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Abstract  

 

Stable radicals and thermally robust high-spin di- and triradicals have emerged as important 

organic materials due to their promising applications in diverse fields. New fundamental properties, 

such as SOMO/HOMO inversion of orbital energies, are explored for the design of new stable radicals, 

including highly luminescent ones with good photostability. A relation with the singlet triplet energy 

gap in the corresponding diradicals is proposed. Thermally robust high-spin di- and triradicals, with 

energy gaps that are comparable to or greater than a thermal energy at room temperature, are more 

challenging to synthesize but more rewarding. We summarize a number of high-spin di- and triradicals, 

based on nitronyl nitroxides that provide a relation between the experimental pairwise exchange 

coupling constant J/k in the high-spin species vs. experimental hyperfine coupling constants in the 

corresponding monoradicals. This relation allows us to identify outliers, which may correspond to 

radicals where J/k is not measured with sufficient accuracy. Double helical high-spin diradicals, in 

which spin density is delocalized over the chiral -system, have been barely explored, with the sole 

example of such high-spin diradical possessing alternant -system with Kekulé resonance form. 

Finally, we discuss a high-spin diradical with electrical conductivity and derivatives of triangulene 

diradicals.  
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1. Introduction 

Persistent organic radicals have been known for well over a century.1-5 While they contributed to 

the rich history of organic chemistry,6 more recently they emerged as important class of organic 

materials and biomaterials that are under intense investigations for a wide range of applications. 

Applications will of course be facilitated with emergence of not only stable radicals but also, thermally 

robust, with highly tunable structures. Not surprisingly, they are the subject of many recent reviews, 

for example, refs 7 – 16. 

When we refer to a radical or polyradical as stable, we will start with the classic guideline given 

by Ingold:17 “The word stable should only be used to describe a radical so persistent and so unreactive 

to air, moisture, etc., under ambient conditions that the pure radical can be handled and stored in the 

lab with no more precautions than would be used for the majority of commercially available organic 

chemicals.” We propose to augment this definition by adding designations of “thermally robust” and 

“thermally ultra-robust” concerning solid radicals under inert atmosphere; the “thermally ultra-robust” 

radicals are those with the thermogravimetric analysis (TGA) onset of decomposition temperature (Td) 

above 250 °C, and the “thermally robust” radicals are those with Td above 150 °C, where Td 

corresponds to the mass loss of 1%. TGA-based definitions of thermal robustness are especially 

relevant to applications of open-shell molecules as organic materials that frequently require preparation 

of stable thin films via evaporation (sublimation).   

Ingold’s definition of persistent radical is less practical;17 in this review, we will refer to persistent 

radical as such that can be handled without significant decomposition under either inert atmosphere or 

on air in fluid solution at specified temperature, ideally at room temperature or above. 

As mentioned above some radicals are used as biomaterials – especially in biomedicine and 

biophysics. Because in vivo or in live cells most radicals typically undergo rapid one-electron reduction 

by antioxidants or enzymes, persistence of the radical in this situation will be decided by rates of these 



reductive processes. 

We will start with an overview of selected stable or persistent monoradicals, focused on new 

properties and applications in biomedicine, biophysics, and organic materials (Section 2). New 

fundamental properties such as SOMO/HOMO inversion (SHI) of orbital energies are being uncovered 

and explored for the design of new stable radicals, including highly luminescent ones with good 

photostability. For a subset of twelve SOMO/HOMO inverted monoradicals, a relation with the singlet 

triplet energy gap (EST) in the corresponding diradicals is proposed as discussed in Section 3.  

Section 4 will focus on high-spin di- and triradicals. High-spin di- and triradicals, with nearly 

planar -systems, thermal robustness, and low-spin high-spin energy gaps that are comparable to or 

greater than the thermal energy at room temperature, are more challenging to synthesize but they may 

be more rewarding. Such di- and triradicals possess relatively large populations of the high-spin states 

at room temperature and their properties related to paramagnetism scale with the factor of S(S + 1), 

where the total spin quantum number S corresponds to the high-spin ground state. This implies scaling 

with approximately n2, where n is the number of “unpaired” electrons, for many properties including 

relaxivity of MRI contrast agents, dynamic nuclear polarization (DNP), assuming that other controlling 

factors can be optimized too. Such di- and triradicals form interesting thin films that may be prepared 

via evaporation, thus facilitating their potential applications in electronics and spintronics. One 

example of such high–spin diradicals, so far, is a good electrical conductor – contrary to expectations. 

