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ARTICLE INFO ABSTRACT

Communicated by Nikos Paragios Periocular is one of the promising biometric traits for human recognition. It encompasses a surrounding area of

eyes that includes eyebrows, eyelids, eyelashes, eye-folds, eyebrows, eye shape, and skin texture. Its relevance

2/118:(;5 is more emphasize during the COVID-19 pandemic due to the masked faces. So, this article presents a detailed
41A10 review of periocular biometrics to understand its current state. The paper first discusses the various face and
65D05 periocular techniques, specially designed to recognize humans wearing a face mask. Then, different aspects
65D17 of periocular biometrics are reviewed: (a) the anatomical cues present in the periocular region useful for

recognition, (b) the various feature extraction and matching techniques developed, (c) recognition across
Key_w ords: different spectra, (d) fusion with other biometric modalities (face or iris), (e) recognition on mobile devices,
Ic’)ecrlif::ﬂar (f) its usefulness in other applications, (g) periocular datasets, and (h) competitions organized for evaluating the
Biometrics efficacy of this biometric modality. Finally, various challenges and future directions in the field of periocular

biometrics are presented.

1. Introduction

Biometrics is the automated or semi-automated recognition of in-
dividuals based on their physical (face, iris), behavioral (signature,
gait), or psychophysiological (ECG, EEG) traits (Jain et al., 2011; Ross
et al.,, 2019). The COVID-19 pandemic has ushered in a number of
considerations for biometric systems. For example, in the context of
fingerprint recognition, researchers are now investing more effort in de-
signing contactless fingerprint systems (Yin et al., 2020; Lin and Kumar,
2019). Similarly, the prevalent use of face masks and social distancing
protocols has refocused attention on occluded face recognition and,
inevitably, ocular biometrics. The ocular region refers to the anatomical
structures related to the eyes, and biometric cues in this region include
pupil, iris, sclera, conjunctival vasculature, periocular region, retina,
and oculomotor plant (comprising eye globe, muscles, and the neural
control signals).

The term “periocular” has been used to refer to the region surround-
ing an eye consisting of eyelids, eyelashes, eye-folds, eyebrows, tear
duct, inner and outer corner of an eye, eye shape, and skin texture
(Fig. 1). While many articles in the biometric literature include the
sclera, iris, and pupil in the context of periocular recognition (Park
et al.,, 2009; Miller et al., 2010; De Marsico et al., 2017; Smereka
and Kumar, 2017; Luz et al., 2018), others have excluded these re-
gions (Woodard et al., 2010b,a; Park et al., 2011; Proenca and Neves,
2018). The periocular region may be biocular (the periocular regions
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of both eyes are considered to be a single unit) (Jillela and Ross,
2012; Juefei-Xu and Savvides, 2012; Proenca et al., 2014), monoc-
ular (either left or right periocular) (Park et al., 2009, 2011), or a
fusion of the two monocular regions (combination of left and right
periocular regions) (Bharadwaj et al., 2010; Woodard et al., 2010b;
Boddeti et al., 2011). Earlier work (Park et al., 2009, 2011) on pe-
riocular biometrics studied its feasibility as a standalone biometric
trait. Other researchers (Woodard et al.,, 2010a; Park et al., 2011;
Juefei-Xu and Savvides, 2012) established its relevance by comparing
it with the face and iris modalities. In some non-ideal conditions, the
periocular region even shows higher performance than face (Miller
et al.,, 2010; Park et al.,, 2011; Juefei-Xu and Savvides, 2012) and
iris (Boddeti et al., 2011) modalities. Hollingsworth et al. ascertained
its usefulness as a biometric trait by conducting human analysis on
near-infrared (Hollingsworth et al., 2010; Hollingsworth et al., 2011;
Hollingsworth et al., 2012) and visible (Hollingsworth et al., 2012)
spectrum images.

Periocular recognition has numerous applications that go beyond
the current pandemic (Fig. 2). This includes (a) operating theaters
where physicians wear surgical masks; (b) occupations where people
wear helmets that occlude faces (e.g., military, astronauts, firefighters,
bomb diffusion squads); (c) sport events requires a helmet (cricket,
football, car racing); (d) use of veils to cover face due to cultural
or religious purposes ; and (e) robbers masking their faces to avoid
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Fig. 1. Various components of the periocular region when viewed in the visible
spectrum.

being recognized. Periocular biometrics has various advantages, which
further motivate its usage:

1. Periocular modality can be acquired using the sensors that cap-
ture face and iris modalities. So, there is typically no additional
imaging requirement.

2. Compared to iris or other ocular traits (e.g., retina or con-
junctival vasculature), periocular images can be captured in a
relatively non-invasive, less constrained, and non-cooperative
environment. They are also less prone to occlusions due to
eyelids, eyeglasses, or deviated gaze. In contrast to the face
modality, the periocular region (which is, of course, a part
of the face) is relatively more stable as it is less affected by
variations in pose, aging, expression, plastic surgery, and gender
transformation. It is also seldom occluded when face images are
captured in close quarters (e.g., selfies) or in the presence of
scarves, masks, or helmets.

3. The periocular modality can complement the information pro-
vided by the iris and face modalities. So, it can be combined
with the iris (Santos and Hoyle, 2012; Tan and Kumar, 2012;
Raghavendra et al., 2013; Alonso-Fernandez and Bigun, 2015)
and face (Jillela and Ross, 2012; Mahalingam et al., 2014)
modalities to increase the performance of the biometric system
without any modification to the acquisition setup.

4. It can also be used for other tasks such as presentation attack
detection (Hoffman et al., 2019), and soft-biometrics extrac-
tion (Merkow et al., 2010; Lyle et al., 2012; Rattani et al., 2017;
Alonso-Fernandez et al., 2018).

5. It can help with cross-spectral iris recognition (Santos et al.,
2015) as iris images captured in different spectra depict different
features, while periocular features (shape of the eye, eyelashes,
eyebrows) are relatively stable. It also facilitates cross-modal
(face-iris) matching (Jillela and Ross, 2014) as it is the common
region present in both the modalities.

In the literature, there are previous surveys that focused on pe-
riocular biometrics (Santos and Proenca, 2013; Nigam et al., 2015;
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Alonso-Fernandez and Bigun, 2016; Rattani and Derakhshani, 2017;
Badejo et al., 2019; Behera et al., 2019; Kumari and Seeja, 2019). San-
tos and Proenca (2013) summarized the significant papers on peri-
ocular recognition before 2013. The authors in Nigam et al. (2015),
Rattani and Derakhshani (2017) discussed the research advances of
various ocular biometric traits such as iris, periocular, retina, con-
junctival vasculature and eye movement, and their fusion with other
modalities. Alonso-Fernandez and Bigun (2016) described periocular
recognition methodologies in terms of pre-processing, feature extrac-
tion, fusion, soft-biometric extraction, and other applications. Behera
et al. (2019) focused on cross-spectral periocular recognition. Zan-
lorensi et al. (2021) provided detailed information on periocular and
iris datasets, and competitions based on some of these datasets. A recent
survey on periocular biometrics is given by Kumari and Seeja (2019).
Fig. 3 shows a visualization of various research work on periocular
biometrics. The main contributions of this paper lie in the detailed
categorization of periocular techniques and the inclusion of techniques
specifically useful for human recognition in the COVID-19 pandemic.

This paper presents a comprehensive review of periocular biomet-
rics. The paper first provides a brief review of recent periocular and
face techniques designed to recognize partially face-masked individuals
and then discusses different categorizations of periocular biometric
techniques. The categorizations are based on (1) anatomical cues uti-
lized for recognition, (2) feature extraction and matching methodology,
(3) imaging spectra, and (4) fusion with other modalities. The paper
then discusses periocular recognition techniques for mobile devices,
in other applications (e.g., soft biometrics, periocular forensics), and
for recognition in special circumstances (e.g., cross-modal or long-
distance). Lastly, various periocular datasets and competitions held are
described.

The rest of the paper is organized as follows: Section 2 describes
various face and periocular techniques specially applied on the masked
faces for human identification, Section 3 categorizes periocular tech-
niques based on anatomical cues utilize for recognition, Section 4
describes various periocular features extraction and matching tech-
niques, Section 5 categorizes techniques based on imaging spectra of
input images, Section 6 discusses fusion techniques with other biomet-
ric modalities, Section 7 provides details of periocular authentication
on mobile devices, Section 8 describes periocular recognition in specific
scenarios and other applications, Section 9 details periocular datasets
and competitions, Section 10 focuses on various challenges and future
directions, and Section 11 concludes the paper.

2. Periocular in COVID-19 pandemic

Periocular recognition has gained relevance during the COVID-
19 pandemic as some reports have documented a drop in perfor-
mance of existing face recognition methods in the presence of facial
masks (Damer et al.,, 2020; Ngan et al., 2020a,b). The reports by
NIST utilized digitally tailored masks to face images for evaluation
(6.2 million images from 1 million people). The first report (Ngan

Fig. 2. Various scenarios where the periocular region has increased significance: (a) girl with a mask during the covid pandemic, (b) doctors and nurses in the surgical room, (c)
women in nigab, (d) partial faces in the crowd, (e) occluded face while drinking, (f) robber with face covering, (e) military personnel with face paint, (f) football player wearing
a helmet, (g) cricket player wearing a helmet, (h) F1 race player in a helmet, (i) face-covering in cold weather, (j) astronauts in suit, (k) dancer with a face veil, (1) firefighter in

uniform, and (m) people in motorbike helmets.



