a}$	0.15 ± 0.03^{a}	0.009 ± 0.002^{ac}	0.12 ± 0.03^{a}	0.02 ± 0.01 ^a	30.3 ± 26.7^{a}
Falling water	$3.4\pm0.5^{\rm a}$	3.4 ± 0.5^{a} 3.7 ± 0.6^{a}	$0.29\pm0.09^{\rm a}$	0.15 ± 0.10^{a}	$0.15\pm0.02^{\rm ac}$	0.008 ± 0.002^{ac}	0.12 ± 0.02^{a}	0.02 ± 0.01^{a}	$51.3\pm60.2^{\mathrm{a}}$
Low water	$2.5\pm0.6^{\rm a}$	3.3 ± 0.4^{a}	0.27 ± 0.06^{a}	0.11 ± 0.06^{a}	$0.16\pm0.02^{\rm ac}$	0.006 ± 0.003 bc	$0.12\pm0.02^{\rm a}$	0.03 ± 0.02^{a}	29.5 ± 16.7^{a}
Rising water	$2.2 \pm 0.2^{\mathrm{a}}$	$3.5\pm0.6^{\rm a}$	$0.15\pm0.03^{\rm b}$	0.04 ± 0.03^{a}	$0.11\pm0.00^{\rm bc}$	0.012 ± 0.005^{a}	0.08 ± 0.01^{a}	0.03 ± 0.01 ^a	79.0 ± 56.3^{a}
Other rivers									
Xingu river ¹	2.4 ± 0.3								
Tapajós river ¹	1.8 ± 0.1								
Pará River ²	4.3 ± 1.5								
Amazon river (mouth) ²	4.2 ± 0.9								
Amazon river (Óbidos) ³	3.9 ± 0.6								
Black waters systems (Amazon basin) ³	7–10								
Araguaia (GO) ⁴							0.03-0.12		
Araguari (AP) ⁵							0.02-0.25		
Madeira (RO) ⁶						0.001	0.04	0.042	
Urubuí (AM) ⁷							0.05-0.07	0.081-0.258	
Negro (AM) ⁸						0.003-2.505		0.904-7.464	
Amazon river (Óbidos) ⁹	4.19			0.2				8.29	

Ward et al. (2016), 2Ward et al. (2015), 3Richey et al. (1990), 4R. L. D. Silva (2009), 5Bárbara et al. (2010), 6Arantes Junior (2011), 7Aprile and Mera (2007), 8Pinto et al. (2009), 9Drake et al. (2021). Note. Values with the same letters were not significantly different (p < 0.05) based upon a Nemenyi post hoc test. The test was performed contrasting the mean season value within each parameter.

8 of 17

21698961, 2023, 6, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JG006846 by University Of Washington, Wiley Online Library on [30/06/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/ems-and-conditions) on Wiley Online Library for rules of use, OA articles are governed by the applicable Cretarive Commons Licrosson

0.30

0.25

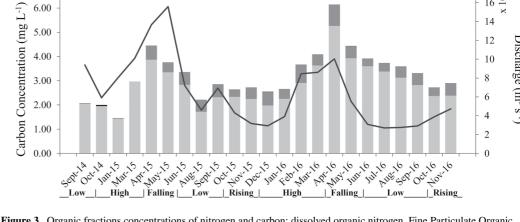
0.20

0.15

0.10

0.05

7.00


6.00

5.00

4.00

Nitrogen Concentration (mg N L⁻¹)

21698961, 2023, 6, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022/G006846 by University Of Washington, Wiley Online Library on [30/06/2023]. See the Terms and Conditions (https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022/G006846 by University Of Washington, Wiley Online Library on [30/06/2023]. See the Terms and Conditions (https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022/G006846 by University Of Washington, Wiley Online Library on [30/06/2023]. See the Terms and Conditions (https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022/G006846 by University Of Washington, Wiley Online Library on [30/06/2023]. See the Terms and Conditions (https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022/G006846 by University Of Washington, Wiley Online Library on [30/06/2023]. See the Terms and Conditions (https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022/G006846 by University Of Washington, Wiley Online Library.wiley.com/doi/10.1029/2022/G006846 by University Of Washington, Wiley Online Library.wiley.com/doi/10.1029/G006846 by University Of Washington, Wiley Online Library.wiley.wiley.com/doi/10.1029/G006846 by University Of Washington, Wiley Online Library.wiley.wile

■DON ■FPON ■CPON —Discharge

Figure 3. Organic fractions concentrations of nitrogen and carbon: dissolved organic nitrogen, Fine Particulate Organic Nitrogen, coarse particulate organic nitrogen, Dissolved organic carbon, Fine particulate organic carbon, and coarse particulate organic carbon.

TDN concentrations varied between 0.12 and 0.43 mg N L^{-1} with an average of 0.27 \pm 0.08 mg N L^{-1} . TDN varied significantly between seasons (p < 0.05) and was positively correlated with river discharge (p < 0.05, r = 0.492). DIN was not correlated with discharge (p > 0.05; Figure S1 in Supporting Information S1) but had statistically significant differences between low and rising waters (p < 0.05) (Table 3). Nitrate (NO₂) had significant seasonal variability (p < 0.05; Figure S4 in Supporting Information S1) with the lowest concentrations observed during rising water (Table 3 and Figure 5), indicating dilution during this period, similar to that observed by Drake et al. (2021). In the Tocantins River, the average nitrate concentration was 0.11 ± 0.03 mg N L⁻¹, which is higher than other tropical rivers such as the Araguaia River $(0.03 \pm 0.12 \text{ mg N L}^{-1}; \text{R. L. D. Silva, } 2009)$, Araguari River $(0.02 \pm 0.25 \text{ mg N L}^{-1}; \text{ Bárbara et al., } 2010)$, and the Madeira River (0.04 mg N L⁻¹; Arantes Junior, 2011).

