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ABSTRACT

We introduce Object Graph Programming (OGO), which enables
reading and modifying an object graph (i.e., the entire state of
the object heap) via declarative queries. OGO models the objects
and their relations in the heap as an object graph thereby treating
the heap as a graph database: each node in the graph is an object
(e.g., an instance of a class or an instance of a metadata class) and
each edge is a relation between objects (e.g., a field of one object
references another object). We leverage Cypher, the most popular
query language for graph databases, as OGO’s query language.
Unlike LINQ, which uses collections (e.g., List) as a source of data,
OGO views the entire object graph as a single “collection”. OGO
is ideal for querying collections (just like LINQ), introspecting the
runtime system state (e.g., finding all instances of a given class or
accessing fields via reflection), and writing assertions that have
access to the entire program state. We prototyped OGO for Java in
two ways: (a) by translating an object graph into a Neo4j database
on which we run Cypher queries, and (b) by implementing our
own in-memory graph query engine that directly queries the object
heap. We used OGO to rewrite hundreds of statements in large
open-source projects into OGO queries. We report our experience
and performance of our prototypes.
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1 INTRODUCTION

Declarative programming [53], focusing on the what rather than the
how, has grown into the predominant way of programming in an
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increasing number of domains. For instance, Structured Query Lan-
guage (SQL), a canonical example of the declarative paradigm, is the
primary query language for most relational database management
systems [9, 28, 69, 70]. At the same time, NoSQL databases have
been gaining traction. In particular, the space of graph databases [4,
50, 91, 92] is growing at a rapid pace, as they have been shown to
be a great fit for tasks such as fraud detection, drug discovery [100],
recommendation engines, and data visualization [24, 58]. Graph
databases store data as property graphs [3, 44, 64], which emphasize
relationships between data.

A property graph (graph for short) contains nodes N and edges
R denoting relationships between nodes. Each node is assigned
a label L and contains an arbitrary set of properties : mappings
from nodes to values. Edges also have a label (sometimes called
type in the literature) and an arbitrary set of properties. Querying,
updating, and administering of such a graph is performed with a
graph query language. Cypher [35, 45], initially developed as part
of the Neo4j project [73], is currently the most popular graph query
language [46, 98]. Cypher is a declarative language, in many ways
similar to SQL, which emphasizes simplicity and expressivity. As an
example, to get the values of all nodes in a graph database we could
run the following query: match(n : Node) return n.val. Although
graph databases have been used for various tasks, the power of
property graphs and graph query languages has yet to be used to
enhance developers’ experience.

Our key insight is that an object graph [39], i.e., in-memory pro-
gram state available at the execution time, can be seen as a property
graph. We believe that being able to query object graphs during
development, testing, and debugging will substantially extend the
power of programming languages and tools.

We present Object-Graph Programming (OGO) that enables query-
ing and updating an object graph via declarative queries. OGO treats
a given object graph as a graph database: each node in the graph
is an object (e.g., an instance of a class or an instance of a meta
class) and each edge is a relation between objects (e.g., a field of one
object references another object). We leverage Cypher as OGO’s
query language. This gives rise to endless opportunities to lever-
age OGO for programming, analyses, and tool development. We
describe several potential use cases where OGO can be applied.

OGO provides a powerful and expressive way for writing as-
sertions and program invariants [71, 74]. Assertions written using
OGO not only can access the local program state, but they can also
check any aspect of the dynamic state of a program.



For example, we could assert that there is never more than one
instance of a specific (singleton) class. Moreover, like LINQ, OGO
can be used for querying collections of data and even implementing
these collections. Unlike LINQ, OGO, at the moment, requires devel-
opers to cast their results to appropriate type, as we do not guaran-
tee type safety, which is similar to working with the java.sql [85]
package. At the same time, OGO can query any collection (e.g., an
n dimensional array) without requiring a user to implement any
specific interface.

In this paper, we show the power of OGO with these two use
cases, but we envision many further benefits and potential uses.

For example, OGO could facilitate dynamic program analyses.
For instance, a common task for tools that detect flaky tests [10, 88,
108] (due to test order dependency) is to check that the program
state is the same at the beginning of each test.

A common subtask is to find all objects reachable from static vari-
ables. Using OGO, we can write a query to get all reachable objects
as query(“MATCH (n {[]1}) — [*] — (m) RETURN m”, roots) start-
ing from roots. For another example, OGO could be used to in-
trospect the system, such as finding all objects of a given class
that satisfy a desired set of properties. Unlike reflection, which
is frequently used to discover relations among objects and meta
classes via imperative traversal of object graphs, e.g., serialization
code [12, 14, 80, 89, 90], OGO can help find these relations via
queries over instances in memory and instances of meta classes
(assuming they are available as part of the object graph like in Java).

We discuss these and further benefits in Section 5.

We prototyped OGO for the Java programming language in two
ways: (a) by translating an object graph into a Neo4j database on
which we run Cypher queries (OGON¢°), and (b) by implementing
our own in-memory graph query engine that directly queries the
object graph (OGOMe™). The former enables us to harvest the full
power of a mature graph database, including the highly optimized
query engine and visualization capabilities. However, the transla-
tion cost from object graph can be high even with a number of
optimizations that we developed, and this approach requires extra
memory (disk). Since, at the moment, we do not leverage stored
graph databases for any offline analysis, we developed a second
prototype that works on the object graph in memory. This approach
requires close to zero extra memory, but comes with significant
engineering effort.

We evaluate the applicability and robustness of OGO by rewrit-
ing 230 assertions from 10 popular open-source projects available
on GitHub. Furthermore, we implemented a number of methods
from several classes using OGO. We report execution time for both
prototypes. Our results highlight substantial performance benefits
of in-memory implementation.

The key contributions of this paper include:

* Idea. OGO introduces a new view of the runtime state of a pro-
gram and provides a novel way by which such a state can be
queried and modified. OGO offers developers a blend of impera-
tive and declarative programming abstractions to manipulate the
program state, increasing the expressivity of a programming lan-
guage which implements OGO’s paradigm. Although OGO can
be used to replace many statements (even a single field access),
it is best suited for tasks that include traversal of objects and

metadata, such as introspecting system state, writing assertions
and invariants, and implementing linked data structures.

* Formalization. We formalize OGO by giving a small-step oper-
ational semantics to Featherweight Java [49] in terms of property
graphs. This formalization captures the core of our translation
to Neo4j and can form the foundation for future projects that
require reasoning about correctness, such as query optimizations.

