
Pattern-Based Peephole Optimizations with Java JIT Tests

Zhiqiang Zang
The University of Texas at Austin

Austin, Texas, USA
zhiqiang.zang@utexas.edu

Aditya Thimmaiah
The University of Texas at Austin

Austin, Texas, USA
auditt@utexas.edu

Milos Gligoric
The University of Texas at Austin

Austin, Texas, USA
gligoric@utexas.edu

ABSTRACT

We present JOG, a framework that facilitates developing Java JIT

peephole optimizations alongside JIT tests. JOG enables developers

to write a pattern, in Java itself, that specifies desired code trans-

formations by writing code before and after the optimization, as

well as any necessary preconditions. Such patterns can be written

in the same way that tests of the optimization are already written

in OpenJDK. JOG translates each pattern into C/C++ code that

can be integrated as a JIT optimization pass. JOG also generates

Java tests for optimizations from patterns. Furthermore, JOG can

automatically detect possible shadow relation between a pair of

optimizations where the effect of the shadowed optimization is

overridden by another. Our evaluation shows that JOG makes it

easier to write readable JIT optimizations alongside tests without

decreasing the effectiveness of JIT optimizations. We wrote 162

patterns, including 68 existing optimizations in OpenJDK, 92 new

optimizations adapted from LLVM, and two new optimizations that

we proposed. We opened eight pull requests (PRs) for OpenJDK,

including six for new optimizations, one on removing shadowed

optimizations, and one for newly generated JIT tests; seven PRs

have already been integrated into the master branch of OpenJDK.

CCS CONCEPTS

· Software and its engineering→ Just-in-time compilers;Do-

main specific languages; Software testing and debugging; Formal

software verification; Source code generation.

KEYWORDS

Just-in-time compilers, code generation, peephole optimizations

ACM Reference Format:

Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric. 2023. Pattern-Based

Peephole Optimizations with Java JIT Tests. In Proceedings of the 32nd ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

’23), July 17ś21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3597926.3598038

1 INTRODUCTION

Peephole optimization [21, 24] is an optimization technique per-

formed on a small set of instructions (known as a window), e.g.,

A + A is transformed to A << 1. Popular compilers such as GCC,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598038

1 @Test

2 @IR(failOn = {IRNode.ADD})

3 @IR(counts = {IRNode.SUB, "1"})

4 // Checks (a - b) + (c - a) => (c - b)

5 public long test8(long a, long b, long c) {

6 return (a - b) + (c - a);

7 }

Figure 1: An example JIT test available in OpenJDK.

LLVM, and Java JIT, include dozens if not hundreds of peephole

optimizations [3, 17, 29].

Traditionally, each peephole optimization is implemented as a

compiler pass. Each compiler pass detects windows, i.e., a sequence

of instructions that can be optimized, and replaces each window

with an equivalent, albeit more efficient, sequence of instructions.

These implementations are written in the language in which the

compiler is implemented (C/C++ for Java JIT) and they leverage

compiler infrastructure to detect instructions of interest. Repre-

sentation of these instructions inside the compiler infrastructure

is substantially different from code written in the programming

language itself [19]. This disconnect introduces a burden on com-

piler developers to perform proper reasoning to detect windows

of interest, to do the instruction mapping from high-level code

(what developers write) to low-level code, and to document their

intention. The process is tedious and error prone.

Alive [19] was an improvement over the traditional approach:

a developer writes patterns in a domain specific language (DSL)

over the intermediate representation (IR) of the program (LLVM

bitcode) which are then translated into compiler passes. The DSL

used in Alive is still very much disconnected from code written in

the programming language being optimized (C++). This disconnect

introduces a steep learning curve and lacks most of common soft-

ware tools, e.g., an IDE. Alive also focused on C++ intricacies and

undefined behavior.

Our insight is that many peephole optimizations can be expressed

in the programming language that is being optimized (e.g., Java).

We found the motivation in existing tests for Java JIT. Most tests

for JIT optimizations in OpenJDK are written in Java and some of

the tests contain Java code that follows specific patterns so as to

trigger the optimizations under test [28]. Figure 1 shows such a JIT

test from OpenJDK, which triggers the peephole optimization that

transforms (a - b) + (c - a) into c - b, by returning (a - b) + (c

- a) (line 6). Such a pattern expresses, in Java code, the window to

be recognized by a specific optimization. We propose to extend this

concept to use the patterns not only to write tests but to express the

entire optimization, including code before and after the optimization.

We present JOG, the first framework that enables developers to

write optimization patterns in a high-level language (Java). Namely,

using JOG, a Java JIT compiler developer writes optimization pat-

terns as Java statements. Patterns are type-checked (by the Java

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

compiler) and automatically translated into compiler passes (by

JOG). Additionally, Java tests for the optimizations can be automat-

ically generated from the patterns. Writing patterns in Java for the

Java JIT compiler ensures that sequences of statements are mean-

ingful, i.e., windows can indeed appear in programs (which is not

necessarily the case when matching intermediate representation or

compiler abstractions). Next, writing patterns in Java simplifies the

reasoning behind each peephole optimization: what used to be com-

ments documenting an optimization inside the Java JIT compiler

for dozens of lines of code, or what used to be a test that describes

how to trigger an optimization, becomes a self-documenting pat-

tern. Finally, while writing patterns in JOG, a developer can use

software engineering tools available for the language (e.g., IDE,

linter). Having patterns in Java also enables future application of

program equivalence checkers that work on either Java code or

bytecode (which can be easily obtained by compiling JOG patterns).

Furthermore, conciseness of patterns makes it easier to analyze

relations between optimizations. JOG automatically detects possible

shadow relation between a pair of optimizations where the effect

of the shadowed optimization is overridden by another. Consider

two optimizations 𝑋 and 𝑌 : 𝑋 transforms (a - b) + (c - d) into

(a + c) - (b + d) and 𝑌 transforms (a - b) + (b - c) into a -

c, where a, b, c, d are all free variables. Note that any expression

matching (a - b) + (b - c) (𝑋) also matches (a - b) + (c - d)

(𝑌), which means 𝑋 can be applied wherever 𝑌 can be applied, so

the effect of 𝑋 will shadow 𝑌 if 𝑋 is always applied before 𝑌 in a

compiler pass. JOG can automatically report the shadow relations.

Using JOG, we wrote a total of 162 optimization patterns, includ-

ing 68 existing optimizations in OpenJDK, 92 new optimizations

adapted from LLVM, and two new optimizations. Most of the pat-

terns that we extracted from OpenJDK were existing tests of the

optimizations, or they were hand-written as examples in the com-

ments documenting the C/C++ implementation. Our most complex

pattern has only 115 characters in contrast to the 462 characters of

its C/C++ counterpart. Our evaluation shows that generating code

from patterns using JOG does not reduce the effectiveness of JIT

optimizations. We also identified a bug in existing Java JIT as one

optimization was unreachable as a consequence of being shadowed

by another.

Recently, we have opened a group of eight pull requests (PRs) for

OpenJDK (six for new optimizations, one for fixing the aforemen-

tioned shadowed optimizations, and one for new JOG generated

JIT tests of existing optimizations). Seven of the PRs were already

accepted and integrated into the master branch; the remaining

PR is under review. We intend on opening PRs on the remaining

optimizations in the future.

The main contributions of this paper include the following:

• We present JOG, the first framework that allows developers to

specify a Java JIT peephole optimization as a pattern written in

Java itself, extending the existing approach to writing tests for

JIT. The pattern is automatically translated into C/C++ code as

a JIT optimization pass, and a Java test for the optimization is

generated from the pattern as needed.

• JIT optimizations written in JOG is easier to read and understand.

We translated 68 existing patterns in OpenJDK. The evaluation

shows a 64% reduction in characters of code and a 53% reduction

in the number of identifiers in code when writing optimizations

in JOG relative to existing hand-written code in OpenJDK.

• Code generated from JOG maintains the effectiveness of JIT opti-

mizations. The evaluation shows that the impact on performance

is minimal on replacing existing hand-written code in OpenJDK

with JOG generated code for existing patterns. We also wrote 92

new patterns adapted from LLVM. A total of six PRs on the new

patterns were opened, of which five PRs have been integrated

into the master branch of OpenJDK.

• We present an algorithm to determine if one optimization shad-

ows another written in patterns using JOG. We ran the algorithm

on all the translated patterns to detect shadows between patterns.

We opened one PR on removing shadowed patterns that has been

integrated into the master branch of OpenJDK.

• JIT tests generated from JOG complements existing test suites

in OpenJDK. We generated tests for existing optimizations in

OpenJDK and opened one PR to add 10 new tests for existing

untested optimizations in OpenJDK.

We believe that JOG enables developers to quickly write and evalu-

ate a large number of peephole optimizations by writing patterns

in a familiar programming language and very much similar to the

way the existing tests for JIT are written. JOG is publicly available

at https://github.com/EngineeringSoftware/jog.

2 EXAMPLE

The IR test, written in Java using IR test framework [30], is a recom-

mended approach in OpenJDK to testing JIT peephole optimizations.

We already showed such a test in Figure 1. While the test runs, the

method annotated by @Test (test8) is compiled by JIT, with the

expression (a - b) + (c - a) optimized to c - b. Then the IR shape

of the compiled method is checked against certain rules specified in

@IR (line 2ś3). The rules verify that the optimization from (a - b)

+ (c - a) to c - b indeed happens, by checking that the compiled

method must not contain ADD node (line 2) and must have exactly

one SUB node (line 3).

