Multilingual Code Co-Evolution Using Large Language Models

Jiyang Zhang Pengyu Nie
UT Austin UT Austin
USA USA

jiyang.zhang@utexas.edu pynie@utexas.edu

ABSTRACT

Many software projects implement APIs and algorithms in multiple
programming languages. Maintaining such projects is tiresome,
as developers have to ensure that any change (e.g., a bug fix or
a new feature) is being propagated, timely and without errors, to
implementations in other programming languages. In the world of
ever-changing software, using rule-based translation tools (i.e., tran-
spilers) or machine learning models for translating code from one
language to another provides limited value. Translating each time
the entire codebase from one language to another is not the way de-
velopers work. In this paper, we target a novel task: translating code
changes from one programming language to another using large
language models (LLMs). We design and implement the first LLM,
dubbed CODEDITOR, to tackle this task. CoDEDITOR explicitly mod-
els code changes as edit sequences and learns to correlate changes
across programming languages. To evaluate CODEDITOR, we collect
a corpus of 6,613 aligned code changes from 8 pairs of open-source
software projects implementing similar functionalities in two pro-
gramming languages (Java and C#). Results show that CODEDITOR
outperforms the state-of-the-art approaches by a large margin on
all commonly used automatic metrics. Our work also reveals that
CODEDITOR is complementary to the existing generation-based
models, and their combination ensures even greater performance.

CCS CONCEPTS

+ Computing methodologies — Machine learning; « Software
and its engineering — Software evolution.

KEYWORDS

Language models, code translation, software evolution

ACM Reference Format:

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. 2023. Multi-
lingual Code Co-Evolution Using Large Language Models. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE 23), December
3-9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3611643.3616350

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °23, December 39, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0327-0/23/12.

https://doi.org/10.1145/3611643.3616350

Junyi Jessy Li Milos Gligoric
UT Austin UT Austin
USA USA

jessy@austin.utexas.edu

1 INTRODUCTION

To ensure flexibility and a wide adoption of their software, compa-
nies provide application programming interfaces (APIs) for their ser-
vices in several programming languages. Services, such as Google
Cloud [20] and MongoDB [23], offer APIs written in most popular
programming languages, including C++, C#, Java, and Python. Fur-
thermore, popular software packages, like Antlr [43] and Lucene [47],
have options to target different programming languages for the
purpose of being used across various platforms easily.

Maintaining software that offers the same functionality in multi-
ple programming languages is challenging. Any code change, due
to a feature request or a bug fix, has to be propagated timely to
all programming languages. At present, developers have to manu-
ally co-evolve code. This requires developers to manually find the
correspondence between code snippets and apply necessary edits.

There has been work that could, in theory, help with translation.
Rule-based migration tools [3, 18, 50] have been designed to trans-
late between high-level programming languages (e.g., Java and C#).
However, rule-based systems require developers who have exper-
tise with both programming languages to manually write rules to
specify the translation mappings. And the rules need to be updated
with the evolution of programming languages themselves; they
quickly become outdated [3, 9]. Recent work on automatic code
translation [27, 33, 46, 49, 60] aim to directly translate between a
source and a target programming language with the help of LLMs,
which are pretrained on multiple programming languages. While
these techniques could be used to produce code snippets that look
correct, they make irrelevant changes that deviate substantially
from the newly introduced features in the source programming
language, or they fail to precisely infer the project-specific data
types and class names.

Figure 1 illustrates the limitation of existing models. Developers
changed PdfException to LayoutExceptionMessageConstant in
method docWithInvalidMapping®@?2 in the Java project itext/-
itext7.In a later commit in the corresponding C# project itext/-
itext7-dotnet, developers revised method DocWithInvalidMapp-
ing@2 with exactly the same edits while keeping other parts of the
method unchanged. We provide the Java code change, the predic-
tion of an existing large language model, CodeT5 [55], fine-tuned
for code translation, and the correct C# code change in Figure 1.
The added lines of code are highlighted in green and the removed
ones are highlighted in red. Although the existing model is able
to correctly translate the updated exception type from Java to C#,
it misses the class name for the field HtmlRoles and incorrectly
infers the function call Assert.Catch as it does not use the prior
version of C# code for reference.

To build more robust and accurate techniques that help software
developers co-evolve projects implemented in different languages,

gligoric@utexas.edu

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

1 @Test

2 public void docWithInvalidMapping@2() throws IOException {

3

4 customRolePara.getAccessibilityProperties().setRole(HtmlRoles.p);

5 Exception e = Assert.assertThrows(PdfException.class, ()->document.add(
customRolePara));

6 - Assert.assertEquals(MessageFormat.format(PdfException.
ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.getMessage());

7 + Assert.assertEquals(MessageFormat.format(LayoutExceptionMessageConstant.
ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.getMessage());

8} []ava Change Made by Developersl

[NUnit.Framework.Test]
public virtual void DocWithInvalidMapping@2() {

IR

customRolePara.GetAccessibilityProperties().SetRole(
LayoutTaggingPdf2Test.HtmlRoles.p);

customRolePara.GetAccessibilityProperties().SetRole(HtmlRoles.p);

- Exception e = NUnit.Framework.Assert.Catch(typeof (PdfException), ()=>
document.Add(customRolePara));

Exception e = NUnit.Framework.Assert.IsThrows(PdfException.class, ()=>
document .Add(customRolePara));

8 - NUnit.Framework.Assert.AreEqual(String.Format(PdfException.
ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.Message);

NUnit.Framework.Assert.AreEqual(String.Format(
LayoutExceptionMessageConstant.
ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.Message);

10 } C# Change Predicted by Existing Generation-based Model X

NS
+

<
+

©
+

[NUnit.Framework.Test]
public virtual void DocWithInvalidMapping02() {

LayoutTaggingPdf2Test.HtmlRoles.p);
Exception e = NUnit.Framework.Assert.Catch(typeof(PdfException), ()=>
document .Add(customRolePara));

7 - NUnit.Framework.Assert.AreEqual(String.Format(PdfException.
ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.Message);

8 + NUnit.Framework.Assert.AreEqual(String.Format(
LayoutExceptionMessageConstant.
ROLE_IS_NOT_MAPPED_TO_ANY_STANDARD_ROLE, "p"), e.Message);

9} lC# Change Made by Developers and Predicted by Our CODEDITOR /l

1

2

3 .

4 customRolePara.GetAccessibilityProperties().SetRole(
5

6

Figure 1: Example of using LLMs to help developers co-evolve
code in two programming languages. The top box shows
developer-made changes in a Java project itext/itext7,
which needs to be propagated to the corresponding C# project
itext/itext7-dotnet. The middle box shows the prediction
by an existing generation-based large language model, which
incorrectly changes irrelevant parts of the code. The bottom
box shows the correct prediction by our model, CODEDITOR.

we explicitly model the changes that need to be made. We formu-
late a novel task: automatically updating code snippets in a target
programming language, based on the changes made in the source
programming language.

Most of the existing models implicitly tackle the code evolution
tasks by generating tokens one by one in accordance with the
underlying learned probability instead of focusing on how the code
should be modified or retained. Prior work [10, 11, 15, 41, 51, 57, 59]
have shown that standard generation-based models underperform
models that explicitly model the edits on software-editing tasks.

To model code evolution across programming languages, we
design an LLM, dubbed CoDEDITOR, which learns to align the edits
across programming languages and explicitly performs edits on the
old version of the code in a target programming language. Following
prior work [15, 41, 48, 59], we enable the model to reason about

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

necessary edits and learn to apply them by directly generating an
edit sequence.

For training and evaluation, we collect the first dataset with
aligned Java and C# code changes on the methods with similar
functionality and implementations. Specifically, we extract 6,613
pairs of code changes from 8 open-source Java projects and the cor-
responding C# projects on GitHub by mining the commit histories.
This is the first dataset containing parallel code changes of two pro-
gramming languages. We conduct the evaluation in two directions,
updating C# method based on the Java changes (source language is
Java and target language is C#) and updating Java method based on
the C# changes (source language is C# and target language is Java).