* Implementation. We implement two prototypes of OGO by
(a) translating Java’s object graph to an off-the-shelf graph data-
base, and (b) by implementing from-scratch-in-memory graph
query engine that directly queries the object graph. Although
our focus was on features supported by OGO and not on its per-
formance, we describe several optimizations for both translation
and in-memory traversal.

* Evaluation. We evaluated the robustness of our prototypes and
compared their performance by rewriting a large number of asser-
tions that are already available in popular open-source projects.
Focusing on assertions simplified the selection of target state-
ments for the evaluation and enabled us to scale our experiments.
We also implemented a number of methods from several classes
in popular open-source projects.

OGO is publicly available at:
https://github.com/EngineeringSoftware/ogo.

2 EXAMPLES

We demonstrate the expressive power of declarative queries for
analyzing program state by using two examples, such that each
example illustrates a different aspect of the framework: (1) creation
of instances, relations between instances and object graph pattern
matching; (2) implementing instance methods (containsKey) of
Java Collections framework class (java.util.HashMap).

2.1 Creating and Querying Object Graphs

The binary tree is a rooted ordered tree with each of its nodes
having at most 2 children. We demonstrate the versatility of OGO
by leveraging declarative queries to construct a binary tree and
query it for complex patterns. We also use this example to introduce
the syntax of the Cypher query language [35].

A Java implementation of the binary tree is given in Figure 5a.
An instance of BinaryTree contains a reference field root of type
Node (short for BinaryTree$Node), the root node of the tree and
a primitive int field size that tracks the total number of nodes
in the tree. An instance of Node contains references to its left and
right child nodes also of type Node and stores an integer value in
its primitive int field value.

Constructing a binary tree using OGO is given in Figure 1a.
We use the queryObject method of OGO to execute the given
Cypher query string. Based on the Cypher grammar, the query
contains six clauses. The first two are CREATE clauses (write to
database/object graph), the next three are MERGE clauses (write
or read from database/object graph) and finally, a RETURN clause
(defines expressions to be returned).

The first CREATE clause (lines 2-3) creates 5 Node instances.
These instances are assigned variable (which is a term used in
the Cypher syntax) names a-e for referencing in followup clauses.
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1 BinaryTree bTree = (BinaryTree) queryObject(

"CREATE (a:@1 {value:1}), (b:@1 {value:2}), (c:@1 {value:4}),

(d:@1 {value:5}), (e:@1 {value:3})

CREATE (f:@2 {size:5})

MERGE (a)<-[:left]l-(b)<-[:left]-(c)-[:right]->(d) MERGE (b)-[:right]l->(e)
MERGE (f)-[:root]->(c)

RETURN f", Node.class, BinaryTree.class);

1 ResultSet matchedNodes = query(

2 bTree.root,

3 "MATCH (n {$1})-[:left|right*2]->
4 (m:@1 {value:13})

5 RETURN m", bTree.root);

1 ResultSet matchedNodes = query(
2 bTree.root,

3 "MATCH (n {$13})-[*]-(m)

4 RETURN m", bTree.root);

N o U oe W

(a) Creating and connecting Node and BinaryTree instances. (b) Finding all objects reachable

from an object.

(c) Checking existence of a
specific node.

Figure 1: Creating and querying instances and relations between instances using OGO. Graphs above queries visualize the
results of those queries. (a) The CREATE clause is first used to create instances of BinaryTree and Node followed by which a MERGE
clause is used to create relations between the created instances. The reference to the created BinaryTree instance (reachable
from all instances created by the CREATE clause under transitive closure) is returned at the end of the query to prevent the
created instances from being garbage collected. (b) The query pattern is undirected and unconstrained in terms of the instance
type being matched and their distance from n (root) and hence all reachable objects are returned. This is particularly useful
for identifying object confinement issues. (c) The query pattern is directed and constrained to Node instances reachable from

n through fields left or right that are exactly 2 hops away.

The expansion of the positional arguments @1, @2 is described
in Table 1 and are replaced with the fully qualified class name
(BinaryTree$Node and BinaryTree respectively) of the arguments
following the query string. In Cypher syntax, these are termed
LABELS. Java non-primitive types are mapped to string LABELS of
nodes in our graph model. Consequently, the CREATE clause creates
instances of the specified type. The LABELS are followed by node
properties ({< prop_name >:< prop_value >, ...}) which are key-
value pairs that map to the represented object’s primitive/String
fields and their values. In CREATE, they assign the fields of the
created instance to the specified values. Thus, the value field of
instances a-e is assigned with values 1-5 respectively. The second
CREATE (line 4) creates an instance of BinaryTree (assigned f, this
can be subsumed into the first CREATE but is divided for clarity).

The MERGE clauses (line 5) are used to create relationships among
the a-e. Since the binary tree is a directed graph, we create directed
relationships. LABELS can also be specified for relationships. In our
graph model of the heap, the relationship between a referrer and a
referee instance is labelled by the reference field corresponding to
the referee instance in the referrer instance’s class. We use the refer-
ence fields left and right as labels for the relationships between
a-e. Fore.g., (b) « [: left] — (c) — [: right] — (d) translates to
assigning b and d as the left and right child of ¢. The RETURN clause
returns a reference to the BinaryTree instance f to prevent the
objects from being garbage collected.

We next describe querying the binary tree by discussing two
patterns. The first pattern investigates general reachability of ob-
jects from a given object. Such queries are of importance to the
problem domains of Aliasing, Confinement and Ownership. For
instance, if a node in the binary tree was owned by another instance
outside the confinement of the binary tree instance then the aliased
node could potentially be mutated, leading to undesirable outcomes.

Figure 1b shows a query which returns all objects reachable from
the root Node instance. The query contains a MATCH (line 3) and
RETURN clauses. The MATCH clause matches all paths in the heap’s
object graph satisfying the given pattern (n{$1}) — [*] — (m). The
positional argument $1 expands to a unique identifier belonging
to the first argument following the query and is used to uniquely
identify an object on the heap. The matched root Node instance
is assigned variable n. The pattern neither specifies a label nor a
direction for the relationship from n and hence all references from
and to n are considered. Furthermore, the * implies that the refer-
ee/referrer instances can be any number of hops away from n. Thus,
this pattern matches the set of all objects reachable to and from n
under transitive closure and is assigned m. This can be used to iden-
tify confinement issues. The pattern given in Figure 1c describes a
situation where we are interested in querying the binary tree for
existence of a node with a certain value (value=1) and a certain
distance (2 hops) away from the root node. This is a more con-
strained query than the former and the pattern (lines 3-4) is more
specific. The relationship is now directed (—[] —), labelled and
with fixed distance so only instances referenced by n and through
reference fields left or right that are 2 ([*2]) hops away from n
are considered.

