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Motion Enhanced Multi-Level Tracker (MEMTrack): A Deep
Learning-Based Approach to Microrobot Tracking in Dense

and Low-Contrast Environments

Medha Sawhney, Bhas Karmarkar, Eric J. Leaman, Arka Daw, Anuj Karpatne,*

and Bahareh Behkam?

Tracking microrobots is challenging due to their minute size and high speed. In
biomedical applications, this challenge is exacerbated by the dense surrounding
environments with feature sizes and shapes comparable to microrobots. Herein,
Motion Enhanced Multi-level Tracker (MEMTrack) is introduced for detecting and
tracking microrobots in dense and low-contrast environments. Informed by the
physics of microrobot motion, synthetic motion features for deep learning-based
object detection and a modified Simple Online and Real-time Tracking (SORT)
algorithm with interpolation are used for tracking. MEMTrack is trained and
tested using bacterial micromotors in collagen (tissue phantom), achieving
precision and recall of 76% and 51%, respectively. Compared to the state-of-the-
art baseline models, MEMTrack provides a minimum of 2.6-fold higher precision
with a reasonably high recall. MEMTrack’s generalizability to unseen (aqueous)
media and its versatility in tracking microrobots of different shapes, sizes, and
motion characteristics are shown. Finally, it is shown that MEMTrack localizes
objects with a root-mean-square error of less than 1.84 pm and quantifies the
average speed of all tested systems with no statistically significant difference
from the laboriously produced manual tracking data. MEMTrack significantly
advances microrobot localization and tracking in dense and low-contrast settings
and can impact fundamental and translational microrobotic research.

800 um s~ .1** These properties make
microrobots very effective in reaching cur-
rently inaccessible areas of the human body
but incredibly difficult to visualize and
track. Traditionally, microrobots have
been studied in aqueous environments
(Figure 1A-B). The growing focus shift
in the microrobotic field from system
development to biomedical application-
oriented implementations necessitates
operating and controlling such systems
in physiologically relevant environments,
and aqueous media do not always represent
the conditions and interactions experi-
enced in vivo. Furthermore, advancing
the current understanding of the physical
underpinnings of microrobot behaviors
in vivo requires studying these systems
in physiologically relevant in vitro, ex vivo,
or in vivo environments.™!

The fast speeds of microrobotic systems
(i-e., 10s-100s of body lengths per second)
necessitate high frame rate image acquisi-

1. Introduction

Microrobotic systems continue to garner significant interest due
to their potential in various fields, including targeted drug deliv-
ery, minimally invasive surgery, and biosensing.!") Based on their
mode of actuation and target application, microrobots range
between ~1 and 1000 pm in size, and their average speeds vary
vastly from 1 to 800 pm s~ ' with instantaneous speeds upward of

tion, primarily attainable using bright-field

imaging. The resulting grayscale images

(Figure 1B) have significantly lower con-
trast than fluorescent images (Figure 1A), typically used for auto-
mated localization and tracking. Also, microrobots (=1 pm in
size) often swim in 3D space, which translates to intermittent
movement of the objects of interest in and out of the focal plane,
adding another layer of complexity. Moreover, self-propelled
microrobots (e.g., biohybrids or catalytic motors) exhibit random
walk behavior, making it difficult to track them consistently in
every frame. Operation in physiologically relevant environments
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Figure 1. A) Microrobots, including bacterial biohybrid microrobots, are easy to track in high-contrast fluorescent images; B) however, they are more
difficult to detect in high acquisition rate bright-field image sequences in liquid (aqueous) medium. C) The complexity further increases in dense environ-
ments such as collagen with feature shapes and sizes similar to those of microrobots. The yellow arrows represent microrobots’ locations. D-G) Sample
trajectories of bacteria in different motility subpopulations. All scale bars are 20 pm.

with dense backgrounds and feature sizes and shapes compara-
ble to those of microrobots (Figure 1C) further exacerbates these
problems.

There has been significant progress in real-time tracking of
microrobots using clinical imaging modalities that produce
high-contrast images;® " however, automated tracking and
localization of microrobots in bright-field image sequences
within dense backgrounds remains a largely unsolved challenge.
A few commonly used techniques exist for manual or semiauto-
mated tracking of microscale objects. Each technique has differ-
ent features and capabilities, such as particle identification and
tracking or morphology analysis. The most widely used tool for
manual tracking is Fiji (Image]2), an open-source software for
the processing and analysis of scientific images.'? Fiji is
equipped with several plugins for manual and semiautomated
tracking, including Trackmatel>14, Mtrack][ls], CellProfiler*®'7]
MosaicSuite-Particle Tracker!’®, FARSIGHT!'", BioImageXD[ZO],
and Icy?®". The semiautomated methods require user inputs, such
as filters or thresholds and manual intervention to prune false pos-
itive (FP) data. None of these methods were explicitly developed
for object detection in dense backgrounds, where the visual ambi-
guity between the dense background and microscale objects
makes tracking error-prone, tedious, and time-consuming.

Apart from these commonly used tools, several other methods
have been developed for cells, nanoparticles, and small object
detection and tracking in 2D and 3D spaces.’?>**) However, most
methods primarily rely on the high contrast between the object of
interest and the background that is unique to fluorescent images.
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The longer exposure time of fluorescence imaging (~100s ms
compared to ~10sms for bright-field imaging) results in a
reduced acquisition rate and loss of important temporal data,
making it unfeasible for many microrobotic applications.
Several models have also been developed for tracking objects
in aqueous environments using bright-field images. These mod-
els consider cell appearance changes and overlaps during colony
proliferation in time-lapse videos.****! They can also track single
cells in aqueous media but are still not fully automated and
require manual interventions.*®***Y To the authors’ best
knowledge, automated tracking of microrobots in dense and
low-contrast environments, with features and dimensions simi-
lar to those of objects of interest, has not yet been realized.