R. Sharma and A. Ross

proencaih. (2014)
ojuefei-xu/fy (2014b)

karahangs. (2014)
fazendeiro p. (2012) mikaelyama. (2015)
cao z.49(2014)

alonso-fernandez f. (2014b)

santosigy (2013)%

pa W@ oo @

4 v%dar
juefei- (20?2) A C
: )U* uzair ms (2015) hie l%*

.

.

Ljaina: 2015) <@
%

padole an. (2013) ®

behera s. 01%) Pro&iga h. (2018) ¢

AR tan c.t
sequeiraa.f. (2018) w :

@ nigan

bakshi §§(2015b) &
» zha\o z.( (2017)
silva p.h.(2018)

de marsig%n. (2016)

cho s. (2015)

Computer Vision and Image Understanding 226 (2023) 103583

kishore kumar k. (2019a)

juefei-f)(2011)
A4

boutros f. (2020b;

(ZaOa)
a(% (2013)

S lyle

ambika d

@ o
13) XL{ W‘] 0) stokkéhesam. (2017b)

raja k.. (2016b)

(2009)

sant(o%(zm 5)

raghavenqtg r.(2016a)

2012 2014 2016 2018 2020

Fig. 3. Network visualization of research articles on periocular biometrics. The size of the node represents the number of citations, and its color represents the year of publication.

Figure generated using VOSviewer software.

et al., 2020a) presented the performance of 89 algorithms submitted
to NIST before the COVID-19 pandemic on the masked images. All 89
face recognition algorithms showed an increase in False Non-Match
Rate (FNMR) by about 5%-50% at a 0.001% False Match rate (FMR)
— higher than prior study of NIST on unmasked images. The second
report (Ngan et al,, 2020b) published the performance of 65 new
algorithms submitted to NIST after mid-March 2020 along with their
previous submissions (cumulative results for 152 algorithms). The new
algorithms include masked images during the enrollment stage. How-
ever, the report showed increased FNMR (5%-40%) for all the newly
submitted algorithms, though the new algorithms showed improved
accuracy compared to the pre-pandemic algorithms. An earlier work
by Park et al. (2011) also showed a drop in rank-one accuracy of a
commercial face recognition from 99.77% (full-face images) to 39.55%
when the lower region was occluded.

In an era of masked faces necessitated by the pandemic, periocular
information can be helpful for human recognition in two ways, either
by generating a full face from the periocular region or by matching
using only the periocular region. Juefei-Xu et al. (2014), Juefei-Xu
and Savvides (2016) hallucinated the entire face from the periocu-
lar region using dictionary learning algorithms. Ud Din et al. (2020)
detected the masked region from a face image and then performed
image completion on the masked region. They used a GAN-based
network for image completion, which consists of two discriminators;
one learns the global structure of the face and the other focuses on
learning the missing region. Li et al. (2020) also performed face com-
pletion to recover the content under the mask through the de-occlusion
distillation framework. Hoang et al. (2020) emphasized the use of
eyebrows for human identification. Huang et al. (2021) released three
datasets for face and periocular evaluation on masked images: Masked
Face Detection Dataset (MFDD), Real-world Masked Face Recognition
Dataset (RMFRD), and Simulated Masked Face Recognition Dataset
(SMFRD). Anwar and Raychowdhury (2020) presented an open-source
tool, MaskTheFace, to create masked faces images. Moreover, research
work on face detection in the presence of masks (Opitz et al., 2016;
Ge et al., 2017), face mask detection (Chowdary et al., 2020; Qin and

Li, 2020; Loey et al., 2021) and face recognition under occlusion (Song
et al., 2019; Ding et al., 2020; Geng et al., 2020; Damer et al., 2020;
Hariri, 2022; Montero et al., 2021; Boutros et al., 2022) would be
helpful in human identification on masked face images. Various com-
petitions are also conducted to benchmark face recognition techniques
on masked faces (Deng et al., 2021; Boutros et al., 2021; Zhu et al.,
2021).

3. Anatomical cues in the periocular region

Woodard et al. (2010a) classified periocular anatomical cues into
two levels: first-level cues comprise eyelids, eye folds, eyelashes, eye-
brows, and eye corners, while second-level includes skin texture, fine
wrinkles, color, and skin pores. Specifically, first-level cues represent
geometric nature of the periocular region, while second-level embod-
ies textural and color attributes. The authors in Hollingsworth et al.
(2010), Hollingsworth et al. (2011), Park et al. (2011), Oh et al.
(2012) studied the significance of various periocular components in
recognizing individuals. Earlier work on face recognition (Sadr et al.,
2003) suggested the eyebrows to be the most salient and stable feature
of the face. Hollingsworth et al. (2010), Hollingsworth et al. (2011)
conducted a human analysis to identify the discriminative cues on near-
infrared (NIR) images and found that eyelashes, tear ducts, shape of the
eye, and eyelids are the most frequently used cues in verifying the two
images of a person. The studies in Park et al. (2011), Oh et al. (2012)
utilized automatic feature descriptors to determine important regions
on visible (VIS) spectrum images and concluded that eyebrows, iris,
and sclera are the most significant cues for periocular performance. In
a subsequent work (Hollingsworth et al., 2012), the authors applied
both human and machine approaches to identify discriminative regions
on both NIR as well as VIS periocular images. They observed that
humans and computers both focus on the same periocular cues for
identification: in VIS images, blood vessels, skin region, and eye shape
are more salient, whereas in NIR images, eyelashes, tear ducts, and eye
shape are more promising. Other authors Smereka and Kumar (2013),
Alonso-Fernandez and Bigun (2014), Smereka and Kumar (2017) also



R. Sharma and A. Ross

drew similar conclusions on the relevance of periocular cues in VIS
and NIR images. In summary, first-level cues are more useful for NIR
images, whereas second-level cues aid in VIS images.

Researchers have also analyzed the utility of periocular cues as a
standalone biometrics, for instance, using only the eyebrows (Dong
and Woodard, 2011; Le et al., 2014; Hoang et al., 2020), or periocular
skin (Miller et al., 2010), or eyelids (Proenca, 2014). Details of the other
ocular biometrics traits closely related to periocular can be found in the
following studies: iris (Bowyer et al., 2008, 2013), sclera (Zhou et al.,
2012; Das et al., 2013), conjunctiva vasculature (Derakhshani and Ross,
2007; Crihalmeanu and Ross, 2012), eye movements (Rigas et al., 2012;
Holland and Komogortsev, 2013; Sun et al., 2014), occulomotor plant
characteristics (Komogortsev et al., 2010), and gaze analysis (Cantoni
et al., 2015). The description of these ocular traits is out of the scope
of this paper.

4. Methodologies used for periocular recognition

A typical periocular recognition system consists of the following
steps: acquisition, pre-processing of the acquired image, localization
of region-of-interest (ROI), feature extraction, post-processing of ex-
tracted features, and matching of two feature sets. In the acquisition
step, the periocular image is captured using a sensor or camera.
We provide details of various sensors used to capture periocular im-
ages along with their datasets in Section 9. The pre-processing step
aims to enhance the visual quality of an image. Commonly, pre-
processing techniques are applied to normalize illumination varia-
tions, such as anisotropic diffusion (Juefei-Xu and Savvides, 2012)
and Multiscale Retinex (MSR) (Juefei-Xu et al., 2014; Nie et al.,
2014). Karahan et al. (2014) applied histogram equalization for con-
trast enhancement. Juefei-Xu et al. (2011) performed pre-processing
schemes for pose correction, illumination, and periocular region nor-
malization. Proenca and Briceno (2014) investigated an elastic graph
matching (EGM) algorithm to handle non-linear distortions in the
periocular region due to facial expressions.

The localization step extracts the periocular region from the ac-
quired or pre-processed image. As the definition of the periocular
region has not yet been standardized, the ROI used for periocular
recognition varies across the literature. The authors in Tan and Kumar
(2012), Park et al. (2009), Mahalingam et al. (2014) considered the
iris center as a reference point to determine the periocular rectangular
region. The authors in Padole and Proenca (2012), Nie et al. (2014)
used the geometric mean of eye corners to localize the ROI since
the iris center is affected by gaze, pose, and occlusion. Bakshi et al.
(2013) localized the periocular region based on the anthropometry
of the human face. Park et al. (2011) studied the effect of including
eyebrows in ROI on the recognition performance by performing both
manual localization (based on the center of the eyes) and automatic
localization (based on the anthropometry of the human face). Al-
gashaam et al. (2017b) analyzed the influence of varying periocular
window sizes on periocular recognition performance. Kumari and Seeja
(2021b) proposed an approach to extract optimum size periocular
ROIs of two different shapes (polygon and rectangular) by using five
reference points (inner and outer canthus points, two end points and
the midpoint of eyebrow). Proenca et al. (2014) described an integrated
algorithm for labeling seven components of the periocular region in
a single-shot: iris, sclera, eyelashes, eyebrows, hair, skin, and glasses.
Deep learning techniques have also been used to detect the periocular
region, such as ROI-based object detectors (Reddy et al., 2018b) and
supervised semantic mask generators (Zhao and Kumar, 2018). Reddy
et al. (2020) proposed spatial transformer network (STN), which is
trained in conjunction with the feature extraction model to detect the
ROL

The feature extraction step involves the extraction of discrimina-
tive and robust features from the localized periocular region. Alonso-
Fernandez and Bigun (2016) categorized feature extraction techniques
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into global and local approaches. We group deep learning-based ap-
proaches separately. Table 1 lists the various feature extraction tech-
niques corresponding to these categories, along with research papers
utilizing these techniques. The description of all three approaches are
provided below.