Ammonium concentrations were 0.03 ± 0.01 mg N L⁻¹, lower than white water rivers such as the Madeira River (0.04 mg N L⁻¹) and black water rivers such as the Negro River (0.90–7.46 mg N L⁻¹; Pinto et al., 2009). This is potentially indicative of low anthropogenic impact to the river (Neill et al., 1995). The NO₂ concentrations were also very low, with an average 0.01 ± 0.00 mg N L⁻¹ (and often below the detection limit 0.003 mg N L⁻¹). High levels of oxygen generally result in a low nitrite concentration, because it is highly reactive and is only present for a very short time in aquatic ecosystems (Esteves, 1998; Groffman & Rosi-Marshall, 2015; Tundisi & Tundisi, 2008). Arantes Junior (2011) observed even lower concentrations of nitrite in the Madeira River

Although nitrate is the predominant form of inorganic nitrogen, NH₄ is the form preferably assimilated by phytoplankton because it is the optimal oxidation state for the protein-forming process (Braga et al., 2017). High nitrate and low ammonium concentrations (Figure 5) are characteristic of aerobic systems and low anthropogenic impact. The predominance of nitrate shows that nitrification is not limited throughout the year, likely due to the high

NEU ET AL. 9 of 17

21698961, 2023, 6, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022IG006846 by University Of Washington, Wiley Online Library on [30/06/2023]. See the Terms and Conditions (https://onlinelibrary.wiley

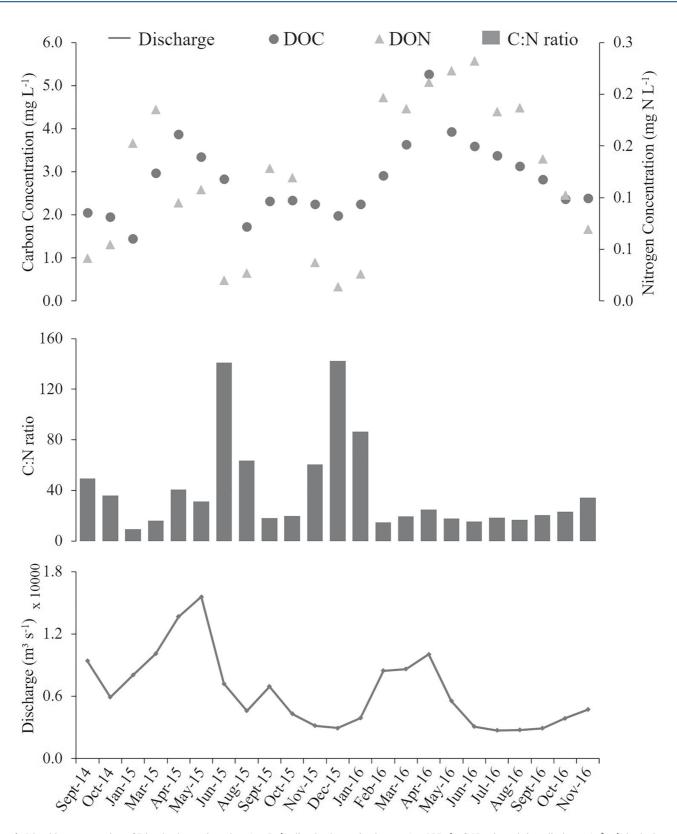


Figure 4. Monthly concentration of Dissolved organic carbon (mg L^{-1}), dissolved organic nitrogen (mg $N L^{-1}$), C:N ratio and river discharge (m³ s⁻¹) in the low Tocantins River, from September 2014 to November 2016.

NEU ET AL. 10 of 17

21698961, 2023, 6, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.109/2022JG006846 by University Of Washington, Wiley Online Library on [3006/2023]. See

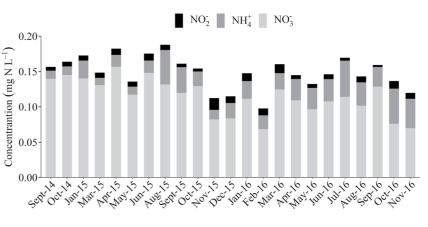


Figure 5. Concentrations (mg N L⁻¹) of NO₂, NO₂, and NH₄⁺ in the lower Tocantins River.

dissolved oxygen concentrations in the water column throughout the hydrological cycle. Nitrate is easily transported from soils via subsurface water flow (Chapin et al., 2002; Follett & Delgado, 2002; Neill et al., 1997, 1999; Piccolo et al., 1994) and is an important source of nutrients for both river and coastal ecosystems, being the main fraction of DIN (Groffman & Rosi-Marshall, 2015). Generally, clearwater rivers with low anthropogenic impact are well oxygenated, favoring nitrification. Large rivers generally have high turbulence, resulting in greater circulation of oxygen and consequently oxidation processes (Van Bennekon & Salomons, 1981).

The Tocantins River has a relatively low content of suspended material, similar to other clear and black water systems such as the Tapajós and Negro rivers (Hedges et al., 1994; Meade et al., 1985). The high concentrations of suspended sediments of anthropogenic origin in the middle Tocantins region (Lima et al., 2004) are not observed in the Lower Tocantins. A fraction of the suspended material generated in the upper and middle Tocantins are either deposited or degraded at the confluence between the Tocantins and Araguaia rivers, upstream of the Tucuruí reservoir, before arriving in the lower Tocantins (Lima et al., 2004; Tundisi & Tundisi, 2008).

Similar to other studies, the coarse fraction has the lowest concentrations, ranging from 0.04 to 2.38 mg L⁻¹, and did not vary significantly throughout the year (Table 2). Fine suspended sediment concentrations ranged from 1.0 to 10.2 mg L⁻¹ and varied significantly by season (p < 0.05) with the highest concentrations (6.8 ± 2.5 mg L⁻¹) associated with maximum discharge (Figure S3 in Supporting Information S1). In parts of the Araguaia River, suspended sediment concentrations are very high, with values above 300 mg L⁻¹, which is higher than white water rivers in the Amazon basin (Lima et al., 2004). At the confluence of the Tocantins and Araguaia rivers, there is daily sediment deposition of around 40,000 t day⁻¹, which has led to the formation of sandbanks upstream of the Tucuruí hydroelectric dam (Lima et al., 2004). The lowest FSS concentrations occurred during low water (1.6 ± 0.04 mg L⁻¹). Ward et al. (2015) observed similar seasonal variation near the mouth of the Amazon River, but overall higher concentrations (14.4 ± 4.4 during low water and 40.5 ± 4.8 mg L⁻¹ during high water).