2.2 Implementing Java Library Methods

The Java collections framework provides a rich collection of data
structures supported natively by the Java platform. We show how
OGO can be used to manipulate these objects by considering the
example of implementing methods available in the Java collections’
class java.util.HashMap. The HashMap stores data as key-value
pairs where every stored value is mapped to a unique key.

A snippet of the HashMap class is given in Figure 2a. The refer-
ence field table contains all the entries in the map. The method



1 public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>,Cloneable,Serializable {
transient Node<K,V>[] table;
static class Node<K,V> implements Map.Entry<K,V> {
final int hash; final K key; V value; Node<K,V> next;
}

R N I TR

(a) Snippet of java.util.HashMap class definition.

1 public boolean containsKey(Object key) {

2 return getNode(hash(key), key) != null;

33}

4 final Node<K,V> getNode(int hash, Object key) {

5 Node<K,V>[] tab; Node<K,V> first, e; int n; K k;

6 if ((tab = table) != null && (n = tab.length) > 0 &&

7 (first = tab[(n - 1) & hash]) != null) {

8 if (first.hash == hash && // always check first node

9 ((k = first.key) == key || (key != null && key.equals(k))))
10 return first;

1 if ((e = first.next) != null) {

12 if (first instanceof TreeNode)

13 return ((TreeNode<K,V>)first).getTreeNode(hash, key);
14 do {

15 if (e.hash == hash && ((k = e.key) == key ||

16 (key != null && key.equals(k)))) return e;

17 } while ((e = e.next) != null);}

18 } return null;}

(b) Imperative implementation of HashMap’s containsKey
method.

1 public boolean containsKey(Object key) {

2 return queryBool(

3 "MATCH ({$1})-[:table]->()-[*1->()-[:keyl->(n) MATCH (m {$23})
4 WHERE n. equals™(m) = true RETURN COUNT(n) <> @", this, key);
5%

(c) OGO implementation of HashMap’s containsKey method.

Figure 2: Methods from Java collections framework using
0GO. (a) The nested static class Node stores a key-value pair
and the reference field table stores all the entries in the map.
(b) The imperative implementation of containsKey uses the
getNode method. (c) OGO (OGOM¢™) can also be used to in-
voke instance methods as shown in the WHERE clause.

containsKey of the HashMap class checks if a given key is present in
the map. A purely imperative implementation of the containsKey
method is given in Figure 2b. OGO implementation is shown in
Figure 2c. The Cypher query used contains 2 MATCH clauses (line 3),
the first clause matches all instances reachable from table that
correspond to the reference field key (defined in the static nested
class Node in HashMap) and refers to these set of instances as n, the
second clause matches the instance passed in as an argument to
the containsKey method. The WHERE clause is used to filter the set
n based on the result of the equals method (overriden or inherited
from java.lang.Object). If the equals method evaluates to true
for at least one instance in n and for m then the cardinality of set
n is non-zero after this clause is completed and hence the RETURN
clause returns true.

The examples show a glimpse of the potential of OGO: it provides
access to any object in memory, at any point regardless of access
specifiers, through a declarative API Similar to this example, one
could envision numerous other potential applications of OGO, a
point which we return to in Section 5.

3 FRAMEWORK

We first present OGO’s API design (Section 3.1) followed by a high-
level overview of the workings of OGO (Section 3.2). Next, we

1 public static ResultSet query(Object root, String fmt, Object... values);

2 public static ResultSet query(String fmt, Object... values);

3 public static Object queryObject(Object root, String fmt, Object... values);
4 public static Object queryObject(String fmt, Object... values);

5 public static boolean queryBool(Object root, String fmt, Object... values);
6 public static boolean queryBool(String fmt, Object... values);

7 public static long querylLong(Object root, String fmt, Object... values);

8 public static long queryLong(String fmt, Object... values);

9 // similar for other primitive types

Figure 3: OGO API available via the 0GO class. Bounded
queries (lines 1, 3, 5 and 7) contain an additional root ar-
gument that constraints the query execution to a subgraph
(limited to only objects reachable from the root argument
under transitive closure) of the JVM heap object graph.

formally describe mapping of the object graph in the JVM heap
memory to a property graph, as well as translation to Neo4j (Sec-
tion 3.3). Lastly, we conclude the section with a description of our
implementation and optimizations details (sections 3.4 and 3.5).

3.1 API

We begin by describing queries—their type, arguments, and return
values—followed by a discussion of our API design choices.

Queries. We show (the most important parts of) OGO’s API in Fig-
ure 3. The design choice of keeping the API minimal is intentional,
similar to that available for working with relational databases such
as java.sql. This allows developers acquainted with both Java and
Cypher to be able to use OGO with ease.

The highlight of the API are two variadic query methods (lines 1
and 2 in Figure 3), which we call bounded query and unbounded
query, respectively. We describe each one in turn.

In case of a bounded query, the first argument of the method takes
an object (root) that constraints query execution only to objects
reachable (under transitive closure of reference fields) from this
root. Having the ability to specify only a subgraph of the entire
object heap enables two things: (a) making localized queries, e.g.,
like we did in Figure 1c, and (b) improve performance of OGO, as
we focus on traversal of only a part of the entire object heap. A
nice side effect of root having an Object type is that one can pass
a collection that contains multiple roots in a single invocation. For
example, if the goal is to find all objects reachable from several
static fields, one can add values of all those static fields into a single
collection and pass that collection as the first argument to the
bounded query.

In case of an unbounded query, the query is executed on the
entire available object heap. We had an example of such a query
in Figure 2c. (In that example an unbounded query was used since
the instances being matched may not be related.) Semantics for
an unbounded query are relatively less precise than for a bounded
query due to the dynamic nature of the JVM, and the user has to
accept these unknowns if they use unbounded queries. Specifically,
Java is a GC-enabled programming language and OGO does not
guarantee that objects returned by unbounded queries will not be
garbage. In the future, we might offer a more precise semantics for
unbounded queries, e.g., ensuring that the result of a query reflects
the state as if GC completed its work (this will be trivial to offer
during a debugging session for example). Nevertheless, unbounded
queries can be valuable in countless examples, e.g., checking if there
are instances of classes that are not expected to be instantiated or



Table 1: Positional arguments supported by OGO in the
query formatting string.

$ Embed a unique id of an instance

example query("MATCH (n {$1}) RETURN n.some_field", node)

expansion query("MATCH (n {__id__:5777203}) RETURN n.some_field")

@ Embed the fully qualified class name of an instance

example query("MATCH (n: @1) RETURN n", node)

expansion query("MATCH (n:~com.package.Node ) RETURN n")

[] Embed unique id of instances from an Iterable collection and
return union of results

example query("MATCH (n {[11}) RETURN n.some_field", nodes)

expansion query("MATCH (n {__id__:8898223}) RETURN n.some_field")U

query("MATCH (n {__id__:5777203}) RETURN n.some_field")...

checking if at any point all instances of a specific class have a field
in a given range of values.