Using JOG, developers can write the optimization under test in

the same way as in the already existing test. Figure 2a shows a

pattern written using JOG that expresses the optimization, which

is a Java method annotated with @Pattern. The parameters of the

method declare all the variables (line 2 in Figure 2a), a, b, and c, that

are used in the method body. Parameter type long indicates the data

type involved in the optimization. Two API calls inside the method

body, before((a - b) + (c - a)) (line 3 in Figure 2a) and after(c

- b) (line 4 in Figure 2a), specify the matched expression before the

optimization and the transformed expression after the optimization,

respectively. Both before and after API call are written in the same

way as the existing test is written. before((a - b) + (c - a))

directly uses existing test code from return (a - b) + (c - a);

(line 6 in Figure 1), and after(c - b) is extracted from the comment

// Check (a - b) + (c - a) => (c - b) (line 4 in Figure 1).

Because the pattern and the test are written in the same way, not

only does JOG provide an intuitive way to express an optimization,

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

1 @Pattern

2 public void ADD8(long a, long b, long c) {

3 before((a - b) + (c - a));

4 after(c - b);

5 }

(a) Pattern written using JOG.

1 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {...

2 Node* in1 = in(1);

3 Node* in2 = in(2);

4 int op1 = in1->Opcode();

5 int op2 = in2->Opcode();

6 if (op1 == Op_SubL) {...

7 // Convert "(a-b)+(c-a)" into "(c-b)"

8 - if (op2 == Op_SubL && in1->in(1) == in1->in(2)) {

9 + if (op2 == Op_SubL && in1->in(1) == in2->in(2)) {

10 return new SubLNode(in2->in(1), in1->in(2));

11 }

12 }...

13 }

(b) Hand-written code (with bug) in OpenJDK.

1 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {...

2 Node* _JOG_in1 = in(1);

3 Node* _JOG_in11 = _JOG_in1 != NULL && 1 < _JOG_in1->req() ?

4 _JOG_in1->in(1) : NULL;

5 Node* _JOG_in12 = _JOG_in1 != NULL && 2 < _JOG_in1->req() ?

6 _JOG_in1->in(2) : NULL;

7 Node* _JOG_in2 = in(2);

8 Node* _JOG_in21 = _JOG_in2 != NULL && 1 < _JOG_in2->req() ?

9 _JOG_in2->in(1) : NULL;

10 Node* _JOG_in22 = _JOG_in2 != NULL && 2 < _JOG_in2->req() ?

11 _JOG_in2->in(2) : NULL;

12 if (_JOG_in1->Opcode() == Op_SubL

13 && _JOG_in2->Opcode() == Op_SubL

14 && _JOG_in11 == _JOG_in22) {

15 return new SubLNode(_JOG_in21, _JOG_in12);

16 }...

17 }

(c) Code generated from JOG.

Figure 2: An example of a peephole optimization as imple-

mented in OpenJDK and JOG, and associated test.

without writing any extra code, but also it can automatically gener-

ate the test from the pattern. First the @Testmethod declares exactly

the same free variables as the pattern (long a, long b, long c), and

returns exactly before’s expression in the pattern (return (a - b) +

(c - a);). Next JOG analyzes before((a - b) + (c - a)) and after(c

- b) in the pattern, (1) to find in after the numbers of operators

(one SUB) and (2) to find which operators disappear from before to

after (ADD). JOG then maps the operators to the corresponding IR

node types used in IR tests and makes @IR annotations (@IR(counts

= IRNode.SUB, “1”) and @IR(failOn = IRNode.ADD)). Eventually the

exactly same test as shown in Figure 1 can be generated from the

JOG pattern.

More importantly, JOG automatically translates a pattern into

the C/C++ code that can be directly included in a JIT optimization

pass. Figure 2c shows the C/C++ code translated by JOG from the

pattern, and Figure 2b shows the hand-written code extracted from

OpenJDK, that implements the same JIT peephole optimization that

Pattern := MethodModifier* MethodHeader MethodBody

MethodHeader := "void" Identifier "(" FormalParameterList ")"

MethodBody := "{" Stmt* "}"

Stmt := BeforeStmt | AfterStmt | IfStmt | AssignStmt

BeforeStmt := before "(" expression ")" ;

AfterStmt := after "(" expression ")" ;

Figure 3: JOGSyntax. Thenon-terminals that are not defined

in the figure share the same definition as Java [11].

transforms (a - b) + (c - a) into c - b. The implementation

contains two steps: (A)match any expression that is of interest to the

optimization and (B) return a new optimized equivalent expression.

In this example, any matched expression satisfies the following four

conditions: (1) the expression is an addition expression (implicitly

line 1 in Figure 2b because the method works only inside an additive

expression); (2) the left operand (a - b) is a subtraction expression

(line 6 in Figure 2b); (3) the right operand (c - a) is also a subtraction

expression (line 9 in Figure 2b); (4) the left operand of the left

sub-expression (a) is equal to the right operand of the right sub-

expression (a again) (line 9 in Figure 2b). After a match is found, the

code constructs a new subtraction expression (c - b) using b and c,

and returns it. The transformation reduces the cost of evaluating

the expression by two operations, from two subtractions and one

addition to only one subtraction. Interestingly, this code has a bug

(in OpenJDK) because of wrong access to the right operand of the

right sub-expression, which is supposed to be in2->in(2) while

developers wrote it as in1->in(2). It took 13 years to discover and

fix the bug; line 8 was inserted in 2008 and had been not touched

until 2021 [41]. If the optimization had rather been implemented

using JOG, the bug could have been avoided.

JOG reads from before and after APIs the expressions to match

and return, respectively. JOG analyzes the expressions to infer the

conditions to check and to infer the new expression to construct,

and eventually assembles everything in C/C++ code as the output.

Figure 2c shows the code generated from the pattern in Figure 2a.

The generated code keeps the same functionality while avoiding

the bug in the hand-written code of Figure 2b.

3 JOG FRAMEWORK

This section describes the JOG framework in detail. We describe the

syntax for writing patterns, semantics of the statements, translation

details, and test generation from patterns.

3.1 Syntax

Figure 3 defines the syntax of JOG, which is a subset of Java (for non-

terminals that are not defined in the figure, please refer to the Java

grammar [11]). Every optimization is written as a method in Java,

which we call a pattern. The method body contains several state-

ments. Each statement can be BeforeStmt, AfterStmt, conditional

or assignment. We introduce BeforeStmt to specify the expression

that a pattern has to match, and we introduce AfterStmt to specify

the optimized expression as a result of applying the optimization.

3.2 Semantics

The parameters of the method declare the variables used in the pat-

tern. There are two types of variables: constant and free. A constant

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

variable represents a literal (e.g., 42); a free variable represents any

expression, including literals. A parameter declares a free variable

unless explicitly declared as a constant variable.

The semantics of a pattern is a peephole optimization that trans-

forms a certain set of instructions into another set of instructions.

Thus, a pattern must have one BeforeStmt and one AfterStmt. Both

statements contain an expression. The expression inside BeforeStmt

defines the set of instructions that can be transformed by the op-

timization, and the expression inside AfterStmt defines the set of

instructions as a result of the optimization. It is possible that the

optimization is supposed to be applied only under certain precondi-

tions. Any necessary precondition can be specified as the condition

of an IfStmt, and either BeforeStmt or AfterStmt can be included in

the łthenž branch of such IfStmt. To ensure every pair of BeforeStmt

and AfterStmt match with each other, AfterStmt must be either a

sibling node of BeforeStmt after it (in sequential order) or a de-

scendant of such a sibling node, e.g., if ([COND]) {BeforeStmt}

AfterStmt is not a valid pattern because the AfterStmt is neither a

sibling node of BeforeStmt, nor a descendant of such a sibling node.

3.3 Translation

We implement JOG in the Java programming language and provide

twoAPI annotations, @Pattern and @Constant, and twoAPImethods,

void before(int expression) and void after(int expression) (int

can also be long), to express a pattern. We also reuse Java constructs

to make it easier to write a pattern, such as if statements and

assignments.

A pattern is recognized by a method annotated with @Pattern.

All variables used in the body of the method must be declared as

parameters of the method. A parameter can be annotated with

@Constant to indicate that the parameter represents a constant vari-

able rather than a free variable. A valid pattern requires a before

method call and an after method call in the method body and it

may contain if statements for preconditions or assignments for

local re-assignment of variables.

JOG starts translating a pattern by parsing the expression from

before API and constructing an eAST (extended abstract syntax

tree, which is strictly a directed acyclic graph) for the expression.

During the construction, JOG maintains a map from identifiers in

the expression, such as variables or number literals, to leaf nodes in

the eAST. This map is then used to construct the eAST for the ex-

pression from after API or any preconditions, because JOG reuses

the same node in before when seeing the same identifier in after

API or preconditions, to ensure the correct transformation from

before to after. Figure 4 shows the eASTs for the before’s and

after’s expression of pattern ADD8 (Figure 2a).

JOG next translates eASTs into C/C++ code that can be included

in a JIT optimization pass. As we have seen in Section 2, the gener-

ated C/C++ code consists of an if statement. The condition of the

if statement is the conjunction of all the conditions that have to

be satisfied for any expression to be matched by the pattern. The

then branch of the if statement ends with a return statement that

returns an optimized expression. JOG first traverses before’s eAST,

and for every node in the eAST JOG translates the path from the

root to the node into a pointer access chain in C/C++ (line 2ś11

in Figure 2c). For example, node 𝑏 in Figure 4a can be accessed

+

- -

a b c

𝑟𝑏

𝑝 𝑞

𝑎 𝑏 𝑐

(a) eAST of before expression.

-

c b

𝑟𝑎

𝑐 𝑏

(b) eAST of after expression.