The stable carbon isotope composition (δ^{13} C) of organic matter reflects the dynamics of isotopic assimilation of the inorganic carbon source (Garcette-Lepecq et al., 2000). In the Tocantins River, we observed that the percentage of organic carbon and nitrogen of FSS (%FPOC and %FPON) varied significantly (p < 0.05) between seasons, with the lowest values for both parameters observed during high water (Table 2). FPO¹³C values ranged from -32.4% during low water to -26.4% during high water, similar to previous measurements in the Tocantins River (-26.5% $\pm 1.7\%$; Ward et al., 2015). Low and rising water compositional signatures are indicative of a more degraded biogenic and soil source of FSS from primarily algal production (Martinelli et al., 2009; Ward et al., 2015).

FPOC and FPON had distinct C:N ratios and isotopic signatures compared to CPOC and CPON. The fine fraction had 2.6 and 2.8 times more carbon and nitrogen, respectively, than the coarse fraction, similar to studies conducted by Hedges et al. (1994), and the carbon was more ¹³C depleted in the fine fraction. The coarse fraction had higher C:N ratios than the fine fraction, similar to observations by Hedges et al. (1986) and Hedges and Stem (1984), indicative of a higher contribution of wood and leaf-derived material from the terrestrial biosphere.

In these waters, FSS has a predominantly autochthonous origin (C:N values ranging between 6 and 8) with no seasonal variation, which is typical of clear water rivers and Amazonian lakes with high primary productivity.

NEU ET AL.

This results in a lighter isotopic value especially during falling and low water, periods in which phytoplank-ton abundance is maximal and stable isotopic values are the most negative. Amazonian rivers have an average isotopic value of -27%, and can be as low as -33.8%, while clear water tributaries have isotopic values around -32%. The observed changes in stable isotopic composition and low variability of C:N ratios may be related to the genesis of particulate matter. The fine fraction is characterized by the composition of soils and more degraded humic material, while the coarse fraction has a predominance of plant material (Amorim et al., 2009; Martinelli et al., 2009).

3.3. Anthropogenic Impacts

Nitrate as the predominant fraction is characteristic of a well-oxygenated environment, where nitrification processes are favored. The concentration and distribution of nitrogen in aquatic systems is significantly influenced by anthropogenic inputs, associated with land use and land cover (Castillo et al., 2000). Low ammonium concentrations (Figure 5) are characteristic of aerobic systems and low anthropogenic impact, due to the biological degradation process of organic matter. Higher concentrations can be found in sewage and industrial effluents (Parron & Pereira, 2011). Unlike temperate regions, studies carried out in areas of agricultural cultivation in Mato Grosso, indicated that Nitrate can accumulate in deep soils of tropical agricultural areas, influencing its concentration in surface waters (Jankowski et al., 2018). Therefore, the impacts of intense cultivation in this region still need to be studied in more detail.

Ammonium concentrations were 0.03 ± 0.01 mg N L⁻¹, which is lower than white water rivers such as the Madeira River (0.04 mg N L⁻¹) and black water rivers such as the Negro River (0.90–7.46 mg N L⁻¹; Pinto et al., 2009). This is potentially indicative of low anthropogenic impact to the river (Neill et al., 1995). As weel, in deep soils whit crop agriculture, low solute concentrations in strems, can be controlled by high soil hydraulic conductivity, groundwater-dominated hydrologic flowpaths, and the absence of nitrogen fertilization. These factors have buffered streams from the large increases solute concentrations in intensive croplands (Riskin et al., 2017). The NO $_2^-$ concentrations were also very low, with an average 0.01 ± 0.00 mg N L⁻¹ (and often below the detection limit 0.003 mg N L⁻¹). High levels of oxygen generally result in a low nitrite concentration, because it is highly reactive and is only present for a very short time in aquatic ecosystems (Esteves, 1998; Groffman & Rosi-Marshall, 2015; Tundisi & Tundisi, 2008). Arantes Junior (2011) observed even lower concentrations of nitrite in the Madeira River (0.001 mg N L⁻¹). Although nitrate is the predominant form of inorganic nitrogen, NH $_4^+$ is the form preferably assimilated by phytoplankton because it is the optimal oxidation state for the protein-forming process (Braga et al., 2017).

Based on DIN fractions and suspended sediment, the lower Tocantins region is characterized as an environment with relatively low anthropogenic influence. The structural pattern of anastomosed drainage, its large dimension, and the presence of many islands influence the resistance and resilience of the channel to natural and anthropic disturbances through greater retention of nutrients, organic matter, and transported sediment. The multiple channels and islands, which are of great importance in increasing housing heterogeneity, create nutrient and organic matter retention zones that contribute to increasing the river's resilience to natural and anthropogenic disturbances (Petts, 2000).

A significant portion of the suspended material generated in the upper and middle Tocantins region is deposited and/or degraded before reaching the lower Tocantins (Lima et al., 2004; Tundisi & Tundisi, 2008). The relatively low content of suspended material is similar to other clear and black water systems, such as the Tapajós and Negro rivers (Hedges et al., 1994; Meade et al., 1985). In the middle and final course, a region where the water residence time increases due to the physical effect of the tide, the river widens and the current is not so strong, which also favors the reabsorption zones, deposition of sand, and fine materials.

3.4. Fluxes to the Amazon River Plume

The total flux of suspended particulate sediments from the Tocantins basin to the ocean was 2.72×10^6 t yr⁻¹; of this total, 71.3% were fine sediments and only 28.6% were coarse sediments (Table 4). The CSS yield was 1.04 and FSS was 2.59 g m⁻² yr⁻¹. The low fluxes are likely the result of the Tucuruí dam; according to Lima et al. (2004) a considerable deposition of sediment occurs at the confluence of the Araguaia and Tocantins rivers and in the Tucuruí reservoir.