For about a dozen of high-spin di- and triradicals, based on nitronyl nitroxides, a relation between the 

experimental pairwise exchange coupling constant J/k (equal to the half of the singlet triplet energy 

gap in a diradical) in the high-spin species vs. experimental hyperfine coupling constants in the 

corresponding monoradicals is established. Such a relation allows us to identify outliers, which may 

correspond to radicals where J/k is not measured with sufficient accuracy, e.g., because of the large 

magnitude. Double helical (or helical) high-spin di- and polyradicals, in which spin density is 



delocalized over the chiral -system, have been barely explored, with only one example of such high-

spin diradical, which also possesses alternant -system with Kekulé resonance form. Finally, we 

discuss recent progress in studies of derivatives of triangulene and aza-triangulene diradicals with large 

EST.        

2. Persistent and Stable Monoradicals as Spin Centers 

   Examples of notable C-, N-, O-, N,O-, and N,S-centered neutral monoradicals are described in the 

next three sub-sections and in Figures 1 – 5. 

2.1. Carbon-centered monoradicals  

We note that all radicals in Figure 1 are stabilized to some degree by delocalization and steric 

shielding of unpaired electron, i.e., atoms with large spin densities. The carbon-based radicals are the 

ones of most historical importance, and the triphenylmethyl (Gomberg’s radical) is considered the first 

room temperature persistent organic radical; it is a seminal discovery in organic chemistry (Figure 

1).1,2,6 The triphenylmethyl radical reacts with oxygen and under inert atmosphere, it is in equilibrium 

(association constant, Kassoc  3  103 M-1 at 293 K)18 with its C-C bonded dimer (-dimer) in solution. 

The correct structure for the -dimer, which was originally proposed by Jacobsen in 1905,19 was 

established by NMR spectroscopy in 1978.20,21 Substitution at the para-positions, leads to monomeric 

triarylmethyls, e.g., 4,4’,4”-tris(tert-butylphenyl)methyl.22 Sterically hindered derivatives of 

triphenylmethyl were engineered into very high-spin polyradicals,23-31 including the first organic 

polymer with magnetic ordering,32 which were found to be persistent at low temperatures in solution, 

while the most sterically shielded diradicals could be either isolated or handled at room temperature 

under inert atmosphere.33-35  

Chlorinated derivatives of triphenylmethyl, such as perchlorotriphenylmethyl (PTM)36-39 or 

tris(2,4,6-trichlorophenyl)methyl (TTM),40,41 are thermally ultra-robust. They show neither 

dimerization nor reactivity toward oxygen in both solution or solid state, and do not decompose in the 



solid state until heated to ∼300 °C. This extraordinary stability is associated with the steric shielding 

of ortho-chlorines.42 PTM was used for the design of high-spin diradical and triradical.43-45 Both PTM 

and TTM, functionalized with electron donating -systems, led to the discovery of efficient doublet 

state light emitters, including high efficiency organic light emitting diodes (OLEDs). Because 

photostability of such radicals may be associated with SOMO/HOMO energy level inversion, they are 

discussed in more detail in Section 3.  

Another class of highly persistent triarylmethyls is illustrated by the structure of Finland trityl (FT) 

radical and its more hydrophilic version Ox-063.46-48 Analogous to PTM or TTM, here the persistence 

is attained by severe out-of-plane twisting of the ortho-substituted aryl rings. Both radicals are 

monomeric and persistent at ambient conditions, and especially Ox-063 and Ox-063-d24 are well 

soluble in water, biocompatible and lacking of interactions with blood albumin.49 Because of negligible 

hyperfine couplings and the g-values that are close to that of the free electron, derivatives of both FT 

and Ox radicals feature relatively narrow electron paramagnetic resonance (EPR) lines and possess 

relatively long electron spin relaxation times (Tm and T1).
50 Their derivatives found applications as 

dynamic nuclear polarization (DNP) agents in NMR,51-54 and as oxygen and pH sensors in 

biomedicine,55 as spin labels in biophysics, e.g., derivatives of FT or Ox-063-d24 for EPR distance 

measurements,56-62 especially at up to 150 K in cell60,61 and at room temperature in vitro.56-58 13C-

labeled (at center C) Ox-063-d24 and its derivatives possess enhanced anisotropy of the hyperfine 

coupling providing relatively wide EPR spectrum that is also sensitive to molecular tumbling;63 this 

allows for applications such as viscosity sensors in biomedicine49 and spin labels for distance 

measurements using widely available double electron-electron resonance (DEER) spectroscopy.62  



 
Figure 1. Examples of persistent and stable C-centered organic radicals. 