Figure 4: eASTs for pattern ADD8 in Figure 2a.

by in(1)->in(2). Note one node could be accessed in more than

one way, and JOG always picks the smallest one in lexicographic

order. Considering node 𝑎 in in Figure 4a, which is both the left

child of node 𝑝 (in(1)) and the right child of node 𝑞 (in(2)), this

node can be accessed by both in(1)->in(1) and in(2)->in(2), JOG

translates the node into in(1)->in(1). Next, JOG generates the con-

ditions. JOG traverses before’s eAST again to generate operator

check and possible constant check, for example, checking subtrac-

tion operators for node 𝑝 , _JOG_in1->Opcode() == Op_SubL (line 12

in Figure 2c), and 𝑞, _JOG_in2->Opcode() == Op_SubL (line 13 in

Figure 2c), where _JOG_in1 = in(1) and _JOG_in2 = in(2). Also,

JOG generates same-node check for any node that can be accessed

in more than one way from the root. For instance, node 𝑎 in Fig-

ure 4a results in the condition _JOG_in11 == _JOG_in22 (line 14

in Figure 2c), where _JOG_in11 = in(1)->in(1) and _JOG_in22 =

in(2)->in(2). Additionally, if the pattern provided contains any if

conditions, i.e., the specified optimization requires preconditions,

JOG translates the eASTs of the preconditions into conditions in

C/C++ code in the same way.

To translate after’s eAST, JOG performs a Depth-First Search

(DFS). Every leaf node in after’s eAST is shared with before’s

eAST so JOG reuses the pointer access chain for the node, i.e.,

_JOG_in21 for node 𝑐 and _JOG_in22 for node 𝑏 in Figure 4b. For an

internal node in after’s eAST, JOG instantiates a new expression

according to the operator of the node. For example, node 𝑟𝑎 in

Figure 4b leads to new SubLNode(_JOG_in21, _JOG_in12) (line 15 in

Figure 2c). Finally JOG generates a return statement that returns the

instantiation generated for the root node as translation of after’s

eAST.

With before’s and preconditions’ eASTs translated into condi-

tions and after’s eAST translated into a return statement, JOG

encapsulates them in an if statement (line 12ś16 in Figure 2c) and

prepend proper variable declarations (line 2ś11 in Figure 2c). This

concludes the translation of one pattern. When there are multiple

patterns, JOG translate them in the order of the patterns written in

the file provided.

3.4 Test Generation

Writing the pattern in the same way that the existing test is written

allows JOG to generate an IR test from the pattern. We next de-

scribe the process of test generation using the example in Figure 1.

Although the test is an already existing IR test in OpenJDK, JOG

can generate exactly the same test from the pattern (Figure 2a).

The @Testmethod first declares exactly the same free variables as

the pattern (long a, long b, long c), and returns exactly before’s

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

+

- -

a b c d

𝑥1

𝑥2 𝑥5

𝑥3 𝑥4 𝑥6 𝑥7

+

- -

a b c

𝑦1

𝑦2 𝑦5

𝑦3 𝑦4 𝑦6

@Pattern

public void ADD2(int a, int b,

int c, int d) {

before((a - b) + (c - d));

after((a + c) - (b + d));

}

@Pattern

public void ADD7(int a, int b,

int c) {

before((a - b) + (b - c));

after(a - c);

}

𝐵𝑥 : (a - b) + (c - d) 𝐵𝑦 : (a - b) + (b - c)

Φ
𝑥 (Constraints on

shape of eAST 𝐵𝑥):

𝑥1 = tree (+) 𝑥2 𝑥5

∧ 𝑥2 = tree (+) 𝑥3 𝑥4

∧ 𝑥5 = tree (+) 𝑥6 𝑥7

Φ
𝑦 (Constraints on

shape of eAST 𝐵𝑦):

𝑦1 = tree (+) 𝑦2 𝑦5

∧ 𝑦2 = tree (+) 𝑦3 𝑦4

∧ 𝑦5 = tree (+) 𝑦4 𝑥6

Ψ (Equivalence between eAST 𝐵𝑥 and 𝐵𝑦):

𝑥1 = 𝑦1 ∧ 𝑥2 = 𝑦2 ∧ 𝑥3 = 𝑦3 ∧ 𝑥4 = 𝑦4 ∧ 𝑥5 = 𝑦5 ∧ 𝑥6 = 𝑦4 ∧ 𝑥7 = 𝑦6

𝐹 (Final SMT formula to specify the relation of 𝑋 shadowing 𝑌):

∀𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6 . Φ
𝑦 ⇒ ∃𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 . Φ

𝑥 ∧ Ψ

Figure 5: Illustration of shadow detecting algorithmon patternADD2 (𝑋) shadowingADD7 (𝑌). Every eAST node is represented

by a variable, and the dashed lines connect equivalent nodes (e.g., 𝑥1 is equivalent to 𝑦1). The formula 𝐹 shows the final SMT

formula that specifies the shadow relation.

expression in the pattern (return (a - b) + (c - a);). One exception

is that when the pattern has a constant variable (Section 3.3), JOG

uses a random number to substitute the constant variable. Next JOG

analyzes before and after in the pattern. JOG searches in after’s

eAST (c - b) to count the number of operators (one SUB), and

compares before’s and after’s eASTs to obtain the operators that

exist in before but not in after (ADD). JOG then maps the operators

to the corresponding IR node types used in IR tests and makes

@IR annotations (@IR(counts = IRNode.SUB, “1”) and @IR(failOn =

IRNode.ADD)).

Our current implementation does not generate tests for the pat-

terns with preconditions that specify invariants between variables.

For example, a pattern rewritten from OpenJDK [39] that trans-

forms (x >>> C0) + C1 to (x + (C1 << C0)) >>> C0) requires a

precondition C0 < 5 && -5 < C1 && C1 < 0 && x >= -(y << C0).

A random integer number would not be a good test input for con-

stant variable C0 or C1 in the pattern because it cannot satisfy the

precondition so as to trigger the optimization. We plan to leverage

constraint solvers [8] to obtain valid test inputs for such tests in

future work.

4 SHADOWING OPTIMIZATIONS

Java JIT compilers contain a large number of peephole optimiza-

tions. The maintenance becomes difficult as new optimizations are

included. When developers want to add a new optimization, they

have to be careful that this optimization’s effect is not overridden

by some existing optimization. Consider two optimizations X and

Y in an optimization pass, which are sequentially placed, i.e., X

followed by Y. If the set of instructions that Y matches is a subset of

the set of instructions that X matches, then Y will never be invoked

because X is always invoked before Y for any matched instructions.

In this case, we say X shadows Y or Y is shadowed by X. For example,

1: Input: 𝑋 , 𝑌 : Pattern
2: Output: 𝑟𝑒𝑠 ∈ {YES,NO,UNKNOWN } if 𝑋 shadows 𝑌
3: function Determine(𝑋 , 𝑌)
4: 𝐵𝑥 ← before(𝑋)
5: 𝐵𝑦 ← before(𝑌)
6: if not SameShape(𝐵𝑥 , 𝐵𝑦) then
7: return NO
8: Define a recursive data type𝑇 with two constructors:

nil : int→ 𝑇
tree : opcode𝑇 𝑇 → 𝑇

9: 𝑉 𝑥 ,𝑀𝑥 ← CreateNewVariables(𝐵𝑥 ,𝑇)
10: 𝑉 𝑦 ,𝑀𝑦 ← CreateNewVariables(𝐵𝑦 ,𝑇)
11: Φ

𝑥 ← ConstrainShape(𝐵𝑥 ,𝑀𝑥)
12: Φ

𝑦 ← ConstrainShape(𝐵𝑦 ,𝑀𝑦)
13: Ψ← ConstrainEqivalence(𝐵𝑥 , 𝐵𝑦 ,𝑀𝑥 ,𝑀𝑦)
14: 𝐹 ←∀𝑣𝑦∈𝑉 𝑦 . Φ𝑦 ⇒ ∃𝑣𝑥 ∈𝑉𝑥 . Φ𝑥 ∧ Ψ

15: return Prove(𝐹)

Figure 6: Shadow determining algorithm.

Figure 5 shows such a pair of optimizations written in patterns,

where pattern ADD2 shadows pattern ADD7.

The shadow problem between two arbitrary optimizations writ-

ten in patterns X and Y can be rewritten as: for any expression

matched by Y, does X match the expression. JOG encodes the prob-

lem into an SMT formula and solves it using an SMT solver (Z3[8]).

Figure 6 shows the overall algorithm, which we explain using a

running example in Figure 5.

The algorithm first extracts before’s eASTs (𝐵𝑥 and 𝐵𝑦) from

pattern 𝑋 and 𝑌 , respectively (line 4ś5), and then checks if 𝐵𝑥

and 𝐵𝑦 share the same shape (line 6). In the running example

from Figure 5, 𝐵𝑥 matches 𝐵𝑦 node-by-node, except node 𝑏 in

𝐵𝑦 corresponds to both nodes 𝑏 and 𝑐 in 𝐵𝑥 . Note that function

SameShape performs a weak instead of exact matching on node types,

which allows a leaf node to match with an internal node because a

leaf nodemay represent an expression aswell as a variable. Consider

an expression ((e + f) - b) + (c - d), pattern ((a - b) + (c - d)

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

=> (a + c) - (b + d)) can still match the expression if we replace

a with e + f.