NEU ET AL. 12 of 17

21698961, 2023, 6, Downloaded

The annual flux of POC from the Tocantins basin was 0.17×10^6 t C yr⁻¹, 99% of which was FPOC. This flow represents ~1.4% of the total POC exported by the Amazon River (Richey et al., 1990). The CPOC yield was 0.004 and FPOC yield was 0.22 g m⁻² yr⁻¹. Particulate organic nitrogen had a flux of 0.021×10^6 t N y⁻¹, 98% of which was in the fine fraction. The CPON yield was 0.0006 and FPON was 0.03 g m⁻² yr⁻¹. The predominance of the fine fraction is expected in medium to large river systems (Hedges et al., 1994; Tundisi & Tundisi, 2008).

DOC represented 46% of the total DIC flux (Table 4), with a flux from the basin of 0.85×10^6 t DOC yr⁻¹; this represents ~2.8% of DOC exported by the Amazon River to the plume and 0.34% of the DOC exported from rivers to the ocean, globally (Hedges et al., 1997). These estimates were slightly smaller than the 0.4% estimated previously, with a flow of 1.12×10^6 t DOC yr⁻¹ (apud Raymond & Spencer, 2015). The difference can be associated with the methodology applied. Previous estimates used only an annual average concentration of DOC. With these databases available, the export of DOC through the Amazon delta was estimated to be ~26 $\times 10^6$ t C yr⁻¹, similar to estimates by Raymond and Spencer (2015). This represents ~10.4% of total DOC exported to the world's oceans.

The Tocantins DOC yield (i.e., fluxes normalized to basin area) was significantly less (1.13 g C m⁻² yr⁻¹) compared to the largest tropical rivers such as the Amazon (5.45 g C m⁻² yr⁻¹; Drake et al., 2021), Congo, Orinoco and average of global rivers (2.15 g C m⁻² yr⁻¹; Raymond & Spencer, 2015). However, they were slightly smaller than previous estimates for the Tocantins basin (1.5 g C m⁻² yr⁻¹; Raymond & Spencer, 2015) and other smaller tropical watersheds, such as the Darro (0.17 g C m⁻² yr⁻¹; Neu et al., 2016) and Paragominas (0.41 g C m⁻² yr⁻¹; Markewitz et al., 2004). Floodplain interactions in rivers such as the Amazon River, which are covered with vegetation during the dry season, are likely a significant source of carbon and organic nitrogen for these systems with relatively high DOC yields.

DIC was the predominant form of carbon exported from the Tocantins River $(0.99 \times 10^6 \, \text{t y}^{-1})$ similar to observations by Richey et al. (1990) in the Amazon River. Considering the Amazon River DIC flux of $\sim 35.0 \times 10^6 \, \text{t C yr}^{-1}$ (Richey et al., 1990), the Tocantins River contributes to 2.8% of the DIC exported by the Amazon River plume, and 2.8% of the total DIC from the Amazon River Plume. DIC yield presented higher values (1.32 g C m⁻² yr⁻¹) than those found in the Darro River (0.17 g C m⁻² yr⁻¹; Neu et al., 2016).

The TDN flux was 0.076×10^6 t yr⁻¹, with a predominance of nitrate and DON fractions, which represented 93% of the total nitrogen flux. The total flux of dissolved nitrogen from the Amazon River to the Atlantic Ocean is 1.96×10^6 t N yr⁻¹ (Drake et al., 2021); thus, the Tocantins basin, represents 3.7% of total nitrogen export to the Amazon plume. The nitrogen yield from the Tocantins basin was 0.04 of DON; 0.06 g N m⁻² yr⁻¹ of DIN; 0.065 of NO₃; 0.003 of NO₂; and 0.01 N m⁻² yr⁻¹ of NH₄⁺.

However, it is necessary to highlight that the study period was atypical compared to the historical average discharge. To understand how fluxes, vary as a function of interannual hydrological variability, we performed an estimate for a "normal" year. In general, the flows are lower (Table 4). However, for more accurate estimates, it is necessary to increase the historical series of samplings and include measurements of the Pará River and other tributaries that make up the southern part of the Amazon delta. Recent studies using a discharge model for the Pará-Amazon estuary estimate that the discharge of the Tocantins River represents about 52% of the flow of the Pará River. Another 48%, that is, a discharge of 9,959 m³ s⁻¹ is not computed in the export to the ocean (Prestes et al., 2020).

4. Conclusions

The chemistry of the lower Tocantins River reflects both inputs from the terrestrial environment and processing, and production in the reservoir of the Tucuruí reservoir. The terrestrial environment is an important source of carbon and nitrogen for the Tocantins River during the rainy season. We clearly identify two distinct periods that align with the flood pulse concept (Junk et al., 1989): during the rainy season there is a predominance of allochthonous organic matter input from the terrestrial environment and respiratory processes prevail, showing that the river network has a tendency to be heterotrophic. During low and rising water, organic carbon and nitrogen are largely derived from the decomposition of autochthonous organic matter, more specifically algal and planktonic material. During this period, primary production interacts with the decomposition of terrestrial vegetation and algae-derived organic matter which influence the river to present conditions that resemble autotrophic environments despite relatively high rates of respiration. The allochthonous contribution of organic matter, associated