In this work, we report the development of a deep learning-
based approach to address the gap in the detection and tracking
of microrobots in dense environments. Existing deep learning-
based multiobject tracking works have primarily focused on
detecting and tracking objects easily distinguished from the back-
ground (e.g., pedestrians and cars).[*?! In this work, we present
the Motion Enhanced Multi-level Tracker (MEMTrack) for track-
ing microscale objects in dense environments, where the object
of interest is almost indistinguishable from the background fea-
tures (Figure 1C). We train and test MEMTrack using bacterial
micro-biomotors, one of the most commonly used biomotors in
biohybrid microrobotic systems.[**! To illustrate the broad utility
of the MEMTrack in various backgrounds, we demonstrate its
performance in collagen, the most abundant extracellular matrix
protein in the body, with feature sizes and shapes comparable to
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those of bacteria (Figure 1C) and in aqueous media (Figure 1B). To
illustrate MEMTrack’s versatility, we demonstrate its performance
in tracking microrobots of different shapes, sizes, and motion
characteristics. Our results demonstrate that our pipeline can accu-
rately predict and track both visually identifiable and hard-to-detect
microrobots. Our proposed pipeline represents a significant con-
tribution to localization and tracking in dense and low-contrast set-
tings, which can potentially impact both fundamental and
translational microrobotic research. Moreover, it opens the poten-
tial of applying deep learning-based methods for vision-based con-
trol of microrobots in dense and low-contrast settings for various
applications, including disease diagnosis and treatment.

2. Methods
2.1. MEMTrack

The proposed pipeline for MEMTrack is shown in Figure 2.
MEMTrack consists of four modules—Motion Enhancer, Multi-
level Object Detector, False Positive Pruner, and Interpolated
Tracker. Before describing each module, we define the notations
used throughout the article. We define the input video with T
frames as I'"T=[I', P, .., '], where I € R&"*¥_ denotes
the " frame and C, H, and W are the number of channels, height,
and width of the image, respectively. We utilized a tracking-by-
detection approach, wherein the tracking is done on top of predic-
tions from the detection module.

2.1.1. Motion Enhancer Module

Object detectors, designed for single-frame detection, overlook
the object’s position in preceding or subsequent frames, limiting
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their tracking effectiveness. Incorporating the concept of motion
into the object detection model is crucial to enable accurate detec-
tion of microscale objects in dense environments with intermix-
ing backgrounds and foregrounds (Figure 1C). Therefore, we
implemented feature engineering techniques to capture two
types of motion features, optical flow features and median devia-
tion features, which are then augmented or stacked with the
image features to enhance detection accuracy, as shown in
Figure 2A and described below.

Optical Flow Features: Optical flow**! is a technique that
estimates the motion of objects in an image sequence by analyz-
ing the changes in pixel intensities between consecutive frames.
We used the Lucas—Kanade!**! method for optical flow computa-
tion, which is expressed mathematically as

AL+ 0Ly + 0I, =0 (1)

where u =% and v = % represent the x and y components of the

optical flow vector for the ¢ frame, and, 91, = 4, o, = g—;, and
01, = 4l are the image gradients in the x, y, and time (£) dimen-
sions, respectively. Solving this equation yields the optical flow
vector O = [u, v] for the " frame in the video. The length of this
optical flow vector, which corresponds to the magnitude of
motion at each pixel between consecutive frames, is then consid-
ered as an additional feature channel along with the grayscale
image.

Median Deviation Features: While optical flow captures
changes across consecutive frames, we also need features that
capture slower motion trends with respect to a static background.
To this effect, we used the median deviation as another feature
channel, which is the pixel-wise difference between the intensity
at a pixel and the median intensity at the pixel across all frames in
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Figure 2. Overview of the proposed MEMTrack pipeline consisting of four modules: A) Motion Enhancer, which adds motion features to the input
frames, B) Multi-level Object Detector, which detects objects of varying motility levels using the deep learning-based RetinaNet model, C) False
Positive Pruner, which filters the predicted object occurrences to reduce false positives, and D) Interpolated Tracker, which tracks objects over time

using the SORT algorithm with linear interpolation.
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the video. Note that the median represents the background at every
pixel that remains static for the majority of frames. Mathematically,
we defined median deviation AI = |I' — median(I':-'T)|, where
median (I'") is the pixel-wise median for the video across frames
1 through T.

Finally, the input image features I', concatenated with the opti-
cal flow features O and the median deviation Al are used as
inputs to the Multi-level Object Detector.

2.1.2. Multi-Level Object Detector Module

Object detection is a fundamental task in computer vision and
plays a crucial role in various applications such as automation
and decision-making. The two main approaches used are two-
stage detectors and one-stage detectors. Two-stage detectors such
as Region-based Convolutional Neural Network (R-CNN)*®! and
Fast R-CNN”! offer high accuracy but suffer from high compu-
tational complexity, while one-stage detectors such as You
Only Look Once (YOLO)*#Y provide faster inference but
may struggle with detection of small objects in dense environ-
ments reference.**>

In our pipeline, we used the one-stage deep learning detector
RetinaNet®” as the base object detector. RetinaNet introduces
the novel “focal loss” function, which assigns higher weights to
frequently misclassified objects during training, improving accu-
racy without sacrificing speed. RetinaNet strikes a balance between
accuracy and efficiency, making it suitable for real-time tracking in
complex backgrounds, as required for microrobot tracking in dense
environments. As is the case with most microrobots, bacterial bio-
hybrid microrobots exhibit various motion patterns and speeds
(Figures 1D-G and Video S1, Supporting Information) with differ-
ent detection requirements, making a single-model training for all
the observed behaviors ineffective. Informed by the physics of the
microrobot motion, we propose a Multi-level Object Detection
model, where we train a different detector model for each motility
category of low, medium, and high (Figure 2B, Section 2.2). As
each detector model is only exposed to the ground truth (GT) data
of a specific motility category during training, its learning is tai-
lored to capture the specific motion characteristics of bacteria
belonging to a single category. This approach enhances the accu-
racy of the object detection system for each category and improves
the overall performance of the system, as discussed in Section 3.