If 𝐵𝑥 and 𝐵𝑦 have different shapes, the algorithm will immedi-

ately return NO for the final result (line 7), i.e, 𝑋 does not shadow

𝑌 . To have such a rough shape check helps the algorithm more

efficiently determine the shadow relation for two totally different

patterns, which is common in practice. However, having the same

shape does not necessarily mean 𝑋 shadows 𝑌 , i.e., any expression

matched by 𝐵𝑦 can also be matched by 𝐵𝑥 . Consider two patterns

𝑈 , a + a => · · · , and 𝑉 , a + b => · · · , 𝑈 and 𝑉 share the same

shape but𝑈 does not shadow 𝑉 . A counterexample is expression

1 + 2 which is matched by 𝑉 but not𝑈 .

To further solve the shadow problem, we describe it formally

as: for all expression 𝐸𝑦 matched by 𝑌 , can we always construct

another expression 𝐸𝑥 matched by 𝑋 and ensure that the two ex-

pressions are equivalent? If the answer is yes, then 𝑋 shadows 𝑌 ;

otherwise 𝑋 does not shadow 𝑌 . Note that we say two expressions

are equivalent iff they have exactly the same eAST. We make such

definition because JIT checks the structure of an expression, rather

than evaluate the expression, to determine if an optimization can be

applied on the expression. If two expressions are equivalent, they

are evaluated to the same value, but the converse does not hold. For

example, expression a + b and a + (b + 0) are always evaluated to

the same value but they are not equivalent in our definition. Thus,

with this definition of equivalence, the target SMT formula we want

to construct is:

∀𝐸𝑦 .
(

𝑌 matches 𝐸𝑦
)

⇒ ∃𝐸𝑥 . (𝑋 matches 𝐸𝑥) ∧
(

𝐸𝑥 = 𝐸𝑦
)

.

First we construct the formulas for 𝑌 (𝑋) matching 𝐸𝑦 (𝐸𝑥). We

need to encode 𝐵𝑦 into a list of constraints that 𝐸𝑦 needs to satisfy

in order to be matched. We define a recursive data type 𝑇 with

two constructors: (1) terminal constructor nil with no argument,

and (2) non-terminal constructor tree with the opcode and all the

operands as arguments (line 8). We also create a variable with

type 𝑇 for every node in the eAST (line 9 and 10). In our example,

the nodes in eAST 𝐵𝑥 are represented by variables 𝑥1 to 𝑥7. Next,

we encode the shape of the eAST into several constraints (line 11

and 12). For example, the root node of 𝐵𝑥 and its two children in

Figure 5 satisfies the constraint 𝑥1 = tree (+) 𝑥2 𝑥5, where 𝑥1, 𝑥2,

𝑥5 is the variable mapped to the root node, the left child, and the

right child, respectively. We traverse the entire eAST to add one

such constraint for every internal node. Specifically, for a node

that represents a constant or number literals, we include an extra

constraint on the value contained using the terminal constructor

nil. Figure 5 lists the constraints encoded from eAST 𝐵𝑥 and 𝐵𝑦 ,

resulting in Φ
𝑥 and Φ

𝑦 , respectively.

Next, we encode equivalence between 𝐵𝑥 and 𝐵𝑦 into formulas

(line 13). We perform a DFS on both eASTs at the same time and

add one equivalence relation, in terms of the variables of type 𝑇

mapped, for every pair of nodes visited, e.g., that the root nodes of

𝐵𝑥 and 𝐵𝑦 are equivalent is encoded into 𝑥1 = 𝑦1. For our running

example, every dashed line in Figure 5 connects two equivalent

nodes, and Ψ conjoins all the equivalence constraints between 𝐵𝑥

and 𝐵𝑦 .

With all the constraints ready, we now assemble them into the

complete SMT formula (line 14). The final formula 𝐹 for our running

example is

∀𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6 . Φ
𝑦 ⇒ ∃𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 . Φ

𝑥 ∧ Ψ,

where Φ𝑥 is

(𝑥1 = tree (+) 𝑥2 𝑥5)∧(𝑥2 = tree (+) 𝑥3 𝑥4)∧(𝑥5 = tree (+) 𝑥6 𝑥7) ,

Φ
𝑦 is

(𝑦1 = tree (+) 𝑦2 𝑦5)∧(𝑦2 = tree (+) 𝑦3 𝑦4)∧(𝑦5 = tree (+) 𝑦4 𝑥6) ,

and Ψ is (𝑥1 = 𝑦1) ∧ (𝑥2 = 𝑦2) ∧ (𝑥3 = 𝑦3) ∧ (𝑥4 = 𝑦4) ∧ (𝑥5 = 𝑦5) ∧

(𝑥6 = 𝑦4) ∧ (𝑥7 = 𝑦6). Proving the formula then answers whether

𝑋 shadows 𝑌 (line 15). If the formula is valid, then function Prove

returns YES, i.e., 𝑋 shadows 𝑌 ; if the formula is not valid, then

Prove returns NO, i.e., 𝑋 does not shadow 𝑌 ; if the SMT solver

is not able to determine the outcome before timeout, then Prove

returns UNKNOWN. In our example, for any set of𝑦 variables, there

always exist a set of 𝑥 variables such that the entire formula holds,

e.g., 𝑥1 ← 𝑦1, 𝑥2 ← 𝑦2, 𝑥3 ← 𝑦3, 𝑥4 ← 𝑦4, 𝑥5 ← 𝑦5, 𝑥6 ← 𝑦4,

𝑥7 ← 𝑦6. Thus, the formula 𝐹 is proven, so 𝑌𝐸𝑆 is returned, i.e., 𝑋

shadows 𝑌 .

Neither 𝑋 nor 𝑌 has any preconditions in the example from

Figure 5, but JOG can solve the shadow problem for patterns with

preconditions. We encode eASTs of preconditions in the same way

as eASTs of before. Preconditions may contain equivalence on

values as well as shapes (e.g., a pattern to match 0 - (x + C) with

precondition C != 0 where C is a constant [40]), so we introduce

another set of variables to encode constraints on values. Then we

encode both shape and value constraints, and both shape and value

equivalence. We construct a target SMT formula involved with both

shape and value constraints and equivalence.

5 EVALUATION

We describe the setup of our experiments, quantify code complexity

of patterns written using JOG, show performance comparison with

hand-written optimizations, and describe test generation and our

contributions to OpenJDK.

5.1 Setup

Table 1 is the summary of our work to write 162 patterns us-

ing JOG. For the first category of patterns from OpenJDK, we se-

lected addnode.cpp, subnode.cpp and mulnode.cpp in src/hotspot/-

share/opto/ and we studied Ideal methods defined in these files.

The Idealmethod reshapes the IR graph rooted at this node and re-

turns the reshaped node as an optimized node. Every Idealmethod

may containmany peephole optimizations.We identified and rewrote

68 optimizations into patterns using JOG. For the second cate-

gory of patterns, we studied LLVM’s InstCombine pass that per-

forms numerous algebraic simplifications that improve efficiency,

referring to Alive’s approach [19]. We translated 92 patterns from

InstCombineAddSub.cpp, InstCombineAndOrXor.cpp in llvm/lib/Tra-

nsforms/InstCombine/. When we studied optimizations from source

code files in OpenJDK and LLVM, we followed the order in which

optimizations appear in the files to rewrite them in patterns using

JOG, such that the generated C/C++ code from these patterns will

be in a proper order. Additionally, we proposed two optimizations

and we wrote them as patterns.

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

Table 1: Summary of patterns that we wrote in JOG.

#Patterns #OpenJDK #LLVM #Original #PRs

162 68 92 2 7

We ran all experiments on a 64-bit Ubuntu 18.04.1 desktop with

an Intel(R) Core(TM) i7-8700 CPU @3.20GHz and 64GB RAM. The

SHA of OpenJDK repository [42] we used is b334d96 and the SHA

of LLVM repository [18] is 103e1d9.

We evaluate JOG by answering the following research questions:

RQ1: How does JOG compare to hand-written optimizations in

terms of code complexity?

RQ2: How does the code generated from JOG compare in perfor-

mance to existing hand-written code in OpenJDK?

RQ3: How effective is JOG at detecting shadows between patterns?

RQ4: How is JOG used to generate tests from patterns and how

does it contribute to OpenJDK?

We address RQ1 as to better understand the benefit of using JOG to

write optimizations for Java JIT compilers; we use code reduction

(in terms of the number of characters and identifiers) as a proxy

when answering this question. We address RQ2 to understand the

performance of JOG’s generated code compared to hand-written

code; namely, we wanted to understand the impact on the effective-

ness of JIT optimizations. We address RQ3 to study the effectiveness

of JOG for detecting shadowing optimizations. We address RQ4

to evaluate JOG’s test generation from patterns and describe pull

requests we opened for OpenJDK.

5.2 Code Complexity

We select two code features, number of characters and number

of identifiers, as a metric to quantify code complexity of patterns

written using JOG [6]. We count the number of characters and

the number of identifiers for every pattern written using JOG and

its counterpart hand-written in OpenJDK. We exclude any white-

spaces or newlines when counting characters. We exclude any

reserved words in Java or C/C++ languages when counting identi-

fiers, and Figure 7 illustrates the way we count the identifiers using

an earlier example (see section 2). Table 2 compares these numbers

between hand-written C/C++ code in OpenJDK and corresponding

patterns written using JOG. Namely, łHand-writtenž means the

hand-written C/C++ code in OpenJDK, and łJOG Patternž means

Java code in JOG. The columns of łReduction (%)ž show the per-

centage of characters and identifiers reduction from hand-written

C/C++ code to JOG patterns. Additionally, we provide characters

and identifiers of generated C/C++ code from JOG as a reference,

which is shown in the columns of łJOG Generatedž.