Arguments. Both query methods in our API share the remain-
ing arguments: formatting string (fmt) and values. The format-
ting string in its simplest form is just a Cypher query such as

"MATCH (n : ‘java.util.ArrayList‘) RETURN n”. To enable constrain-
ing queries by embedding runtime values, we introduce several

kinds of positional arguments; the values are provided from the

third argument onward. We show kinds of positional arguments

in Table 1. For each kind, we show an example and the expansion

once the formatting is complete. We support embedding the unique

id of an instance ($), fully qualified class name of an instance (@),

or doing a union of query results when we run a query on each

element of a (Iterable) collection ([]).

Return value. The result of each query is an instance of Resul tSet.
ResultSet [85] is available in Java as an interface and a common
structure for storing the results of queries; similar structure is used
in other programming languages. Via the resulting instance one can
access columns (e.g., getArray(int columnIndex)), get the current
row number (e.g., getRow()), etc. Anybody already familiar with
working with relational databases from Java would be familiar with
the structure.

For convenience, we introduced several query methods that re-
turn a specific type (lines 5-8). The only difference is that these meth-
ods cast/extract the result as a single value from the ResultSet;
many assertions or queries that use COUNT would end up benefiting
from this shorter version. As for the naming, we followed similar
convention as the Unsafe class [86].

Design decisions. Similar to working with SQL strings and java.sql,
OGO does not statically type check expressions. Thus, a dynamic
CastClassException might be raised if a wrong value is passed
to one of the query calls. Alternatively, rather than specifying the
Cypher query as a string explicitly, the Cypher DSL [67] could be
used instead. We leave this integration for future work.

Moreover, our API is not designed to be thread safe. Namely,
the developer is responsible to ensure that appropriate locks are
held when querying the (sub) object graph. This approach offers
more flexibility without being different than implementing any
code snippet imperatively.

3.2 Overview of OGO Steps

Figure 4 shows the high level overview of the working of OGO. The
figure illustrates steps taken by both of our implemented prototypes

(OGON€ and OGOMe™), and highlights the differences between
the two.

OGO flow starts once a query method is invoked, as described
in the previous section. In addition to the query, OGO implicitly
takes as input the entire state of the program. In the first step,
OGO processes the formatting string and builds the actual query
to be executed. This step is straightforward and includes simple
string manipulations and object id discoveries (if the user has any
collection in the formatting string, e.g., [], OGO builds a batch
query). In the second step, OGO uses a JVMTI agent (and the root
object if given) to identify objects that are in the (sub)graph of
interest. Note that a highly optimized system would not traverse
the objects before analyzing the given query. Once the second step
is done, the execution for OGON¢ and OGOMem diverge.

OGOMe™ in the third step, builds intermediate representations
of the query (AST among others) and executes the query as per
the Cypher semantics [34]. In the final step, O0GOM¢™ collects the
results into a newly allocated ResultSet, which is the final result
of the query execution.

Unlike OGOMe™  OGON€°  in the third step, translates (Sec-
tion 3.3) objects of interest and their relations into a format accepted
by Neo4j for batch data loading. In step four, OGO passes the
query to a Neo4j database running in a separate JVM and takes
the result of the execution, which are node IDs when the result
type is non-primitive and primitive values when the result type
is primitive. In the final step, it processes these node IDs to build
the final result, which are the values known to the JVM. Primitive
values remain as they are returned by Neo4j. On the other hand,
non-primitive values are mapped to object IDs, which are then used
to fetch objects and build the final ResultSet returned to the user.
OGON® and the Neo4j database are implemented as RMI client
and server applications respectively. This prevents polluting the
JVM heap with irrelevant Neo4j database objects.

3.3 Translation

In this section we describe our translation from the JVM heap
to a Neo4j graph database, by formalizing graph databases and
presenting an operational semantics for Featherweight Java in terms
of this formalization.

Graph databases, formally. A graph database is a directed multi-
graph: a pair N X R of nodes, the main entities of the graph, and
relationships, the edges of the graph denoting directed connections
between nodes. A nodeis a pair L X %P of a label!, drawn from some
abstract domain that serves as the type of the node, and properties,
a map from string keys to string values. A relationship corresponds
to the edges of the multigraph: it has a start and end node, a label,
and a key-value property map.

The Java heap as a graph database, by example. Following
the binary tree example presented in Section 2, consider a sim-
ple BinaryTree instance in Figure 5b, which defines a Nodel with
a value field 4, and a BinaryTreeb whose root is a Node with 1 as
its left subtree, no right subtree and a value field of 5. A pictorial
representation of the property graph at the marked POINT is shown
in Figure 5c.

Corresponds to the fully qualified class name of the instance represented by the node.
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Figure 4: Overview of OGO (and two implementations: 0GON¢° and 0GOMe™),

1 class BinaryTree { 1 class BinaryTreeTest{

2 private Node root; 2 void test(){
3 private int size; 3 BinaryTree b = new BinaryTree();
4 static class Node { 4 Node 1 = new Node(4);
5 private Node left; 5 b.root = new Node(l, null, 5);
6 private Node right; 6 (* POINT =)
7 int value; 7 query(...)
8 } 8 }
9} 9}
(a) BinaryTree class (b) An example test class.
definitions.
local var . . local var
2 AN I
N
[, |
s |
\\[(’//(- I
N Cor P
. |
root N4
{ value:4 } { value:5 } {size:2 }

(c) Graph database at = POINT .

Figure 5: An example class, its test class and the correspond-
ing object graph shown as a property graph. (c) instances
of Node, BinaryTree and java.lang.Class are shown colored
black, blue and grey. The local variable references are shown
as dashed edges. Reference fields (left,right) are mapped
as node relations whereas primitive( value,size) and String
fields are mapped as node properties.

o Object instances. Every object instance that has been allocated
corresponds to a node in the property graph. It’s label is the
name of the object’s class, and it’s property set contains the
values of any primitive fields or strings. In our example, the node
corresponding to 1 has the label Node and a singleton property
set that maps value to 4, while the node corresponding to b has

L == class C extends C {C f; K M}
K ::= C(C X){super(X); this.f =x;}
M= Cm(CX){e}
c
e

x = new C(X)| x.f = x | x.m(X)
c; e | return x

Figure 6: Syntax of Featherweight Java.

the label BinaryTree and a singleton property set that maps
size to value 2.

o Fields. Each reference field of an object corresponds to a rela-
tionship whose label is the name of the field, its origin is the
node of the graph that corresponds to the object it belongs to, its
destination is the object corresponds to the field’s value, and its
property set is empty. The root field of b is then an edge in the
graph going from b to the nameless node corresponding to the
second allocation, whose left field in turn points to 1.

e Local variables. Each local variable we introduce (such as n and
1), gives rise to both a node in the graph whose label is Local
and whose property set is empty, and to a relationship whose
label is the name of the variable from that node to the object
corresponding to the local variable’s value.

e Class information. Each object is also related to a static defini-
tion of its class via an instanceof relationship. This allows us
to capture, for example, static fields belonging to a class as its
property set.