During the training phase, the object detector receives input
from annotated microscopy videos with bounding boxes of a pre-
scribed size centered around microrobots’ centroids. When per-
forming inference, the object detectors predict coordinates (x, y)
for bounding boxes to indicate the presence of objects and their
width and height. These predictions are accompanied by a con-
fidence score reflecting the model’s certainty level regarding the
detection.

2.1.3. False Positive Pruner Module

The Multi-level Object Detector module can produce a large
number of as well as duplicate predictions from the three differ-
ent detector models. The False Positive Pruner was implemented
to remove the FPs without losing the true positive (TP) predic-
tions. To this end, first, we combined all the detections from the
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three motility models and then pruned the detections based on
three exclusionary criteria, as shown in Figure 2C: 1) Bounding
Box Filter for removal of predictions that are greater than a pre-
scribed area threshold, 2) Confidence Score Filter for removal of
predictions lower than a prescribed confidence threshold, and
3) Non-maximum Suppression (NMS)®®¥! Filter for elimination
of redundant object detections by selecting the ones with the
highest confidence score and discarding the other overlapping
ones. NMS evaluates the Intersection over Union (IoU = Area
of Intersection/Area of Union) between detected bounding
boxes. The threshold on IoU serves as a basis to determine
whether detected boxes correspond to the same object in the
NMS Filter. Beginning with the most confident detected box,
NMS eliminates overlapping boxes with lower confidence scores,
resulting in accurate object selection and reduced redundancy of
detections. Section 2.3.4 describes our process for selecting the
thresholds for the three filters.

2.1.4. Interpolated Tracker Module

Several approaches have been proposed for object tracking,
including correlation filter-based”®, Kalman filter-based®?,
and deep learning-based*>*") methods. Simple Online Real-time
Tracking (SORT)® is one of the most widely used tracking algo-
rithms. It uses a combination of Kalman filtering!®® and the
Hungarian algorithm®** to assign detected objects to existing
tracks. The Kalman filter in SORT works by recursively updating
estimates of the current system state (in our case, positions of
microrobots) based on the previous configuration of the state
and the current measurements (i.e., the detected microrobot
positions in the current frame) while also taking into account
the uncertainty of those measurements. SORT is simple and effi-
cient and performs well on various tracking tasks, such as pedes-
trian or vehicle tracking. However, the random motion of
microrobots and intermittent missing detections resulting from
their 3D motion may limit the performance of this algorithm.

Our proposed method modifies the SORT algorithm by incor-
porating linear interpolations for missed object detections. As
shown in Figure 2D, we applied the SORT algorithm to track
the detected microrobots and produce tracklets from indepen-
dent frame-wise predictions. We interpolated the missing detec-
tions by keeping the Kalman filter-based unmatched predictions
for a given number of frames, termed the maximum age param-
eter (determined in Section 2.3.4), and dropping the predictions
beyond that threshold. The maximum age parameter within the
SORT algorithm ensures the persistence of a tracklet for a speci-
fied number of frames subsequent to a missed detection event,
thereby upholding tracking continuity. If a track is missed fur-
ther than the maximum age, it is discarded.

Finally, we introduce the Track Length Filter to remove tracks
whose length, in terms of the number of frames, does not meet a
specified threshold (determined in Section 2.3.4). This filter
helps exclude excessively short tracks that are prone to being FPs.

2.2. Experimental Methods

In order to evaluate the performance of MEMTrack, we recorded
bacteria (i.e., the micromotors in Dbacterial biohybrid
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microrobots) swimming behavior in collagen, as a tissue surro-
gate, and in an aqueous environment, as a significantly different
unseen medium.*>¢¢)

2.2.1. Bacteria Culture

Six engineered strains of Salmonella  Typhimurium
VNP20009cheY ") bacteria with different motile behaviors were
used. Each strain was grown on a 1.5% lysogeny broth (LB;
1% tryptone, 0.5% vyeast extract, and 1% sodium chloride)
agar plate overnight at 37 °C. For each experiment, a single col-
ony of the desired strain was isolated and used to inoculate 10 mL
of LB media in a 125 mL smooth-bottom flask. Bacteria were
cultured overnight at 37 °C and 100 RPM before being harvested
and resuspended in fresh LB to a final concentration of
~1.3 x 10° CFUmL ",

2.2.2. Swimming Assay in Collagen and Aqueous Medium

Bacteria motility in collagen was evaluated using an experimental
setup similar to the traditional swim plate assay, in which bacte-
ria migrate outward from a central inoculation point due to a
combination of chemotaxis and growth. Collagen gel was pre-
pared from a stock solution of collagen type I that was neutralized
with 0.25 N NaOH, diluted to 5mgmL™" in LB, and supple-
mented with 100 pgmL™" ampicillin on ice. The cold collagen
solution was pipetted into wells of a room-temperature well plate.
The well plate was then immediately placed in a 37 °C incubator
for 45 min to allow the collagen to gel. A 1 uL aliquot of bacterial
suspension, prepared as described in Section 2.2.1, was intro-
duced at the center of each collagen well. All data acquisition
was performed using a Zeiss AxioObserver.Z1 inverted micro-
scope equipped with a 40x objective and an hSM camera
(Carl Zeiss AG, Oberkochen, Germany). Phase contrast micros-
copy images were collected at 60 frames per second (FPS) for
2 min at 37°C.