Using JOG to write patterns instead of directly writing C/C++

code, the total characters written is decreased from 11,000 to 3,987,

and the total identifiers written is decreased from 1,462 to 692. The

characters of hand-written C/C++ code is an underestimate of actual

numbers because in most cases we do not include the additional

lines for declarations of variables due to inconvenience of counting.

Due to the same reason, the identifiers of hand-written C/C++

long a, long b, long c {

1 2 3

before((a - b) + (c - a));

4 5 6 7 8

after(c - b); }

9 10 11

(a) Pattern code written using JOG (Figure 2a).

Node* in1 = in(1);

1 2 3

Node* in2 = in(2);

4 5 6

int op1 = in1->Opcode();

7 8 9

int op2 = in2->Opcode();

10 11 12

if (op1 == Op_SubL) {

13 14

if (op2 == Op_SubL && in1->in(1) == in2->in(2) {

15 16 17 18 19 20

return new SubLNode(in2->in(1), in1->in(2)); } } }

21 22 23 24 25

(b) Hand-written code in OpenJDK (Figure 2b).

Figure 7: Example of identifier counting.

code shown in Table 2 is also an underestimate of actual numbers.

However, using JOG towrite patterns still shows a significant 63.75%

savings in terms of the number of characters and 52.67% savings in

terms of the number of identifiers.

There are few groups of optimizations where we write more

characters and/or identifiers of code to express them in patterns

using JOG. For example, LSHIFT2 is an optimization that transforms

(x >> C0) << C0 into x & -(1 << C0), and LSHIFT3 is a very similar

optimization that transforms (x >>> C0) << C0 into the same result.

In OpenJDK these two optimizations are implemented together by

including both >> and >>> operators, but we write two separate

patterns using JOG, in more lines of code. However, JOG still saves

27.88% characters. We leave how to express the same simplification

as in OpenJDK using JOG as future work.

We also count the number of characters and identifiers of gener-

ated C/C++ code from JOG (see columns of łJOG Generatedž). It is

unsurprising that the generated code has much higher numbers of

characters and identifiers than hand-written code, because JOG’s

design of C/C++ code generation prefers consistency to flexibility

of coding style, which will benefit future maintenance. For exam-

ple, is_int() and isa_int() are used interchangeably in OpenJDK

to check if a type is of int, but JOG sticks to isa_int(), which is

recommended, because it returns NULL instead of throwing an asser-

tion failure when the checked type is not int. After all, as long as

generated code keeps the effectiveness of optimizations, it is always

preferred to increase maintainability. We will compare performance

of generated code and hand-written code in Section 5.3.

5.3 Performance

Our objective with RQ2 is to demonstrate that the performance of

JIT does not substantially change when replacing the hand-written

code in OpenJDK with code generated from patterns.

A total of 68 optimizations in OpenJDK are replaced using code

generated from JOG. To evaluate their performance, we use the Re-

naissance benchmark suite [43] which is a benchmark suite for JVM

consisting of 27 individual benchmarks. Some of these benchmarks

(neo4j-analytics) are incompatible with Java 18 (Java version used

in this paper) and are discarded from the experiment. Furthermore,

some benchmarks exhibit large variance in their execution times

across multiple runs. Since such large variances can lead to inac-

curacies in performance evaluation, these benchmarks need to be

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

Table 2: Comparison of number of characters and number

of identifiers between hand-written C/C++ code in OpenJDK

and corresponding patterns written using JOG.

Names
Hand-written JOG Generated JOG Pattern Reduction (%)

#Chars #Ids #Chars #Ids #Chars #Ids #Chars #Ids

SUB1 167 24 171 21 47 9 71.86 62.50
SUB2 264 38 412 43 88 17 66.67 55.26
SUB3 340 48 421 45 89 17 73.82 64.58
SUB4 134 20 280 29 38 8 71.64 60.00
SUB5 134 20 280 29 38 8 71.64 60.00
SUB6 134 20 280 29 38 8 71.64 60.00
SUB7 200 31 333 36 48 9 76.00 70.97
SUB8 213 32 395 44 66 10 69.01 68.75
SUB9 169 27 443 45 47 11 72.19 59.26
SUB10 169 27 443 45 47 11 72.19 59.26
SUB11 169 27 443 45 47 11 72.19 59.26
SUB12 169 27 443 45 47 11 72.19 59.26
SUB13 179 26 319 32 71 15 60.34 42.31

SUB14

611 87 1,942 196 188 48 69.23 44.83
SUB15
SUB16
SUB17

SUB18 338 48 344 36 38 5 88.76 89.58
ADD1 284 40 443 50 83 13 70.77 67.50
ADD2 290 38 503 51 60 14 79.31 63.16

ADD3
173 25 888 90 94 22 45.66 12.00

ADD4

ADD5
173 25 888 90 94 22 45.66 12.00

ADD6

ADD7 173 25 443 45 47 11 72.83 56.00
ADD8 173 25 443 45 47 11 72.83 56.00
ADD9 141 21 290 31 38 8 73.05 61.90
ADD10 141 21 290 31 38 8 73.05 61.90
ADD11 462 67 563 65 115 22 75.11 67.16

ADD12

609 85 1,942 196 188 48 69.13 43.53
ADD13
ADD14
ADD15

ADD16
710 78 1,530 152 416 44 41.41 43.59

ADD17

ADD18 204 29 338 37 34 5 83.33 82.76

OR1
360 38 1,594 157 371 44 -3.06 -15.79

OR3

OR2
351 38 1,598 157 375 44 -6.84 -15.79

OR4

MIN1 160 25 292 30 83 19 48.12 24.00
AND1 182 25 327 36 33 5 81.87 80.00
LSHIFT1 326 38 490 54 106 15 67.48 60.53

LSHIFT2
165 19 743 80 119 20 27.88 -5.26

LSHIFT3

LSHIFT4
279 34 1,059 104 139 26 50.18 23.53

LSHIFT5

LSHIFT6 264 28 484 52 92 14 65.15 50.00
RSHIFT1 353 42 479 53 97 14 72.52 66.67
URSHIFT1 303 32 470 55 90 17 70.30 46.88
URSHIFT2 455 55 677 69 90 16 80.22 70.91
URSHIFT3 339 41 472 53 83 14 75.52 65.85
URSHIFT4 246 27 412 44 64 10 73.98 62.96
URSHIFT5 294 39 334 34 54 8 81.63 79.49
∑

11,000 1,462 24,941 2,581 3,987 692 63.75 52.67

discarded. To identify these benchmarks, we built a łvanillaž ver-

sion of OpenJDK termed as baseline. Each benchmark is executed

on the baseline build of OpenJDK five times with each execution

consisting of 100 iterations to warm up the JVM and consequently

trigger the JIT optimizations. We then compute the coefficient of

variance (CV) [4] for each benchmark across the five runs by only

considering the last 10 iterations of each run, when JVM is fully

warmed up. Benchmarks with CV exceeding 10% are discarded from

the experiment. Following these two filtering stages, we excluded

17 more benchmarks and the remaining suitable benchmarks used

in the experiment are log-regression, als, page-rank, finagle-http,

scala-kmeans, fj-kmeans, gauss-mix, par-mnemonics and dec-tree.

We now describe the approach used to evaluate the performance

of an optimization. The previously identified benchmarks are exe-

cuted 5 times each on the baseline build with each run once again

consisting of 100 iterations. The baseline execution time for a bench-

mark is then computed by averaging the last 10 iterations over the

5 runs. This procedure is then repeated for each optimization, by

replacing the hand-written code in the baseline source with the

JOG generated code for the corresponding optimization, to yield

the execution time of the benchmarks for that optimization build. A

relative difference measure as shown below is then used to evaluate

the performance of an optimization (JOG generated) relative to

baseline (hand-written):

timehand-written − timegenerated

timehand-written

�

�

�

�

benchmark

where timehand-written/timegenerated is the average execution time

of a benchmark based on bootstrap re-sampling [9] from 50 total exe-

cutions, i.e., last 10 iterations over 5 runs, of hand-written/generated

code. Figure 8 shows the percentage speedup of JOG generated

code relative to hand-written code for every group of optimizations

in Table 2 and the filtered subset of benchmarks. A positive speedup

of generated code relative to hand-written code is marked with an

up arrow and a negative speedup (slowdown) with a down arrow.

Based on the results of significant difference testing using boot-

strap re-sampling, those without statistically significant difference

(𝑝 = 0.05) between JOG generated and hand-written are marked

with circles. From Figure 8, most of benchmarks show no signifi-

cant difference or small differences within the range of 5%. Some

benchmarks, e.g., fj-kmeans and gauss-mix, show more differences.

We investigated the benchmarks and found such differences even

existed when comparing results of baselines between two exper-

iments, which indicates such benchmarks are more sensitive to

noise. Overall, the execution times of OpenJDK build for the Renais-

sance suite with JOG generated code is comparable in performance

to that with hand-written code.