NEU ET AL. 13 of 17

Organic Nitrogen; Dissolved Organic Carbon; Dissolved Inorganic Carbon; Dissolved Organic Nitrogen, Dissolved Inorganic Nitrogen, and Nitrogen Species (NH ⁺ , NO ⁻ , NO ₃) for the Study Time and an Estimate of Flows for a Normal Period	Organic Carb Normal Per	on; Dissoh iod	ved Inorganic	c Carbon; Disse	olved Orgar	iic Nitrogen, Dissc	lved Inorganic Ni	trogen, and Nitr	ogen Species	(NH ⁺ , NO ₂ ,	NO ₃) for	the Study Ti	me
	CSS 10 ⁶	FSS 10 ⁶	CPOC 10 ⁶ 10 ³	FPOC 106	DOC	DOC 10¢ DI	CPON DIC 106 10 ³	FPON 10^3	DON 10 ³	DIN 10 ³	$\begin{array}{c} \mathrm{NH_4} \\ 10^3 \end{array}$	$\begin{array}{c} \text{NO}_3 \\ 10^3 \end{array}$	$NO_2 \\ 10^3$
Study site	t y ⁻¹	_	tO	t C y ⁻¹		t y ⁻¹			t N y-1	·-1			
Lower Tocantins (this study)	0.78	1.94	3.27	0.17	0.85	0.99	0.43	20.8	32.8	43.2	4.60	37.9	2.11
		Hec	Hedges et al. (1994)	994)		Richey et al. (1990)				Lewis	Lewis et al. (1999)		
Óbidos	315.4	1,116.4	2097.1	12.2	24.5	35.0			0.076	0.096	0.12	840.0	
Vargem Grande	167.1	479.3	687.5	5.8	6.9	20.0							
Rio Içá	0.0	12.6	37.8	0.3	0.7	0.7							
Rio Juruá	0.0	9.5	50.5	0.1	9.0	1.2			26.6	40.0		40.0	
Rio Japurá	0.0	18.9	53.6	0.5	1.7	1.6			55.2	61.2		61.2	
Rio Purús	6.3	53.6	154.5	6.0	4.2	2.9							
Manacapurú	154.5	457.3	1,293	5.6	13.2								
Rio Negro	0.0	0.0	0.0	0.0	10.7	1.6			153.8	41.5		41.5	
Rio Madeira	53.6	324.8	337.4	2.4	3.5	5.0			169.0	169.0	1	169.0	
						Drak	Drake et al. (2021)						
Óbidos					25.5				1,140		16.8		

21698961, 2023, 6, Downloaded from http

doi/10.1029/2022IG006846 by University Of Washington, Wiley Online Library on [30/06/2023]. See the Term

with the high concentration of dissolved oxygen and relatively low DOC:DON ratios in the river, can promote aerobic decomposition and nitrification.

Collectively, these results represent the first detailed temporal evaluation of carbon and nitrogen abundance and speciation in the lower Tocantins River, a relatively understudied system of global significance. We find that the Tocantins River may contribute an additional 3% and 3.7% of DIC and nitrogen fluxes to the Amazon plume, respectively, when compared to Amazon River fluxes. Based on this study, we did not observe signatures of significant anthropogenic impacts on river biogeochemistry, though in situ production and metabolism may mask such effects. The anthropogenic pressures that the basin currently experiences in its headwaters have not been identified in the lower Tocantins, which is indicative of the system's resilience or may even be influenced by the Tucuruí dam. But there is no evidence that land use practices are contributing to excess nutrient loads promoting Sargassum development, as has been hypothesized (e.g., Y. Wang et al., 2020). Continued and comprehensive analyses using simulations are needed to determine the influence of human perturbations and El Niño phenomenon over the biogeochemical cycling in this rapidly changing basin. While changes in river discharge patterns have been observed over decadal time scales as a result of deforestation, no such time series exists for biogeochemical parameters not only for the Tocantins River, but many aquatic systems worldwide.

Data Availability Statement

All data supporting the analyses and conclusions of this study are presented in the figures, tables, and Supporting Information S1 of this manuscript. A file containing all data are been uploaded to the repository and are available at https://doi.org/10.5281/zenodo.7749272. For flux estimates we used the Purdue LOADEST online simulator, available at https://engineering.purdue.edu/mapserve/LOADEST/.

Acknowledgments Refe

We thank Alexandra M. Krusche for laboratory analyses. This work was supported by CNPQ process 457711/2013-2 and 454774/2014-1, the São Paulo Research Foundation (FAPESP 2018/18491-4), and the US National Science Foundation DEB-1754317.

References

Agência Nacional de Águas – ANA. (2009). Plano estratégico de recursos hídricos da bacia hidrográfica dos rios Tocantins e Araguaia: Relatório síntese. ANA.

Agência Nacional de Águas - ANA. (2017). Sistema de Informações Hidrológicas (HidroWeb).

Akama, A. (2017). Impacts of the hydroelectric power generation over the fish fauna of the Tocantins River, Brazil: Marabá Dam, the final blow. Oecologia Australis, 21(3), 222–231. https://doi.org/10.4257/oeco.2017.2103.01

Amorim, M. A., Moreira-Turcq, P. F., Turcq, B. J., & Cordeiro, R. C. (2009). Origem e dinâmica da deposição dos sedimentos superficiais na Várzea do Lago Grande de Curuai, Pará, Brasil. Acta Amazonica, 39(1), 165–171. https://doi.org/10.1590/S0044-59672009000100016

Aprile, F. M., & Mera, P. A. S. (2007). Phytoplankton and phytoperiphyton of a black-waters river from North Peripheral Amazon, Brazil. Fitoplâncton e fitoperifiton de um rio de águas pretas da Amazônia periférica do norte, Brasil. Brazilian Journal of Aquatic Science and Technology, 11(2), 1. https://doi.org/10.14210/bjast.v11n2.p1-14

Arantes Junior, J. D. (2011). Estudo limnológico de um trecho do médio Rio Madeira (região de Porto Velho-RO, com ênfase na comunidade zooplanctônica). (Doctoral dissertation). Universidade Federal de São Carlos.