Koelsch’s radical, 1,3-bisdiphenylene-2-phenylallyl (BDPA), is also historically unique as it was 

the first carbon-based radical to display no significant reactivity toward oxygen; at the time, this was 

so unprecedented that the original Koelsch’s manuscript was rejected in 1930’s and forgotten for nearly 

30 years.64 Recent studies showed that BDPA and its derivatives, including TEMPO-based biradicals, 

are not as stable as previously thought, e.g., 5 mM BDPA decomposes in DMSO at room temperature 

with the initial half-life of the order of 1 day, most likely via -dimer formation.65 For the solid BDPA, 

no decomposition was detected after 2 weeks under vacuum; however, under air, a half-life of the order 

of 10 days was found.65 Nevertheless, such persistence is sufficient for the use of BDPA, including its 

water soluble66,67 and partially deuterated derivatives,68 as DNP agents in NMR.69,70 Recently, more 

persistent water soluble derivative of BDPA, such as BDPA-ws (Figure 1) was synthesized71 and 

studied as DNP agent.72  

Phenalenyl-based radicals are fundamentally interesting and may be viewed as open-shell 



graphene fragments.9,73 While parent phenalenyl radical (R = H, Figure 1) exists predominantly as 

diamagnetic -dimer,9 2,5,8-tri-tert-butylphenalenyl radical forms a centrosymmetric π-dimer in the 

crystalline state with EST = –4 kcal mol-1 and is reactive toward oxygen.74 Based on studies by Kochi 

group, in dichloromethane solution, Kassoc = 0.2 M-1 at 298 K for the π-dimer was determined by both 

EPR and UV-vis-NIR spectroscopy but a much larger Kassoc = 70 – 90 M-1 at 298 K was found for -

pimer (radical plus cation); however, enthalpy of association Hassoc = –9 kcal mol-1 for the π-dimer 

was larger than Hassoc = –7 kcal mol-1 for the π-pimer, with a more negative Sassoc for the π-dimer.75,76 

In contrast, R = Me derivative formed two distinct -dimers and one -dimer (all diamagnetic).77 Kubo 

and co-workers determined that tri-substituted-phenalenyl with R = perfluorophenyl (C6F5) can form 

either -dimer or one-dimensional -stack in the crystalline state.78,79 Although, based on the X-ray 

structure at 10 K, -stacks are relatively spin-insulated with a perfectly equidistant phenalenyl moieties 

with a somewhat elongated plane-to-plane distance of 3.503 Å, the magnetic susceptibility data could 

not be reasonably fit to a uniform 1-dimensional S = ½ antiferromagnetic Heisenberg chain.79 DFT 

computations predict greater thermodynamic stability for - vs. -dimers, even for derivatives of 

phenalenyls, for which only -dimers were isolated;80 this phenomenon may be ascribed to kinetic 

control of dimerization or solvent effects (vide: dicyanomethyl radicals), or inherent deficiency of DFT 

as outlined in ref 75.  

Sterically shielded dibenzo-fused derivatives of phenalenyl OR1 and OR2 (Figure 1) were 

reported to form -dimers, with Kassoc = 6 – 21 M-1 (at 298 K) and EST  (–2) – (–3) kcal mol-1 in 

toluene.81 The reported Kassoc (and underlying thermodynamic parameters, e.g., Hassoc) were widely 

different, based on UV-vis-NIR vs. EPR spectra,81 in contrast to those for -dimer of 2,5,8-tri-tert-

butylphenalenyl radical reported by Kochi.75,76 Most likely these authors81 failed to do properly 

quantitative EPR spectroscopy (Section 4.2.1). These radicals may be viewed as air stable, with half-

live in air saturated solutions of 7 – 34 days, and presumably, less associated than -dimer forming 