5.4 Shadow between Patterns

Recall that JOG is able to check if one pattern shadows another pat-

tern (Section 4). We check each pair of patterns (total 162 patterns)

to evaluate JOG’s effectiveness on detecting shadows between pat-

terns. We set a timeout with 2 seconds for every check of two

patterns and all checks finish within the given time and return

definite results (YES or NO, without UNKNOWN as defined in Fig-

ure 6). Table 3 enumerates all 9 pairs of patterns where one shadows

the other (JOG returned YES). In every row, łShadowingž pattern

shadows łShadowedž pattern. The column of łBeforež shows the ex-

pression in beforeAPI, which is the expression to be matched in the

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

lo
g-

re
gr

es
si
on

 (
3

▴,
 3

 ▾
, 3

5
∙)

al
s
(0

 ▴
, 1

0
▾,
 3

1
∙)

pa
ge

-r
an

k
(1

7
▴,
 3

 ▾
, 2

1
∙)

fin
ag

le
-h

tt
p

(1
2

▴,
 6

 ▾
, 2

3
∙)

sc
al
a-

km
ea

ns
 (
12

 ▴
, 9

 ▾
, 2

0
∙)

fj-
km

ea
ns

 (
0

▴,
 2

9
▾,
 1

2
∙)

ga
us

s-
m

ix
 (
0

▴,
 3

3
▾,
 8

 ∙
)

pa
r-
m

ne
m

on
ic
s
(1

9
▴,
 7

 ▾
, 1

5
∙)

de
c-

tr
ee

 (
0

▴,
 9

 ▾
, 3

2
∙)

SUB1 (1 ▴, 3 ▾, 5 ∙)

SUB2 (2 ▴, 6 ▾, 1 ∙)

SUB3 (2 ▴, 5 ▾, 2 ∙)

SUB4 (2 ▴, 2 ▾, 5 ∙)

SUB5 (2 ▴, 3 ▾, 4 ∙)

SUB6 (1 ▴, 4 ▾, 4 ∙)

SUB7 (2 ▴, 2 ▾, 5 ∙)

SUB8 (2 ▴, 3 ▾, 4 ∙)

SUB9 (2 ▴, 1 ▾, 6 ∙)

SUB10 (1 ▴, 3 ▾, 5 ∙)

SUB11 (1 ▴, 3 ▾, 5 ∙)

SUB12 (2 ▴, 3 ▾, 4 ∙)

SUB13 (2 ▴, 1 ▾, 6 ∙)

SUB14, SUB15, SUB16, SUB17 (0 ▴, 5 ▾, 4 ∙)

SUB18 (1 ▴, 2 ▾, 6 ∙)

ADD1 (2 ▴, 3 ▾, 4 ∙)

ADD2 (1 ▴, 3 ▾, 5 ∙)

ADD3, ADD4 (1 ▴, 3 ▾, 5 ∙)

ADD5, ADD6 (4 ▴, 3 ▾, 2 ∙)

ADD7 (1 ▴, 3 ▾, 5 ∙)

ADD8 (0 ▴, 4 ▾, 5 ∙)

ADD9 (1 ▴, 1 ▾, 7 ∙)

ADD10 (2 ▴, 1 ▾, 6 ∙)

ADD11 (2 ▴, 3 ▾, 4 ∙)

ADD12, ADD13, ADD14, ADD15 (1 ▴, 2 ▾, 6 ∙)

ADD16, ADD17 (2 ▴, 1 ▾, 6 ∙)

ADD18 (2 ▴, 0 ▾, 7 ∙)

OR1, OR3 (1 ▴, 3 ▾, 5 ∙)

OR2, OR4 (2 ▴, 3 ▾, 4 ∙)

MIN1 (3 ▴, 2 ▾, 4 ∙)

AND1 (0 ▴, 2 ▾, 7 ∙)

LSHIFT1 (1 ▴, 1 ▾, 7 ∙)

LSHIFT2, LSHIFT3 (0 ▴, 2 ▾, 7 ∙)

LSHIFT4, LSHIFT5 (1 ▴, 4 ▾, 4 ∙)

LSHIFT6 (1 ▴, 3 ▾, 5 ∙)

RSHIFT1 (3 ▴, 0 ▾, 6 ∙)

URSHIFT1 (2 ▴, 3 ▾, 4 ∙)

URSHIFT2 (1 ▴, 4 ▾, 4 ∙)

URSHIFT3 (2 ▴, 3 ▾, 4 ∙)

URSHIFT4 (3 ▴, 3 ▾, 3 ∙)

URSHIFT5 (1 ▴, 3 ▾, 5 ∙)

[-10%, -5%)

[-5%, -2%)

not significantly different

[-2%, 0%)

[0%, 2%)

[2%, 5%)

[5%, 10%)

Figure 8: Performance comparison of generated code rela-

tive to hand-written code of OpenJDK optimizations on Re-

naissance benchmarks.

pattern, and the column of łPreconditionž shows the precondition

of the pattern, where ⊤ means no precondition.

In order to see if the reported shadow causes any real world issue,

we then manually inspected if any shadowed pattern is placed after

shadowing pattern (in execution order) in OpenJDK if both patterns

are implemented in OpenJDK, because in this case the shadowed

pattern would be entirely shadowed and thus never be reached in

the optimization pass (see Section 4). We found that pattern (a -

Table 3: Shadow between patterns. Constants are in upper-

case and free variables are in lower-case.

Shadowing Shadowed

Before Precondition Before Precondition

x - (y + C0)
okToConvert(

y + C0, x)
C0 - (x + C1)

okToConvert(

x + C1, C0)

(a - b) + (c - d) ⊤
(a - b) + (b - c) ⊤
(a - b) + (c - a) ⊤
(0 - a) + (0 - b) ⊤

x + (0 - y) ⊤ (0 - a) + (0 - b) ⊤

(0 - y) + x ⊤ (0 - a) + (0 - b) ⊤

(x + CON) + y ⊤

(x + CON1) + CON2 ⊤
(((z | C2) ^ C1) + 1) + rhs C2 == ~C1

(((z & C2) ^ C1) + 1) + rhs C2 == C1

(x + 1) + (y ^ -1) ⊤
(a + C1) + (C2 - b) ⊤

x + (y + CON) ⊤ (y ^ -1) + (x + 1) ⊤

(x ^ -1) + C ⊤ (x ^ -1) + 1 ⊤

x + (CON - y) ⊤
x + (0 - y) ⊤

(0 - a) + (0 - b) ⊤
(a + C1) + (C2 - b) ⊤

(CON - y) + x ⊤
(CON1 - x) + CON2 ⊤

(0 - y) + x ⊤
(0 - a) + (0 - b) ⊤

b) + (c - d) shadows both pattern (a - b) + (c - a) and

pattern (0 - a) + (0 - b) while both shadowed patterns are

put after the shadowing patterns in OpenJDK. We reported this to

OpenJDK developers and they confirmed this issue and accepted

our pull request to reorder the patterns. We discuss more details

for the pull requests in the next section.

5.5 Test Generation & Pull Requests

We use JOG to generate IR tests for all 68 patterns adapted from ex-

isting optimizations in OpenJDK (so that we can run those tests with

OpenJDK). Excluding the patterns with preconditions for which

JOG does not support generating tests, we successfully generate 45

tests. We also generate 8 test classes each of which wraps all the

tests for patterns with the same operator, e.g., class TestSubNode

includes testSUB1, testSUB2, etc. Next we put the test classes in

test/hotspot/jtreg/compiler/c2/irTests/, and build and run the

tests with OpenJDK. All the 45 tests pass. During our testing, we

found 10 tests were missing in OpenJDK; in other words the cor-

responding optimizations were not tested in OpenJDK. Thus we

opened one pull request [38] to add those generated 10 tests to ex-

isting test suites of OpenJDK. This pull request has been integrated

into the master branch of OpenJDK.

We opened seven more pull requests for OpenJDK, so far. The

first category of six pull requests was introducing new JIT optimiza-

tions. Figure 9aś9g shows the JOG patterns for new optimizations

that we contributed as PRs; we contributed the C/C++ code gen-

erated by JOG (and not the patterns). Also, we contributed the IR

tests generated by JOG for the patterns. Note that one pull request

could contain more than one pattern/optimization. We adapted

pattern SUB30 (Figure 9a) from LLVM. We then added generated

C/C++ code from the pattern to SubNode::Ideal method of Open-

JDK, and opened a pull request [31] for the changes. Similarly, we

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

opened another three pull requests [32, 34, 37] that added gener-

ated C/C++ code from pattern ADD30 (Figure 9b), pattern ADD31

(Figure 9c), pattern ADD41 (Figure 9d) and pattern ADD42 (Fig-

ure 9e) to AddNode::Idealmethod. Note pattern ADD41 and pattern

ADD42 are included in a single pull request. We also opened one

pull request [35] for pattern SUB23 (Figure 9f). All the five pull

requests have been integrated into the master branch of OpenJDK.

We opened one pull request [36] for pattern SUB24 (Figure 9g) and

this pull request is under review.

The second category of pull requests we opened was reorder-

ing existing JIT optimizations. Figure 9hś9j shows the associated

optimizations as patterns. As we mentioned in Section 5.4, pat-

tern ADD2 shadows both pattern ADD7 and pattern ADD8, which

means any expression matched by either of pattern ADD7 or pat-

tern ADD8 must be matched by pattern ADD2. Meanwhile in

AddNode::Idealmethod the C/C++ code implementing patternADD7

and ADD8 are located after the code for pattern ADD2 (in execution

order). Therefore pattern ADD7 or ADD8 would not be reached

unless they were moved before pattern ADD2. We reported this

issue to OpenJDK developers and initially proposed reordering in

our pull request [33]. OpenJDK developers confirmed the issue

and then they realized the effects of the two patterns have been

done by applying two other optimizations sequentially and thus it

is no longer necessary to have these two patterns. Pattern ADD7

and pattern ADD8 were removed from OpenJDK when the pull

request was integrated. As future work, we plan to extend our

shadow determining algorithm to detect duplicate optimization

sequences [12].

6 LIMITATIONS

Internal validity. Our experiments on comparing performance of

generated and hand-written optimizations may suffer the threat

from noise. To mitigate the threat, we did five end-to-end runs and

selected only last 10 fully warmed-up repetitions for measurement.