Featherweight Java. Featherweight Java, as introduced by Igarashi
et al. [49], constitutes the object-oriented core of Java. Its syn-
tax is shown in Figure 6; it consists of: class declarations such as
class C extends D {C f; K M}, which introduce a class C with D
as its superclass, f as its fields, K as its constructor, and M as its



coG— G eoG —*G”

ceoG —* G”

returnx¢G —* G
Figure 7: Big-step reduction for Featherweight Java expres-
sions.

(N,R) =G ny = R(x).3 ny = R(y).3
r= (fa ny, ny, 0) G = (N>rUR/R(f! nXs'))
xf=yoG— G’

mbody(m) = y.e e[x/y,x/this] ¢ G —* G’

xm(X) oG — G’

nx = (Local, ) nc = (C,0) F = mkFields(nc, C(X))
x =new C(X) ¢ (N,R) — (N U {ny,nc},RUF)

Figure 8: Small-step reduction for Featherweight Java com-
mands.

fields(C)=f  C(y) =thisf=y
mkFields(nc, C(x)) = U{(fi, nc, N(xi).3), 0}

Cextends D fields(C) = F
C(y) = super(v¥); this.F =y, F = mkFields(nc, D(x¥))
mkFields(nc, C(X)) = F U {(fi, nc, N (Xj4x)-3), 0}

Figure 9: Calculation of fields relationships.

methods; constructor declarations C(C X){super(X); this.f =%;}
which initialize the fields of an instance of C; and method decla-
rations C m(C X){e} which define a method m with arguments X of
types C whose body e returns a type C. This setup allowed Igarashi
et al. to resolve field (fields), method type (mtype), and method
body (mbody) lookups from a fixed class table in a straightforward
manner, which we will assume in the rest of the presentation.

Unlike Featherweight Java, where the bodies e are a single
return expression, we consider method bodies in assignment nor-
mal form (ANF), as our aim is to formalize the small-step impact
of expressions as a graph rather than their big-step reductions and
their interactions with (sub)typing. Method bodies are therefore
either return expressions that return a variable, or sequences of
commands c that either allocate a new object, assign to a field, or
invoke a method.

What we are ultimately interested in is modelling the shape of
the object graph after each command. To that end, we introduce
two (mutually recursive) judgements: a small-step judgement that
relates a command c and an input graph G to the resulting graph
G’ and a big-step judgement that relates an entire expression e and
an input graph G to the resulting graph G’:

coG— G’ eoG—*G.

The latter is unsurprising (Figure 7), as expressions are either re-
turns (with no effect on the graph) or sequences of commands
(which compose the effects of the individual commands). The for-
mer is much more intricate, as it actually involves manipulating the
object graph via adding nodes, relationships, and labels (Figure 8).

To assign a variable y to the f field of a variable x in a graph G =
(N, R), we first lookup the relationships R(y) and R(x), whose
labels are y and x respectively, and extract the nodes ny and ny
corresponding to the objects these fields currently point to in the
object graph (the third component of the relationship tuple). We
then create a new relationship r whose label is f, pointing from
ny to ny with an empty object map. Finally, we update the object
graph to include this new relationship while removing the previous
relationship corresponding to the f field of x.

To invoke a method m of a variable x with some arguments X,
we first lookup the body of the method (using mbody as defined
in Igarashi et al.), which is an expression e parameterized by argu-
ments y. We then substitute X for y and x for this in e and use the
big-step judgment for expressions to construct the resulting object
graph G’.

Finally, to create a new object C by invoking its constructor
with some arguments X and asssigning this new object to a fresh
local variable x, we need to extend the graph with two new objects,
one corresponding to x (whose label is Local and whose property
map is empty), and one corresponding to the newly created object
(whose label is C and whose property map is empty). Then we need
to create a collection of field relationships (Figure 9) to account
for the initialization of the new object. We do that via a helper
meta-function mkFields, identifying two cases:

o If C does not extend another class, then its constructor does not
involve a call to super and is just a sequence of field initializations
this.f = ¥. In this case, we find the object ny, corresponding
to each argument x; passed into the constructor (it is the third
component of the relationship whose label is x;), and construct a
new relationship with an empty property set (f, nc, N(x;).3,0).

o If C extends some other class D, then the first k arguments (de-
noted as ?’f) to the constructor will be used to initialize D, while
the rest will be used to initialize C’s fields. To construct the full
set of new relationships, we recursively call mkFields for D with
the first k arguments, and then augment the resulting set with
the initializations for C’s fields, calculated as in the base case.

3.4 Implementation

We now describe the implementation of OGO by considering the
execution of the Cypher query in Figure 1c. The execution can be
divided into the following 4 steps.

(1) Pre-processing queries. Semantically, the query aims to find
patterns that contain instances referring to other instances that are
2 hops away, referenced through fields named left or right and
those which contain a primitive int field named value with value 1.
The first step involves processing the query format string to expand
the positional arguments using the expansion described in Table 1.
The positional arguments $1 and @1 are expanded into a unique
identifier and the fully qualified class name for bTree.root, respec-
tively. Any function that maps objects bijectively to a set comprised
of either, one of the Java primitive data types or java.lang.String
elements can be used to generate the unique identifier in the ex-
pansion of $. This constraint is based on the design of our property
graph model where Java primitive and String fields are embed-
ded as node properties. We use the hashcode computed using the



identityHashCode(Objectobj) [84] method from the java.lang.-
System package as the unique identifier in our implementation. This
function is bijective except for some pathlogical scenarios [83], and
can be easily replaced with another function in the future.

(2) Triggering subgraph identification. The next step is the iden-
tification of a subgraph of objects on the JVM heap memory, of
relevance to the query. Since a significant number of objects in the
heap may be irrelevant to the query, it is more efficient to index
once and store a subgraph of the complete object graph than to
re-traverse it for every additional clause in the query. We store the
subgraph in semantically corresponding lightweight C++ classes
(for e.g., a Javaclass definition is stored in C++ ClassInfo class
that stores information about the class name, its field names, their
types and modifiers).