Gomberg triarylmethyl. Crystalline OR1 was an insulator with room temperature conductivity, RT < 

10–10 S cm–1, and the average intermolecular distance of 3.29 Å was found within -dimer.81  

Even more benzo-fused derivative of phenalenyl, i.e., benzo[c]anthanthrenyl radical derivative, 

BR1 (Figure 1),82 crystallized as a slipped 1D chain with equidistant average π–π contacts of 3.565 Å 

along the stacking direction. However, fit of magnetic susceptibility data to 1-dimensional S = ½ 

antiferromagnetic Heisenberg chain was overparametrized and thus unreliable. Also, room temperature 

conductivity, RT  2.5 × 10–9 S cm–1, indicated that the material was practically an insulator.82  

Haddon and coworkers reported spiro-bis(phenalenyl) derivatives, which correspond to 

spiroconjugated radical cations (R = alkyl) and are mostly isolable as stable monomeric crystalline 

solids.83-86 Because of formal negative charge on boron, these compounds may be viewed as “neutral” 

(actually zwitterionic) radicals. While the R = n-hexyl derivative was reported as the first phenalenyl-

based neutral radical molecular conductor, the room temperature conductivity, RT = 0.05 S cm-1, was 

low and activation energy to the charge transfer, Ea = 0.13 eV, was large.83 Better optimized, in terms 

of crystal packing, the R = cyclohexyl derivative possessed a good electrical conductivity RT = 0.3 S 

cm-1 and low charge transfer Ea = 0.05 eV.84 Interestingly, R = benzyl derivative forms a uniform one-

dimensional S = ½ antiferromagnetic Heisenberg chain (J/k = – 75 K), with closest C---C contacts of 

3.47 and 3.58 Å along the stacking direction; the material had RT = 1.4 × 10-3 S cm-1 with a relatively 

large Ea = 0.2 eV.85 In contrast, a benzannulated spiro-bis(phenalenyl) derivative with R = benzyl 

showed complex temperature dependent interconversion between -dimer and stacked -chain radical 

in the crystals.86   

Dicyanoarylmethyl radicals were initially studied as reactive intermediates. In 1966, Hartzler87 

reported that 1,2-diaryl-1,1,2,2-tetracycanoethane (R = H) in chloroform-d underwent rearrangement 

to the aromatized -dimer of dicycanoarylmethyl radical (R = H) (Figure 2), after overnight at ambient 

temperature. Although Hartzler could not detect EPR spectrum for the radical, including its R = NO2 



derivative,87 de Jongh could obtain a resolved EPR spectrum for the R = CH3 radical and to determine, 

by NMR line broadening, the rate constant, kdiss = 20 s-1 at 373 K, as well as the activation parameters 

(Hact = 26 kcal mol-1 and Sact = +13 cal mol-1 K-1) for the dissociation of 1,2-diaryl-1,1,2,2-

tetracycanoethane (R = CH3) into the radicals in the 353 – 393 K range (Figure 2).88  

More recently multiple groups, including especially those of Winter and Seki, recognized potential 

of air and thermally stable dicyanoarylmethyl radicals co-existing with their -dimers and/or -dimers 

(Figure 2).89-100,102  

 

Figure 2. Examples of dicyanoarylmethyl radicals. 

In 2016, Seki synthesized self-assembling biradicals, in which either triphenylamine or carbazole 

was substituted with dicyano radicals, based on dicyanoarylmethyls. The self-assembly created cyclic 

oligomers which showed thermochromic and mechanochromic properties due to generation of radicals 

by C−C bond cleavage (-dimers).89 Winter measured association constants for formation of -dimers 

of para-mono-substituted dicyanophenylmethyl radicals, Kassoc = 105 – 108 M-1 and found that they 

decrease for electron donating substituents, giving linear Hammett plots.91 In 2017, Seki demonstrated 

the first example of dicycanoarylmethyl radical (with the julolidine skeleton) forming -dimer (in 

toluene solution).92 Winter have shown that for some radicals greater solvent polarity, which is 

associated with increased electron spin delocalization,93 leads to preferential -dimer formation 

(Figure 2).94 While several factors were considered to determine the mode of dimerization (σ- or π-

dimer),95,96 curiously the magnitude of EST in the -dimers was neither considered nor measured. 