We filtered stable benchmarks by coefficient of variance and we did

significant difference test using bootstrap re-sampling for time from

all 50 repetitions measured. Although we tried to find the numbers

of repetitions and end-to-end runs which are large enough to min-

imize noise but remains practical for our experiments, choosing

different numbers could impact the experimental results.

Construct validity. We used the number of characters and num-

ber of identifiers as a metric to quantify code complexity of patterns

written using JOG compared to hand-written implementation of op-

timizations. This metric may or may not reflect complexity for every

developer and thus may impact our conclusion on code complexity

of optimizations written using JOG.

External validity. We used only Renaissance benchmark suites to

evaluate performance of optimizations. Although Renaissance is

the state-of-the-art benchmarks for JVM, to the best of our knowl-

edge, it may still not reflect all use cases of optimizations in real

world. Also, the patterns we wrote for evaluation cannot cover all

the peephole optimizations. Despite our efforts to increase vari-

ety of patterns, such as different compilers, different operations,

etc., we cannot ensure the results can be generalized to all peep-

hole optimizations. Last, JOG is designed and developed for Java

JIT peephole optimizations in OpenJDK (HotSpot). Thus, JOG will

require major changes to be directly generalized to other imple-

mentations of Java JIT, e.g., OpenJ9, or other compilers, e.g., LLVM.

However, the proposed algorithm of detecting shadow relations

between optimizations can be easily implemented for other compil-

ers.

Implementation. Our current implementation of JOG does not

generate tests for the patterns with preconditions that specify in-

variants between variables. For example, one of the patterns written

from OpenJDK that transforms (x >>> C0) + C1 to (x + (C1 <<

C0)) >>> C0) requires a precondition C0 < 5 && -5 < C1 && C1 < 0

&& x >= -(y << C0) [39]. We plan to leverage constraint solvers to

obtain valid test inputs for such tests in our future work.

7 RELATED WORK

We describe related work on (1) DSLs for optimizations, (2) re-

lation between optimizations, (3) finding new optimizations and

(4) benchmarking Java JIT.

DSLs for optimizations. A notable area of research addressing

the ease of implementing compiler optimizations is in the appli-

cation of domain specific languages (DSL) for specifying peep-

hole optimizations. One of the first projects [48] introduced a DSL

called Gospel for specifying compiler optimizations. Cobalt [14]

and Rhodium [15] are frameworks to specify peephole optimiza-

tions and dataflow analyses, and PEC [13] extends to support loop

optimizations. More recently, GCC’s Match and Simplify [45] in-

troduces a DSL to write expression simplifications from which

code targeting GIMPLE and GENERIC is auto-generated. Similarly,

Alive [19] is a DSL that can be used for specifying peephole op-

timizations targeting LLVM. Alive can also be used to generate

C/C++ code that can be directly included into LLVM’s optimization

passes. CompCert [16] is a formalized and verified C compiler in

Coq. There is research on verifying SSA-based middle-end opti-

mizer [2], peephole optimizations [25], polyhedral model-based

optimizations [7]. Both Alive-FP [23] and LifeJacket [27] prove cor-

rectness of floating-point optimizations. The aforementioned tools

are designed to verify correctness of optimizations over intermedi-

ate representation and introduced DSLs work on the intermediate

representation level, while JOG focuses on developers productiv-

ity and allows developers to write optimizations in a high-level

language (Java), using the existing approach that tests for opti-

mizations are written. Although JOG does not verify optimizations

as aforementioned tools, JOG presents an approach to detecting

shadow relations between optimizations and JOG can generate IR

tests from optimizations specified in patterns.

There has been research that does not focus on verifying opti-

mizations. CAnDL [10] is a DSL for LLVM analysis and it supports

use cases beyond peephole optimizations, such as control flows.

However, CAnDL requires developers to write constraints to specify

optimizations, which is more complicated than high-level expres-

sions JOG takes; also the generated compiler pass is independent

to existing code structure in LLVM and thus more difficult to be

integrated. COpt [47] is a high-level DSL that allows compiler de-

velopers to specify a set of ten high-level optimizations. In contrast

to JOG that applies to peephole optimizations, COpt applies on

high-level optimizations such as global value numbering, common

subexpression elimination, function inlining, etc.

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

1 @Pattern

2 public void SUB30(int x, @Constant int c0, @Constant int c1) {

3 before(c0 - (x + c1));

4 if (Lib.okToConvert(x + c1, c0)) {

5 after((c0 - c1) - x); } }

(a) Pattern SUB30.

1 @Pattern

2 public void ADD30(int x) {

3 before(x + x);

4 after(x << 1); }

(b) Pattern ADD30.

1 @Pattern

2 public void ADD31(int x,

3 @Constant int c) {

4 before((x ^ -1) + c);

5 after((c - 1) - x); }

(c) Pattern ADD31.

1 @Pattern

2 public void ADD41(int x, int y,

3 @Constant int con) {

4 before(x + (con - y));

5 after((x - y) + con); }

(d) Pattern ADD41.

1 @Pattern

2 public void ADD42(int x, int y,

3 @Constant int con) {

4 before((con - y) + x);

5 after((x - y) + con); }

(e) Pattern ADD42.

1 @Pattern

2 public void SUB23(int x,

3 @Constant int c) {

4 before(c - (x ^ -1));

5 after(x + (c + 1)); }

(f) Pattern SUB23.

1 @Pattern

2 public void SUB24(int x,

3 int y) {

4 before((x | y) - (x ^ y));

5 after(x & y); }

(g) Pattern SUB24.

1 @Pattern

2 public void ADD2(int a, int b, int c, int d) {

3 before((a - b) + (c - d));

4 after((a + c) - (b + d)); }

(h) Pattern ADD2.

1 @Pattern

2 public void ADD7(int a, int b, int c) {

3 before((a - b) + (b - c));

4 after(a - c); }

(i) Pattern ADD7.

1 @Pattern

2 public void ADD8(int a, int b, int c) {

3 before((a - b) + (c - a));

4 after(c - b); }

(j) Pattern ADD8.

Figure 9: Associated patterns in pull requests.

Relation between optimizations. There is research [22, 26] on

detecting non-termination bugs due to a suite of peephole opti-

mizations applied repeatedly. Termination checking involves de-

termining whether two optimizations can be composited, which is

a quantifier-free problem, while the shadow determining problem

JOG solves involves with universal quantifiers. Lopes et al. [20]

advocated implementation of solver-based tools for finding groups

of optimizations that subsume each other to improve existing peep-

hole optimizations. JOG addresses that problem and we plan to

explore more relations between optimizations in future work, e.g.,

duplicate optimizations check.

Finding new optimizations. Optgen [5] exhaustively generates

all local optimization rules up to a given cost limit. Barany [1]

and Theodoridis et al.’s [46] work compare different compilers’

output to find missed optimizations. Unlike them, JOG does not

automatically find new optimizations but provides developers a

way to easily develop optimizations.

Benchmarking Java JIT. Renaissance [43] is recent benchmark

suites for JVM, which shows more significant performance differ-

ences on evaluating impacts of JIT compiler optimizations than

older benchmarks such as DaCapo [4] and SPECjvm2008 [44]; there-

fore we used Renaissance to evaluate performance of generated

optimization passes from JOG.

8 CONCLUSION

Writing peephole optimizations requires substantial effort. The cur-

rent approach of hand-written implementation in Java JIT is not

scalable and it is prone to bugs. We presented JOG, a framework

that facilitates developing Java JIT peephole optimizations. Com-

piler developers can write patterns in the same language as the

compiler (i.e., Java), using the existing approach for writing tests for

peephole optimizations. JOG translates every pattern into C/C++

code that can be integrated as a JIT optimization pass, and gener-

ates tests from the pattern as needed. We wrote 162 patterns for

optimizations found in OpenJDK, LLVM, as well as some that we

designed. Our evaluation shows that JOG reduces the code size and

code complexity when compared to hand-written implementation

of optimizations while maintaining the effectiveness of optimiza-

tions. JOG can also automatically detect possible shadow relations

between pairs of optimizations. We utilized this to find a bug in Java

JIT as two optimizations could never be triggered as a consequence

of being shadowed by another. We opened eight pull requests for

OpenJDK, including six on new optimizations, one on removing of

shadowed optimizations, and one on new tests of existing untested

optimizations, of which seven PRs have been integrated into the

master branch of OpenJDK, so far. We believe that JOG will have

significant impact in further developments of Java JIT compilers.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Yu Liu, Pengyu Nie, August Shi, Jiyang

Zhang, and the anonymous reviewers for their comments and feed-

back. This work is partially supported by a Google Faculty Research

Award, a grant from the Army Research Office, and the US National

Science Foundation under Grant Nos. CCF-1652517, CCF-2107291,

CCF-2217696.

REFERENCES
[1] Gergö Barany. 2018. Finding Missed Compiler Optimizations by Differential

Testing. In International Conference on Compiler Construction. ACM, 82ś92. https:
//doi.org/10.1145/3178372.3179521

[2] Gilles Barthe, Delphine Demange, and David Pichardie. 2014. Formal Verification
of an SSA-Based Middle-End for CompCert. In Programming Language Design
and Implementation. Association for Computing Machinery, 4:1ś4:35. https:
//doi.org/10.1145/2579080

[3] Richard Biener and Prathamesh Kulkarni. 2022. gcc/match.pd at master - gcc-
mirror/gcc. https://github.com/gcc-mirror/gcc/blob/dcb4bd0/gcc/match.pd.

