
CPSCoach: The Design and Implementation of Intelligent 
Collaborative Problem Solving Feedback  

Angela E.B. Stewart1[0000-0002-6004-9266], Arjun Rao2[0009-0007-0734-3822], Amanda 
Michaels3[0009-0006-7644-5331] , Chen Sun4[0000-0002-7575-5091] , Nicholas D. Duran3[0000-0002-

8872-5617] , Valerie J. Shute5[0000-0002-9179-017X] , and Sidney K. D’Mello2[0000-0003-0347-2807] 

1 University of Pittsburgh, Pittsburgh PA 15260, USA 
2 University of Colorado Boulder, Boulder CO 80309, USA 

3 Arizona State University, Glendale AZ 85306, USA 
4 University of Manchester, Manchester, United Kingdom 

5 Florida State University, Tallahassee FL 32306, USA 
angelas@pitt.edu 

Abstract. We present the design of CPSCoach, a fully-automated system that 
assesses and provides feedback on collaborative problem solving (CPS) 
competencies during remote collaborations. We leveraged existing data to 
develop deep NLP models that automatically assess the CPS competencies from 
speech, achieving moderate to high accuracies (average area under the receiver 
operating characteristic curve of .78). We engaged 43 participants in an iterative 
process to design the feedback mechanism, resulting in the first prototype of 
CPSCoach. We conducted a user study with 20 dyads who engaged with 
CPSCoach over multiple rounds. Participants thought the system was usable, 
but they were mixed about the accuracy of the feedback. We discuss design 
considerations for feedback systems aimed at improving CPS competencies. 
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1 Introduction and Related Work 

Collaborative problem solving (CPS) is a ubiquitous phenomenon, occurring when 
multiple people engage in a coordinated attempt to solve a problem [1]. Productive 
CPS involves combining socio-cognitive processes, such as maintaining a shared 
vision of the problem and coordinating teammate strengths to implement a solution 
[2]. Remote CPS is increasingly common [3]. However, remote collaborations are 
especially difficult, as the social signals from face-to-face communication are muted 
or non-existent [3]. Currently, students are expected to master CPS competencies 
through project-based group learning [2], yet they are evaluated on project outcomes, 
not CPS skill [2]. Further, they do not receive meaningful feedback on their CPS 
skills [2], making it difficult for them to acquire and improve these competencies. 

Software systems do exist that support collaborative skills, although these largely 
are task-specific (e.g., interfaces to enhance team communication programming [4]). 
Most similar to our work are systems that support awareness of behavior in 
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collaborative interactions. In this literature, low-level behaviors are synthesized into 
interpretable metrics, and visualized. For example, real-time visualizations of turn-
taking behaviors (e.g., interruptions) have been aggregated from speech signals [5]. 

Taken together, there is a conspicuous absence of pathways to CPS proficiency. 
Accordingly, we developed CPSCoach, a system that uses NLP to automatically 
assess CPS skills [1] and provide feedback between short collaborations in an 
educational physics game. CPSCoach is based in theories on the importance of 
personalized and immediate feedback to support learning [6]. We extend current 
collaboration feedback by focusing on high-level CPS constructs, rather than low-
level behaviors. Low-level behaviors are related to CPS, but CPS is far more than 
this. For example, ample verbal participation is related to problem solving ideation. 
However, this is insufficient as the team could be entirely off topic or discussing 
unproductive ideas. Accordingly, we move from low-level concrete and generic 
behaviors (e.g., amount of verbal participation) to abstract and specialized CPS 
behaviors (e.g., joint knowledge construction). In this work, our goal is to identify key 
lessons from a proof-of-concept prototype to inform future versions of CPSCoach. 

2 Intervention Design and User Study 

We conducted an iterative design study to explore effective designs for CPS feedback, 
focusing on instructional content, translation of model predictions to interpretable 
metrics, and the user interface. Participants in the design study were 43 college 
students from a large public university (female = 69%; male = 29%; 2% = non-binary; 
Asian = 23%, Black = 3%; Hispanic = 9%, white = 60%).  

Our final prototype used a theoretically-grounded, empirically-validated CPS 
framework [1] which consists of three facets: shared knowledge construction, 
negotiation/coordination, and maintaining team function. This framework was applied 
in the context of Physics Playground [7], a physics problem-solving game. After 
collaborating in Physics Playground, teammates viewed their feedback in CPSCoach. 
The scores overview page included their scores for the current round and past scores. 
Participants could view a facet-specific page, which included a definition and 
indicative behaviors, and annotated videos of teams engaging in the behaviors. 