Seki studied another radical, O2DP (Figure 2), which possesses modified julolidine skeleton, and it 

forms σ-dimer at low temperature in toluene. Notably, the O2DP radical possesses a strong NIR 

absorption at λmax = 1059 nm, with a wide optical window in the visible region and a relatively small 

dimerization enthalpy, Hassoc  –10 kcal mol-1.97 Winter suggested that antiaromaticity relief within 

planarized electron donating group of dicyanoarylmethyl radicals (e.g., analogous to O2DP, Figure 2) 

may stabilize their zwitterionic resonance form, thus leading to overall improvement in radical 

stability.98 In addition, Osuka and coworkers demonstrated monomeric (even at low temperatures) 

stable dicyanoarylmethyl radical in solution by appending dicyanomethyl radical to BIII–

subporphyrin.99 Finally, based on discovery of Malishewski that oxidation power of 

tetracyanoquinodimethane (TCNQ) can be increased dramatically by coordination of cyano groups by 

a strong Lewis acid such as B(C6F5)3,
101 the analogous coordination approach led to increased 

dissociation of -dimer of dicyanoarylmethyl radical, perhaps due to better stabilization of the radical 

by capto-dative effect.102  

2.2. Nitrogen-centered monoradicals 

Aminyl radicals have long history as reactive intermediates,103,104 including in organic 

synthesis105,106 and biochemistry.107 Only 1,3,6,8-tetra-tert-butylcarbazyl, TTBC (Figure 3), and 

perchlorodiphenylaminyl are historically known to be persistent at ambient conditions.108,109 More 

recently, alkyl-aryl and diaryl aminyl radicals were employed as building blocks for high-spin di-, tri-, 

and tetraradicals with low- and high-spin energy gaps of up to about 10 kcal mol-1 and with half-lives 

of up to 6 h at room temperature in a fluid 2-methyltetrahydrofuran solutions;110-115 also, highly 

resonance stabilized and sterically shielded high-spin aminyl triradical was reported by Shimizu and 

Osuka.116 Derivatives of carbazole radical cations were also incorporated into polymers, for which 

triplet ground states were detected.117  

PEGylated derivatives of TTBC were reported.118,119 At 295 K in acetone, PEGC (Figure 3) has 



a half-life, τ1/2 = 48 s, compared to τ1/2 = 2.3 h for its octa-deuterated isotopomer, which corresponds 

to an extraordinary large kinetic isotopic effect, kH/kD  150 at room temperature. While large values 

of kH/kD and unusual activation parameters are consistent with quantum mechanical tunneling, the 

Arrhenius and Eyring plots are linear over a wide temperature range of 116 K.118 Notably, 

constitutional isomer of PEGC, in which positions of tert-alkyl substituents are inverted, is much more 

persistent with τ1/2 = 49 h in acetone at 295 K.119   

 

Figure 3. Examples of persistent and stable N-centered radicals. 

Pyridinyl radicals were discovered by Kosower and co-workers in 1960’s.120-122 Their unusual 

persistence at room temperature (under inert atmosphere) is associated with a favorable zwitterionic 

resonance form (Figure 3). Both pyridinyls in Figure 3 are about 95% monomeric at room temperature 

and in equilibria with their -dimers; they can be purified by distillation under vacuum.122 In addition, 

2,4,6-triphenyl-substituted pyridinyl radical was demonstrated to be monomeric;123 Kubo, Matsumoto, 

and co-workers used 2,6-diphenyl pyridinyl as building block for high-spin diradical, persistent at 

room temperature.124      

Hydrazyl-based radicals, [R2NNR]• (R = aryl) are typically persistent at ambient conditions. For 

example, DPPH is commonly used as an EPR reference; it possesses a good stability, as it is 



monomeric and stable in the solid state on air, and can be heated to ∼80 °C in solution before 

decomposing.125,126  DPPH is practically an insulator with single crystal conductivity, RT  10-10 S 

cm-1 at room temperature (Ea = 1.5 eV).127,128 We note that thin films of DPPH, prepared by sublimation 

under vacuum (p = 10-6 Torr), are very air-sensitive.127   

Annulated hydrazyls such as Blatter’s radical129 possess even better stability due to enforced 

orbital overlap leading to enhanced resonance stabilization. For instance, a derivative of Blatter’s 

radical can be refluxed in chlorobenzene (bp 131 °C) without decomposition and can be heated in the 

solid phase to ∼270 °C before decomposition begins.130 Numerous derivatives of Blatter’s radical have 

been recently prepared and their interesting properties studied;131-146 this includes DNP agents for 