Our results show that CODEDITOR outperforms all existing mod-
els across all the chosen automatic metrics, including the large
pretrained generative models Codex [12] under few-shot setting
and ChatGPT [40] under zero-shot setting. CODEDITOR achieves
96 (out of 100) CodeBLEU score on the task of updating C# code
based on Java changes, which is more than 25% higher than the
large pretrained generation-based model fine-tuned on this task.

Further, we find that CoDEDITOR and generation-based models
are complementary to each other as CODEDITOR is better at up-
dating longer code snippets while generation model is better at
handling the shorter ones. Thus, we combine the two models by
choosing either model’s prediction based on the size of the input
code. Our results show that the combination can further improve
our CODEDITOR model’s exact-match accuracy by 6%.

The main contributions of this paper include:

o Task. We formulate a novel task of automatically updating code
written in one programming language based on the changes in
the corresponding code in another programming language.

e Model. We design and implement CODEDITOR, the first LLM for
this task which learns to align the edits across programming
languages and explicitly performs edits on the old version of the
code in target programming language.

o Dataset. We create the first dataset with aligned code changes for
two programming languages (Java and C#) from 8 open-source
project pairs.

o Results. We show that CoDEDITOR significantly outperforms the
existing LLMs fine-tuned for code translation on exact-match
accuracy by 77%. We also show that CODEDITOR is complemen-
tary to generation-based LLMs and the combination can further
improve CODEDITOR’s exact-match accuracy by 6%.

CopEDITOR and our corpus are publicly available on GitHub:
https://github.com/EngineeringSoftware/codeditor.

2 TASK

At a high level, we work on a system that is triggered when a
software developer, who maintains projects written in multiple pro-
gramming languages, makes changes to one method in one of the
languages, i.e., the “source” language. The system would automati-
cally suggest updates to the methods with identical functionality
in other language(s), i.e., the “target” language(s). To scope our
work in this paper, we focus on Java as the source language, and
C# as the target language. We leave evaluation that targets other
programming languages as future work.

Multilingual Code Co-Evolution Using Large Language Models

Table 1: The mappings between concise edit sequence and
unambiguous edit sequence.

Edit Concise Unambiguous

<ReplaceKeepBefore>

<I t>
nser <ReplaceKeepAfter>

Insertion

<Delete>
<ReplaceKeepBefore>
<ReplaceKeepAfter>

Deletion <Delete>

<Replace>
Replacement <Replace> <ReplaceKeepBefore>
<ReplaceKeepAfter>

In Figure 1, consider a method Mg.,;4 (docWithInvalidMapp-
ing@2) written in the source language S and a method Mr.,14 (Doc-
WithInvalidMapping®2) written in the target language T with
identical functionality (hence similar implementation). Given the
updated method Mg.pe,, in S, we define the task to generate the
new method Mr,pe,, in T leveraging context provided by the code
changes Eg, such that its functionality is consistent with Mg,y
Namely, we model the conditional probability distribution

P(MT;new|MT;olds MS;HEW) ES)

and generate M.,y by sampling from the distribution.

3 MODEL

We present the overview of the proposed CoDEDITOR model in
Figure 2. CODEDITOR is built upon the encoder-decoder framework
which consists of a transformer-based encoder and a transformer-
based decoder [53]. Many conditional generation tasks, includ-
ing code summarization and translation, are being addressed with
encoder-decoder models [1, 21, 37, 54, 55].

We initialize CODEDITOR’s parameters with the pretrained lan-
guage model CoditT5 [59]. CoditT5 has shown promising results
on various software-related editing tasks in a single programming
language, but nonetheless would provide us with a “warm-start”
that carries the necessary inductive biases towards modeling edits.
To adapt to the multilingual co-editing task, we then fine-tune the
CopEpITOR model exploring two key components: (i) the context
fed into the model; (ii) the output format of the model.

To encourage our CODEDITOR model to leverage the (synchro-
nous) code change histories of multiple programming languages
in its training data, we provide the model with context from three
sources as shown in Figure 2: (i) code changes on source program-
ming language (Es); (ii) old version of the code written in target
programming language (Mr,o;4); (iii) new version of the code writ-
ten in source programming language (Ms.pew)-

We explore two formats to represent the generated code changes:
(i) the code edits in the target programming language (E7); (ii) a
meta edit sequence that translates the code edits from the source
programming language to the target programming language, fol-
lowed by the code edits in the target programming language (this
is similar to the output format of CoditT5). In both cases, we then
apply the generated code edits in the target programming language
(ET) to the old version of the code (M7.4;4) to obtain the new version
of the code (Mr.pev)-

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

3.1 Edit Representations

3.1.1 Concise Edit Sequence. We first represent edits using a se-
quence of edits identical to that used in CoditT5 [59], which we call
concise edit sequence. Each edit is represented as:

<Operation> [token span] <OperationEnd>

Here, <Operation> is either Insert, Delete or Replace. Note that
the Replace is represented in a slightly different structure since
we must specify both the old contents to be replaced and the new
contents to replace with:

<ReplaceOld> [old contents] <ReplaceNew>
[new contents] <ReplaceEnd>

For example, in Figure 1, the code change on the old Java method
can be represented by “<Replace0ld> PdfException <Replace-
New> LayoutExceptionMessageConstant <ReplaceEnd>".

We use difflib [17] to compute the set of minimal edit sequence
from the old and new versions of code.

3.1.2 Unambiguous Edit Sequence. One drawback of CoditT5 [59]’s
representation specified above is that the concise edit sequence
can be ambiguous due to the absence of positional information.
For example, the Java code change in Figure 1 can be represented
using Replace as: “<Replace0ld> PdfException <ReplaceNew>
LayoutExceptionMessageConstant <ReplaceEnd>". Without fur-
ther specification, the edit does not contain any clues regarding
which PdfException should be replaced as there are two occur-
rences of PdfException in the old code sequence. For similar rea-
sons, Insert is always ambiguous because of not indicating where
to add the new contents and Delete is ambiguous in cases where
multiple occurrences of token spans can be removed.

To eliminate the potential ambiguity in the concise edit sequence,
we design the format of unambiguous edit sequence by adjusting
the condensed edit sequence proposed by Panthaplackel et al. [41],
which uses anchor tokens to specify the location to perform edits.
Insertion. We do not use Insert since it will always introduce
ambiguity without location information. To represent insertion, we
first find unique anchor tokens that are the shortest span of tokens
that is either before or after the edit location and is unique in the
input sequence. Then we use ReplaceKeepBefore or ReplaceKeep-
After, which represents replacing the anchor tokens with the in-
serted contents and the anchor tokens. For example, in Figure 1,
suppose the Java code change entails adding a blank return state-
ment after the assertEquals statement on line 7. The token span
“getMessage());” will serve as the minimal span of anchor tokens
because it is unique among the old Java code sequence, and it occurs
right before the edit to be performed. We disambiguate the edit
sequence:

<Insert> return; <InsertEnd>
with the unambiguous edit sequence:

<ReplaceOldKeepBefore> getMessage());
<ReplaceNewKeepBefore> getMessage()); return;
<ReplaceEnd>

This edit sequence indicates that “getMessage());” should be re-
placed with “getMessage()); return;”. We introduce ReplaceKeep-
Before where the tokens that follows the <ReplaceOldKeepBefore>

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

Es <ReplaceNewKeepBefore> format(

] 5 a
1 EditsTranslation Er
1
<ReplaceOldKeepBefore> 1
1 <ReplaceOldKeepBefore>
format (PdfException 1
1 Format (PdfException
1
1

LayoutExceptionMessageConstant
LayoutExceptionMessageConstant

<ReplaceEnd> MT.new

1
1
1 <ReplaceEnd>
1
'

Mr.o14 }_< ----------------------------------- String.Format(
© String.Format(PdfException. .. E Er »

meta edit sequence

<ReplaceOldKeepBefore>

<Replace0ld> format Format (PdfException

MS:new

N <ReplaceNew> Format <ReplaceNewKeepBefore> Format(

LayoutExceptionMessageConstant. .
MessageFormat. format (
LayoutExceptionMessageConstant. .