We use a native agent developed using the JVMTI [81] frame-
work to identify the subgraph. Native agents can be triggered using
JVMTI events based on certain actions from within a Java appli-
cation. The general approach is to perform an action in the Java
domain of OGO after pre-processing the query that triggers an
event inside JVMTL The callback provided by JVMTI to service
the event can then be used as the entry point to the native agent.
We use the exception event, generated when an exception (any
instance of java.lang.Throwable) is thrown by a Java method
to trigger the native agent. We created a dummy exception class
GraphTriggerException. This exception is thrown from a dummy
method (setupGraph) after the query pre-processing step. In the
JVMTI callback for handling exception events, we monitor if the sig-
nature of the method from which this exception is thrown matches
that of setupGraph. If a match is found then the native agent pro-
ceeds with identification of the subgraph.

(3) Identifying subgraphs. OGO uses JVMTI to identify relations
between objects and their field properties (name, value, type, etc.).
The native agent is implemented in the C++ programming lan-
guage. The following are the major steps involved in identifying
the subgraph.

Tag zero. JVMTI callbacks use tags which are primitive long
types to refer to objects on the heap. These tags can be modified
inside certain JVMTI callbacks and is the preferred way of iden-
tifying and tracking relations across objects. However, these tags
can also be modified by JVMTI internal processes. Therefore, as an
initialization step, we iterate through all objects on the heap and set
their tags to 0. Optionally, our optimization—Force Garbage Collec-
tion—can be enabled to force a GC event prior to tagging to reduce
the total number of objects on the heap consequently, reducing the
overhead incurred by all the following JVMTI callbacks.

Loaded classes. The next step involves identifying the types
of the objects potentially relevant to the query. This helps limit
the number of objects to be considered for inclusion into the sub-
graph. OGO provides an optimization whitelist which can be used
to flag certain user specified classes whose instances are guaranteed
to be included in the subgraph. In addition, OGO also provides a
blacklist for specifying classes whose instances are to be defini-
tively excluded from the subgraph. Furthermore, in addition to
each object being referred to by tags, JVMTI framework also uses
tags to identify classes. By initializing all objects to 0 in the Tag
zero step, we also initialize the tags of all classes to 0 (instances of

java.lang.Class). When a class is blacklisted, it remains untagged
(tag=0) and hence its instances will not be reported in any of the
following JVMTI callbacks since all JVMTI callbacks support filters
to filter out untagged objects and classes.

Iterate heap assign unique tag. In this step we assign a unique
tag to every instance of every tagged class. We also allocate memory
to certain bookeeping C++ classes required for storing informa-
tion about the subgraph. These unique tags help identify relations
between objects in the next step.

Follow references. This JVMTI callback traverses the object
graph on the JVM heap. It first reports the referrer and referee
instances followed by the primitive fields, String fields and array
primitive fields of the referrer instance before doing the like for
the referee instance. We once again limit the objects reported by
this callback by applying filters ensuring that the reported objects
as well as their classes are tagged. By default, if no root object is
specified, the traversal is started from a set of system classes, JNI
globals and other objects used as roots for garbage collection. The
optimization Fix Root Objects can be used to start the traversal from
the specified object. This reduces the overhead of traversing paths
irrelevant to the specified query.

Write graph to CSV. This step applies to OGON¢° exclusively.
In this step, we serialize the subgraph into CSV files such that they
can be batch imported into a Neo4j database.

(4) Executing the query. For the OGON®® implementation, the
exported CSV files are loaded into a Neo4j database and the given
query is executed using Neo4j’s Cypher engine. For queries involv-
ing the return of a primitive/String fields (stored as properties of
Neo4j nodes), the result of Neo4j’s Cypher engine is the result of
the specified query. For queries that involve the return of an object,
we use the semantically equivalent Neo4j node returned by Neo4j’s
Cypher engine to obtain the unique identifier. Followed by this, we
use the JNI framework to retrieve the corresponding instance from
the JVM heap.

For the 0GOMem implementation, we used the ANTLR4 [5, 87]
parser generator to generate the parser and visitor for the open-
Cypher query language [37]. We use the visitor pattern to deduce
the semantics and execute the query. In this implementation, there
is no overhead of writing the subgraph to CSV or setting up and
creating a Neo4j graph mirroring the state of the JVM’s heap. The
query is executed directly on the subgraph and like former, JNI is
used to report the result back to Java.

3.5 Optimizations

To improve the performance of OGO, we introduced 3 optimiza-
tions, Whitelist (WL), Force Garbage Collection (FGC), and Fix Root
Objects (FRO).

Whitelist (WL). Limits the size of the subgraph by specifying the
type of instances to be definitively included (instances reachable
from the specified instance types under transitive closure are also
included).

Force garbage collection (FGC). Force a garbage collection event
to reduce the number of objects on the JVM’s heap before perform-
ing the steps to identify the subgraph. This decreases the overhead
incurred during the JVMTI callbacks.



Fix root objects (FRO). Limits JVMTIFollowReferences callbacks
to reporting instances that are transitively reachable from the pro-
vided root object. The root object is passed as an argument to the
query API call (i.e., bounded query).

4 EVALUATION

We evaluated OGO in two parts: (1) by rewriting existing assertion
statements available in tests in open-source projects, and (2) by
implementing methods from Java data structure libraries. The first
part demonstrates the robustness of our system and ease of its
integration with large open-source projects while the second part
describes its expressive power over a purely imperative approach.
Most of the selected projects are supported by large software or-
ganizations, such as Apache or Google. This section describes the
chosen subjects and our findings.

The OGO queries were benchmarked on a 64-bit Ubuntu 18.04.1
desktop with a 11th Gen Intel(R) Core(TM) i7-8700 @ 3.20GHz and
64GB RAM. We use Java 11.0.16 and Neo4j 4.4.0 for all experiments.

4.1 Results
This section describes our findings.

Re-written assertions. The selected projects, their lines of code
(LOC) and OGO query execution times under different introduced
optimizations are given in Table 2. All executions are averaged over
50 runs except for the Naive case that is averaged over 3 runs due
to long execution time. The reported times are all end-to-end and
limited to the scope of OGO API methods (includes the object graph
construction time, the query time itself and in case of OGON¢?,
serialization and clearing of Neo4j database). We do not consider
the total test time, as long running tests would then mask the actual
cost of queries. All times are in milliseconds.