NMR spectroscopy,136 the magnetically ordered thin film of Pyrene-Blatter on SiO2/Si substrate that 

is stable at ambient conditions,137-140 self-assembled films of Blatter radical on Au,141 paramagnetic 

liquid crystals of “planarized” Blatter,142,143 batteries,144 and potential molecular qubits.145,146 

Derivatives of Blatter radical are important building blocks for thermally robust and ultra-robust 

high-spin di- and triradicals (Sections 4.3 and 4.5).147-150  

Bishydrazyl radicals,151 such as verdazyl and 6-oxoverdazyl, are also extraordinarily stable 

because their spin density can delocalize over two hydrazyl moieties. Carbazole substituted derivative 

of verdazyl was found to be luminescent with quantum yield of fluorescence at room temperature of 

about 8%.152 Derivatives of 1,3,5-triphenyl-6-oxoverdazyls were used as building blocks for thermally 

robust high-spin di- and triradicals; however, their low-spin high-spin energy gaps were rather low 

(Section 4.3).153,154  

Another family of bishydrazyl radicals,151 such as tetrazolinyl155 and Kuhn-Jerchel radical 

(phototetrazolinyl, PHT), have a long history156-158 but their thermal robustness and other properties 

were explored only recently.159-161 For example, dicyano-substituted derivative of phototetrazolinyl 

(DiCN-PHT) is found to be stable under inert atmosphere up to 260+ C (polycrystalline) and, in 



benzene solution at room temperature, its estimated half-life is a few months.161 In polycrystalline 

DiCN-PHT, uniform one-dimensional S = ½ antiferromagnetic Heisenberg chains (J/k = – 22 K) are 

formed.161 Upon controlled evaporation on SiO2/Si substrate under ultra-high vacuum,139 DiCN-PHT 

forms nanoneedle assemblies.161 The stability of this planar radical is unusual because of relatively 

large spin densities at the ortho- (and para-) positions with respect to the nitrogens of the tetrazolinyl 

moiety, as indicated by hyperfine coupling constant, A(1H) = 5.8 MHz, which is greater by a factor of 

3 than that in 1,3,5-triphenyl-6-oxoverdazyl radical (Section 4.3).161         

 

2.3. Nitrogen,oxygen-, oxygen-, and nitrogen,sulfur-centered monoradicals 

Piperidine nitroxides, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or 4-hydroxy-

TEMPO (TEMPOL), are well-known stable organic radicals, which were pioneered by Rosantzev 

(Figure 4).162,163 Various TEMPO derivatives are heavily utilized in various applications, such as 

oxidation catalysts in organic synthesis,164 polymerization mediators,164 and DNP agents for NMR 

spectroscopy.166,167 TEMPOL (and its derivatives) was explored for multiple biomedical applications, 

based on its ability to modify oxidative stress and report (or alter) the redox status of tissues; e.g., as 

reporters of redox status in cancer or as protectors against ionizing radiation,168,169 TEMPO (and 

TEMPOL) derivatives, when incorporated into polymers or molecular gelators, are important 

components of organic batteries – pioneered by Nakahara et al.170 and developed by Nishide and co-

workers.171-174   

Although crystalline TEMPOL is an insulator with conductivity, RT  10-11 S cm-1 at room 

temperature, in the molten state (neat liquid), its conductivity increases to   5  10-4 S cm-1 at 380 

K; it is not clear whether this increase is an intrinsic radical property or it occurs because of “doping” 

of the liquid with the products of partial decomposition of the radical at higher temperatures.175 We 

note that films of DPPH, which include some of the decomposition products, show significantly higher 



conductivities, compared to single crystals.127 A better defined system, such as PTEO – polymeric 