Our CPS facet machine learning models were trained on a dataset of 94 triads 
playing Physics Playground [8]. We used the Bidirectional Encoder Representations 
from Transformers (BERT) model [9], with pre-trained word embeddings that were 
fine-tuned to our data. We chose hyper-parameters based on recommendations from 
[9] (e.g., fine-tuning over four epochs, batch size = 32, sequences padded or truncated 
at 300 words). We used team-level 10-fold cross validation such that all utterances 
from a team were in the training set, or testing set, but never both. Using this 
approach, we achieved area under the receiver operating characteristic curve 
(AUROC) values of .88, .83, and .82 on our test data for shared knowledge 
construction, negotiation/coordination, and maintaining team function, respectively 
(chance = 0.5). To use the model for real-time assessment, we retrained the model 
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with all the data, preserving the hyper-parameters. The final model yielded one 
probability score per facet that a given utterance was a positive example of that facet. 

The probability scores were converted into interpretable metrics. Our scoring 
scheme used a normed-reference approach based on the training data. Given there are 
multiple utterances per CPS round, we averaged prediction probabilities across the 
round (per individual, per facet). We fit a probability density function on that average, 
after Winsorizing [10] the top and bottom 1.25% of outliers. We only used utterances 
in the training dataset from the first 10 minutes of the interaction as only 10 minutes 
of data is used in our CPSCoach. A final numeric score was determined by the 
cumulative distribution function where a score that is high, compared to the reference 
group, yields a higher value (range 0% to 100%). We also displayed ordinal feedback 
(low – bottom 25%, average – middle 50%, high – top 25%). 

We recorded audio using Zoom, which records separate audio tracks for each 
teammate. After recording, we transcribed each participant’s audio using IBM 
Watson [11] and the resultant utterances were submitted to the BERT model. We used 
only the first ten (of 15) minutes of a CPS interaction due to processing latency.  

We conducted a user study with 40 students (20 dyads) from two large public 
universities in the United States (School One – N = 32, female = 55%, male = 42%, 
non-binary = 3%, Asian = 29%, Hispanic = 3%, white = 61%, other race = 3%; 
School Two – N = 8, female = 75%, male = 25%, Asian = 25%, Hispanic = 13%, 
Native American or Pacific Islander = 13%, white = 38%, other race = 13%). 
Participants completed a game tutorial and warmup, followed by a video orienting 
them to the upcoming task, CPS framework, and feedback. Teammates engaged in 
three to four rounds of collaborative gameplay and feedback, as time permitted (10 – 
15 minutes each). They were given up to seven minutes to individually review 
feedback between rounds. They then completed a short survey on their perception of 
the accuracy of the scores, and usefulness of the tips for improving the scores. For 
example, they were asked: “Your score for sharing ideas and expertise was [score]%. 
How accurate was this score?” At the end of the study, participants completed the 
System Usability Scale [12], as a measure of general usability (α = .66). All measures 
were completed on a five-point Likert scale. To conclude the study, we conducted 
semi-structured interviews to further understand participant’s perception of 
CPSCoach. Other measures not germane to the present study were also collected. 

3 Results and Discussion 

To understand behavioral patterns as participants interacted with the feedback 
system, we examined average time spent on each element of CoachCPS (scores 
overview, facet text, and facet videos). We conducted two-tailed paired-samples t-
tests between each round. Participants spent a similar amount of time on the score 
overview page across all three rounds (average of 52.84s, p > .05). However, for the 
facet text, participants spent a third of the time on each subsequent round (round 1 = 
61.86s, round 2 = 41.44s, round 3 = 21.99s; p < .05 for round 1 to 2, p < .01 for round 
2 to 3, p < .001 for round 1 to 3). There was a similar finding for the facet videos 
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(round 1 = 159.29s, round 2 = 110.55s, round 3 = 42.88s) where there were 
significant differences between rounds 1 and 3 (p < .001), and 2 and 3 (p < .01).  

We also examined participants’ subjective perceptions of the feedback system. 
First, we considered ratings of score accuracy and usefulness. For each participant, we 
averaged across all rounds, to obtain an overall accuracy and usefulness measure. We 
computed an overall usability rating for the CPS system as the average of items from 
the System Usability Scale. Descriptive statistics are shown in Table 1. We also 
conducted a thematic analysis [13] of the interviews, in order to gain a deeper 
understanding of participants’ perceptions of CPSCoach. 