1. Global Feature Approaches: The global feature extraction ap-
proaches consider the entire periocular ROI as a single unit and extract
features based on texture, color, or shape. Texture in a digital im-
age refers to the repeated spatial arrangement of the image pixels.
Commonly used techniques to capture the textural features from the
periocular region are Local Binary Patterns (LBP) and its variants (Park
et al.,, 2009; Adams et al., 2010; Bharadwaj et al., 2010; Juefei-Xu
et al., 2010; Miller et al., 2010; Xu et al., 2010; Juefei-Xu and Savvides,
2012; Oh et al., 2012; Padole and Proenca, 2012; Santos and Hoyle,
2012; Uzair et al., 2013; Cao and Schmid, 2014; Mahalingam et al.,
2014; Nie et al., 2014; Sharma et al., 2014; Santos et al., 2015), His-
togram of Oriented Gradients (HOG) (Park et al., 2009, 2011), Gabor
filters (Juefei-Xu et al., 2010; Alonso-Fernandez and Bigun, 2012; Joshi
et al., 2014; Cao and Schmid, 2014; Alonso-Fernandez and Bigun,
2015), and Binarized Statistical Image Features (BSIF) (Raghavendra
et al., 2013; Raja et al.,, 2014a). The LBP descriptor computes the
binary patterns around each pixel by comparing the pixel value with its
neighborhood. The binary patterns are then quantized into histograms,
which on concatenation form a feature vector. In the HOG descriptor,
gradient orientation and magnitude around each pixel are binned into
histograms and histograms are then concatenated to form a feature
vector. The Gabor filters extract features by applying textural filters
of different frequencies and orientations on an image. The BSIF de-
scriptor convolves the image with a set of filters learned from natural
images, and then the responses are binarized. Other texture-based
features include Bayesian Graphical Models (BGM) (Boddeti et al.,
2011), Probabilistic Deformation Models (PDM) (Ross et al., 2012;
Smereka and Kumar, 2013), Discrete Cosine Transform (DCT) (Juefei-
Xu et al., 2010), Discrete Wavelet Transform (DWT) (Juefei-Xu et al.,
2010; Joshi et al., 2014), Force Field Transform (FFT) (Juefei-Xu et al.,
2010), GIST perceptual descriptors (Bharadwaj et al., 2010), Joint
Dictionary-based Sparse Representation (JDSR) (Raghavendra et al.,
2013; Jillela and Ross, 2014; Moreno et al., 2016), Laws masks (Juefei-
Xu et al., 2010), Leung-Mallik filters (LMF) (Tan and Kumar, 2012),
Laplacian of Gaussian (LoG) (Juefei-Xu et al., 2010), Correlation-based
methods (Boddeti et al., 2011; Juefei-Xu and Savvides, 2012; Ross
et al.,, 2012; Jillela and Ross, 2014), Phase Intensive Global Pattern
(PIGP) (Smereka and Kumar, 2013; Bakshi et al., 2014), Structured
Random Projections (SRP) (Oh et al., 2014), Walsh masks (Juefei-Xu
et al., 2010), Higher Order Spectral (HOS) (Algashaam et al., 2017b),
Gaussian Markov random field (Smereka et al., 2015), and Maximum
Response (MR) (Raghavendra and Busch, 2016).

The color features of the periocular region correspond to the wave-
lengths of light reflected from its constituent parts. Woodard et al.
(2010a) utilized the color features by applying histogram equalization
on the luminance channel and then calculating the color histogram
on the spatially salient patches of the image. Lyle et al. (2012) also
extracted color features using local color histograms. Moreno et al.
(2016) defined color components using linear and nonlinear color
spaces such as red-green-blue (RGB), chromaticity-brightness (CB),
and hue-saturation-value (HSV) and then applied a re-weighted elastic
net (REN) model. The authors in Woodard et al. (2010a), Moreno
et al. (2016) utilized both textural and color features from the pe-
riocular recognition. Regarding shape features, the work in Dong
and Woodard (2011), Le et al. (2014) utilized eyebrow shape-based
features, while Proenca (2014) extracted eyelid shape features. Ambika
et al. (2016) employed Laplace-Beltrami operator to extract periocular
shape characteristics. All aforementioned techniques use 2D image data
of the periocular region. Chen and Ferryman (2015) combined 3D
shape features extracted using the iterative closest point (ICP) method
and fused them with 2D LBP textural features at the score-level. One
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Table 1
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A list of feature extraction techniques under global, local, and deep learning categories, along with some representative research papers describing these techniques.

Features References

Features References

Global features

Local Binary Patterns (LBP)

Oh et al. (2012), Padole and
Proenca (2012), Santos and
Hoyle (2012), Uzair et al.
(2013), Mahalingam et al.
(2014), Nie et al. (2014),
Sharma et al. (2014), Bakshi
et al. (2015), Juefei-Xu et al.
(2010), Miller et al. (2010),

Santos et al. (2015), Juefei-Xu
and Savvides (2012), Cao and

Schmid (2014)

Park et al. (2009), Bharadwaj
et al. (2010), Xu et al. (2010),

Bayesian Graphical Models (BGM) Boddeti et al. (2011)

Gabor filters Juefei-Xu et al. (2010),
Alonso-Fernandez and Bigun
(2012), Cao and Schmid
(2014), Joshi et al. (2014),
Alonso-Fernandez and Bigun

(2015)

Force Field Transform (FFT) Juefei-Xu et al. (2010)

Probabilistic Deformation Models (PDM) Ross et al. (2012), Smereka

and Kumar (2013)

GIST perceptual descriptors Bharadwaj et al. (2010)

Binarized Statistical Image Features (BSIF) Raghavendra et al. (2013),

Raja et al. (2014a)

Leung-Mallik filters (LMF) Tan and Kumar (2012)

Joint Dictionary-based Sparse Representation Raghavendra et al. (2013),
Jillela and Ross (2014),

Moreno et al. (2016)

Laplacian of Gaussian (LoG) Juefei-Xu et al. (2010)

Discrete Wavelet Transform (DWT) Juefei-Xu et al. (2010), Joshi

et al. (2014)

Laws masks Juefei-Xu et al. (2010)

Histogram of Oriented Gradients (HOG) Park et al. (2009, 2011),

Algashaam et al. (2017b)

Discrete Cosine Transform (DCT) Juefei-Xu et al. (2010)

Phase Intensive Global Pattern (PIGP) Smereka and Kumar (2013),

Bakshi et al. (2015)

Normalized Gradient Correlation (NGC) Jillela and Ross (2014)

Structured Random Projections (SRP) Oh et al. (2014)

Walsh masks Juefei-Xu et al. (2010)

Shape-based features Dong and Woodard (2011),
Proenca (2014), Le et al.

(2014), Ambika et al. (2016)

Gaussian Markov random field Smereka et al. (2015)

Maximum Response (MR) Raghavendra and Busch

(2016)

2D and 3D features Chen and Ferryman (2015)

Color-based features Woodard et al. (2010b), Lyle
et al. (2012), Moreno et al.

(2016)

Genetic and Evolutionary Feature Extraction Adams et al. (2010)

Local features

Xu et al. (2010), Park et al.
(2011), Padole and Proenca
(2012), Ross et al. (2012),

Santos and Hoyle (2012),

Smereka and Kumar (2013),
Alonso-Fernandez and Bigun
(2014), Ahuja et al. (2016a)

Scale Invariant Feature Transformation (SIFT)

Binary Robust Invariant Scalable Key points (BRISK) Mikaelyan et al. (2014)

Speeded-up Robust Features (SURF) Juefei-Xu et al. (2010), Xu
et al. (2010), Bakshi et al.

(2015), Raja et al. (2015b)

Phase Intensive Local Pattern (PILP) Bakshi et al. (2015)

Symmetry Assessment by Feature Expansion (SAFE) Mikaelyan et al. (2014),
Alonso-Fernandez and Bigun

(2015)

Oriented FAST and Rotated BRIEF (ORB) Mikaelyan et al. (2014)

of the major advantages of using global feature approaches is that
they generate feature vectors of fixed-length, and matching of fixed-
length vectors is computationally efficient. However, global feature
approaches are more susceptible to image variations, such as occlusions
or geometric transformations.

2. Local Feature Approaches: The local feature extraction ap-
proaches first detect salient or key points from the ROI and then extract
features from their local neighborhood to create a feature descriptor.
Commonly used local feature approaches are Scale Invariant Feature

(continued on next page)

Transformation (SIFT) (Xu et al., 2010; Park et al., 2011; Padole and
Proenca, 2012; Ross et al.,, 2012; Santos and Hoyle, 2012; Smereka
and Kumar, 2013; Alonso-Fernandez and Bigun, 2014) and Speeded-
up Robust Features (SURF) (Juefei-Xu et al., 2010; Xu et al., 2010;
Raja et al., 2015b). The SIFT feature extractor defines key locations as
extrema points on the difference of Gaussians (DoG) images obtained
from a series of smoothed and rescaled images. Feature descriptor is
then formed by concatenating orientation histograms defined around
each key point. On the other hand, SURF detects key points by utilizing
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Features References

Features

References

Deep learning techniques

Off-the-shelf CNN Features Hernandez-Diaz et al. (2018),
Kim et al. (2018), Hwang and
Lee (2020), Kumari and Seeja

(2021a)

Convolutional Restricted Boltzman Machines (CRBM)

Nie et al. (2014)

Transfer Learning Ahuja et al. (2017), Luz et al.
(2018), Silva et al. (2018),

Kumari and Seeja (2020)

PatchCNN

Reddy et al. (2018b)

Deep Sparse Filters Raja et al. (2016b, 2020)

“In-Set” CNN Iterative Analysis

Proenca and Neves (2019)

Custom and Compact CNNs Reddy et al. (2018a), Zhang
et al. (2018), Reddy et al.