Columns 5 through 9 report the query times for OGON€® proto-
type whereas those for OGOMe™ are given in columns 10 through
12. The final column shows the speedup of 0GOMe™ over OGON®°.
For OGON®® and OGOMe™ we show time with different optimiza-
tion levels, which were described in Section 3.5. To compute the
speedup, we use OGON€?:+ WL+FRO+FGC and OGOMe™ .+ WL+FGC.
The last two rows in the table show the average (Avg.) and the total
time (3}) across all the assertions from all projects.

OGON¢°:Naive is not usable since this attempts to include every
object on the heap into the graph; there is even a case when the
entire run crashed as the VM ran out of memory (Geometry). Each
individual optimization provides substantial reduction in the exe-
cution time over Naive. +WL+FGC provides the biggest reduction
as it dramatically reduces the number of objects to be translated. Fi-
nally, combining all the optimizations (OGON¢°:+WL+FRO+FGC)
together gives the best performance in most cases. Speedup of
0GON€2+ WL+FRO+FGC over OGON€:Naive is up to 94%. Look-
ing at the third column, we find that OGOM€"™:Naive is substantially
faster than even the most optimal OGON®°. Furthermore, using
+WL+FGC improves the times of OGOM¢™ by half.

In summary, we find that our optimizations are effective. Further-
more, OGOM€™ is, at the moment, better suited for writing program
statements due to its low cost. However, we still see OGON®® being
very much usable in a debugging environment, where moderate

overhead with a large number of features provided by Neo4j can
be effectively used.

Implementing library methods. We re-wrote methods of classes
from Guava, the Java Collections Framework (JCF) and the Java
Universal Network/Graph Framework (JUNG) using OGO. Table 3
shows the average and total lines of code (LOC) and number of
characters (NOC) for implementing the selected methods using
OGO and a purely imperative approach (which is already available
in those libraries). We see that on average, OGO requires 5 and 4
times as less LOC and NOC than its counterpart.

To confirm the validity of our implementation, we executed in
total 611 test methods for Guava, 63 for JUNG and 128 for JCF. We
executed all the test methods for Guava and JUNG and only the test
methods (present in java.util package) for modified classes for
JCF. While Guava and JUNG both used JUnit as the test runner, JCF
used JTReg. We setup the tests by replacing the imperative imple-
mentation of the selected methods with the OGO implementation
and then executing the tests.

Furthermore, we benchmarked the implemented methods for our
two prototypes with different optimizations for random workloads
(number of elements in the data structures were randomly varied
between 10-500 for every run) and the results are shown in Table 4.
The reported execution times are averaged over 200 runs (We also
compared the outcome of OGO implementation with imperative
implementation for each run for further checking correctness of
0GO). We see that OGOMe™ once again outperforms OGON€,
furthermore, we also observe certain instances where test execution
times of OGON® is significantly larger. Based on the profiled data,
this stems from the unpredictability in execution times of node and
relationship creations.

A detailed breakdown of the major steps involved in the OGOV ¢°
flow is given in Figure 10. We see that the optimizations +WL
and +WL+FRO are comparable in performance because, although
+FRO limits the Follow references step to reporting only objects
transitively reachable from the passed in root object, the entire
object graph is still traversed just not reported in the callback as per
JVMTI specifications. Steps such as Tag zero and Assign unique tag
that depend on the total number of objects on the heap are greatly
impacted by forcing a garbage collection event through +FGC.
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Figure 10: Average time taken by major steps of OGON¢°
with the introduced optimizations.



Table 2: End-to-end execution time (ms) of assertions re-written using OGO with different optimizations for external database

and in-memory query executions.

OGONeo OGOMem

Project SHA LOC #Assert +WL +WL Redn.

Naive - +FRO +FGC +FRO+FGC Naive - +FGC [%]
Assertj-db © 8aefa0f 78555 9 832652 7063 7092 4799 4861 851 860 248 95
Cli © 0do6cab 9256 27 99798 1987 1982 1900 1880 224 226 160 91
Csv © 1c551d9 9910 12 448403 2867 2713 2291 2171 319 318 178 92
Lang © ddedsfd 86960 23 255390 1718 1724 1510 1437 287 286 148 90
Geometry © 6c6d046 79996 95 OOM 1407 1397 1321 1267 258 257 145 89
Guava © Oca124d 367861 5 175658 2804 2784 2458 2408 217 218 130 95
Jfreechart © 7cdbfbe 134399 10 383694 1811 1824 1625 1548 256 234 134 91
Json-java © 31110b5 14829 10 99798 1456 1423 1483 1400 155 155 126 91
Tcases © 2fccf74 482581 26 323006 39736 39713 2120 2068 768 796 199 90
Zip4j © fc3a258 15525 18 79658 3528 3548 3322 3157 244 242 174 94
Avg. 269806 6419 6420 2283 2219 358 359 164

) ) ) 2698057 64197 64200 22829 22197 3579 3592 1642 )

Table 3: Comparison of LOC(lines of code) and NOC(number
of characters) between OGO and imperative implementa-
tion of selected instance methods.

Class 0GO Imperative
LOC NOC LOC NOC
o ArrayTable 9 315 35 1126
g HashBiMap 6 226 26 852
8 LinkedListMultiMap 6 202 48 1322
— SparseGraph 7 303 38 1208
% UndirectedSparseGraph 6 281 36 1066
@ DirectedSparseGraph 6 281 36 1078
ArrayList 6 212 25 426
- HashMap 6 214 37 1073
Q LinkedList 6 226 21 374
’ ArrayDeque 3 99 15 326
Vector 6 213 20 413
Avg. - 6 234 31 842
> - 67 2572 337 9264

5 DISCUSSION AND FUTURE WORK

Although OGO is already production ready, there are endless oppor-
tunities for improvements and applications. We document several
directions in this section.

Performance. We have focused our work on implementing various
features rather than OGO’s performance, so far. There is substantial
work to be done to get query performance with OGO closer to equiv-
alent imperative implementations. Future work should implement
various optimizations that most graph databases already include,
such as graph compression techniques [31, 32], indexing [21, 112],
memory-efficient custom data structures [43, 105, 106].

Query language. Currently, OGO uses Cypher as the query lan-
guage. There are several other popular alternatives that can be
supported in the future, including Gremlin [95], SPARQL [25],
PGQL [104], GSQL [111], and GraphQL [33]. We chose Cypher
as it is the most dominant graph query language at this point. Ad-
ditionally, we were very much familiar with Neo4;j.