For motility assays in aqueous media, a 100 pL aliquot of the
overnight bacteria culture, described in 2.2.1, was used to inocu-
late a fresh LB culture. The culture was grown at 37 °C for ~2.5 h
or until ODggp = 1was reached. Subsequently, the culture was
diluted 20x in fresh LB medium. A 10 uL aliquot of the bacterial
suspension was placed between two No. 1.5 coverslips separated
by a thin ring of vacuum grease. Time-lapse imaging was
performed as described above at 60 FPS for 10s. For
MEMTrack comparison with baseline models, the aqueous
swimming assays were performed according to our previously
developed methods.!"!

2.2.3. Bacteria Tracking and Annotation

In order to generate training, validation, and test datasets for
MEMTrack, the microscopy videos acquired in collagen and
in aqueous media were imported into ImageJl'” software.
MTrack]!"! plugin was used to manually label all bacteria in each
video frame (x~10-20 bacteria per frame), and their x and y coor-
dinates were recorded.
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2.2.4. Determining Track Length and Motion Characteristics

In order to determine the tracking period threshold for capturing
bacteria random walk in collagen, we first tracked the bacteria for
150 frames and evaluated the diffusivity of each bacterium
according to

2.5

D(T) — Z (x(t+ T) — xO(t))zj; (Y(t+ T) _ YO(t))z

(2)

0

where 7=0.0165s is the lag time between consecutive frames,
and x, and y, represent the initial position. As shown in
Figure S1, Supporting Information, the diffusivity values
plateaued at or before 1s, indicating that a track length of 1s
(60 frames) in collagen is sufficient for capturing bacteria’s ran-
dom walk.

Next, we used peak diffusivity values to divide bacteria into
four categories based on their motility patterns and the associ-
ated diffusivity value—no motility (Dpeax < 0.075pm’s™"),
low motility (0.075 pm?s < Dpeak < 0.25 pm? s_l), medium
motility (0.25 pm®s™' < Dpeg < 1pm*s ™), and high motility
(D>1pum?s™"). Representative trajectories for each subpopula-
tion are shown in Figure S2, Supporting Information.

Based on the well-known motile behavior of bacteria in aque-
ous environments,'® we selected 0.5s (30 frames) for testing

MEMTrack’s performance on aqueous media datasets.

2.3. In Silico Experimental Setup

2.3.1. Training, Validation, and Testing Datasets

MEMTrack was trained and validated using the experimental
datasets in collagen, while its performance was evaluated using
both the collagen and the aqueous medium datasets. A subset of
the collagen data, termed the training set, was used for learning
the model parameters (i.e., weights and biases of the deep learn-
ing models) using gradient descent algorithms. Simultaneously,
another subset of the collagen data, termed the validation set, was
used during training for observing the performance of the model
on data outside the training set and determining the configura-
tion of hyperparameters (i.e., parameters of the model that are
not directly learned using gradient descent such as the filter
thresholds of the False Positive Pruner module) that yields best
validation performance. Finally, a third subset of the collagen
data, termed the test set, which has no overlap with the other
two sets, was used to report the model performance on “unseen”
data. We used the entirety of the aqueous medium data for test-
ing the collagen-trained model in that medium.

To ensure consistency and provide comprehensive training
data for different motion types and background scenarios across
the six bacterial strains in the collagen, we allocated two videos
per strain for training (a total of twelve) and reserved one video
per strain for validation (a total of six). The collagen test set con-
sisted of 16 videos representing all bacterial strains. The aqueous
medium dataset contained five videos that were all used for
testing.
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2.3.2. Evaluation Metrics

We used precision (Equation (3)), recall (Equation (4)), mean
Intersection over Union (mloU, Equation (5)), and root mean
square error (RMSE, Equation (6)) to evaluate the performance
of MEMTrack quantitatively. Precision is the fraction of the TP
predictions over the sum of all predictions (TPs and FPs). Itis a
measure of how precise or confident the model is in tracking real
objects (e.g., bacteria)

TP

P .. _
recision 7TP T FP

&)

Recall, on the other hand, signifies the fraction of GT or actual
objects (e.g., bacteria) that the model is able to recover. It is
defined as the fraction of the TP over the GT (i.e., the summation
of TP and false negatives (FNs))

TP

Recall = ——
= P IEN

)

IoU compares the predicted and GT bounding boxes and is
defined as

loU — Areaof interse.:ction )
Area of Union

The mlIoU is calculated by summing the IoU values for all
pairs of GT and corresponding predicted TP matches, and divid-
ing this total by the number of matching pairs.

RMSE is a measure of the difference between the GT and the
predicted TP coordinates, and is calculated using

i1 (%ot — Xprea)” + i — Ypredi)”
RMSE—\/Z"l(( GT, ped.I)\I (Yo, — Ypredi)?) ©

Here, xgr,; and ygr,; are the GT coordinates and ¥preq,; and Ypreq,i
are the predicted TP coordinates. We calculated the RMSE over
all TPs.

Finally, we use the F1 score!®, the harmonic mean of preci-
sion and recall, as another evaluation metric to select hyperpara-
meters in our model architecture.

Precision * Recall
F1S - 2—
core Precision + Recall )

2.3.3. Baseline Models

To evaluate MEMTrack’s performance, we selected four base-
line methods to cover a comprehensive range of detection
techniques—classical computer vision, background detection,
and deep learning—and tracking methods, including filter-
based and optimization-based approaches like Linear
Assignment Problem (LAP). Below, we briefly describe the cat-
egories of the baseline methods.

Classical Computer Vision-Based Methods: Trackmate7! and
MosaicSuite-Particle Tracker!" fall into this category. Trackmate7
implements a Laplacian of Gaussian (LoG)”®”!like detection
approach, augmented with thresholding, and employs a LAP

13,14]
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tracker”>7?), This optimization-based tracker effectively assigns
objects to tracks based on similarity metrics. MosaicSuite, while
also using LoG-based detection, differentiates itself with a parti-
cle filter-based feature point tracking algorithm. This algorithm
is self-initializing and skilled in filtering out spurious detections,
demonstrating its efficacy in complex tracking scenarios.