(2020)

Semantics Assisted CNN

Zhao and Kumar (2017)

Autoencoders Raghavendra and Busch

(2016), Reddy et al. (2019)

Heterogeneity Aware Deep Embedding

Garg et al. (2018)

Attention models Zhao and Kumar (2018),

Wang and Kumar (2021)

Generalized Label Smoothing Regularization (GLSR)

Jung et al. (2020)

the Hessian blob detector, and the key points are then described using
Haar wavelet features. SURF utilizes integral images to speed up the
computation. Other local feature descriptors are Binary Robust Invari-
ant Scalable Keypoints (BRISK) (Mikaelyan et al., 2014), Oriented FAST
and Rotated BRIEF (ORB) (Mikaelyan et al., 2014), Phase Intensive
Local Pattern (PILP) (Bakshi et al., 2015), Symmetry Assessment by
Feature Expansion (SAFE) (Mikaelyan et al., 2014; Alonso-Fernandez
and Bigun, 2015), and Dense SIFT (Ahuja et al., 2016a). Since the num-
ber of detected key points varies among images, the resulting feature
vectors also vary in length, making the process computationally expen-
sive in some cases. However, local feature approaches are more robust
to occlusions, illumination variations, and geometric transformations
compared to global feature approaches.

3. Deep Learning Approaches: With the success of deep learning in
computer vision and biometrics, this approach has also been applied to
periocular recognition. Earlier work (Nie et al., 2014) based on learn-
ing approaches introduced an unsupervised convolutional version of
Restricted Boltzman Machines (CRBM) for periocular recognition. Raja
et al. (2016b, 2020) extracted features from Deep Sparse Filters using
transfer learning methodology and input them into a dictionary-based
approach for classification. On the other hand, Raghavendra and Busch
(2016) extracted texture features using Maximum Response (MR) fil-
ters and input them into deep coupled autoencoders for classification.
Other studies that utilized transfer learning methodologies can be
found in Luz et al. (2018), Silva et al. (2018), Kumari and Seeja
(2020). Proenca and Neves (2018) utilized deep CNN to emphasize
the importance of the periocular region for recognition by training
the network with augmented periocular images having inconsistent
iris and sclera regions. The training procedure causes the network to
implicitly disregard the iris and sclera region. The authors in Zhao and
Kumar (2018), Wang and Kumar (2021) integrated attention model
to the deep architecture in order to highlight the significant regions
(eyebrow and eye) of the periocular image. Some researchers utilized
existing off-the-shelf CNN models to extract deep features at various
convolutional levels (Hernandez-Diaz et al., 2018; Kim et al., 2018;
Hwang and Lee, 2020; Kumari and Seeja, 2020, 2021a). The authors
in Zhang et al. (2018), Reddy et al. (2018a) proposed compact and
custom deep learning models for use in mobile devices. Other deep
learning-based methods include PatchCNN (Reddy et al., 2018b), “In-
Set” CNN Iterative Analysis (Proenca and Neves, 2019), unsupervised
convolutional autoencoders (Reddy et al., 2019), compact Convolu-
tional Neural Network (CNN) (Reddy et al., 2020), VisobNet (Ahuja
et al., 2017), semantics assisted CNN (Zhao and Kumar, 2017), hetero-
geneity aware deep embedding (Garg et al., 2018), and Generalized
Label Smoothing Regularization (GLSR)-trained networks (Jung et al.,
2020). Deep learning approaches provide state-of-the-art recognition
performance, but their performance are heavily data-driven.

After the feature extraction step, some researchers further processed
the feature vector, which generally includes the application of feature
selection, subspace projection, or dimensional reduction (Oh et al.,
2012; Joshi et al., 2014) techniques. These techniques aim to transform
the feature set into a condensed representative feature set such that
it improves the accuracy and reduces the computational complexity.
Various post-processing techniques used in periocular recognition are
Principal Component Analysis (PCA) (Oh et al.,, 2012), Direct Lin-
ear Discriminant Analysis (DLDA) (Joshi et al., 2014), and Particle
Swarm Optimization (Silva et al., 2018). Finally, the processed fea-
tures are compared using similarity or dissimilarity metrics such as
Bhattacharya distance (Woodard et al., 2010b), Hamming distance (Oh
et al., 2014), I-Divergence metric (Cao and Schmid, 2014), Euclidean
distance (Ambika et al., 2016), or Mahalanobis distance (Nie et al.,
2014).

5. Periocular recognition in different spectra

Different imaging spectra have been described in the literature for
capturing the periocular region, including Near-Infrared (NIR), Visible
(VIS), Short Wave Infrared (SWIR), Middle Wave Infrared (MWIR),
and Long Wave Infrared (LWIR). The most commonly used imaging
spectra are NIR and VIS. This is because most research in periocular
biometrics is based on face images (VIS) or iris images (NIR). Further,
even as a standalone biometric, periocular images are captured using
existing face or iris sensors. The NIR spectrum, which operates in the
700-900 nm range, predominantly captures the iris pattern, eye shape,
outer and inner corner of the eye, eyelashes, eyebrows, and eyelids.
Often there is saturation in the area around the eye, skin, and cheek
regions. On the other hand, the VIS spectrum (400-700 nm) captures
textural details of the periocular skin region, conjunctiva vasculature,
eye shape, eyelashes, eyebrows, and eyelids. The VIS imaging fails to
capture the textural nuances of the iris pattern, especially for dark-
colored irides. Examples of periocular recognition techniques in the
NIR spectrum are (Monwar et al., 2013; Uzair et al., 2013; Hwang
and Lee, 2020; Mikaelyan et al.,, 2014), and in the VIS spectrum
are (Adams et al.,, 2010; Bharadwaj et al., 2010; Park et al., 2009;
Juefei-Xu et al., 2010; Miller et al., 2010; Woodard et al., 2010a; Xu
et al., 2010; Park et al., 2011; Oh et al., 2012; Padole and Proenca,
2012; Santos and Hoyle, 2012; Joshi et al., 2014; Nie et al., 2014;
Proenca and Bricefio, 2014; Proenga et al., 2014; Bakshi et al., 2015;
Santos et al., 2015; Hernandez-Diaz et al., 2018; Luz et al., 2018;
Reddy et al., 2019). Rattani and Derakhshani (2017) provided a de-
tailed survey of ocular techniques in the VIS spectrum. The researchers
in Hollingsworth et al. (2010), Smereka and Kumar (2017) suggested
that VIS images provide more discriminative information for periocular
recognition compared to NIR images. Hollingsworth et al. (2012) made
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A chronological overview (description, datasets, and performance) of periocular techniques utilizing NIR, VIS, or multispectral images. Here, RR is Recognition
Rate, EER is Equal Error Rate, TMR is True Match Rate, FRR is False Rejection Rate, and FAR is False Acceptance Rate. The acronyms used in the ‘Description’

column are defined in the text or in the referenced papers.

Paper

Description

Datasets and performance

NIR spectrum

Uzair et al. (2013)

Formulate as an image set classification problem,
where each image set corresponds to single subject

MBGC: RR is 97.70%

Monwar et al. (2013)

PDM, modified SIFT, GOH features
Fusion: Highest rank, borda count, plurality voting,
markov chain rule at rank-level

FOCS: RR is 99.2%

Mikaelyan et al. (2014)

Symmetry patterns

BioSec: EER is 10.75%

Hwang and Lee (2020)

Mid-level CNN features (plain CNN, ResNet,
deep plane CNN, and deep ResNet) + Features selection

Proprietary: EER is 11.51%
CASIA-Iris-Lamp: EER is 0.64%

Visible spectrum

Park et al. (2009)

HOG, LBP, SIFT

FRGC: RR is 79.49%(SIFT)

Xu et al. (2010)

Comparison of different features and their fusion

FRGC: TMR of 61.2% 0.1% FMR

Adams et al. (2010)

GEFE+LBP

FRGC: RR is 92.16%
FERET: RR is 85.06%

Juefei-Xu et al. (2010)

LBP, WLBP, SIFT, DCT, Gabor filters, Walsh masks,
DWT, SURF Law Masks, Force Fields, LoG

FRGC: RR is 53.2%(LBP+DWT)
FG-NET: RR is 53.1%(LBP+DCT)

Park et al. (2011)

Fusion of HOF, LBP and SIFT

FRGC: RR is 87.32%

Padole and Proenca (2012)

HOG, LBP, SIFT

UBIPr: EER is ~20%(HOG + LBP + SIFT)

Santos and Hoyle (2012)

LBP, SIFT

UBIRIS v2: EER is 31.87% and RR is 56.4%

Joshi et al. (2014)

Gabor-PPNN, DWT, LBP, HOG

MBGC: EER is 6.4%, GTDB: EER is 5.9%,
IITK: EER is 15.5%, PUT: EER is 4.8%

Nie et al. (2014)

PCA to: CRBM, SIFT, LBP, HOG

UBIPr: EER is 6.4% and RR is 50.1%

Proenca and Bricefio (2014)

GC-EGM to: LBP + HOG + SIFT

FaceExpressUBI: EER is 16%

Hernandez-Diaz et al. (2018)

Fusion of off-the-shelf CNN (AlexNet, GoogLeNet,
ResNet, and VGG) features and traditional features

UBIPr: EER of 5.1% and
FRR is 11.3% at 1% FAR

Jung et al. (2020)