<ReplaceEnd>

MetaEdits

LayoutExceptionMessageConstant

<ReplaceEnd>

Figure 2: Workflow of CopEDITOR for multilingual co-editing. CODEDITOR leverages the context of code change histories of
multiple programming languages from three sources: code changes on the source programming language (Es), the old version
of code in the target programming language (Mr.,4), and the new version of code in the source programming language (Ms.¢)-
CoDEDITOR has two variants that both generate the code changes in the target programming language (E7) but in different
formats: EditsTranslation directly generates the code changes; MetaEdits generates the meta edit plan which edits Eg to E7,
followed by the code changes. Finally, we apply the code changes (E7) on the old version of code (Mr.,;4) to obtain the new

version of code (M7;p,y) in the target programming language.

should be removed and the tokens following <ReplaceNewKeep-
Before> should be inserted. Different from Replace, there is some
overlap between the tokens to be removed and tokens to be in-
serted. If anchor tokens do not exist before the edit location, we use
ReplaceKeepAfter with the tokens after the edit location instead.
Replacement. If the span of tokens to be replaced is unique in
the old sequence, regular Replace sequence is sufficient and deter-
ministic; in that case we will keep using it. Otherwise, it is unclear
which occurrence of token span should be replaced. As an example,
in Figure 1, the Java code change is changing from PdfException
to LayoutExceptionMessageConstant in the assertEquals state-
ment on line 6. The replacement in the concise edit sequence is am-
biguous because there are two usages of PdfException (on lines 5
and 6) in the old Java code sequence after tokenization. To address
this, similar to the insertion case, we search for the minimal anchor
tokens before or after the edit location that can form a unique span
in the old sequence. For example, the concise edit sequence:

<ReplaceOld> PdfException <ReplaceNew>
LayoutExceptionMessageConstant <ReplaceEnd>

can be disambiguate into the following unambiguous edit sequence:

<ReplaceOldKeepBefore> format(PdfException
<ReplaceNewKeepBefore> format(
LayoutExceptionMessageConstant <ReplaceEnd>

Deletion. Similar to replacement, if the span of tokens to be deleted
is unique across the old sequence, we will keep using Delete
because it is unambiguous. Otherwise, it will be transformed to
ReplaceKeepBefore or ReplaceKeepAfter. For example, suppose
the token “PdfException.” should be removed from the old Java
method on line 6 in Figure 1. The concise edit sequence:

<Delete> PdfException. <DeleteEnd>

will be transformed to:

<ReplaceOldKeepBefore> format(PdfException.
<ReplaceNewKeepBefore> format(<ReplaceEnd>

This edit sequence indicates that “format(PdfException.” should
be replaced with “format(”, unambiguously implying the deletion
of “PdfException.”.

To summarize, the unambiguous edit sequence contains 4 types
of edits: <Replace>, <Delete>, <ReplaceKeepBefore> and <Re-
placeKeepAfter>. The mappings between concise edit sequence
and unambiguous edit sequence are summarized in Table 1. Given
the unambiguous edit sequence, we can apply it to the old input
sequence to derive the new edited sequence deterministically.

3.2 Model Input

We aim to build performant machine learning models for the multi-
lingual co-editing task by providing the model with code evolution
information, namely the revisions of code of both source and target
programming languages. Instead of directly translating the entire
code snippet between programming languages, CODEDITOR trans-
lates the code changes between programming languages.

3.2.1 Source Code Edits. To encourage the model to learn the align-
ment between developer-made changes across programming lan-
guages, we provide CopEDITOR with code changes in the source
programming language. To maintain both precision and concise-
ness of the edits, we adopt the unambiguous edit sequence (Sec-
tion 3.1.2) to represent the code changes. As shown in Figure 2,
the Java code changes (Eg) of replacing the PdfException with
LayoutExceptionMessageConstant is structured in the form of

Multilingual Code Co-Evolution Using Large Language Models

<ReplaceOldKeepBefore> format(PdfException
<ReplaceNewKeepBefore> format(
LayoutExceptionMessageConstant <ReplaceEnd>

3.2.2 History-Related Context. In addition to the learned repre-
sentation of code changes in source programming language (Es),
we provide CODEDITOR with the old code in target programming
language (Mr,014) to better help the model to infer the correlated
code changes in the target programming language. The intuition is
that the model will reason about how to transfer and tune the edits
in source programming language grounding the specific implemen-
tation of the method in target programming language.

Furthermore, we append the new code in source programming
language (Ms.pneww) as one of the contexts. We believe this will give
the model more context to understand the edits in source program-
ming language and promote the consistency of the updated methods
in two programming languages.

To sum up, we combine history-related context from three sources:

code changes in the source programming language (Es), old code
in the target programming language (Mr,04), and new code in the
source programming language (Ms.,¢+). We concatenate them into
a sequence separated by a special SEP token as the model input.

3.3 Model Output

We propose two formats as the model’s target output which lead
to two modes of CODEDITOR: EditsTranslation and MetaEdits. Both
modes use the same input and both modes’ target outputs entail a
sequence of edits on the target programming language.

EditsTranslation. The output of EditsTranslation mode is the un-
ambiguous edit sequence in target programming language which
suggests how the code in target programming language should
be changed. Note that the model-generated unambiguous edit se-
quence can be parsed and applied to old version of code determin-
istically. EditsTranslation essentially learns to translate the code
edits from the source programming language (Eg) to the target
programming language (Et) grounding the code history context.
EditsTranslation mode’s target output for the C# example in Fig-
ure 1 is:

<ReplaceOldKeepBefore> Format(PdfException
<ReplaceNewKeepBefore> Format(
LayoutExceptionMessageConstant <ReplaceEnd>

MetaEdits. In this mode, we adopt the output format of CoditT5 [59]
for multilingual co-editing since our model is built upon CoditT5,
and it had showed promising performance on software editing
tasks. CoditT5 is pretrained to generate the following output for-
mat: “[Edit Plan] <SEP> [Target Sequence]”. The edit plan is a
concise edit sequence that represents the steps to edit the input
sequence; the target sequence is the edited sequence after applying
the proceeding edit plan. We tailored this format to the multilingual
co-editing task; the edit plan represents the edits between the code
edits on source programming language (Es) and target program-
ming language (ET) which we call the meta edit sequence. And the
final target sequence should be the unambiguous edit sequence on
the target programming language (ET). For the example in Figure 1,
the expected meta edit sequence that converts Java edit to C# edit
is the following:

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Table 2: Open-source projects used in our dataset and number
of examples from each project.

Java Project C# Project Count
antlr/antlr4 tunnelvisionlabs/antlr4cs 12
apache/lucene apache/lucenenet 40
apache/poi nissl-lab/npoi 5
eclipse/jgit mono/ngit 808
formicary/fpml-toolkit-java formicary/fpml-toolkit-csharp 20
itext/itext7 itext/itext7-dotnet 5,121
quartz-scheduler/quartz quartznet/quartznet 17
terabyte/jgit mono/ngit 590
SUM 6,613

Table 3: Statistics of our dataset. Number of examples of
training, validation and test data; average number of tokens
in the old version of method and new version of method;
average number of edits for the code change; average number
of added and deleted tokens.