Bárbara, V. F., Cunha, A. C. D., Rodrigues, A. S. D. L., & Siqueira, E. Q. D. (2010). Monitoramento sazonal da qualidade da água do rio Araguari/ AP. Revista Biociencias, 16(1), 57–72. Retrieved from http://periodicos.unitau.br/ojs/index.php/biociencias/article/view/1111/779

Barrow, C. (1988). The impact of hydroelectric development on the Amazonian environment: With particular reference to the Tucuruf Project. Journal of Biogeography, 15(1), 67–78. https://doi.org/10.2307/2845047

Braga, E. D. S., Berbel, G. B. B., Chiozzini, V. G., & Andrade, N. C. G. (2017). Dissolved organic nutrients (C, N, P) in seawater on the continental shelf in the southwestern south Atlantic with emphasis state Marine Park of Laje de Santos (SMPLS) - São Paulo – Brazil. *Brazilian Journal of Oceanography*, 65(4), 614–627. https://doi.org/10.1590/S1679-87592017136506504

Castillo, M. M., Allan, J. D., & Brunzell, S. (2000). Nutrient concentrations and discharges in a midwestern agricultural catchment. *Journal of Environmental Quality*, 29(4), 1142–1151. https://doi.org/10.2134/jeq2000.00472425002900040015x

Centro de Hidrografia da Marinha - Diretoria de Hidrografia da Marinha (DHN). (2022). Cartas Raster. Retrieved from https://www.marinha.mil.br/chm/dados-do-segnav/cartas-raster

Chapin, F. S., III, Matson, P. A., & Mooney, H. A. (2002). Principles of terrestrial ecosystem ecology. Springer.

Coe, M. T., Costa, M. H., & Soares-Filho, B. S. (2009). The influence of historical and potential future deforestation on the stream flow of the Amazon River – Land surface processes and atmospheric feedbacks. *Journal of Hydrology*, 369(1–2), 165–174. https://doi.org/10.1016/j.jhydrol.2009.02.043

Coe, M. T., Latrubesse, E. M., Ferreira, M. E., & Amsler, M. L. (2011). The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. *Biogeochemistry*, 105(1–3), 119–131. https://doi.org/10.1007/s10533-011-9582-2

Coelho, C. D., da Silva, D. D., Sediyama, G. C., Moreira, M. C., Pereira, S. B., & Lana, Â. M. Q. (2017). Comparison of the water footprint of two hydropower plants in the Tocantins River Basin of Brazil. *Journal of Cleaner Production*, 153(1), 164–175. https://doi.org/10.1016/j. iclepro.2017.03.088

Costa, M. H., Botta, A., & Cardille, J. A. (2003). Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. *Journal of Hydrology*, 283(1–4), 206–217. https://doi.org/10.1016/S0022-1694(03)00267-1

Drake, T. W., Hemingway, J. D., Kurek, M. R., Peucker-Ehrenbrink, B., Brown, K. A., Holmes, R. M., et al. (2021). The pulse of the Amazon: Fluxes of dissolved organic carbon, nutrients, and ions from the world's largest river. *Global Biogeochemical Cycles*, 35(4), e2020GB006895. https://doi.org/10.1029/2020gb006895

Esteves, F. A. (1998). Fundamentos de Limnologia. 2º Edição (p. 226p). Interciência.