Generalized label smoothing regularization-trained networks

ETHNIC, PUBFIG, FACESCRUB, AND IMDB
WIKI: avg.RR is 88.7% and EER of 10.4%

NIR and VIS spectrum

Woodard et al. (2010a)

Tessellated image + Histograms of texture and color

FRGC (VIS): RR is 91%, MBGC (NIR): RR is 87%

Ross et al. (2012)

Fusion of GOH, PDM, SIFT features at the score-level

FOCS (NIR): EER is 18.8%, FRGC (VIS): EER is 1.59%

Alonso-Fernandez and Bigun (2015)

Gabor features

4 NIR datasets: Accuracy is 97%
2 VIS datasets: Accuracy is 27%

Bakshi et al. (2015)

Raw pixels, LBP, PCA, LBP + PCA

MGBC: NIR- RR is 99.8%, VIS- RR is 98.5%
CMU Hyperspectral: RR is 97.2%, UBIPr: RR is 99.5%

Ambika et al. (2016)

Laplace-Beltrami based shape features

CASIA FV1: accuracy is 95%, Basel 3D: Accuracy is 97%
3D periocular: Accuracy is 97.5%

Smereka et al. (2015)

Periocular probabilistic deformation models

2 NIR and 3 VIS images datasets

Zhao and Kumar (2017)

Semantics-assisted convolutional neural networks

UBIRIS.V2: RR is 82.43%, FRGC: RR is 91.13%,
FOCS: RR is 96.93%, CASIA.v4-distance: RR is 98.90%

Multi-spectrum

Algashaam et al. (2017a)

Multimodal compact multi-linear pooling feature fusion

IMP: Accuracy is 91.8%

Vetrekar et al. (2018)

HOG, GIST, Log-Gabor transform and BSIF + CRC

Proprietary: RR is 96.92%

Ipe and Thomas (2020)

Fusion of the off-the-shelf CNN feature

IMP: Accuracy is 97.14%

the same conclusion from human volunteers. The authors in Alonso-
Fernandez and Bigun (2012), Ross et al. (2012), Alonso-Fernandez and
Bigun (2015), Smereka et al. (2015), Ambika et al. (2016), Zhao and
Kumar (2017) proposed periocular recognition techniques that can be
applied to both NIR and VIS images. Other researchers (Algashaam
et al., 2017a; Vetrekar et al., 2018; Ipe and Thomas, 2020) fused
information obtained from both NIR and VIS images. Table 2 provides
a summary (features extraction, datasets, and performance) of various
techniques applied on NIR, VIS, both spectrum, and multi-spectral
(fusion of NIR and VIS) images.

A vast amount of research has also focused on cross-spectrum
matching, where enrolled images are in one spectrum, while probe
images are in another spectrum. The cross-spectrum evaluation sce-
nario implicitly encapsulates the cross-sensor scenario (enrolled and
probes images are from different sensors) as well. Examples of papers
discussing the cross-spectrum scenario are (Cao and Schmid, 2014;

Sharma et al., 2014; Ramaiah and Kumar, 2016; Behera et al., 2017;
Raja et al., 2017; Hernandez-Diaz et al., 2019; Alonso-Fernandez et al.,
2022; Behera et al.,, 2020; Hernandez-Diaz et al., 2020; Zanlorensi
et al.,, 2020; Vyas, 2022). Behera et al. (2019) provided a detailed
survey on cross-spectrum periocular recognition. Two competitions are
also held to evaluate cross-spectrum periocular techniques (Sequeira
et al., 2016; Sequeira et al., 2017). HH1 algorithm (Sequeira et al.,
2017) involving a fusion of Symmetry Patterns (SAFE), Gabor Spectral
Decomposition (GABOR), SIFT, LBP, and HOG features performs the
best, giving 0.82% EER. A more difficult evaluation scenario is when
testing is performed on different datasets (cross-dataset) as it has to
account for the variations due to different sensors, data acquisition
environments, and subject population. Examples of cross-dataset eval-
uation can be found in Reddy et al. (2019, 2020). Table 3 summarizes
various cross-spectrum and cross-dataset techniques along with their
performance. The cross-sensor techniques are mainly evaluated on
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A chronological overview (description, datasets, and performance) of periocular techniques working under cross-spectrum and cross-dataset scenarios. Here, GAR is Genuine
Acceptance Rate, GMR is Genuine Match Rate, FMR is False Match Rate, and d’ is the separation between the mean of genuine and impostor distributions. The acronyms used in

the ‘Description’ column are defined in the text or in the referenced papers.

Paper

Description

Datasets and performance

Cross-spectrum

Cao and Schmid (2014)

Gabor LBP, Generalized LBP, Gabor Weber descriptors

Pre-Tinders, TINDERS, PCSO (GAR at 0.1 FAR): SWIR-VIS: 0.75,
NIR-VIS: 0.35, MWIR-VIS: 0.35

Sharma et al. (2014)

Combined neural network architecture

IMP (GAR @ 1% FAR): VIS-NV: 71.93%, VIS-NIR:47.08%, NV-NIR:48.21%

Ramaiah and Kumar (2016)

Three patch LBP + MRF

(GAR @ 0.1% FAR) IMP (NIR-VIS): 18.35%, PolyU (NIR-VIS): 73.2%

Raja et al. (2017)

Steerable pyramids + SVM + Fusion of different scales

CROSS-EYED2016 (NIR-VIS): GMR is 100% at 0.01% FMR

Behera et al. (2017)

Difference of Gaussian + HOG + Cosine similarity

IMP (NIR-VIS):GAR is 25.03% at 0.1 FAR, EER is 45.29%
PolyU: GAR is 83.12% at 0.1 FAR, EER is 13.87%
CROSS-EYED2016: GAR is 89.27% at 0.1 FAR and EER is 13.22%

Hernandez-Diaz et al. (2019)

ResNet101 features + Chi-square distance, Cosine similitude

IMP (EER, GAR at 1% FAR): VIS-NV: (5.13%, 88.19)
VIS-NIR: (5.19%, 88.13); NIR-NV: (10.19%, 81.55)

Hernandez-Diaz et al. (2020)

Convert NIR and VIS images using cGAN + CNN features

PolyU (NIR-VIS): EER is 1%, GAR is 99.1% at FAR=1%

Zanlorensi et al. (2020)

Fine-tune CNN models (VGG16, ResNet-50)

PolyU (NIR-VIS): EER is 0.35% and d’ is 7.75

Behera et al. (2020)

Variance-guided attention-based twin deep network

PolyU: EER is 6.38%, GAR is 96.17% at 10% FAR
CROSS-EYED2016: EER is 2.36%, and GAR is 99.70% at 10% FAR
IMP (EER, GAR at 10%FAR): VIS-NV: (9.71%, 90.62%)

VIS-NIR: (13.59%, 82.49%), NIR-NV: (7.06%, 95.17%)

Alonso-Fernandez et al. (2022)

Fuse HOG, LBP, SIFT, Symmetry Descriptors, Gabor,
Steerable Pyramidal Phase, VGG-Face, Resnet101,
and Densenet201 features using LLR at score-level

CROSS-EYED2016: EER is 0.2%, FRR is 0.47% at
0.01% FAR
VSSIRIS: EER is 0.2%, FRR 0.3% at 0.01% FAR

Cross-datasets

Reddy et al. (2019) Unsupervised convolutional autoencoders

Train: UBIRIS-V2, UBIPr, MICHE; Test: VISOB: EER is 12.23%

Reddy et al. (2020) CNN features

Train: VISOB, Test:UBIRIS-V2: EER is 7.65%,
UBIPr: EER is 3.87% CROSS-EYED2016: EER is 0.94%,
CASIA-TWINS: EER is 9.41% FERET: EER is 0.06%

different mobile devices, so we provide their details in Section 7
(Periocular Recognition on Mobile Devices).

6. Periocular fusion with other modalities

Simultaneous acquisition of periocular with the iris modality, and its
complementary nature with respect to iris, has motivated researchers
to fuse periocular with iris to improve the overall recognition per-
formance. The authors in Woodard et al. (2010b), Ross et al. (2012)
proposed the fusion of periocular with iris to improve the performance
when acquired iris images are of low quality due to partial occlusions,
specular reflections, off-axis gaze, motion and spatial blur, non-linear
deformations, contrast variations, and illumination artifacts. The fusion
is also helpful when iris images are captured from a distance as the
periocular region is relatively stable even at a distance (Tan and Kumar,
2012). It is also advantageous when iris images are acquired in the
visible spectrum (Santos and Hoyle, 2012; Tan and Kumar, 2013;
Proenca, 2014; Jain et al., 2015; Silva et al., 2018), or using mobile
devices (Santos et al., 2015; Ahuja et al.,, 2016b). The iris texture
is better discernible in NIR illumination, whereas periocular features
become more perceptible in VIS illumination (Alonso-Fernandez and
Bigun, 2015; Alonso-Fernandez et al., 2015). The overall performance
obtained on the fusion of iris and periocular traits is generally bet-
ter than using the iris only as shown in Komogortsev et al. (2012),
Raghavendra et al. (2013), Raja et al. (2014a), Ahmed et al. (2017),
Verma et al. (2016). The fusion of iris and periocular is mainly per-
formed at the score-level (Woodard et al., 2010b; Tan et al., 2012; Tan
and Kumar, 2012; Raghavendra et al., 2013; Tan and Kumar, 2013;
Proenca, 2014; Alonso-Fernandez et al., 2015; Jain et al., 2015; Santos
et al., 2015; Verma et al., 2016; Ahuja et al., 2016b; Algashaam et al.,
2021), though there is some work on feature-level (Jain et al., 2015;
Stokkenes et al., 2017; Silva et al., 2018) and decision-level (Santos
and Hoyle, 2012) fusion also. Alonso-Fernandez et al. (2015) provided
detailed evaluation of fusing periocular and iris modalities over five
datasets. Ogawa and Kameyama (2021) proposed Multi Modal Selector

that adaptively selects a iris and periocular classifier useful for human
recognition.