TEMPOL derivative (Figure 4), studied by Boudouris group, possesses RT  0.3 S cm-1 at room 

temperature – an achievement considering the nitroxides are not conjugated.176      

Nitroxide radicals, including piperidine nitroxides, have important applications in biophysics as 

spin labels,177 especially for EPR distance measurements in biomolecules.178-180 The distance 

measurements, especially few-nm long, require spin labels with long electron spin coherence times Tm 

of the order of a few s,180 preferably at temperatures above 80 K. In typical gem-dimethyl nitroxides, 

onset of rotation of methyl groups on EPR time scale at T > 80 K, lowers Tm significantly.181-183 To 

solve this problem, a number of “methyl-less” spin labels were prepared;184-188 for example, Spiro-IA 

enabled EPR distance measurements in immobilized proteins at room temperature187 and 

diazaadamantane derivative IA-DZD was used to demonstrate supramolecular approach to EPR 

distance measurement in proteins up to 150 K (Figure 4).188 

Among pyrroline nitroxides, MTSL stands out as the most common spin label used for labeling 

of proteins (Figure 4).178,179,189 Bis-spirocyclic pyrroline nitroxides, Spiro-Ox and -THF, possess 

promising electron spin relaxation properties as indicated by the Tm = 0.71 and 0.50 s (vs. 0.34 s for 

MTSL) measured at room temperature in 9:1 trehalose/sucrose matrix.190 Other pyrroline nitroxides, 

such as gem-DiCarboxy, in which the methyl groups bear a tiny fraction of spin density, show more 

modest values of Tm at room temperature.190,191 In vitrified glycerol-d8/H2O/D2O (”DNP-juice”), a 

mixture of gem-DiCarboxy with triarylmethyl Ox-063 (Figure 1) led to the discovery of a truncated 

cross-effect (tCE) in DNP NMR.192 This unusual DNP effect, is very likely associated with aggregation 

of gem-DiCarboxy in DNP juice and/or association with Ox-063. Aggregation (and/or association) 

leads to very low electron spin T1 ( and Tm) observed for 15 mM gem-DiCarboxy in DNP juice, which 

is more than 2 orders of magnitude lower, compared to Ox-063 in DNP juice or to 0.1 mM gem-

DiCarboxy in trehalose/sucrose at similar temperature.191,192 Because of their electron withdrawing 



groups, gem-DiCarboxy and a related derivative are readily reduced, including rapid reduction by 

ascorbate;193 this is in contrast to tetraethyl pyrroline (TEP) nitroxides, which are among the most 

difficult to reduce nitroxide radicals.193,194 Consequently, a derivative of TEP, such as sTEO-TEP, 

provided rapid and specific spin-labeling of tetrazine-amino-acid-containing proteins both in vitro and 

in live cells. Resistance of TEP to reduction enabled EPR distance measurements on native (sub-

micromolar) concentrations of labeled proteins in live eukaryotic cells.195  

Numerous compact profluorescent probes were designed and studied, based on covalent linking 

of tetramethyl isoindoline nitroxides (TMII) with various chromophores (Figure 4).196 The stability of 

nitroxide and the presence of benzene ring has facilitated functionalization radicals via Pd-catalyzed 

and click reactions.197,198 In 2000, Rassat group showed that tetraethyl isoindoline nitroxides (TEII) 

possess greatly increased resistance to reduction of radical, compared to TMII – the first case for the 

unusual effect of the gem-diethyl substitution.199 TEII linked to fluorescein was an excellent agent for 

imaging of oxidative stress in live cells by two-photon fluorescence microscopy.200 Recent studies 

indicated lower stability of TEII derivative in the presence of rat liver microsomes, compared to that 

for tetraethyl-derivatives of pyrrolidine (Carboxy-TEP) and analogous pyrroline nitroxides.201   

 

Figure 4. Examples of nitroxide radicals. 



Pyrrolidine nitroxides, such as Carboxy-PROXYL and in particular tetraethyl-derivatives, are 

among the most difficult to reduce organic radicals.202-205 For example, Carboxy-TEP (Figure 4) is 

slightly more resistant to reduction than C-centered radical such as Finland trityl (FT in Figure 1).205 

Derivatives of Carboxy-CHEX incorporated into various polymers provided organic radical contrast 

agents (ORCA) for MRI, with superior resistance to reduction and outstanding 1H water relaxivities.206-

210 Although BSCPN has somewhat inferior resistance to reduction, compared to Carboxy-TEP, it 

provides an interesting example of a chiral, non-racemic nitroxide with bis-spirocyclic structure.211  