‘Train Val Test
| 4391 623 1,599

Count

Avg len(My;g) | 193.05 192.88 159.06
Avg. len(Mpey) | 19599 19236 159.37
Java Avg. # edits 2.71 2.68 2.43
Avg. # add. tks 19.57 16.64 10.90
Avg. # del. tks 16.62 17.16 10.59

Avg. len(M,;z) | 20037 19971 168.60
Avg. len(Mpey) | 20349 19947 169.22
Ct# Avg. # edits 2.73 2.75 2.47
Avg. # add. tks 2030 17.69 11.86
Avg. # del. tks 17.18 17.92 11.25

<Replace0ld> format <ReplaceNew> Format <ReplaceEnd>
The target sequence after applying the meta edit sequence is:

<ReplaceOldKeepBefore> Format(PdfException
<ReplaceNewKeepBefore> Format(
LayoutExceptionMessageConstant <ReplaceEnd>

Note that during inference, we only use the target unambiguous edit
sequence to get the updated code in target programming language
as MetaEdits mode’s prediction.

4 DATASET

This is the first work to consider the history of software projects
in a multilingual task; hence, we also created a new dataset that
includes aligned code changes between programming languages.
As the first step, we build the dataset by mining histories of the
open-source Java and C# projects. We first collect the changed
methods from the commits of the Java and C# projects. We then
design heuristics to pair (i.e., align) those changes on methods
with similar implementations and functionalities. We consider two
directions on our dataset: J2CS (updating C# method based on Java
changes) and CS2] (updating Java method based on C# changes). In
this section, we describe the approach we use to collect the data
(Section 4.1), split and preprocess data (Section 4.2), and finally
present the statistics of our dataset (Section 4.3).

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

4.1 Data Collection

To build the dataset, we extract aligned Java and C# code changes
at the method level as tuples (Java old method; Java new method,
C# old method; C# new method). The code changes are mined from
the git commits. We consider 8 open-source projects as listed in
Table 2 which have both Java and C# implementations and are used
in prior work [13, 33, 36]. All the projects were first developed in
Java and then ported to C#.

To collect the paired changes, we first assign a unique identifier
to each method in the projects (for both Java and C# projects) based
on the method signature, class name and path to the file where
the method is defined. Similar to the strategy used by Lu et al.
[33], we then pair the Java methods and C# methods according to
the similarity of their unique identifiers. This strategy is effective
because the ported C# project has very similar structure and naming
rules for classes and methods to the corresponding Java project.

We use the following rules to extract the aligned code changes:

(1) For each Java method change, we extract the code changes in
the paired C# method that happen no later than 90 days of the
Java change as the possible matched code change. We use the
commit date as the time of the change.

(2) To filter unrelated code changes, we compute the Jaccard sim-
ilarity [24] between C# and Java added and deleted lines. We
further refine the filtering by sub-tokenizing these lines based
on camelCase conventions (e.g., lastModified to last modi-
fied) and compute Jaccard similarity only for the added and
deleted tokens. We only keep possible matched code changes
that have the token-level Jaccard similarity higher than 0.4 and
the line-level Jaccard similarity higher than 0.5.

(3) For each Java code change and C# code change, we only select
the most similar corresponding code change if there are multiple
possible matched code changes.

4.2 Data Preprocessing and Splitting

For both Java and C# methods, we remove the inline natural lan-
guage comments and tokenize the method into tokens using the
language-specific lexers generated by Antlr [43].

We envision the following use case for the machine learning
model: whenever a developer makes a change in the project written
in the source programming language, the developer will use the
model trained on the existing historical aligned code changes to
migrate that change to projects written in other target programming
languages. To evaluate the models under this use case, following
the recommendations from prior work [38], we split the dataset
into training, validation and test sets using the time-segmented
approach. Namely, the changes in the training set took place before
the changes in the validation set, which in turn took place before
the changes in the test set. More specific, for each Java and C# code
change pair, we first collect the time of the C# commit and then sort
the code change pairs in chronological order. We then select the
oldest 70% of the code change pairs from each project as training
data, next oldest 10% as validation data, the remaining as test data.

To more rigorously assess the generalization capabilities of the
models, we also evaluated them when splitting the dataset using the
cross-project approach [38], which is frequently used in prior work

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

on machine learning models for code. Specifically, the aligned code
changes in the training set are from different projects compared to
those in the validation and test sets.

4.3 Statistics

The statistics of the collected dataset are shown in Table 3. We
present the number of examples in the training, validation, and
test dataset using time-segmented split approach. We show the
average number of tokens in the old methods (Avg. len(M,;4)) and
new methods (Avg. len(M;e,y)) after tokenization by the lexers. To
measure the size of the code changes, we calculate the average
number of added tokens (Avg. # add. tks) and deleted tokens (Avg.
del. tks) in the changed Java and C# methods as well as the
average number of edits (Avg. # edits) needed for those changes.
For computing these edit-related statistics, we represent the code
changes using concise edit sequences (Section 3.1.1).

For both Java and C# code changes, the difference between av-
erage number of added tokens and deleted tokens is usually small,
fewer than 4 tokens. Similarly, we find that the average number of
edits needed is fewer than 3 and the edits happened in the newer
commits are generally smaller than prior ones. This is expected as
the software projects are becoming more stable as they evolve, and
thus there will be smaller code changes to be made. For evaluation,
we run all the models and baselines on this dataset in two directions:
(1) updating C# method based on Java changes, and (2) updating
Java method based on C# changes. We denote the former one as
J2CS and the latter one as CS2J.

5 EXPERIMENTS

In this section, we describe the baselines we compare to with our
CopEDITOR model (Section 5.1), the evaluation metrics (Section 5.2)
and the detailed experiment setup (Section 5.3).

5.1 Baselines

We evaluate our approach against rule-based models, pretrained
encoder-decoder models, the state-of-the-art code-editing model
(which targets a single programming language), and large genera-
tive models pretrained on billions of lines of code.

Copy. This is a rule-based model which copies the old code in
target programming language (Mr,q4) as the prediction. This is
not a trivial baseline since there are quite a few examples in the
dataset that entail small edits between two versions. We include
this to benchmark the models that actually update the code.

CopykEdits. Based on our observations, there are cases where the
code change in source programming language (Es) is exactly the
same as the change in target programming language (ET) , such
as changing the variable name or updating the log message. This
rule-based model copies the Eg and directly applies it to the old
code in target programming language (M7.o14)-

CodeT5-Translation. We consider a state-of-the-art model that
does not have access to the code change history. Namely, a code
translation model that translates code between the programming
languages (from Mg.;,¢4y t0 M7:¢4,). We use CodeT5 [55], an LLM
pretrained on large amount of developer-written code from GitHub,
which we fine-tune on our constructed dataset.

Multilingual Code Co-Evolution Using Large Language Models

CodeT5-Update. This model has the same architecture as CodeT5-
Translation except that we supply it with code change history.
The model input is the same as for our CODEDITOR models, i.e.,
with extra context of the old code in target programming language
(M7014) and the code change in source programming language (Es).
Different from CODEDITOR model, it is trained to directly generate
the new code in target programming language (Mr.pe+y)-

CoditT5. This is the state-of-the-art model for software editing
tasks [59]. It has the same model architecture and input as CODED-
ITOR, while the output consists of the edit plan to represent the
edits on the target programming language and the target sequence
which represents the updated code (Mr.y¢+y) after applying the edit
plan.

Codex-few-shot [12]. Large pretrained generative models such
as GPT-3 [8] have shown impressive results under the context of
few-shot learning or even zero-shot learning on various generation
tasks. They are able to generalize to new tasks they have not seen
during pretraining with only a few or even no labeled examples. To
compare the fine-tuned CopEDITOR model with generative models,
we include Codex, a large generative model built on GPT-3 and
is further pretrained on billions of GitHub data. Following prior
work [2, 26], for each example in test data, we randomly select
several labeled examples in the training data as the context. Note
that the labeled examples are selected from the same project as
the test data. For J2CS dataset, each labeled example is formed
as: “Java: Mg.o1g => Ms;new C#: MT.514 => MT ey, to inform the
model the aligned updates between two programming languages.
The designed prompt for inference is “Java: Ms.o14 => Ms.per C#:
Mr.514 => 7. The model output is the prediction for the new code in
target programming language (Mr.p¢+y). To conform to the required
input length limit, we include 2 labeled examples in the prompt.