Participants found the models to be somewhat accurate (a mean of 3.4 across all 
facets). A theme in the participant interviews was doubts about model accuracy, with 
10% mentioning the accuracy of the shared knowledge construction and maintaining 
team function facets, and 10% expressing general doubt about score accuracy. For 
example, one user noted “I was kind of surprised that the sharing ideas and expertise 
score was pretty low for the first two rounds. I thought that we were sharing ideas 
pretty well for those first two rounds and it kind of surprised me that they were in the 
low area, especially when low is the bottom quarter.” Participants also found the facet 
text and videos to be somewhat useful (average of 3.64 across facets). This sentiment 
was also reflected in the interviews, with 18% of participants mentioning they found 
the video examples helpful.  For instance, one user noted: “Hearing the examples of 
what other people did I feel like was more helpful not so much reflecting on what I 
did last time, but what I can do next time instead.” Ratings of usability of the 
feedback system were high (average of 4.24 out of 5), which was reflected in the 
interviews, as 20% of participants noted that the feedback was clear and easy-to-use.   

Participants had suggestions for improving CoachCPS, such as examples of 
good and bad CPS from their own behavior (13%). 20% indicated they wanted the 
facet tips and videos to change each round, which gives them more examples to learn 
from, and 10% wanted indicator-level feedback. As an illustrative example of these 
two points, one participant made suggestions for how to provide indicator level 
feedback that changed each round: “I know it gives you the percentages, but in like 
positive team building, it said you did a really good job doing X but you could work 
on Y, something like that. So it feels like it’s more based on the round instead of just 
the same ideas to improve every time…like within positive work environment asking 
for collaboration ideas you could say like oh like you did a good job asking for ideas 
but you could have done better with like specific solutions and stuff like that.” 

Table 1. Descriptive statistics for subjective perception measures. 

Measure M SD Min Max 
Construction of Shared Knowledge Accuracy 3.40 .83 1 5 
Construction of Shared Knowledge Usefulness 3.58 1.0 1 5 
Negotiation/Coordination Accuracy 3.70 .74 1.67 5 
Negotiation/Coordination Usefulness 3.76 1.02 1 5 
Maintaining Team Function Accuracy 3.05 .84 1.33 4.33 
Maintaining Team Function Usefulness 3.58 1.03 1 5 
System Usability Scale 4.24 .62 2.4 5 
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  Our user study led us to two key lessons learned. First, feedback should change 
each time a user views it, to encourage them to continuously improve their CPS. We 
found that participants spent less time each round interacting with CPSCoach. This 
finding could be linked to increased familiarity with the content as rounds progressed. 
However, in interviews, participants requested different video examples each round, 
which could increase engagement and in turn support score improvement. Further 
feedback personalization, such as video examples extracted from the previous 
interaction, might aid engagement. This kind of personalization poses both technical 
and design challenges. Specific examples from the previous round of CPS require 
accurate models at fine-grained time intervals (e.g., 30s rather than aggregated over a 
ten minutes). It is an open question as to how to automatically select examples from 
the interaction that are meaningful and can prompt positive behavior change 

Our second lesson was that increased transparency of the CPS feedback and 
underlying scoring mechanisms could increase users’ trust in the feedback accuracy. 
Participants rated usability of CPSCoach highly, but ratings of score accuracy were 
average. Facets with the two lowest accuracy ratings (shared knowledge construction 
and maintaining team function) were specifically mentioned in the interviews. Thus, 
there is a need for increased trust and transparency in the feedback. In order for 
participants to buy in to an AI system, the outcome of the system must be reasonably 
predictable [14]. Perhaps participants being surprised by the score resulted in the 
feedback being less effective. Additional training on the nuances of the CPS 
framework could help boost participant trust, by differentiating the facets they are 
being scored on from preconceived notions. Feedback designs proposed by 
participants (e.g., examples from their interactions) could also increase transparency 
of the underlying CPS model and in turn trust in the feedback.   

Given that this is a first prototype CPSCoach, there are limitations that should be 
addressed. The purpose of this work was to design a prototype feedback system and 
conduct an initial user study. Accordingly, our study design did not include a control 
group, or formal efficacy evaluation. Findings from this study indicated several areas 
of improvement, thus it is prudent to make these changes before conducting an 
efficacy study. As collaborations increasingly move online, now, more than ever, we 
need to support teams CPS. Our work presents important steps towards this goal of 
developing systems that equip teammates with the skills they need to become more 
effective collaborative problem solvers. 

This research was supported by the NSF National AI Institute for Student-AI 
Teaming (iSAT) under grant DRL 2019805. The opinions expressed are those of the 
authors and do not represent views of the NSF. 
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