Background Detection-Based Methods: Your Software for
Motility Recognition (YSMR)P® integrates Gaussian blur with
adaptive thresholding for object detection, followed by centroid
tracking. This method efficiently tracks object movements by
focusing on geometric centers, proving particularly useful in
environments with variable background conditions. Notably,
YSMR requires careful tuning of over 30 parameters to optimally
adapt to the specific data being used, which adds to its adaptabil-
ity but also its complexity.

Deep Learning-Based Methods: DEtecion TRansformer
(DETR)”* harnesses the capabilities of transformers!”*! for object
detection. Tracking is achieved using SORT®Y, a filter-based
method applied to the detections from DETR. SORT employs a
Kalman filter with a linear assumption, contrasting the particle
filter approach in its tracking methodology.

The selected hyperparameters and model training specifics,
when applicable, used to evaluate each baseline model are
described in Section S.A, Supporting Information.

2.3.4. Determining the Model Hyperparameters

Model hyperparameters include the configurational parameters
of a machine learning model that are not trained directly using
gradient descent but need to be set manually, informed by
domain knowledge, before the training begins. The hyperpara-
meters of the MEMTrack platform are the area threshold
(Bounding Box Filter), confidence thresholds (Confidence Score
Filter), IoU threshold (NMS Filter), maximum age parameter
(Tracking Interpolation), and track length threshold (Track
Length Filter). The selection of these parameters is guided either
by domain-specific insights relevant to microrobot motion char-
acteristics or through a grid search process, ensuring optimal
performance.

The area threshold is tailored to the average diameter of the
object of interest, ensuring predicted bounding boxes align with
expected object sizes. In the case of bacterial micromotors, the
area threshold in the Bounding Box Filter was set to a value of
35 x 35 pixels (8.68 x 8.68 um?). Consequently, any detected
object characterized by a bounding box area exceeding 35 x 35
pixels was omitted from our predictions. Note that this threshold
exceeds the training bounding box size criterion of 30 x 30 pixels
(7.44 x 7.44 ym®), based on average and maximum bacteria sizes
of 3.4 + 0.7 pm and ~5 pm, respectively, to be tolerant of predic-
tions with larger bounding box size during inference compared
to training.

We experimented with two possible criteria for selecting the
Confidence Score Filter thresholds of the three-level object detec-
tor using the validation set—maximum precision criterion and
maximum F1 score criterion. When the maximum precision cri-
terion is used, the three Confidence Score thresholds (one for
each motility level) are set to maximize the precision on the vali-
dation set for each motility level. This criterion ensures that the
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number of FPs is minimized in our predictions across all motil-
ity levels. However, by solely maximizing the precision, we can-
not control for the number of FNs and hence may obtain lower
recall values. On the other hand, the maximum F1 score criterion
ensures that the harmonic mean of precision and recall values
are high for all three motility models, thus making a trade-off
between reducing FPs and improving recall of the GT bacteria.
The choice of maximum precision versus maximum F1 score
criteria depends on the user’s priorities. While the maximum
F1 score criterion would yield a higher recall than the maximum
precision criterion, it would do so at the cost of a lower precision
value (or, equivalently, more FP tracks), requiring additional
manual intervention to remove the FP tracks. Figure 3 shows
the precision—recall curves for the validation set of the three
motility levels of the Multi-level Object Detector, where the
threshold settings for the two criteria are indicated as vertical
lines. For the remainder of this paper, all results from the
MEMTrack model were obtained using the maximum precision
criterion unless otherwise indicated, because our focus was to
obtain predictions of bacteria tracks with high precision without
requiring additional manual postprocessing to remove FP tracks.

For optimizing the IoU threshold (NMS Filter) and the maxi-
mum age parameter (SORT Tracking with Interpolation), we
conducted comprehensive grid searches. The range for the
IoU threshold was set between 0 and 1, with a step size of
0.1, while the maximum age parameter was varied from 0 to
100 at increments of 5, considering our typical video length of
100-150 frames. We optimized the grid search to maximize
the F1 score, as the interpolated tracking in SORT is designed
to compensate for any fragments in the predicted tracks. The
IoU threshold is set to 0.2. The maximum age threshold
for the SORT Tracking was set to 35 frames, indicating that inter-
polation for absent detections is conducted for up to 35 missed
frames.

For the Track Length Filter, we used a threshold of 60 mini-
mum frames to capture bacteria random walk in collagen, as
described in Section 2.2.4. Given the significantly shorter ran-
domization time of bacteria in aqueous environments”®), we
used a minimum track length threshold of 30 frames. Figure
S3, Supporting Information shows how varying the threshold
for minimum track length impacts the precision and recall for
our method and the baselines. Increasing this threshold will
increase the precision while eliminating many bacteria that have

Low Motility Detector
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shorter tracks due to them being missed in the detection phase,
potentially due to very low-frequency motion.

2.3.5. Statistical Analysis

All experimental data were collected from a minimum of two
independent experiments. The GT data were produced by an
experienced user with less than 2% tracking error. All data
were tested for normal distributions. All pairwise comparisons
were performed using a t-test, and p-values smaller than
0.05 were considered significant.

3. Results and Discussion

3.1. Evaluation of Detection Bias

We first inquired if MEMTrack is able to detect and track bacteria
from each of the four motility subpopulations equally well. Such
performance capability is crucial to the accurate and unbiased
representation of population-scale behavior. To evaluate the pres-
ence of any biases, we segregated the GT bacteria and the TP
tracked bacteria into four subpopulations based on their motility
(refer to Section 2.2.4). Table 1 shows the number of GT and TP
bacteria in each of the four categories. The % Detected column
shows the fraction of the GT bacteria outputted from MEMTrack.
It can be seen that MEMTrack has a comparable detection rate for
nearly all categories. The lower detection rate for the medium
motility group may be attributed to the small number of bacteria
in this subpopulation, which leads to significant fluctuation in
the calculation of % Detected.