ChatGPT-zero-shot [40]. ChatGPT is an upgraded version of
GPT-3 model and is further fine-tuned for conversation generation
following human instructions with the help of supervised and rein-
forcement learning methods. It has showed strong performance on
code completion benchmarks like HumanEval and MBPP [4, 12, 39].
For each example in test data, we provide instructions including
both the previous and the updated versions of the code written in
the source programming language, subsequently prompting Chat-
GPT to update the old code in the target programming language
accordingly. For J2CS dataset, the prompt is formed as: “The de-
veloper updates the Java method from: Mg.,14 to: Ms.peqy. Please
update the C# method accordingly. This is the old C# method:

Mrio1a”

5.2 Evaluation Metrics

Following prior work [1, 41, 55, 59], we use metrics for evaluating
the quality of code generation: BLEU [42], CodeBLEU [45], xMatch,
and metrics for evaluating the quality of software editing: SARI [56]
and GLEU [35]. Note that for all the metrics we report in this paper,
they range from 0 to 100 and higher scores are better.

xMatch. When the generated code matches exactly with the ex-
pected code in target programming language, this metric is 100;
otherwise, this metric is 0. This metric reflects the percentage of
exact matches among the models’ predictions on test data.

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

BLEU. It is a widely used metric originally proposed for evalu-
ating the quality of machine translation. It measures the n-gram
overlap between the generated sequence and the expected one.
Concretely, we report the 1~4-grams overlap between the tokens
in the predictions and tokens in the ground truth.

CodeBLEU. The metric is proposed for evaluating the quality of
code generation. In addition to measuring the n-gram overlap, it
considers the overlap of the Abstract Syntax Tree (AST) and data-
flow graph between generated code and the expected code.

SARI. It measures quality of the systems that are designed to make
edits. Specifically, it is computed as the average of the F1 score
for kept and inserted spans of tokens, and the precision of deleted
spans of tokens.

GLEU. It is a variant of BLEU. It was originally proposed for gram-
matical error correction and designed for rewarding the correct
edits while penalizing the incorrect ones.

5.3 Experimental Setup

We run all experiments on machines with 4 NVidia 1080-TI GPUs,
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz for training. We im-
plement our models using PyTorch 1.9.0. All the hyper-parameters
of the CodeT5 and CoditT5 baselines are set to the same values as in
prior work [55, 59]. For CODEDITOR, CodeT5-Translation, CodeT5-
Update, and CoditT5, we early stop the training when the BLEU
score on the validation set does not improve for 5 epochs, and use
beam search with beam size 20 during inference. For Codex and
ChatGPT, we set temperature to 0.2 during inference.

Note that Codex and ChatGPT are closed-source and may be up-
dated/deprecated over time. We used the code-davinci-002 version
of Codex when performing experiments in the time-segmented
split; however, OpenAl deprecated Codex in March 2023 before we
could complete our experiments in the cross-project split, as such
we did not include Codex in this part of results.

6 RESULTS
We organize our evaluation around three main research questions:

RQ1: What is the benefit of using code change history in multilin-
gual co-editing?

RQ2: How does our edit-based model, CODEDITOR, compare to
generation-based models for the multilingual co-editing?

RQ3: How can a generation-based model complement CODEDITOR
model to further improve the performance?

6.1 Quantitative Analysis

In tables 4-7, we present results for baselines and our proposed
CopEeDpITOR models on J2CS, CS2] for both time-segmented and
cross-project splits. We conducted statistical significance testing
through bootstrap tests [6] under confidence level 95%.

RQ1: Conntribution of code change histories. We divide mod-
els into two categories with respect to whether a model has access
to the information on code change histories: Copy and CodeT5-
Translation are history-agnostic models, and the remaining are
history-aware models. Overall, the history-aware models outper-
form the history-agnostic ones. The rule-based model CopyEdits,

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

Table 4: Results on the J2CS dataset. The results with the same suffixes (e.g.,) are NOT statistically significantly different.

Models ‘ xMatch BLEU-4 CodeBLEU SARI GLEU
Copy 0.00 83.11 90.42 30.68 74.58
CopyEdits 38.21'6 90.29%X 91.34 76.92 87.93
CodeT5-Translation 38.025 87.45 77.15 83.77 85.59
CodeT5-Update 60.41¢€ 90.00X"7 76.63 80.11 88.72
CoditT5 60.29¢€ 89.84%1 75.20 80.99 89.29
Codex-few-shot 48.84 80.71 59.63 72.80 79.74
ChatGPT-zero-shot 29.52 85.60 73.00 68.44 84.74
CoDEDITOR (MetaEdits) 63.48 94.55 94.78 85.63 93.20
CopEeprTor (EditsTranslation) 67.23 95.44 96.02 87.23% 94.21
Hybrid | 7179 96.12 96.09 87.08° 95.07

Table 5: Results on the CS2J dataset. The results with the same suffixes (e.g.,) are NOT statistically significantly different.

Models xMatch BLEU-4 CodeBLEU SARI GLEU
Copy 0.00 83.06 89.82 30.66 74.55
CopyEdits 38.15 89.36% 90.318 75.86 87.02X
CodeT5-Translation 40.21 89.10% 77.998 83.99 87.21X
CodeT5-Update 55.97 90.62 76.38Y 79.65 89.72
CoditT5 60.98 90.88 75.87Y 81.41 90.15
Codex-few-shot 55.53 82.54 60.35 76.23 82.13
ChatGPT-zero-shot 32.52 86.95 76.01 69.05 86.33
CoDEDITOR (MetaEdits) 68.61¢" 93.98 94.43 85.74 92.61
CopeprIToR (EditsTranslation) 67.929€ 95.29 94.83 86.24 94.23
Hybrid ‘ 67.67%" 96.44 95.36 84.46 95.75

Table 6: Results on the cross-project split using J2CS dataset. The results with the same suffixes (e.g.,) are NOT statistically

significantly different.

Models | xMatch BLEU-4 CodeBLEU SARI GLEU
Copy 0.00 79.96% 89.08 30.53 71.89
CopyEdits 14.19 87.95 89.73 67.58 85.55
CodeT5-Translation 10.64 77.34 64.35 71.73 74.16
CodeT5-Update 29.38 80.56% 66.15 64.70 79.65
CoditT5 34.59 81.59 65.17 83.29 80.91
ChatGPT-zero-shot 39.58 86.97 74.90 70.15 86.14
CoDEDITOR (MetaEdits) 38.36 90.79# 91.60 73.45 88.94X
CopepIToR (EditsTranslation) 41.91 90.868 91.35 74.59 88.94X
Hybrid ‘ 43.35 92.51 91.70 89.13 91.18

which directly applies the code change in source programming
language (Es) to the old code in target programming language
without any adaptation, has comparable performance to the ma-
chine learning history-agnostic model CodeT5-Translation. This
emphasizes the importance of contextual information provided by
code change histories in multilingual co-editing. Interestingly, we
find that Codex-few-shot, which is used under the few-shot learn-
ing setting without fine-tuning, performs better than fine-tuned

CodeT5-Translation on xMatch, while worse than other history-
aware fine-tuned machine learning models. This again underlines
the value of code change histories and suggests that fine-tuning will
give better performance by leveraging more code history contexts
in the training data.