The fusion of periocular with the face modality is also a viable
option as periocular is a part of the face, and no additional acquisition
is required. Though the periocular region is already accounted in face
recognition as a part of the face, isolating the periocular and performing
region-speciic feature extraction provides an overall improvement in
recognition performance. The fusion of face with periocular is also
beneficial when face images are occluded, having large pose variations,
or captured at a very close distance (e.g., a selfie). The work of
periocular fusion with face in the context of plastic surgery (Jillela
and Ross, 2012), gender transformation (Mahalingam et al., 2014) and
mobile devices (Raja et al., 2015a; Pereira and Marcel, 2015) shows
improved recognition accuracy. Table 4 summarizes various techniques
that fuse periocular with iris and face modalities along with their
performance. Tiong et al. (2019) provided a detailed evaluation on the
fusion of periocular and face, achieving over 90% Recognition Rate
over four of the datasets. In another research work, Oh et al. (2014)
fused periocular features (structured random projections) with binary
sclera features at the score-level for identity verification. Talreja et al.
(2022) combined soft biometrics and periocular features to improve
the overall performance of periocular recognition. Nigam et al. (2015)
provided a detailed survey on the fusion of various ocular biometrics.

7. Periocular recognition on mobile devices

The extensive usage of mobile devices motivates the need for hu-
man authentication on mobile devices for various purposes, such as
access control, digital payments, or mobile banking. Several mobile
devices are now emerging with integrated biometric sensors — iPhone
12 has a Touch ID fingerprint sensor and Face ID cameras, and the
Samsung Galaxy S20 series has an in-display fingerprint sensor and
an iris scanner. Periocular images are generally acquired using the
front or rear camera of mobile devices in the visible spectrum. The
challenges in mobile biometrics are low-quality input images and rela-
tively limited computational power. The low-quality images are due to
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A chronological overview (description, datasets, and performance) of periocular techniques focusing on the fusion of periocular with iris and face modalities.
Here, AUC is Area Under the Curve. The acronyms used in the ‘Description’ column are defined in the text or in the referenced papers.

Paper

Description

Datasets and performance

Fusion of iris and periocular

Woodard et al. (2010b)

Iris: Gabor features, Periocular: LBP
Fusion: Weighted sum at score-level

MBGC: EER is 0.18, RR is 96.5%

Santos and Hoyle (2012)

Iris: Wavelets, Periocular: LBP, SIFT
Fusion: Logistic regression at decision-level

NICE.Il: EER is 18.48, AUC is 0.90, RR is 74.3%

Tan et al. (2012)

Iris: Ordinal measures and color analysis
Periocular: Texton representation and semantic information
Fusion: Weighted sum rule at score-level

USIRISv2: d’ is 2.57, EER is 12%

Tan and Kumar (2012)

Iris: Log-Gabor features
Periocular: SIFT, Leung-Malik filters, LBP
Fusion: Weighted sum rule at score-level

CASIA-IrisV4-distance: RR is 84.5%

Tan and Kumar (2013)

Iris: Log-Gabor features
Periocular: DSIFT, GIST, LBP, HOG, LMF
Fusion: Weighted sum rule at score-level

UBIRIS V2: RR is 39.6%
FRGC: RR is 59.9%
CASIA-IrisV4-Distance: RR is 93.9%

Raghavendra et al. (2013)

Iris, Periocular: LBP-SRC, Fusion: Weighted sum at score-level

Proprietary: EER is 0.81%

Proenca (2014)

Iris: Multi-lobe differential filters
Eyelids, Eyelashes, Skin: shape and LBP features
Fusion: Product, sum, min and max rule at score-level

UBIRISv2: d’ is 2.97 and AUC is
0.96
FRGC: d’ is 3.02 and AUC is 0.97

Santos et al. (2015)

Iris: Gabor features, Periocular: SIFT, GIST, LBP, HOG, ULBP
Fusion: ANN at score-level

CSIP: d’ is 2.501, AUC is 0.943,
EER is 0.131

Jain et al. (2015)

Iris, Periocular: LBP, SIFT, GIST
Fusion: Feature-level (context-switching), score-level (sum)

UBIRISV2: RR-10 is 76.16%
FRGC: RR-10 is 75.4%

Alonso-Fernandez et al. (2015)

Iris: Log-Gabor filters, DCT, SIFT
Periocular: Symmetry patterns, gabor features, SIFT
Fusion: Logistic regression at score-level

(EER) BioSec: 0.75%, MobBIO: 6.75%
CASIA-Iris Interval v3: 0.51%
IIT Delhi v1.0: 0.38%, UBIRIS v2: 15.17%

Verma et al. (2016)

Iris: Gabor features, Periocular: PHOG, GIST
Fusion: Random decision forest at score-level

CASIA-IrisV4-distance: GMR is 61% at 0.1% FMR
FOCS: GMR is 21% at 0.1% FMR

Ahuja et al. (2016b)

Iris: RootSIFT, Periocular: Deep features
Fusion: Mean rule and linear regression at score-level

MICHE-II: AUC is 0.985 and EER is 0.057

Ahmed et al. (2017)

Iris: Gabor features, Periocular: Multi-Block
Transitional LBP
Fusion: Weighted sum rule at score-level

MICHE II: EER is 1.22%,
FRR is 2.56% at FAR
RR is 100%

Zhang et al. (2018)

Iris, Periocular: CNNs with max out units
Fusion: Weighted concatenation at the feature-level

CASIA-Iris-MobileV1.0: EER is 0.60%,
FNMR is 2.32% at 0.001% FMR

Silva et al. (2018)

Iris, Periocular: Deep features
Fusion: Particle swarm optimization at feature-level

UBIRISv2: d’ is 3.45 and EER is 5.55%

Fusion of periocular and face

Jillela and Ross (2012)

Face: Verilook and PittPatt Scores, Ocular: SIFT, LBP
Fusion: Mean rule at score-level fusion

Plastic surgery database: RR is 87.4%

Pereira and Marcel (2015)

Periocular: Tessellated images + DCT + GMM
Face: Inter-session variability modeling + GMM
Fusion: Linear logistic regression at score-level fusion

MOBIO: HTER is 6.58%CPqD Biometric: HTER is 3.87%

Raja et al. (2015b)

Iris: Gabor features, Periocular, Face: SIFT, SURF, BSIF
Fusion: Min, max, product, weighted sum at score-level

Proprietary: EER of 0.68%

F Periocular: BSIF + Bl filt
Stokkenes et al. (2017) ace, Periocular: oom filters

Fusion: XOR operation, concatenation at feature-level

Proprietary: GMR is 88.54% at 0.01% FMR
EER is 2.05%

Ti t al. (2019
fong et al. ( ) Fusion: Feature and score fusion layers

Face, Periocular: orthogonal combination of LBP and LTP

(RR) KinectFaceDB: 99.76%, FaceScrub: 92.38%
AR: 95.64%, PubFig: 98.92%, YTF: 58.11%

hardware limitations and less constrained capturing environments. Raja
et al. (2014b) explored periocular recognition on smart devices using
well known feature extraction techniques (SIFT, SURF, and BSIF) and
achieved a Genuine Match Rate (GMR) of 89.38% at 0.01% False
Match Rate (FMR). There is some work on NIR images captured from
mobile devices (Bakshi et al., 2018; Zhang et al., 2018). Bakshi et al.
(2018) utilized a reduced version of Phase Intensive Local Pattern
(PILP) features, whereas (Zhang et al., 2018) fused compact CNN
features of iris and periocular through a weighted concatenation. Ma-
jority of the periocular-based mobile biometrics are performed on VIS
images (Pereira and Marcel, 2015; Raja et al.,, 2015b; Ahuja et al.,
20164a; Keshari et al., 2016; Raja et al., 2016b; Raghavendra and Busch,
2016; Ahmed et al., 2017; Ahuja et al., 2017; Rattani and Derakhshani,
2017; Stokkenes et al., 2017; Boutros et al., 2020; Krishnan et al.,
2021; Raja et al., 2020). Keshari et al. (2016) investigated periocular

recognition on pre- and post-cataract surgery mobile images. Krishnan
et al. (2021) investigated the fairness of mobile ocular biometrics
methods across gender. The work in Pereira and Marcel (2015), Raja
et al. (2015b), Ahmed et al. (2017), Zhang et al. (2018) used fusion
of different modalities for mobile biometrics — (Raja et al., 2015b)
fused iris, face and periocular modalities, Pereira and Marcel (2015)
combined face and periocular, whereas authors in Santos et al. (2015),
Ahmed et al. (2017), Zhang et al. (2018) combined iris and periocular.
Recent work on mobile biometrics used deep learning features (Raja
et al., 2016b; Raghavendra and Busch, 2016; Ahuja et al., 2017; Rattani
and Derakhshani, 2017; Raja et al., 2020). Boutros et al. (2020) verified
an individual wearing Head Mounted Display (HMD) using four hand-
crafted feature extraction methods and two deep-learning strategies.
Generalizability across different mobile sensors (cross-sensor) are also
evaluated in Santos et al. (2015), Raja et al. (2016a,c), Garg et al.
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A chronological overview (description, datasets, and performance) of periocular techniques utilizing images acquired using the sensors and cameras in a mobile
device such as a smartphone. Here, HTER is Half Total Error Rate. The acronyms used in the ‘Description’ column are defined in the text or in the referenced

papers.