3.2. MEMTrack’s Performance in Collagen

We next conducted ablation studies to evaluate the contribution
of each component of the MEMTrack framework to its overall
performance (Section S.B, Supporting Information). Table S1,
Supporting Information shows the impact of changing the detec-
tor model and detection features on the performance of
MEMTrack. We see that a single object detector that only uses raw
image features underperforms compared to when it incorporates
both optical flow (OP) and median background difference (MBD)
features, highlighting the efficacy of the motion-enhancer

Medium Motility Detector
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Figure 3. Precision and recall of the three motility detectors (labeled over each plot) for varying confidence score thresholds. Score thresholds of each
model based on the maximum precision (pink) and maximum F1 score criteria (blue) are shown as a vertical dashed line and a vertical dotted line,

respectively.
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Table 1. Fraction of bacteria detected by MEMTrack in each of the four
motility subpopulations.

Subpopulation GT TP % Detected
No motility 17 9 53
Low motility 140 66 47
Medium motility 16 5 31
High motility 51 28 55

submodules. Furthermore, while RetinaNet with both OP and
MBD features matches MEMTrack in detection performance, it
falls short in tracking, mainly due to its single-model approach,
which struggles to effectively generate meaningful confidence
scores for bacteria of varying motility characteristics, leading to
lower precision after tracking.

Table S2, Supporting Information compares the tracking per-
formance of MEMTrack ablations designed to assess the impor-
tance of different steps involved in the False Positive Pruner
(FPP) and Tracking modules, namely, the use of the Bounding
Box (BBox) filter, Confidence Score (Conf.) filter, NMS filter, and
Interpolated SORT. Table S2, Supporting Information indicates
that omitting steps from the FPP module in MEMTrack signifi-
cantly reduces precision, underlining the module’s crucial role in
eliminating FPs. Additionally, the Conf. filter greatly enhances
precision, while the BBox and NMS filters have minimal impact.
The absence of the interpolated SORT algorithm notably affects
recall, demonstrating the essential balance provided by the FPP
and Tracking modules in achieving optimal tracking perfor-
mance. Figure S5, Supporting Information shows the transfor-
mation of a representative image through the four modules of
MEMTrack.

We next evaluated MEMTrack’s performance in detecting and
tracking bacteria in collagen (Video S2, Supporting Information).
Figure 4 shows the precision and recall values attained at each
step of the pipeline for the test datasets. The precision increases
after each False Positive Pruner module filter with a trade-off in

Multi-level Object Detector

False Positive Pruner
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the recall. The Interpolated Tracker module further boosts the
recall, although at the cost of adding some FPs or a slightly
reduced precision. Informed by the physics of bacterial motion
in collagen (Section 2.2.4), the Track Length Filter removes tracks
shorter than 60 frames and achieves a reasonable balance
between precision and recall.

Representative GT and predicted trajectories of bacteria in col-
lagen are shown in Figure 5A and Figure S4, Supporting
Information. To determine MEMTrack’s ability to describe the
average speed of the bacterial population accurately, we com-
pared the average speed of the GT bacteria (8.4 & 5.48 ums™")
with the tracked bacteria (9.7 4 7.3 pm s~ '), as shown in Figure 5B.
An unpaired t-test yielded a p-value of .0792, indicating a lack of
significant difference between the two groups; thus, MEMTrack
is able to successfully track bacteria and ascertain population-scale
motility speed in the dense and low-contrast collagen environment.

We then compared MEMTrack’s performance in the collagen
environment to four state-of-the-art baseline models, using four
criteria of precision, recall, mIOU, and RMSE (Table 2). In all
cases, predictions from the baseline models were compared
against the GT data, followed by filtering out tracklets that have
a minimum length of 60 frames. Using the maximum precision
criterion, MEMTrack achieved a precision of 76% precision, a
recall of 51%, an mIOU of 0.72, and an RMSE of 1.84 pm.
Comparatively, the classical computer vision-based methods
had lower performance. Trackmate had significantly lower pre-
cision and recall of 45% and 17%, respectively. MosaicSuite
showed a comparatively high recall at 71% but at the cost of a
significantly lower precision of 7% (i.e., only 7% of tracks are
TPs), making its results unusable without extensive manual post-
processing for filtering out the FPs. It should be noted that
MosaicSuite was developed to detect bright spots (i.e., lighter
than the background)™®; therefore, it cannot detect bacteria that
appear darker than the background. The background detection-
based method, YSMR, also showed much lower precision and
recall at 15% and 22%, respectively. The deep learning-based
method, DETR (trained on images only), combined with SORT,
achieved precision and recall of 79% and 22%, respectively.

Interpolated Tracker
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Figure 4. A) Precision and recall for each of the individual motility detectors over their respective GT motility sets and the combined detection result
against the entire test set. B) Change in precision and recall at each step of the False Positive Pruner module. C) Precision and recall after tracking and

Track Length Filter.
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Figure 5. A) Representative GT and corresponding predicted trajectories of bacteria in collagen. B) The average speed of GT bacteria tracked by a human
(red) and the trajectories produced by MEMTrack (blue), irrespective of their match to the GT in collagen (n=108 for GT, n=108 for tracked).

C) Representative GT and corresponding predicted trajectories of bacteria

in liquid medium. D) The average speed of the GT bacteria tracked by a

human (red) and the trajectories produced by MEMTrack (blue), irrespective of their match to the GT in liquid medium (n=65 for GT, n=38 for

tracked). The scale bars in the microscopy images are 20 pm. ns signifies

DETR, trained using images and motion features (produced by
MEMTrack’s Motion Enhancer module), had the highest recall at
86% but its precision was much lower than MEMTrack
at 29%. It is important to note that DETR inherently downscales
the resolution of image features, a process intended to aid trans-
former training. This resolution downscaling in DETR might
contribute to its suboptimal performance, as it potentially results
in the loss of critical details in smaller objects. Overall, our
approach provides a minimum of 2.6-fold higher precision than
the baseline methods with reasonably high recall. Furthermore,
MEMTrack notably outperforms nearly all baseline models,
achieving the highest mean mIoU and the lowest RMSE, under-
scoring its superior accuracy in both bounding box localization
and coordinate prediction.