RQ2: CODEDITOR vs. generation-based models. Among all the
history-aware models, machine learning models, such as CodeT5-
Update and CoditT5, achieve much higher performance than the

Multilingual Code Co-Evolution Using Large Language Models

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Table 7: Results on the cross-project split using CS2]J dataset. The results with the same suffixes (e.g.,) are NOT statistically

significantly different.
Models | xMatch BLEU-4 CodeBLEU SARI GLEU
Copy 0.00 80.02 88.60 30.51 71.94
CopyEdits 13.86 86.99 88.70 66.50 84.14
CodeT5-Translation 6.21 76.84 62.27 67.37 69.81
CodeT5-Update 31.60 81.98 65.82 65.49 81.07
CoditT5 35.81 82.89 65.20 83.27 81.67
ChatGPT-zero-shot 39.80 89.35 76.69 72.36 88.62
CoDEDITOR (MetaEdits) 41.91 91.54% 91.21 73.46 89.36P
CopeDpITOR (EditsTranslation) 40.35 91.63% 90.99 74.15 89.58P
Hybrid | 46.34 93.17 91.32 89.62 91.24

X A
0.8 N . /'\
/\;:Z.}:?",._A\:\ / NN
0.6

N

xMatch

0.2

—— CodeT5-Update
0.0 | — CODEDITOR(EditsTranslation)

0 125 375 500

250
subtokens
Figure 3: Average percentage of model’s predictions that ex-
actly match the ground truth on examples that have different
number of subtokens. The bands represent the 95% confi-
dence interval.

[CodeTs5-Update
=1 CODEDITOR(EditsTranslation)

0 5'0 l(‘)O 1.;)0 2[’)0 250 3(‘)0 3.;)0 4[’)0 450 5(‘)0
subtokens
Figure 4: Distribution of number of sub tokens in models’
target outputs.

rule-based CopyEdits, which demonstrates that the machine learn-
ing models effectively learns to reason about the correlated code
changes and adjust them to the target programming language. We
observe that CODEDITOR (in both EditsTranslation and MetaEdits
modes), which is trained to first translate code changes on source
programming language to target programming language and then
apply the edits to the old code in target programming language,

achieve even higher performance across all the metrics than the
large pretrained generation-based model (CodeT5-Update) which
directly generates the new code in target programming language
from scratch. This highlights that the models that are trained to
explicitly perform edits by predicting the edit sequence are better
suited for editing tasks in the software domain than generation-
based models.

To further investigate the advantages of CODEDITOR over the
best generation-based model (CodeT5-Update), we break down
the performance of EditsTranslation and CodeT5-Update on each
example in the test data of J2CS. In Figure 3, we show the average
percentage of CopEDITOR (EditsTranslation) and CodeT5-Update’s
predictions that exactly match the ground truth with respect to the
number of sub-tokens in the input old code (Mr,,4). Note that the
code are subtokenized using the Roberta tokenizer [31], which is
used by all machine learning models. We exclude the examples that
have more than 500 sub-tokens from being shown in this figure
as those outliers only account for less than 5% of the test data. We
can see that the performance of CodeT5-Update drastically drops
with the increase of number of sub-tokens in the code to be edited
(M7.14), but EditsTranslation’s performance is rather stable. This
illustrates another benefit of CODEDITOR in accurately handling
longer input, because of focusing on transforming the edits instead
of generating the entire new code like CodeT5-Update.

Meanwhile, most of the existing transformer-based models have
alength limit for the input sequence because the naive self-attention
has quadratic complexity with regard to the input length. In Fig-
ure 4, we present the distribution of the number of sub-tokens in
the models’ target outputs for CopepITOR (EditsTranslation) and
CodeT5-Update on the test data of J2CS. We only show the distri-
bution of target outputs with fewer than 500 sub-tokens for the
same reason described in the previous paragraph. Most of CoDEDI-
TOR’s target outputs (the sequence of edit operations) are shorter
than CodeT5-Update’s output (new code in target programming
language). This might explain why CopEDITOR achieves better
performance than generation-based models on longer code as gen-
erating longer sequence are generally more challenging to machine
learning models. Recent studies [5, 7, 14] have focused on exploring
approaches to address the limitation of the model’s input context

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

1 public static Document parseBodyFragment(String bodyHtml, String baseUri) {

2 e

3 List <Node> nodeList = parseFragment(bodyHtml, body, baseUri);

4 Node[] nodes = nodeList.toArray(new Node[0]);

5 - for (int i = nodes.length - 1; i > nodeList.size(); i--) {

6 + for (int i = nodes.length - 1; i > @; i--) {

7 nodes[i].remove();

8)

9
103 Java Change
1 public static Document ParseBodyFragment(String bodyHtml, String baseUri) {

2 N

3 IList <iText.StyledXmlParser.Jsoup.Nodes.Node> nodelList = ParseFragment(bodyHtml, body, baseUri);

4 iText.StyledXmlParser.Jsoup.Nodes.Node[] nodes = nodeList.ToArray(new iText.StyledXmlParser.Jsoup.Nodes.Node[nodeList.Count]);

5 for (int i = nodes.Length - 1; i > nodelList.Count; i--) {

6 nodes[i].Remove();

7)

8 ..

o3 C# Old Method
1 .

2 - for (int i = nodes.Length - 1; i > nodeList.Count; i--) {

3 + for (int i = nodes.Length - 1; i > @; i--) {

4 . CopEeDITOR (EditsTranslation) Prediction
1 ...

2 - iText.StyledXmlParser.Jsoup.Nodes.Node[] nodes = nodelList.ToArray(new iText.StyledXmlParser.Jsoup.Nodes.Node[nodeList.Count]);

3 + iText.StyledXmlParser.Jsoup.Nodes.Node[] nodes = nodelList.ToArray(new iText.StyledXmlParser.Jsoup.Nodes.Node[@]);

4 - for (int i = nodes.Length - 1; i > nodeList.Count; i--) {

5 + for (int i = nodes.Length - 1; i > @; i--) {

6 . CodeT5-Update Prediction
1 ...

2 - iText.StyledXmlParser.Jsoup.Nodes.Node[] nodes = nodelList.ToArray(new iText.StyledXmlParser.Jsoup.Nodes.Node[nodeList.Count]);

3 + Node[] nodes = nodelList.ToArray(new Node[0]);

4 - for (int i = nodes.Length - 1; i > nodeList.Count; i--) {

5 + for (int i = nodes.Length - 1; i > @; i--) {

6 . lCodeTS—Translation Prediction]

Figure 5: Qualitative analysis of all the models on one example in the test data of J2CS dataset.

window size. Future research should examine the performance dif-
ference between translating edit sequences and generating entirely
new code using models capable of handling longer context.

RQ3: Combining generation-based model with CODEDITOR.
To exploit the superiority of generation-based model on short code
snippets, we combine our strongest generation model—CodeT5-
Update—with the strongest CoDEDITOR mode—EditsTranslation—
based on the size of the code snippet. Specifically, we use CodeT5-
Update if the code to be updated has fewer sub-tokens than a thresh-
old and use CopEepITOR (EditsTranslation) otherwise. To pick the
threshold for combining two models, we performed a grid-search
on the validation set and selected the one that gives optimal xMatch
score. We refer to the combined model as the Hybrid model and
provide its results on the bottom row of Table 4 to Table 7. By com-
bining generation-based model with CODEDITOR, we can achieve
improved performance on most of the reported automatic metrics.

6.2 Qualitative Analysis

Figure 5 shows an example in J2CS dataset and the models’ predic-
tions. We show the code changes from Java project itext/itext7
in the method (parseBodyFragment). The newly added code is high-
lighted in green and removed code is highlighted in red. We also
present the old version of the corresponding C# method (ParseBody-
Fragment) from itext/itext7-dotnet, and the predicted code

changes from three models: CopEpITOR (EditsTranslation), CodeT5-
Update, CodeT5-Translation. Note that CodeT5-Translation only
has access to the new version of Java method.

Although CodeT5-Translation is able to correctly translate the
code change in Java, it fails to infer the full name of the type Node
and makes an irrelevant edit, because it does not have the context
of the old version of C# code. CodeT5-Update correctly captures
the Java change while making an extra irrelevant edit on the C#
code. Our proposed model, CopEprTor (EditsTranslation) accu-
rately identifies the position in the C# method to make edits and
correctly adjusts the Java edits.

7 LIMITATIONS

Studied programming languages.. We study the translation of
code changes between two programming languages. In this paper,
we focus on open-source Java and C# projects due to the ease
of locating corresponding changes using heuristics. Nevertheless,
it is important to note that our approach can be applied to other
programming language pairs as well, and we leave the investigation
of such pairs for future research.