NEU ET AL. 15 of 17

21698961

- Follett, R. F., & Delgado, J. A. (2002). Nitrogen fate and transport in agricultural systems. *Journal of Soil and Water Conservation*, 57(6), 402–408.
- Gagne-Maynard, W. C., Ward, N. D., Keil, R. G., Sawakuchi, H. O., Cunha, A. C. D., Neu, V., et al. (2017). Evaluation of primary production in the lower Amazon River based on a dissolved oxygen stable isotopic mass balance. Frontiers in Marine Science, 4, 1–12. https://doi.org/10.3389/fmars.2017.00026
- Garcette-Lepecq, A., Derenne, S., Largeau, C., Bouloubassi, I., & Saliot, A. (2000). Origin and formation pathway of kerogen-like organic matter in recent sediments off the Danube delta (northwestern Black Sea). Organic Geochemistry, 31(12), 1663–1683. https://doi.org/10.1016/s0146-6380(00)00100-5
- Groffman, P. M., & Rosi-Marshall, E. J. (2015). O ciclo do nitrogênio. In K. C. Weathers, D. L. Strayer, & G. E. Likens (Eds.), Fundamentos de ciências dos Ecossistemas (pp. 141–161). Elsevier.
- Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H., & Santos, M. (1986). Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography, 31(4), 717–738. https://doi.org/10.4319/lo.1986.31.4.0717
- Hedges, J. I., Cowie, G. L., Richey, J. E., Quay, P. D., Benner, R., Strom, M., & Forsberg, B. R. (1994). Origins and processing of organic matter in the Amazon River indicated by carbohydrates and amino acids. *Limnology and Oceanography*, 39(4), 743–761. https://doi.org/10.4319/ lo.1994.39.4.0743
- Hedges, J. I., Keil, R. G., & Benner, R. (1997). What happens to terrestrial organic matter in the ocean? Organic Geochemistry, 27(5–6), 195–212. https://doi.org/10.1016/S0146-6380(97)00066-1
- Hedges, J. I., & Stem, J. H. (1984). Carbon and nitrogen determinations of carbonate-containing solids. Limnology and Oceanography, 29(3), 657–663. https://doi.org/10.4319/lo.1984.29.3.0657
- Jankowski, K., Neill, C., Davidson, E. A., Macedo, M. N., Costa, C., Jr., Galford, G. L., et al. (2018). Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports, 8(1), 13478. https://doi.org/10.1038/s41598-018-31175-1
- Johnson, M. S., Lehmann, J., Riha, S. J., Krusche, A. V., Richey, J. E., Ometto, J. P. H. B., & Couto, E. G. (2008). CO₂ efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophysical Research Letters, 35(17), 1–5. https://doi.org/10.1029/2008GL034619
- Johnson, M. S., Lehmann, J., Selva, E. C., Abdo, M., Riha, S., & Couto, E. G. (2006). Organic carbon fluxes within and stream water exports from headwater catchments in the southern Amazon. Hydrological Processes, 20(12), 2599–2614. https://doi.org/10.1002/hyp.6218
- Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106(1), 110–127.
- Ker, J. C. (1997). Latossolos do Brasil: Uma revisão. Geonomos, 5(1), 17-40. https://doi.org/10.18285/geonomos.v5i1.187
- Lapointe, B. E., Brewton, R. A., Herren, L. W., Wang, M., Hu, C., McGillicuddy, D. J., et al. (2021). Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nature Communications, 12(1), 3060. https://doi.org/10.1038/s41467-021-23135-7
- Lewis, W. M., Jr., Melack, J. M., Mcdowell, W. H., Mcclain, M., & Richey, J. E. (1999). Nitrogen yields from undisturbed watersheds in the Americas. *Biogeochemistry*, 46(1–3), 149–162. https://doi.org/10.1007/BF01007577
- Lima, J. E. F. W., Lopes, W. T. A., De Carvalho, N. O., Vieira, M. R., & Da Silva, E. M. (2005). Suspended sediment fluxes in the large river basins of Brazil (pp. 355–363). IAHS-AISH Publication, (IAHS Press).
- Lima, J. E. F. W., Santosdos, P. M. C., Carvalho, N. D. O., & Silva, E. M. D. (2004). Diagnóstico do fluxo de sedimentos em suspensão na Bacia Araguaia-Tocantins. Planaltina. DF: Embrapa.
- Markewitz, D., Davidson, E., Moutinho, P., & Nepstad, D. (2004). Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. *Ecological Applications*, 14(4 SUPPL), 177–199. https://doi.org/10.1890/01-6016
- Martinelli, L. A., Ometto, J. P. H. B., Ferraz, E. S., Victoria, R. L., Camargo, P. B., & Moreira, M. Z. (2009). Desvendando questões ambientais com isótopos estáveis (p. 144p). Oficina de Textos.
- Meade, R. H., Dunne, T., Richey, J. E., Santos, U. D. M., & Salati, E. (1985). Storage and remobilization of suspended sediments in the lower Amazon River of Brazil. Science, 228(4698), 488–490. https://doi.org/10.1126/science.228.4698.488
- Melo, D. M. B., Krusche, A. V., Ribeiro, M. M., Migiyama, A. C., Sales, M. E. C., Berredo, J. F., & Matos, C. R. L. (2013). A biogeoquímica das águas de Caxiuanã. In P. L. B. Lisboa (Ed.), *Caxiuanã: Paraíso ainda preservado*. 1 ed. Belém: Museu Paraense Emílio Goeldi, (Vol. 1, pp. 71–90).
- Mérona, B. D., Juras, A. A., Santosdos, G. M., & Cintra, I. H. A. (2010). Os peixes e a pesca no baixo Rio Tocantins: Vinte anos depois da UHE Tucuruí. São Carlos. Eletrobrás Eletronorte.
- Miranda, E. D., & Meireles Filho, J. (2016). Rios do Brasil: História e Cultura. Metalivros.
- Miranda, R. G., Pereira, S. D. F. P., Alves, D. T. V., & Oliveira, G. R. F. (2009). Qualidade dos recursos hídricos da Amazônia Rio Tapajós: Avaliação de caso em relação aos elementos químicos e parâmetros físico-químicos. Ambiente & Água An Interdisciplinary Journal of Applied Science, 4(2), 75–92. https://doi.org/10.4136/ambi-agua.88
- Moline, E. F. D. V., & Coutinho, E. L. M. (2015). Atributos químicos de solos da Amazônia Ocidental após sucessão da mata nativa em áreas de cultivo. Revista de Ciências Agrarias Amazon Journal Of Agricultural And Environmental Sciences, 58(1), 14–20. https://doi.org/10.4322/rca.1683
- Neill, C., Piccolo, M. C., Cerri, C. C., Steudler, P. A., Melillo, J. M., & Brito, M. (1997). Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. *Oecologia*, 110(2), 243–252. https://doi.org/10.1007/s004420050157
- Neill, C., Piccolo, M. C., Melillo, J., Steudler, P. A., & Cerri, C. C. (1999). Nitrogen dynamics in Amazon forest and pasture soils measured by ¹⁵N pool dilution. Soil Biology and Biochemistry, 31(4), 567–572. https://doi.org/10.1016/S0038-0717(98)00159-X
- Neill, C., Piccolo, M. C., Steudler, P. A., Melillo, J. M., Feig, B. J., & Cerri, C. C. (1995). Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin. Soil Biology and Biochemistry, 27(9), 1167–1175. https://doi.org/10.1016/0038-0717(95)00036-E
- Neu, V., Neill, C., & Krusche, A. V. (2011). Gaseous and fluvial carbon export from an Amazon forest watershed. *Biogeochemistry*, 105(1–3), 133–147. https://doi.org/10.1007/s10533-011-9581-3
- Neu, V., Ward, N. D., Krusche, A. V., & Neill, C. (2016). Dissolved organic and inorganic carbon flow paths in an Amazonian transitional forest. Frontiers in Marine Science, 4(115), 3–114. https://doi.org/10.3389/fmars.2016.00114
- Oliveira, C. B., Rasera, M. F., Krusche, A. V., Victoria, R. L., Richey, J. E., Cunha, H. B., & Gomes, B. M. (2006). Preliminary measurements of N₂O partial pressures in rivers of Amazon basin, Brazil. In *AGU fall meeting abstracts*. Retrieved from https://ui.adsabs.harvard.edu/abs/2006AGUFM.B31C1126O/abstract