3.3. Applicability of MEMTrack to Aqueous Environments

To assess MEMTrack’s generalizability to unseen media, we next
determined how MEMTrack, trained on collagen data, performs
in commonly used liquid environments. We evaluated the

Adv. Intell. Syst. 2024, 2300590 2300590 (9 of 14)

a lack of statistical significance between the datasets (p > .05).

performance of MEMTrack on bacteria motility data collected
in an aqueous medium (Video S3, Supporting Information).
Representative GT and predicted trajectories of bacteria in liquid
are shown in Figure 5C. To determine MEMTrack’s ability
to describe the average speed of the bacterial population
accurately, we compared the average speed of the GT
bacteria, 9.2+ 4.87 yms™", with that of the tracked bacteria,
11.0 +5.60 pm s, as shown in Figure 5D. An unpaired t-test
comparing the speeds of GT and tracked yielded a p-value of
1584, indicating no significant difference between the two
groups; thus, MEMTrack can track bacteria successfully and
ascertain their population-scale motility speed in the aqueous
environment.

Table 3 compares the zero-shot performance of MEMTrack
(pretrained in collagen) with the baseline models. Consistent
with the results in collagen, MEMTrack performed better than
all baseline models with 93% precision and 23% recall using
the maximum precision criterion, and 89% precision and 41%
recall using the maximum F1 score criterion. Trackmate pro-
duced somewhat comparable results with a precision of 83%
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Table 2. Comparison of MEMTrack’s performance in collagen against
baseline models. DETR (Images) was trained only on videos obtained
in collagen, while DETR (Images + Motion Features) was trained on
features from MEMTrack’s Motion Enhancer module.

Method Tracking Post Track mloU RMSE
Length Filter (60) [pm]
Precision Recall Precision Recall
Trackmate 0.43 0.20 0.45 0.17 0.16 5.09
MosaicSuite 0.03 0.94 0.07 0.71 0.28 4.17
YSMR 0.15 0.22 0.15 0.22 0.21 4.70
DETR (Images) + SORT 078 082 022 079 071 193

DETR (Images + Motion 0.23 0.88 0.29 086 0.72 1.77

Features) 4+ SORT

MEMTrack maximum 0.74 0.56 0.76 0.51 0.72 1.84
precision
MEMTrack maximum F1 0.49 0.83 0.53 0.79 0.73 1.61

score

Table 3. Comparison of MEMTrack's zero-shot inference-only
performance in liquid media with the baseline models. DETR (Images)
was trained only on videos obtained in collagen, while DETR (Images +
Motion Features) was trained on features from MEMTrack’s Motion
Enhancer module.

Method Tracking Post Track mloU RMSE

Length Filter (60) [rm]
Precision Recall Precision Recall

Trackmate 0.84 0.39 0.83 0.37 0.7 4.95

MosaicSuite 0.27 0.94 0.39 0.86 0.22 4.47

YSMR 0.54 0.55 0.54 0.55 0.20 4.67

DETR (Images) + SORT 0.17 0.89 0.20 0.82 0.40 3.62

DETR (Images + Motion 0.13 0.93 0.19 0.84 0.32 3.62

Features) + SORT

MEMTrack maximum 0.93 0.23 0.93 023 0.60 1.98

precision

MEMTrack maximum F1 0.88 0.43 0.89 041 0.60 1.90

score

and a recall of 37%. MosaicSuite’s precision was 39%, which was
significantly improved compared to its performance in collagen
(7%); nonetheless, its significantly low precision necessitates
manual intervention to remove FPs. YSMR demonstrated mod-
erate performance, achieving 54% precision and 55% recall. In
contrast, DETR’s (pretrained in collagen) zero-shot performance
was weaker, with a 19% precision and 84% recall. Expectedly,
applying the Track Length Filter improved the precision in most
cases and decreased the recall. Altogether, these results demon-
strate that MEMTrack can effectively track micro/nanoscale
objects in the previously unseen liquid media without addi-
tional training. The performance of MEMTrack and DETR in
liquid media can potentially be further improved by retraining
models on liquid data instead of using the pretrained Collagen
models.
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3.4. Effect of Change in Object Size, Shape, and Motion
Pattern on MEMTrack Performance

To assess MEMTrack’s versatility, we conducted two additional
experiments to evaluate MEMTrack’s performance in tracking
microrobots of varying shapes, sizes, and motion patterns. We
chose spherical and prolate spheroid BacteriaBots””), formed
by interfacing several motile bacteria with each microscale object
(Figure 6A,C). BacteriaBots (characteristic dimension: ~7.5-10 pm)
are significantly larger than bacteria (characteristic dimension:
~3.5 pm) and have motion characteristics that are distinctly dif-
ferent from those of bacteria.””~”%! As a result, a model trained to
detect bacteria is not expected to perform well in detecting
BacteriaBots.