Paper

Description

Datasets and performance

Juefei-Xu and Savvides (2012)

Walsh-Hadamard transform encoded LBP
+ Kernel class-dependence feature analysis

Compass: GAR is 60.7% at 0.1% FAR

Raja et al. (2014b)

SIFT, SURF and BSIF
+ Nearest Neighbors (SIFT and SURF),
Bhattacharyya distance(BSIF)

Proprietary: GAR is 89.38% at 0.01% FAR

Ahuja et al. (2016a)

SURF + Multinomial Naive Bayes learning
+ Pyramid-up topology using Dense SIFT + RANSAC

VISOB: RR is 48.76%-79.49%

Keshari et al. (2016)

Dense SIFT, Gabor, Scattering Network features +
PCA + LDA + Cosine similarity weighted sum

IMP: RR-10 is 69%
GAR is 24% at 1% FAR

Raghavendra and Busch (2016)

Maximum Response filters + Deeply coupled autoencoders

VISOB: GMR of 93.98% at 0.001 FMR

Raja et al. (2016c)

Laplacian decomposition + GLCM +
STFT + Histogram features of freq. response + SRC

MICHE I: Cross-camera EER is 7.53%
Cross-sensor EER is 6.38%

Ahuja et al. (2017)

Hybrid CNN model + Mean fusion at the score-level

VISOB: GMR is 99.5% at 0.001% FMR
MICHE-II: AUC of 98.6%

Rattani and Derakhshani (2017)

Fine-tuned VGG-16, VGG-19, InceptionNet, ResNet

VISOB: TMR is 100% at 0.001% FMR

Garg et al. (2018)

Heterogeneity aware loss function in deep network

(RR) CSIP (cross-sensor): 89.53%,
IMP: 61.20%, VISOB (cross-spectrum): 99.41%

Reddy et al. (2018b)

Patch-based OcularNet

(EER) VISOB: 1.17%, UBIRIS-I: 9.86%,
UBIRIS-II: 9.77%, CROSS-EYED2016: 14.95%

Raja et al. (2020)

Deep Sparse Features, Deep Sparse Time
Frequency Features + CRC classification

(GMR at 0.01% FMR) VISPIL: 99.80%,
MICHE-I: 100%, VISOB: 98.78%

Boutros et al. (2020)

Periocular, Iris: Hand-crafted and deep features
+ Synthesize identity-preserved periocular images

OpenEDS: EER (iris) is 6.35%
EER (periocular) is 5.86%

(2018), Reddy et al. (2018b), Alonso-Fernandez et al. (2022). Table 5

3. Face Generation from Periocular Region: (Juefei-Xu et al.,

provides a brief description of various mobile-based periocular recog-
nition techniques along with their performance. The work by Rattani
and Derakhshani (2017) and Reddy et al. (2018b) are worth noting
as (Rattani and Derakhshani, 2017) achieved perfect TMR of 100% at
0.001% FMR on VISOB dataset, whereas Reddy et al. (2018b) provided
detailed evaluation of mobile-based periocular biometrics over four
datasets. Further performance is evaluated in MICHE-II competition (De
Marsico et al., 2017).

8. Specific applications

1. Soft-biometrics from Periocular Region: Soft-biometrics refer
to attributes used to classify individuals in broad categories such
as gender, ethnicity, race, age, height, weight, or hair color. The
periocular region has also been used for automatically estimat-
ing age, gender, ethnicity, and facial expression information. An
exploration of gender information contained in the periocular
region is performed in Merkow et al. (2010), Lyle et al. (2012),
Bobeldyk and Ross (2016), Castrillén-Santana et al. (2016),
Tapia and Arellano (2019). Tapia and Arellano (2019) synthe-
sized NIR periocular images using a conditional GAN based on
gender information, and then identify gender using the synthe-
sized periocular images. The work in Lyle et al. (2012), Woodard
et al. (2017) extracted race information from the periocular
region, while the work in Rattani et al. (2017) determined age
of an individual from the periocular region. Alonso-Fernandez
et al. (2018) investigated the feasibility of using the periocular
region for facial expression recognition.

2. Long Distance Recognition: (Bharadwaj et al., 2010) showed
the degradation of iris recognition performance with an in-
crease in standoff distance and suggested the use of the pe-
riocular region on long-distance images. The authors in Tan
and Kumar (2012), Verma et al. (2016) proposed fusion ap-
proaches (iris and periocular) for human recognition at a dis-
tance (NIR images). Kim et al. (2018) presented CNN-based
periocular recognition in a surveillance environment.
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2014; Juefei-Xu and Savvides, 2016) recreated the entire face
from the periocular region alone using dictionary learning al-
gorithms, while (Ud Din et al., 2020) proposed a GAN-based
method to regenerate the masked part of the face. Li et al.
(2020) utilized de-occlusion distillation framework to recover
face content under the mask.

. Cross-modal Recognition (Face and Iris): (Jillela and Ross,

2014) presented the challenging problem of matching face in
VIS spectrum against iris images in NIR spectrum (cross-modal)
using periocular information. They utilized LBP, Normalized
Gradient Correlation (NGC), and Joint Dictionary-based Sparse
Representation (JDSR) methods to accomplish cross-modality
matching.

. Periocular Forensics: The authors in Marra et al. (2018), Baner-

jee and Ross (2018) deduced sensor information from the pe-
riocular images. In another work, Banerjee and Ross (2019)
suppressed the sensor-specific information (sensor anonymiza-
tion) and also incorporated the sensor pattern of a different
device (sensor spoofing) in periocular images.

. Other Applications: (Du et al., 2016) utilized the periocular

region to correct mislabeled left and right iris images in a diverse
set of iris datasets. The work in Alonso-Fernandez and Bigun
(2014), Hoffman et al. (2019) suggested the use of periocular
information for iris spoof detection. Alonso-Fernandez and Bi-
gun (2014) detected iris spoofs using VIS periocular images,
whereas (Hoffman et al.,, 2019) utilized NIR periocular im-
ages. Patel et al. (2017) explored the effectiveness of periocular
region in verifying kinship using a Block-based Neighborhood
Repulsed Metric Learning framework. Juefei-Xu et al. (2011)
presented a framework of utilizing the periocular region for
age invariant face recognition. The authors applied Walsh—
Hadamard transform encoded Local Binary Patterns (WLBP)
and Unsupervised Discriminant Projection (UDP), and achieved
100% rank-1 identification rate on a dataset of 82 subjects. The
authors in Jillela and Ross (2012), Raja et al. (2016a) utilized the
periocular region to identify individuals after they undergo facial
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Fig. 4. Examples of periocular images from NIR datasets: (a) (FOCS, 2010) Dataset, (b) MIR 2016 Dataset (Zhang et al., 2016), (c) CASIA-Iris-Mobile-V1.0 Dataset (Zhang et al.,

2018).

iPhone 5 Galaxy Samsung IV~ Galaxy Tablet II

(f)

iPhone 55 Nokia Lumia 1020
(e)

Huawei U8510
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Fig. 5. Examples of periocular images from VIS datasets: (a) UBIPr dataset (Padole and Proenca, 2012), (b) VISOB 1.0 Dataset (Rattani et al., 2016), (c)VISOB 2.0 Dataset (Nguyen
et al., 2021) Dataset, (d) CSIP Dataset (Santos et al., 2015), (e) VSSIRIS Dataset (Raja et al., 2015), (f) MICHE-I Dataset (De Marsico et al., 2015), (g) UFPR-Periocular (Zanlorensi

et al., 2020).

plastic surgery. Mahalingam et al. (2014) introduced a medi-
cally altered gender transformation face dataset and proposed
the fusion of periocular (patched-based LBP) with face, which
outperformed standalone commercial-off-the-shelf face match-
ers. Keshari et al. (2016) investigated periocular recognition on
pre- and post-cataract surgery images.

9. Datasets and competitions

In early literature, periocular recognition was performed using face
and iris datasets as there were limited datasets available that contained
the periocular region only. Commonly used face datasets to perform pe-
riocular recognition research on VIS images are FRGC, FERET, FG-NET,
MobBIO, and on NIR images are IIT Delhi v1.0, CASIA Interval, BioSec.
The iris datasets used for periocular recognition research are UBIRIS v2
(VIS), MBGC (NIR), and PolyU cross-spectral datasets. Table 6 describes
the datasets specifically collected for periocular recognition. Figs. 4, 5,
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and 6 show a few images from these periocular datasets. The datasets
used to perform periocular recognition research under variable stand-
off distance are FRGC, UBIRIS v2, and UBIPr. Examples of datasets
providing video data of subjects for periocular biometrics research are
MBGC, FOCS, and VSSIRIS. Other datasets provide special evaluation
scenarios such as aging (MORPH, FG-NET), plastic surgery (Raja et al.,
2016a), gender transformation (Mahalingam et al., 2014), expression
changes (FaceExpressUBI), face occlusion (AR, Compass), cross-spectral
matching (CMU-H, IMP, CROSS-EYED 2016, CROSS-EYED 2017), or
mobile authentication (CASIA-Iris-Mobile-V1.0, CSIP, MICHE I and II,
VSSIRIS, VISOB 1.0 and 2.0, CMPD). Various competitions focusing on
periocular recognition can be found in Rattani et al. (2016), Sequeira
et al. (2016), De Marsico et al. (2017), Sequeira et al. (2017). The
competitions in Rattani et al. (2016), De Marsico et al. (2017) are on
mobile periocular images, while the competitions in Sequeira et al.
(2016), Sequeira et al. (2017) evaluated the cross-spectrum (matching
of VIS and NIR images) scenario. Table 7 summarizes details about
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Description of periocular datasets (NIR, VIS, and multi-spectrum), along with representative research papers utilizing these datasets.