NEU ET AL. 16 of 17

- Oviatt, C. A., Huizenga, K., Rogers, C. S., & Miller, W. J. (2019). What nutrient sources support anomalous growth and the recent sargassum mass stranding on Caribbean beaches? A review. *Marine Pollution Bulletin*, 145, 517–525. https://doi.org/10.1016/j.marpolbul.2019.06.049
- Parron, L. M., Muniz, H. D. F., & Pereira, C. M. (2011). Manual de procedimentos de amostragem e análise físico-química de água. Embrapa Florestas. Retrieved from www.cnpf.embrapa.br
- Petts, G. E. (2000). A perspective on the abiotic processes sustaining the ecological integrity of running waters. *Hydrobiologia*, 422/423, 15–27. https://doi.org/10.1007/978-94-011-4164-2_2
- Piccolo, M. C., Neill, C., & Cerri, C. C. (1994). Net nitrogen mineralization and net nitrification along a tropical forest-to-pasture chronose-quence. Plant and Soil, 162(1), 61–70. https://doi.org/10.1007/BF01416090
- Pinto, A. G. N., Horbe, A. M. C., Silva, M. D. S. R., Miranda, S. A. F., Pascoaloto, D., & Santos, H. M. D. C. (2009). Efeitos da ação antrópica sobre a hidrogeoquímica do rio Negro na orla de Manaus/AM. Acta Amazonica, 39(3), 627–638. https://doi.org/10.1590/S0044-59672009000300018
- Prestes, Y. O., Borba, T. A. D. C., Silva, A. C. D., & Rollnic, M. (2020). A discharge stationary model for the Pará-Amazon estuarine system. Journal of Hydrology: Regional Studies, 28, 100668. https://doi.org/10.1016/j.ejrh.2020.100668
- Raymond, P. A., & Spencer, R. G. M. (2015). Riverine DOM. In Biogeochemistry of marine dissolved organic matter (pp. 509–533). Elsevier. https://doi.org/10.1016/B978-0-12-405940-5.00011-X
- Richey, J. E., Hedges, J. I., Devol, A. H., Quay, P. D., Victoria, R., Martinelli, L., & Forsberg, B. R. (1990). Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography, 35(2), 352–371. https://doi.org/10.4319/lo.1990.35.2.0352
- Richey, J. E., Krusche, A. V., Johnson, M. S., da Cunha, H. B., & Ballester, M. V. (2009). The role of rivers in the regional carbon balance. Amazonia and Global Change, 186(1), 489–504. https://doi.org/10.1029/2009GM000876
- Riskin, S. H., Neill, C., Jankowski, K., Krusche, A. V., McHorney, R., Elsenbeer, H., et al. (2017). Solute and sediment export from Amazon forest
- and soybean headwater streams. Ecological Applications, 27(1), 193–207. https://doi.org/10.1002/eap.1428
 Runkel, R., Crawford, C., & Cohn, T. (2004). Load estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and
- rivers. U.S. Geological Survey Techniques and Methods Book. https://doi.org/10.3133/tm4A5
 Sawakuchi, H. O., Neu, V., Ward, N. D., Barros, M. D. L. C., Valerio, A. M., Gagne-Maynard, W., et al. (2017). Carbon dioxide emissions along
- the lower Amazon River. Frontiers in Marine Science, 4, 76. https://doi.org/10.3389/fmars.2017.00076
- Silva, J. J. L. S. D., Marques, M., & Damásio, J. M. (2010). Impacts on Tocantins River aquatic ecosystems resulting from the development of the hydropower potential. Ambiente & Água - An Interdisciplinary Journal of Applied Science, 5(1), 189–203. https://doi.org/10.4136/ ambi-agua.129
- Silva, R. L. D. (2009). Qualidade do ambiente aquático e interação com as assembleias de peixes em cursos d'água da bacia do rio Araguaia em Goiás, Brasil central. 52 f. Dissertação (Mestrado em Ecologia e Produção Sustentável). Pontifícia Universidade Católica de Goiás.
- Sioli, H. (1951). Alguns resultados e problemas da limnologia Amazônica (Vol. 24, pp. 2–44). Boletim técnico do Instituto Agronômico do Norte. Sioli, H. (1985). In H. Sioli (Ed.), The Amazon (Vol. 56). Junk Puhlishers. https://doi.org/10.1007/978-94-009-6542-3
- Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. *Journal of Geophysical Research*, 88(14), 9671–9688. https://doi.org/10.1029/JC088iC14p09671
- Swanson, A. C., & Bohlman, S. (2021). Cumulative impacts of land cover change and dams on the land–water interface of the Tocantins River. Frontiers in Environmental Science, 9, 1–13. https://doi.org/10.3389/fenvs.2021.662904
- Timpe, K., & Kaplan, D. (2017). The changing hydrology of a dammed Amazon. Science Advances, 3(11), 1–14. https://doi.org/10.1126/sciady.1700611
- Tundisi, J. G., & Tundisi, T. M. (2008). Limnologia (p. 631). Oficina de Textos.
- Van Bennekon, A. J., & Salomons, W. (1981). Pathways of nutrients and organic matter from land to ocean through rivers. In J. M. Martin, J. D. Burton, & D. Eisma (Eds.), *River inputs to oceans systems* (pp. 33–51). Unep/unesco.
- Wang, Y., Ziv, G., Adami, M., Almeida, C. A. D., Antunes, J. F. G., Coutinho, A. C., et al. (2020). Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. *Nature Sustainability*, 3(4), 290–295. https://doi.org/10.1038/s41893-019-0470-4
- Wang, Z. A., Bienvenu, D. J., Mann, P. J., Hoering, K. A., Poulsen, J. R., Spencer, R. G., & Holmes, R. M. (2013). Inorganic carbon speciation and fluxes in the Congo River. Geophysical Research Letters, 40(3), 511–516. https://doi.org/10.1002/grl.50160
- Ward, N. D., Bianchi, T. S., Sawakuchi, H. O., Gagne-Maynard, W., Cunha, A. C., Brito, D. C., et al. (2016). The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River. *Journal of Geophysical Research: Biogeosciences*, 121(6), 1522–1539. https://doi.org/10.1002/2016jg003342
- Ward, N. D., Keil, R. G., Medeiros, P. M., Brito, D. C., Cunha, A. C., Dittmar, T., et al. (2013). Degradation of terrestrially derived macromolecules in the Amazon River. *Nature Geoscience*, 6(7), 530–533. https://doi.org/10.1038/ngeo1817
- Ward, N. D., Krusche, A. V., Sawakuchi, H. O., Brito, D. C., Cunha, A. C., Moura, J. M. S., et al. (2015). The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean. *Marine Chemistry*, 177(2), 244–256. https://doi. org/10.1016/j.marchem.2015.06.013

NEU ET AL. 17 of 17