To show the adaptability of our MEMTrack framework for
BacteriaBots, we implemented a transfer learning approach
where the model trained on data from bacteria in collagen
was fine-tuned on data from spherical BacteriaBots in the aque-
ous environment. Transfer learning is a standard procedure in
deep learning, where instead of starting the training process
from a randomly initialized neural network (i.e., from scratch),
pretrained weights learned on a source dataset (in this case, bac-
teria in collagen data) are used to initialize the neural network.
We allocated twelve videos for training and ten videos for testing.
All videos were at 20 FPS for 150s. Given that the spherical
BacteriaBots have a narrow speed distribution with values similar
to the high motility bacteria subpopulation in collagen, we used a
single-model framework for object detection. We fine-tuned the
model using the weights or learned parameters from the model
trained on high motility bacteria. Following the same methodol-
ogy (Section 2.1) and maintaining the same hyperparameter
thresholds (Section 2.3.4) except the bounding box size which
was adjusted for the BacteriaBot size, we generated predictions
for the BacteriaBot dataset. We evaluated the results using the
same metrics used in evaluating bacteria in collagen and aqueous
media. As reported in Table 4, we achieved a 99% precision, a
94% recall, an ToU of 0.90, and an RMSE of 0.56 pm for the
spherical BacteriaBots using the maximum precision criterion.
Additionally, we conducted a zero-shot inference experiment
on prolate spheroid BacteriaBots, further testing our fine-tuned
model’s adaptability without retraining. Our model demon-
strated an 82% precision, a 74% recall, a mean IoU of 0.61,
and an RMSE of 3.52 um.

Finally, we compared the average speed of GT and tracked
BacteriaBots (Figure 6B,D). For spherical BacteriaBots, the GT
average speed of 8.5 + 2.1 pm s~ was not significantly different
from the predicted speed of 8.743.1ums™' (p=.7777).
Similarly, for prolate spheroid BacteriaBots, the GT average
speed of 9.4 4 1.51 pm s~ 'was not significantly different from
the predicted speed 0f 9.9 4 2.14 um s~ (p = .7221). These results
underscore MEMTrack’s versatility for diverse tracking scenarios.

4, Limitations and Future Work

MEMTrack, while effective for various object shapes and sizes
and in various media, has limitations that present avenues for
future research. A primary limitation is its reduced efficacy in
tracking low-motility microrobots. This is due to MEMTrack’s
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Figure 6. A) Representative GT and corresponding predicted trajectories of spherical BacteriaBots in liquid medium. B) The average speed of the GT
spherical BacteriaBots tracked by a human (red) and the trajectories produced by MEMTrack (blue), irrespective of their match to the GT (n =10 for GT,
n =10 for tracked). C) Representative GT and corresponding predicted trajectories of prolate spheroid BacteriaBots in liquid medium. D) The average

speed of the GT prolate spheroid BacteriaBots tracked by a human (red) and

the trajectories produced by MEMTrack (blue), irrespective of their match to

the GT for prolate spheroid BacteriaBots in liquid medium (n =6 for GT, n=6 for tracked). The scale bars in the microscopy images are 20 pm. ns

signifies a lack of statistical significance between the datasets (p > .05).

Table 4. MEMTrack’s performance on spherical (inference from the trained model) and prolate spheroid (zero-shot analysis) BacteriaBots.

Test data Test mode Criteria Precision Recall mloU RMSE [um]
Spherical BacteriaBots Trained model Maximum precision 0.99 0.94 0.90 0.56
Spherical BacteriaBots Trained model Maximum F1 0.99 0.96 0.90 0.56
Prolate spheroid BacteriaBots Zeroshot Maximum precision 0.82 0.74 0.61 3.52
Prolate spheroid BacteriaBots Zeroshot Maximum F1 0.82 0.77 0.62 3.47

core design focusing on motion enhancement, which makes it
less suited for detecting and tracking objects exhibiting mini-
mal or no movement. Advancing our method to detect and
accurately track low-frequency motion patterns is a key area
for improvement. Additionally, MEMTrack currently employs
the SORT algorithm for tracking and handling missed detec-
tions, which operates under the assumption that the state
variables of the objects (e.g., velocities) change linearly over
time. However, as self-propelled microrobots often exhibit ran-
dom movement, incorporating a physics-based model in the

Adv. Intell. Syst. 2024, 2300590 2300590 (11 of 14)

SORT algorithm can improve MEMTrack’s performance by
better accommodating the stochastic motion of microrobots.
Finally, although MEMTrack shows superior precision and
recall metrics compared to baseline methods, there is signifi-
cant room for improvement in the challenging problem of
detecting and tracking microrobots in dense, low-contrast envi-
ronments. Future work can focus on developing detection
modules that use temporal information in long sequences
of frames with the help of transformer networks to detect
microrobots.

© 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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5. Conclusion

In this work, we present MEMTrack, an automated pipeline for
detecting and tracking microrobots in dense and low-contrast
environments, such as collagen. This is a particularly challenging
problem given the lack of visual features distinguishing the
foreground objects from the background. Our approach
leverages synthetic motion features, the RetinaNet object
detection model, and a modified SORT tracking algorithm with
interpolation to achieve robust results against different
background media at high precision. Our results demonstrate
that the proposed pipeline is versatile and adaptable to different
tracking scenarios. It can robustly substitute the tedious task
of manually tracking microrobots for predicting population-
scale speed values in different backgrounds (i.e., collagen and
liquid environments) and for different size and shape
microrobots.

We envision MEMTrack to impact both fundamental and
translational microrobotic research. In fundamental research,
high spatiotemporal resolution imaging is used to develop an
understanding of the physics of propulsion, swarm dynamics
(e.g., agent-agent interaction), and experimental evaluation
of centralized and decentralized control strategies. The resulting
images, often collected using bright-field microscopy, can be
low-contrast and difficult to process automatically. Bright-field
images collected in tissue phantoms (e.g., collagen, Figure 1) or
non-Newtonian biofluids (e.g., mucus) are even more challenging
to process automatically. Thus, robustly performing multiobject
trackers such as MEMTrack could have an immediate impact
on accelerating discoveries and advancing the fundamental
knowledge in the field. Microrobotic technology translational
efforts are currently centered around biomedical applications.
For in vivo applications, microrobots are imaged using MRI®*”
or ultrasound,®" which also produce grayscale and sometimes
low-contrast images. As a result, MEMTrack could also find
applications in investigating the biodistribution of microrobots
in complex invivo environments.
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