Datasets

Description

Papers

NIR spectrum

NIST- Face and ocular challenge series (FOCS, 2010)

9588 total images,

136 subjects, 750 x 600
resolution, monocular images
IOM sensor

Boddeti et al. (2011), Ross et al. (2012),
Monwar et al. (2013)

Smereka and Kumar (2013),

Smereka et al. (2015)

Verma et al. (2016),

Zhao and Kumar (2017)

MIR 2016 (Zhang et al., 2016)

16,500 total images,

550 subjects, 1968 x 2014
resolution,

biocular images

IrisKing mobile sensor

Zhang et al. (2016)

CASIA-Iris-Mobile-V1.0 (Zhang
et al., 2018)

11,000 total images,
630 subjects, biocular images,
CASIA NIR mobile camera

Zhang et al. (2018)

CASIA-IrisV4-Distance (2020)

2567 total images, 142 subjects,
2352 x 1728 resolution, biocular
images,

CASIA long-range iris camera

Tan and Kumar (2012, 2013), Verma et al. (2016)

Visible spectrum

UBIPr (Padole and Proenca, 2012)

10,950 total images,
261 subjects, Canon EOS 5D,
biocular images

Padole and Proenca (2012), Nie et al. (2014),
Hernandez-Diaz et al. (2018), Smereka et al. (2015), Reddy
et al. (2019, 2020)

CSIP (Santos et al., 2015)

2004 total images,

50 subjects, monocular images
4 mobile sensors (Xperia Arc S,
Apple iPhone4,

THL W200, Huawei U8510)

Santos et al. (2015), Garg et al. (2018)

MICHE I (De Marsico et al., 2015)

3732 total images, 92 subjects,
monocular images

3 mobile sensors (iPhone5,
Galaxy Samsung IV,

Galaxy Tablet II)

De Marsico et al. (2015), Raja et al. (2016¢), Reddy et al.
(2019), Raja et al. (2020)

VSSIRIS (Raja et al., 2015)

560 total images, 28 subjects,
monocular images

2 mobile sensors (iPhone 5S and
Nokia Lumia 1020)

Raja et al. (2015), Alonso-Fernandez et al. (2022)

VISOB v1.0 (Rattani et al., 2016)

158,136 total images,

550 subjects, monocular images
3 mobile sensors (iPhone 5s,
Samsung

Note 4 and Oppo N1)

Ahuja et al. (2016a),

Raghavendra and Busch (2016), Ahuja et al. (2017)
Garg et al. (2018), Hoang et al. (2020),

Raja et al. (2020), Reddy et al. (2020)

CMPD (Keshari et al., 2016)

2380 total images, 56 subjects,
monocular images

MicroMax A350 Canvas Knight
mobile device

Keshari et al. (2016)

MICHE II (De Marsico et al., 2017)

3120 total images, 75 subjects,
monocular images,

3 mobile sensors (iPhone5,
Galaxy Samsung IV, Galaxy
Tablet 1I)

Ahuja et al. (2016b), Ahmed et al. (2017)

Ahuja et al. (2017), De Marsico et al. (2017)

UFPR-Periocular Zanlorensi et al.
(2020)

33,660 total images,

1122 subjects, both monocular
and biocular images

196 mobile sensors

Zanlorensi et al. (2020)

VISOB v2.0 Nguyen et al. (2021)

75,428 total images,

250 subjects, monocular images
2 mobile sensors (Samsung Note
4 and Oppo N1)

Krishnan et al. (2021)

Multi-spectrum

IMP (Sharma et al., 2014)

1240 total images, 62 subjects,
monocular and

biocular images 3 sensors
(Cogent iris scanner,

Sony HandyCam, Nikon

SLR camera)

Keshari et al. (2016),

Ramaiah and Kumar (2016),

Algashaam et al. (2017a)

Behera et al. (2017), Garg et al. (2018),
Hernandez-Diaz et al. (2019)

Behera et al. (2020), Ipe and Thomas (2020)
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Datasets

Description

Papers

CROSS-EYED 2016

Sequeira et al. (2016)

3840 total images, 120 subjects,
900 x 800 resolution, monocular
images

Behera et al. (2017), Raja et al. (2017),
Reddy et al. (2018b)

Alonso-Fernandez et al. (2022),

Behera et al. (2020), Reddy et al. (2020)

CROSS-EYED 2017 Sequeira et al.

(2017)

5600 total images, 175 subjects,
900 x 800 resolution, monocular
images

Sequeira et al. (2017)

QUT Multispectral

Algashaam et al. (2017a)

212 total images, 53 subjects,
800 x 600 resolution, biocular
images

2 sensors (Sony DCR-DVD653E,
IP2M-842B Surveillance camera)

Algashaam et al. (2017a)

Table 7

A summary (Datasets and performance achieved) of various competitions on periocular recognition. Here, GFRR is Generalized False Rejection Rate, and GFAR is Generalized False

Acceptance Rate.

Competition

Dataset

Performance

MICHE-II (De Marsico et al., 2017)

ICIP (Rattani et al., 2016)

MICHE-I and MICHE-II

VISOB

EER is 2.74% and FRR is 9.13% @ 0.1% FAR (Ahmed et al., 2016; Ahmed et al., 2017)
EER is 0.06%-0.20% and GMR is 92% @ 0.1% FMR (Raghavendra and Busch, 2016)

CROSS-EYED 2016 (Sequeira et al., 2016)
CROSS-EYED 2017 (Sequeira et al., 2017)

CROSS-EYED 2016
CROSS-EYED 2016 and 2017

GFRR is 0.0% @ 1% GFAR and EER is 0.29% (HH1) (Sequeira et al., 2016)
GFRR is 0.74% @ 1% GFAR and EER is 0.82% (HH1) (Sequeira et al., 2017)

&~

Near-Infrared

4

Near-Infrared

Near-Infrared

(c)

Visible

Night Vision

Fig. 6. Examples of periocular images from Multi-spectral datasets: (a) IIITD Multispectral Periocular (IMP) (Sharma et al., 2014), (b) QUT Multispectral (Algashaam et al., 2017a),

and (c) Cross-Eyed 2016 (Sequeira et al., 2016).

these competitions and the highest performance achieved in the com-
petitions. Zanlorensi et al. (2021) surveyed various ocular datasets

and discussed popular ocular recognition competitions. The authors
described 36 iris, 4 iris/periocular, 4 periocular, and 10 multimodal
datasets.

10. Challenges and future directions

1.

Definition and Standardization: The definition of the perioc-
ular region is not standardized. What is the actual boundary
around the eye? Should we consider a single eye or both eyes
to be in the periocular region? These questions about the scope
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of the periocular region is yet to be answered. Apart from
these definitional concerns, issues around standardization has
to be resolved for ground-truth segmentation, and the minimum
resolution needed for recognition.

. Generalizability: Periocular biometric solutions should be gen-

eralizable, which refers to the matching of periocular images un-
der cross-sensor (images from different sensors), cross-spectrum
(images from different spectra), cross-dataset (images from dif-
ferent datasets), cross-resolution (images at multiple distances),
and cross-modal (images from different modalities) scenarios.

. Non-ideal Conditions: Researchers need to focus on periocular

matching under non-ideal conditions, i.e., pose variations (Park
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et al.,, 2011; Karakaya, 2021; Kumari and Seeja, 2021a), ex-
pression variations, non-uniform illumination, low-resolution,
occlusions (eyeglasses, eye-blinking, different types of masks,
scarfs or helmets or eye makeup) (Park et al., 2009; Kumari
and Seeja, 2021a), plastic surgeries (Jillela and Ross, 2012; Raja
et al., 2016a), gender transformation (Mahalingam et al., 2014)
or large stand-off distance.

4. Effects of Aging: With age, wrinkles and folds around the eye
could change the overall appearance of the periocular region.
The effects of aging on periocular recognition are yet to be
comprehensively studied (Ma et al., 2019).

5. Anti-spoofing Measures: While periocular region has been uti-
lized to detect iris spoof attacks (Alonso-Fernandez and Bigun,
2014; Hoffman et al., 2019), we should also be vigilant about
spoof attacks directed at the periocular region.

6. Explainability and Interpretability: Increasing use of deep
learning-based techniques in periocular biometrics opens an-
other direction which involves explainability of these deep learn-
ing models (Brito and Proenca, 2021).

11. Summary

This paper provided a survey on periocular biometrics in the wake
of its importance due to the increased use of face masks. Firstly, it
reported recent periocular and face recognition techniques specifically
designed to recognize humans wearing a face mask. Subsequently,
details on various aspects of periocular biometrics, viz., anatomical
cues in the periocular region used for recognition, feature extraction
and matching techniques, cross-spectral recognition, its fusion with
other biometrics modalities (face or iris), authentication in mobile de-
vices, the usefulness of this biometric in other applications, periocular
datasets, and competitions are provided. Finally, the paper discussed
various challenges and future directions to work on. The applicability
of the periocular biometrics is likely to extend to other scenarios
where only the ocular region of the face may be visible. This could
be due to cultural etiquette (e.g., women covering their face) or safety
precautions (e.g., surgeons or construction workers covering their nose
and mouth).
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