Debugging. In this paper, we focused the evaluation solely on hav-
ing OGO being used to program an application. Another direction
is to bring OGO to support development tools. In this context, we
have preliminarily used OGO to query program state within a de-
bugging session of jdb [82]. Our objective was to identify object

confinement of the edges and vertices (Integer) of a SparseGraph
(JUNG) instance. We first created a SparseGraph instance with
one of its vertices being referenced by another object outside the
confinement of the SparseGraph instance. We next stopped the
program execution at a breakpoint using jdb and executed an OGO
query within the jdb session using jdb’s eval command to check
ownership of the vertex. The OGO query was successful in iden-
tifying a reference chain to the vertex from the object outside the
confinement of the SparseGraph instance. Further integration with
such debugging environments and IDEs would enable developers
to navigate the entire state of a program in an easy way (by writing
unbounded queries) and discover interesting values and relations.
Finally, having data in a graph database already provides data visu-
alization capabilities with off-the-shelf tools; existing graph visual-
ization libraries are way more advanced than any existing visual
debugger [2, 36, 38, 76].

Snapshots. Furthermore, OGON® serializes object graphs as a
part of its flow and hence, essentially captures a snapshot of the
heap. This can be used to analyze differences of the heap. More
excitingly, this enables (1) time travel debugging [7, 8, 52], a pow-
erful debugging technique that allows tracking of the sequence of
program states leading to the error, and (2) identifying memory
leaks [66, 109, 110].

Safety. OGO allows developers to break one of the core software
engineering principles: encapsulation. While the power of OGO
enables various ways to treat the system, responsible use has a great
potential. Furthermore, there are ways in which encapsulation in
Java (and other languages) is already being broken (e.g., Unsafe [47,
65]) when it comes to designing program analysis tools. Having
another, more effective way to implement analyses tools, is a plus.
Languages. OGO idea is applicable beyond Java and integration
with other languages, especially those that are dynamically typed,
is a planned future work.

6 RELATED WORK

We cover the most closely related work in this section by comparing
our work with the following groups: (1) program analysis using
query and domain specific languages (DSL), and (2) minimizing
impedance mismatch between imperative programming languages
and database systems.



Table 4: Comparison of average execution time (ms) for instance methods implemented using OGO for random workloads.

OGONeo OGOMem
Class +WL +WL

+FRO +FGC +FRO+FGC - +FRO +FGC +FRO+FGC

Vector 1125 794 1254 823 873 316 980 290
UndirectedSparseGraph 7808 2287 24986 8499 1032 186 1045 293
HashBiMap 2470 856 2635 782 519 196 526 179
HashMap 2693 1771 2997 1529 1166 315 1326 289
SparseGraph 13533 2954 16945 2666 1363 188 1444 167
ArrayDeque 1563 1139 1442 1047 1151 320 1104 292
ArrayList 1391 1152 1476 1131 1080 312 1128 292
ArrayTable 5278 1313 5786 1332 624 193 652 178
LinkedList 838 354 3101 827 492 190 638 257
DirectedSparseGraph 3371 3160 10549 3240 1107 188 1215 177
Avg. 4007 1578 7117 2188 941 240 1006 241
> 40070 15780 71171 21876 9407 2404 10058 2414

Program analysis. Closely related to OGO are Fox [93] and Data-
log [19]. Fox uses a DSL to analyze object graph in the JVM heap
for aliasing, confinement and ownership. Datalog and its applica-
tions to (static) program analysis have been explored in numerous
studies [16, 48, 55]. Most prominently, the Doop framework [13]
and followup work [99] express various forms of pointer analysis
in Datalog by exploiting its expressive power. We focus on dynamic
program analysis and our key insight that the entire program heap
can be seen as a single graph database which can be queried via
popular graph query languages. The expressive power of Cypher
as a query language enables concise descriptions in applications as
shown in Section 2.

Impedance mismatch. Impedance Mismatch [62] refers to the
friction of interfacing imperative languages with database sys-
tems. Efforts to identify, categorize [26, 27, 51] and reduce this
mismatch have been achieved through object-oriented databases,
object-relational mappers, data access APIs, embedded query lan-
guages [26] and language integrated queries.

Call level interface (CLI). are API’s such as JDBC [40] and
ADO\Net [1, 11, 18, 20] that abstract away the generation of the
query language through API methods. However, it is difficult [59]
to ensure the efficiency of the generated queries. JCypher [97] is
an example of a CLI for Cypher.

Embedded query languages. APT’s such as SQLJ [29, 30] and
XJ [41, 42] allow embedding the query language to query exter-
nal databases. Although OGO shares similarities in that it allows
writing queries in Cypher inside Java, however, OGO allows the
in-memory object graph to be queried.

Object oriented databases. Object oriented databases (OOD) [6,
17, 56, 63, 101] have been introduced to couple object-oriented pro-
gramming languages and databases. OOD is more about persistence
of objects rather than being able to query relations and object graph
available at runtime, which OGO enables.

Relational object mappers. Relational object mappers [15, 23,
60, 79, 103], like Hibernate, enable conversion of data between type
systems. They convert objects to (relational) database by automati-
cally grouping properties and enable loading and updating these
values. OGO is about querying object graphs not about persistence.
The closest connection with object mappers is our translation from
an object graph into a graph database.

Language integrated queries. (LINQ) [68], developed by Mi-
crosoft, is a technology that adds native data querying capabilities
to .NET languages. As a data source, LINQ can use in-memory
data, i.e., any collection that implements IEnumerable (e.g., List,
SortedSet). Although powerful, LINQ provides no support to query
arbitrary objects and their relations. Language integrated queries
have seen renewed interest [22, 54, 57, 61, 72, 77, 78, 94, 96, 102]
since the release of the LINQ framework. Similar frameworks for
Java include SBQL4J [107] and Quaere [75].

7 CONCLUSION

We introduced object graph programming (OGO), a novel para-
digm that combines imperative (object-oriented) programming and
declarative queries. OGO treats the program state (i.e., object graph)
as a graph database that can be queried and modified using graph
query language(s); OGO currently uses Cypher as the primary
query language. Each object in an object graph is a node, each
primitive, String and primitive array field is a property, and each
reference field forms a relation between two nodes. OGO is ideal for
querying collections (similar to LINQ), introspecting the runtime
system state (e.g., finding all instances of a given class or accessing
fields via reflection), and writing assertions that have access to the
entire program state. We prototyped OGO for Java in two ways:
(a) by translating the JVM heap object graph into a Neo4j database
on which we run Cypher queries, and (b) by implementing our
own in-memory graph query engine that directly queries the object
graph. We used OGO to rewrite hundreds of statements in large
open-source projects into OGO queries. Our evaluation shows the
wide applicability of our approach and good first results with in-
memory implementation. OGO enables an entirely different view
of objects and data, which will move programming experience to
the next level.
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