Correspondence between programming languages. Our model,
CODEDITOR, is intended for developers to migrate code changes
from a project written in a source programming language to projects

Multilingual Code Co-Evolution Using Large Language Models

written in target programming languages, leveraging known cor-
respondences (e.g., methods with similar functionalities) between
the source and target programming languages. In this work, we
adopt a similar strategy used in [33] to match Java and C# methods.
In practice, a code retrieval system can be used as a first step to
identify the locations where the code changes should be propagated.
We leave the combination of code retrieval tool and CODEDITOR as
future work.

Empirical evaluation. This paper presents the empirical study re-
sults for internal metrics that are of interest to researchers. However,
the external measurements of the impact on software engineering
effort are not included in this study. These measurements could be
addressed by conducting user studies.

8 RELATED WORK

In this section, we describe related work on the rule-based code
translation tools, existing machine learning models designed for
code translation, and the machine learning models that are proposed
for accelerating software evolution.

Rule-based code translation. Researchers and practitioners have
designed rule-based tools for translating the source code between
programming languages. Such tools, usually called transpilers, were
built for pairs like Java and C# [3], C and Rust [18], C and Go [16].
Nguyen et al. [36] proposed PBSMT, a phrase-based statistical ma-
chine translation models for source code translation. Gyori et al.
[22] proposed LAMBDAFICATOR to translate imperative Java code to
using the functional Stream APIs. Radoi et al. [44] presented the
rule-based model to translate sequential Java code to MapReduce
framework. Prior work [34] has shown that existing rule-based
code refactoring tools can only deal with stylized code snippets
over common code patterns.

Learning-based code translation. Researchers have proposed
various machine learning models for the code translation task. Chen
et al. [13] proposed a tree-to-tree neural network with a tree-RNN
encoder and a tree-RNN decoder. Motivated by the success of large
pretrained LLMs for many Natural Language Processing tasks,
domain-specific models that are pretrained on source code and
technical text have emerged. Researchers have applied them to the
code translation task. Lu et al. [33] proposed CodeXGLUE, a bench-
mark including the code translation dataset consisting of Java and
C# methods with equivalent functionality. They fine-tuned and eval-
uated CodeBERT on the translation dataset. Results showed that it
produced the best results among all the existing baselines. LLMs
that are built on the encoder-decoder paradigm and pretrained with
general unsupervised denoising auto-encoding objectives showed
promising results on wide range of code generation tasks including
code translation. Such models include CodeT5 [55], PLBART [1],
and UniXcoder [21]. For the comparison of CODEDITOR with state-
of-the-art code translation models, we include two variants of the
CodeT5-based translation models (with history context and with-
out) in our evaluation.

Researchers designed LLMs which are pretrained with the objec-
tive tailored for code translation. Tipirneni et al. [49] introduced
tasks on predicting AST paths and data flows during pretraining.
Lachaux et al. [27] proposed TransCoder which is pretrained to do
code translation with back-translation objective. To improve the

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

quality of pretraining data, Roziere et al. [46] leveraged an auto-
mated unit-testing system to filter out invalid generated programs
during back-translation. Zhu et al. [60] proposed MuST, which is a
multilingual code snippet translation pretraining objective. None
of the above work leverages the code change history, which is the
main contribution of our paper. We leave improving CODEDITOR
with pretraining objectives tailored for code translation as future
work.

Software evolution and machine learning. New research initia-
tives have emerged around building and evaluating models that aid
the process of software evolution. Prior work [19, 29, 30, 32, 41] pro-
posed to update the comment given the changes in the associated
method, e.g., Panthaplackel et al. [41] built a model that takes the
code change as context to make edits on the outdated comment. Nie
et al. [38] present different approaches to split dataset into training,
validation and test sets and studied how different approaches affect
the evaluation of machine learning models. Kamezawa et al. [25]
presented a dataset, RNSum, which consists of release notes and
the associated commit messages collected from GitHub reposito-
ries and designed models to generate release notes based on the
commit messages. Zhang et al. [59] proposed a novel pretraining
objective designed for software editing tasks and built CoditT5.
CoditT5 was fine-tuned on three downstream tasks related to the
software evolution. Li et al. [28], Tufano et al. [52], Zhang et al.
[58] proposed models that targeted various tasks through the code
review process. The models are trained on the historical data and
evaluated on the new pull requests submitted for code review. Our
CopEepIToR model incorporates the context from the code changes
in source programming language and the old version of method in
target programming languages to improve its performance on the
multilingual co-editing task, which helps developers co-evolve the
projects implemented in different programming languages.

9 CONCLUSION

In this paper, we formulated a new task: translating code changes
across programming languages with the goal to synchronize projects
that provide the same APIs or implementations in multiple pro-
gramming languages. We proposed CODEDITOR, a model which uses
code change history as contextual information and learns to make
edits on the existing version of code written in the target program-
ming language. We showed that our model outperforms existing
code translation models and is better than the generation-based
models even if they use historical context. CODEDITOR is a signifi-
cant advancement in supporting developers with the maintenance
of their projects that incrementally provide identical functionalities
in multiple programming languages.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Yu Liu, Sheena Panthaplackel, Aditya
Thimmaiah, Zhigiang Zang, and the anonymous reviewers for their
comments and feedback. We acknowledge the Texas Advanced
Computing Center (TACC) at The University of Texas at Austin
for providing HPC resources that have contributed to the research
results reported within this paper. This work is partially supported
by the US National Science Foundation under Grant Nos. CCF-
2107291, 11S-2145479, CCF-2217696 and CCF-2313027.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

REFERENCES

(1]

R

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.
Unified Pre-training for Program Understanding and Generation. In Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 2655-2668.

Toufique Ahmed and Premkumar Devanbu. 2022. Few-Shot Training LLMs for
Project-Specific Code-Summarization. In Automated Software Engineering. 1-5.
Christian Mauceri Alexandre FAU. 2013. Java2csharp. http://sourceforge.net/
projects/j2cstranslator/

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. 2012. An Empirical
Investigation of Statistical Significance in NLP. In Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning. 995-1005.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R Gormley. 2023.
Unlimiformer: Long-range transformers with unlimited length input. arXiv
preprint arXiv:2305.01625 (2023).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Nghi DQ Bui and Lingxiao Jiang. 2018. Hierarchical Learning of Cross-Language
Mappings Through Distributed Vector Representations for Code. In International
Conference on Software Engineering, NIER. 33-36.

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

Code Review Activities by Large-Scale Pre-Training. In Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1035-1047.

Bo Lin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and Tegawendé F Bissyandé.
2021. Automated Comment Update: How Far are We?. In International Conference
on Program Comprehension. 36-46.

Bo Lin, Shangwen Wang, Zhongxin Liu, Xin Xia, and Xiaoguang Mao. 2022.
Predictive comment updating with heuristics and ast-path-based neural learning:
A two-phase approach. IEEE Transactions on Software Engineering 49, 4 (2022),
1640-1660.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
Robustly Optimized Bert Pretraining Approach. arXiv preprint arXiv:1907.11692
(2019).

Zhongxin Liu, Xin Xia, David Lo, Meng Yan, and Shanping Li. 2021. Just-in-
time obsolete comment detection and update. IEEE Transactions on Software
Engineering (2021).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. arXiv preprint arXiv:2102.04664 (2021).

Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Isil Dillig. 2022.
Automated Transpilation of Imperative to Functional Code using Neural-Guided
Program Synthesis. In International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 1-27.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. 2015. Ground
Truth for Grammatical Error Correction Metrics. In Annual Meeting of the Associ-
ation for Computational Linguistics and International Joint Conference on Natural
Language Processing. 588-593.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2015. Divide-

[10] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. ! ane T
2020. Codit: Code Editing with Tree-based Neural Models. Transactions on and-Conquer Approach ff;)r M}lltl-Phase Statistical Migration for Source Code. In
Software Engineering 4 (2020), 1385-1399. Automate{i Software Engfneermg. 585-596.))