[4] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM, 169ś190.
https://doi.org/10.1145/1167473.1167488

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

[5] Sebastian Buchwald. 2015. Optgen: A Generator for Local Optimizations. In
International Conference on Compiler Construction. Springer, Berlin, Heidelberg,
171ś189. https://doi.org/10.1007/978-3-662-46663-6_9

[6] Raymond P.L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code
Readability. IEEE Transactions on Software Engineering 36, 4 (2010), 546ś558.
https://doi.org/10.1109/TSE.2009.70

[7] Nathanaël Courant and Xavier Leroy. 2021. Verified Code Generation for the
Polyhedral Model. In Symposium on Principles of Programming Languages. ACM,
40:1ś40:24. https://doi.org/10.1145/3434321

[8] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337ś340. https://doi.org/10.1007/978-3-540-78800-3_24

[9] Bradley Efron and Robert J. Tibshirani. 1994. An Introduction to the Bootstrap.
CRC Press. https://books.google.com/books?id=MWC1DwAAQBAJ

[10] Philip Ginsbach, Lewis Crawford, and Michael F. P. O’Boyle. 2018. CAnDL: A
Domain Specific Language for Compiler Analysis. In International Conference on
Compiler Construction. ACM, 151ś162. https://doi.org/10.1145/3178372.3179515

[11] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith,
and Gavin Bierman. 2021. The Java® Language Specification. https://docs.oracle.
com/javase/specs/jls/se17/jls17.pdf.

[12] He Jiang, Zhide Zhou, Zhilei Ren, Jingxuan Zhang, and Xiaochen Li. 2022. CTOS:
Compiler Testing for Optimization Sequences of LLVM. IEEE Transactions on
Software Engineering 48, 7 (2022), 2339ś2358. https://doi.org/10.1109/TSE.2021.
3058671

[13] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. 2009. Proving Optimizations
Correct Using Parameterized Program Equivalence. In Programming Language
Design and Implementation. ACM, 327ś337. https://doi.org/10.1145/1542476.
1542513

[14] Sorin Lerner, Todd Millstein, and Craig Chambers. 2003. Automatically Proving
the Correctness of Compiler Optimizations. In Programming Language Design
and Implementation. ACM, 220ś231. https://doi.org/10.1145/781131.781156

[15] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. 2005. Automated
Soundness Proofs for Dataflow Analyses and Transformations via Local Rules.
In Symposium on Principles of Programming Languages. ACM, 364ś377. https:
//doi.org/10.1145/1040305.1040335

[16] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM
52, 7 (2009), 107ś115. https://doi.org/10.1145/1538788.1538814

[17] LLVM Project. 2022. llvm-project/llvm/lib/Transforms/InstCombine at main -
llvm/llvm-project. https://github.com/llvm/llvm-project/tree/b26e44e/llvm/lib/
Transforms/InstCombine/InstCombineAddSub.cpp.

[18] LLVM Project. 2023. llvm/llvm-project: The LLVM Project is a collection of mod-
ular and reusable compiler and toolchain technologies. Note: the repository does
not accept github pull requests at this moment. Please submit your patches at
http://reviews.llvm.org. https://github.com/llvm/llvm-project.

[19] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015.
Provably Correct Peephole Optimizations with Alive. In Programming Lan-
guage Design and Implementation. ACM, 22ś32. https://doi.org/10.1145/2737924.
2737965

[20] Nuno P. Lopes and John Regehr. 2018. Future Directions for Optimizing Compilers.
https://doi.org/10.48550/ARXIV.1809.02161

[21] W. M. McKeeman. 1965. Peephole Optimization. Commun. ACM 8, 7 (1965),
443ś444. https://doi.org/10.1145/364995.365000

[22] David Menendez and Santosh Nagarakatte. 2016. Termination-Checking for
LLVM Peephole Optimizations. In International Conference on Software Engineer-
ing. ACM, 191ś202. https://doi.org/10.1145/2884781.2884809

[23] David Menendez, Santosh Nagarakatte, and Aarti Gupta. 2016. Alive-FP: Auto-
mated Verification of Floating Point Based Peephole Optimizations in LLVM. In
Static Analysis. Springer, 317ś337. https://doi.org/10.1007/978-3-662-53413-7_16

[24] Steven S.Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers.

[25] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. 2016. Verified
Peephole Optimizations for CompCert. In Programming Language Design and
Implementation. ACM, 448ś461. https://doi.org/10.1145/2908080.2908109

[26] Naoki Nishida and SarahWinkler. 2018. Loop Detection by Logically Constrained
Term Rewriting. In Verified Software. Theories, Tools, and Experiments. Springer,
309ś321. https://doi.org/10.1007/978-3-030-03592-1_18

[27] Andres Nötzli and Fraser Brown. 2016. LifeJacket: Verifying Precise Floating-
Point Optimizations in LLVM. In International Workshop on State Of the Art in

Program Analysis. ACM, 24ś29. https://doi.org/10.1145/2931021.2931024
[28] Oracle and/or its affiliates. 2022. jdk/AddINodeIdealizationTests.java at master -

openjdk/jdk - GitHub. https://github.com/openjdk/jdk/blob/master/test/hotspot/
jtreg/compiler/c2/irTests/AddINodeIdealizationTests.java.

[29] Oracle and/or its affiliates. 2022. jdk/subnode.cpp at b334d96 - openjdk/jdk -
GitHub. https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/
subnode.cpp#L163.

[30] Oracle and/or its affiliates. 2022. jdk/test/hotspot/jtreg/compiler/lib/ir_framework
at master - openjdk/jdk - GitHub. https://github.com/openjdk/jdk/tree/master/
test/hotspot/jtreg/compiler/lib/ir_framework.

[31] Oracle and/or its affiliates. 2023. 8277882: New subnode ideal optimization:
converting "c0 - (x + c1)" into "(c0 - c1) - x" - Pull Request #6441 - openjdk/jdk.
https://github.com/openjdk/jdk/pull/6441.

[32] Oracle and/or its affiliates. 2023. 8278114: New addnode ideal optimization:
converting "x + x" into "x << 1" - Pull Request #6675 - openjdk/jdk. https:
//github.com/openjdk/jdk/pull/6675.

[33] Oracle and/or its affiliates. 2023. 8278471: Remove unreached rules in
AddNode::IdealIL - Pull Request #6752 - openjdk/jdk. https://github.com/openjdk/
jdk/pull/6752.

[34] Oracle and/or its affiliates. 2023. 8279607: Existing optimization "~x+1" -> "-
x" can be generalized to "~x+c" -> "(c-1)-x". - Pull Request #6858 - openjdk/jdk.
https://github.com/openjdk/jdk/pull/6858.

[35] Oracle and/or its affiliates. 2023. 8281453: New optimization: convert ~x into -1-x
when ~x is used in an arithmetic expression - Pull Request #7376 - openjdk/jdk.
https://github.com/openjdk/jdk/pull/7376.

[36] Oracle and/or its affiliates. 2023. 8281518: New optimization: convert "(x|y)-(x^y)"
into "x&y" - Pull Request #7395 - openjdk/jdk. https://github.com/openjdk/jdk/
pull/7395.

[37] Oracle and/or its affiliates. 2023. 8283094: Add Ideal transformation: x + (con - y)
-> (x - y) + con - Pull Request #7795 - openjdk/jdk. https://github.com/openjdk/
jdk/pull/7795.

[38] Oracle and/or its affiliates. 2023. 8297384: Add IR tests for existing idealizations
of arithmetic nodes by CptGit - Pull Request #11049 - openjdk/jdk. https://github.
com/openjdk/jdk/pull/11049.

[39] Oracle and/or its affiliates. 2023. jdk/addnode.cpp at b334d96 - openjdk/jdk -
GitHub. https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/
addnode.cpp#L358.

[40] Oracle and/or its affiliates. 2023. jdk/subnode.cpp at b334d96 - openjdk/jdk -
GitHub. https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/
subnode.cpp#L243.

[41] Oracle Corporation and/or its affiliates. 2023. JDK Bug System. https://bugs.
openjdk.java.net/browse/JDK-8266601.

[42] Oracle Corporation and/or its affiliates. 2023. openjdk/jdk: JDK main-line devel-
opment. https://github.com/openjdk/jdk.

[43] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr
Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking Suite
for Parallel Applications on the JVM. In Programming Language Design and
Implementation. ACM, 31ś47. https://doi.org/10.1145/3314221.3314637

[44] Standard Performance Evaluation Corporation. 2022. SPECjvm2008. https:
//www.spec.org/jvm2008/.

[45] the GCC Developer Community. 2022. Match and Simplify. https://gcc.gnu.org/
onlinedocs/gccint/match-and-simplify.html.

[46] Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding Missed
Optimizations through the Lens of Dead Code Elimination. In International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 697ś709. https://doi.org/10.1145/3503222.3507764

[47] Sruthi Venkat and Preet Kanwal. 2018. COpt: A High Level Domain-Specific Lan-
guage to Generate Compiler Optimizers. In International Conference on Advanced
Computation and Telecommunication. IEEE, 1ś6. https://doi.org/10.1109/ICACAT.
2018.8933593

[48] Deborah L. Whitfield and Mary Lou Soffa. 1997. An Approach for Exploring
Code Improving Transformations. ACM Trans. Program. Lang. Syst. 19, 6 (1997),
1053ś1084. https://doi.org/10.1145/267959.267960

Received 2023-02-16; accepted 2023-05-03

	Abstract
	1 Introduction
	2 Example
	3 JOG Framework
	3.1 Syntax
	3.2 Semantics
	3.3 Translation
	3.4 Test Generation

	4 Shadowing Optimizations
	5 Evaluation
	5.1 Setup
	5.2 Code Complexity
	5.3 Performance
	5.4 Shadow between Patterns
	5.5 Test Generation & Pull Requests

	6 Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