[11] Saikat Chakraborty and Baishakhi Ray. 2021. On Multi-Modal Learning of Editing] Pengyu Nle‘ 2023. Mgchme Pe“’"l”ngVEXEC?table Code in Soﬁu{are Testing and
Source Code. In Automated Software Engineering. 443-455. Verification. Ph.D. Dissertation. The University of Texas at Austin.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira] Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Raymond J. Mooney, and Milos Gligoric.

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,

2022. Impact of Evaluation Methodologies on Code Summarization. In Annual
Meeting of the Association for Computational Linguistics. 4936-4960.

et al. 2021. Evaluating Large Language Models Trained on Code. arXiv preprint
arXiv:2107.03374 (2021).
[13] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-Tree Neural Networks

'S
20

OpenAl 2023. GPT-4 Technical Report. arXiv:arXiv:2303.08774
OpenAl 2023. Introducing ChatGPT. https://openai.com/blog/chatgpt

TN
=S

for Program Translation. In Advances in Neural Information Processing Systems,
Vol. 31.

Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond
Mooney. 2020. Learning to Update Natural Language Comments Based on Code
Changes. In Annual Meeting of the Association for Computational Linguistics.

[14] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances 18.5371868‘ . . . -
in Neural Information Processing Systems 35 (2022), 16344-16359.] Kishore Papineni, Sa.hm Roukgs, Todd Wa_rd, and Wel.-ng Zhu. 2002. BLEU: a

[15] Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent] Hellendoorn. Method f(_)r {\utomatlc Evaluz_atlon O_f M ac_:h.me Translation. In Annual Meeting of
2020. Patching as Translation: the Data and the Metaphor. In Automated Software the Association for Computational Linguistics. 311-318. i
Engineering. 275-286.] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A Predicated-LL (k) Parser

[16] Elliot Chance et al. 2021. A tool for transpiling C to Go. https://github.com/ GenerAator. Sqftware: Pracfzce and Experzence 25,7 (1995), ,7897810'
elliotchance/c2go] Cosmin Radoi, Stephen J Fink, Rodric Rabbah, and Manu Sridharan. 2014. Translat-

[17] Python Software Foundation. 2023. difflib — Helpers for computing deltas. Re- ing Impera.tive Code to MapReduce. In Internqtiar{al Conference on Object-Oriented
trieved February 2, 2023 from https://docs.python.org/3/library/difflib.html Programming, Systems, Laflguages, and Appltcafmn; 909-927.

[18] Galois and Immunant. 2023. C2Rust. https://github.com/immunant/c2rust] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liv, Duyu Tang, Neel Sundare-

[19] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. 2021. san, Mmg Zhou, Ambrosm Blanco, and‘Shual Ma. 2029' Code.BLEU: a Method for
Automating the removal of obsolete TODO comments. In Proceedings of the 29th Autqmatm E'valuaFlon of Code Synthgsm. arXiv preprint arXiv:2009. 1,0297 (2020).
ACM Joint Meeting on European Software Engineering Conference and Symposium] Baptlstg Roziere, Jie M Zhang, Fran001§ Charton, Mark H;flrman, Gabriel Synna‘eve,
on the Foundations of Software Engineering. 218-229, and Guillaume Lample. 2021. Leveraging Automated Unit Tests for Unsupervised

[20] Google. 2023. Google Cloud. https://cloud.google.com/ Code Translation. arXiv preprint arXiv:2110.06Z73 (2021).

[21] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.] Apache Software. 2022. Apache Lucene. Retrieved March 2, 2022 from https:
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Annual ! lu'cene.apache.org/ . .
Meeting of the Association for Computational Linguistics. 7212-7225.] Fel'lx Stahlberg and Shankar Kumar. 2020. 'S'quEdltSZ Sequence Transduction

[22] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. 2013. Crossing the Gap Using Span—level Edit Operations. In Empirical Methods in Natural Language
from Imperative to Functional Programming Through Refactoring. In Interna- P,"’”“"’g- A5147T515‘9'
tional Symposium on the Foundations of Software Engineering. 543-553.] Sindhu Tipirneni, Ming Zhu, and Chandan K Reddy. 2022. StructCoder: Structure-

[23] MongoDB Inc. 2023. MongoDB. https://www.mongodb.com/ Aware Transformer for Code Generation. arXiv preprint arXiv:2206.05239 (2022).

[24] Paul Jaccard. 1912. The Distribution of the Flora in the Alpine Zone. New] Marco Trudel, Manuel Oriol, Carlo A Furia, and Martin Nordio. 2011. Automated
phytologist (1912), 37-50. Translation of Java Source Code to Eiffel. In International Conference on Objects,

[25] Hisashi Kamezawa, Noriki Nishida, Nobuyuki Shimizu, Takashi Miyazaki, and M?dds’ Components, P atterns. ?0735' .

Hideki Nakayama. 2022. RNSum: A Large-Scale Dataset for Automatic Release Michele Tufano, Jevgenija P an_tluchlna, 'Cody Watson, Gabriele Bavota, and De]?ys
Note Generation via Commit Logs Summarization. In Annual Meeting of the Poshyvanyk. 2019. On Learning Meaningful Code Changes via Neural Machine
Association for Computational Linguistics. 8718-8735. Translation. In International Conference on Software Engineering. 25-36.

[26] Junaed Younus Khan and Gias Uddin. 2022. Automatic Code Documentation Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys

Generation Using GPT-3. In Automated Software Engineering. 1-6.

Poshyvanyk, and Gabriele Bavota. 2022. Using Pre-Trained Models to Boost
Code Review Automation. In International Conference on Software Engineering.

[27] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample.

2020. Unsupervised Translation of Programming Languages. In Advances in 2291'_2302' i . X X

Neural Information Processing Systems. 20601-20611.] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
[28] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, et al. 2022. Automating

You Need. In Advances in Neural Information Processing Systems. 5998—6008.

Multilingual Code Co-Evolution Using Large Language Models

[54]

[55

[56]

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D.Q. Bui, Junnan Li, and
Steven C. H. Hoi. 2023. CodeT5+: Open Code Large Language Models for Code
Understanding and Generation. arXiv preprint (2023).

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Empirical Methods in Natural Language Processing. 8696-8708.
Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-
Burch. 2016. Optimizing Statistical Machine Translation for Text Simplification.
Transactions of the Association for Computational Linguistics 4 (2016), 401-415.
Ziyu Yao, Frank F. Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. 2021.
Learning Structural Edits via Incremental Tree Transformations. In International
Conference on Learning Representations.

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

[58] Jiyang Zhang, Chandra Maddila, Ram Bairi, Christian Bird, Ujjwal Raizada,

Apoorva Agrawal, Yamini Jhawar, Kim Herzig, and Arie van Deursen. 2023. Us-
ing Large-scale Heterogeneous Graph Representation Learning for Code Review
Recommendations at Microsoft. International Conference on Software Engineering,
SEIP (2023).

[59] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos

[60]

Gligoric. 2022. CoditT5: Pretraining for Source Code and Natural Language
Editing. In Automated Software Engineering. 1-12.

Ming Zhu, Karthik Suresh, and Chandan K Reddy. 2022. Multilingual Code
Snippets Training for Program Translation. In AAAI Conference on Artificial
Intelligence. 11783-11790.

Received 2023-02-02; accepted 2023-07-27

	Abstract
	1 Introduction
	2 Task
	3 Model
	3.1 Edit Representations
	3.2 Model Input
	3.3 Model Output

	4 Dataset
	4.1 Data Collection
	4.2 Data Preprocessing and Splitting
	4.3 Statistics

	5 Experiments
	5.1 Baselines
	5.2 Evaluation Metrics
	5.3 Experimental Setup

	6 Results
	6.1 Quantitative Analysis
	6.2 Qualitative Analysis

	7 Limitations
	8 Related Work
	9 Conclusion
	References