 Alkylaryl- and diarylnitroxides, together with phenyl nitronyl nitroxides and phenyl imino 

nitroxides (Figure 4),212,213 were used as building blocks to design various high-spin di- and triradicals 

(Section 4.3). As di- and polyradicals, they have been also employed as model compounds to study 

exchange coupling and electron-spin relaxation.214-219  

Interestingly, half-lives of 2 months and 1 month in benzene at room temperature for bis-

cyclopropyl- and bis-tert-butyl-substituted diarylnitroxide were determined, respectively. Greater 

persistence of cyclopropyl derivative may be associated with delocalization of spin density onto the 

cyclopropane moiety; that spin density is likely small enough not to trigger the potential radical clock 

reaction.220,221 

 Galvinoxyl radical (Figure 5) is also a well-known stable radical that is inert to oxygen, and is 

representative of the phenoxyl family of radicals.222 Galvinoxyl radicals attached as pendants to a 

polystyrene backbone served as the n-type redox material in memory devices223 and as cathode in all-

organic batteries.224 

Dioxyphenalene and trioxytriangulene (Figure 5) represent more recent additions to the phenoxyl 

family of radicals. Dioxyphenalenes, R = H and t-Bu, were stable in the absence of air at room 

temperature as solids and in toluene solution.225 X-ray structures of -dimers of dioxyphenalenes, R = 

t-Bu, p-BrC6H4, and p-IC6H4, show intradimer plane-to-plane distances of 3.49 – 3.55, 3.38 – 3.51, 



and 3.36 – 3.43 Å, respectively. These distances are considerably longer than 3.20 – 3.32 Å in -dimer 

of 2,5,8-tri-tert-butylphenalenyl (Figure 1); consequently, EST = –0.77 kcal mol-1 for R = p-BrC6H4 

corresponds to considerably weaker antiferromagnetic interaction than EST = –4 kcal mol-1 found in 

2,5,8-tri-tert-butylphenalenyl (Section 2.1).226     

Precursors to 4,8,12-trioxytriangulene radical (TOT) (Figure 5), may be traced to the 

corresponding phenol (R = H) in the classic work by Clar227 and to the pioneering work by Bushby in 

1990’s on the corresponding monoanion and triplet ground state diradical trianion (R = t-Bu).228,229 In 

2011, Takui group reported first derivatives of TOT (R = t-Bu and Br) radical and demonstrated their 

promising applications as electrode active materials in organic batteries;230 this promise was based on 

outstanding stability of TOT derivatives (see: below) and their ability to undergo reversible 4-electron 

reductions (to tetraanions), providing materials with good electrical conductivity (see: below).230  

 
Figure 5. Examples of phenoxyls, thiazyls, and related radicals. 

Single crystal of TOT (R = Br) measured along the stacking direction had σRT = 1.8 × 10–3 S cm–1 

with Ea = 0.31 eV; this good electrical conductivity, coincided with the presence of equidistant TOT 

moieties (3.43 Å) within the slipped -stack. The highest conductivity, σRT = 125 S cm–1 with 

Ea = 12 meV, was obtained in the combination of TOT (R = Cl) radical and monoanion with Li+ as 

counterion. The crystal of this compound contained 1-D -stacks with the equidistant stacking distance 



of 3.29 Å.231 

In addition to various substituted TOTs,232,233 TOT (R = H),234 as well as dicyanomethylene-

substituted triangulene derivative (R = t-Bu),235 were prepared. For TOT (R = H), the onset of thermal 

decomposition (TGA), defined as 1% mass loss, is perhaps at about 100–150 C, compared to >300 

C for TOT (R = t-Bu); similar findings were obtained by UV-vis spectral follow-up in solution 

saturated with air with half-lives of the radicals being ca. 18 and 56 days, respectively.234 Moderately 

thick films (100 – 1000 nm) of TOT (R = H) were prepared by evaporation under vacuum, however, 

no evidence for intact radicals in the films was provided.236 At high evaporation rates (ca. 1 nm/s), an 

edge-on-oriented films, in which the 1-dimensional -stacks of TOT are parallel to the SiO2/Si or ITO 

glass substrates. The films showed anisotropic conductivities, σRT = 0.025 and 2 × 10–5 S cm–1 parallel 

and perpendicular to the glass substrate. Notably, single crystal sample of TOT (R = H) gave an 

excellent σRT = 0.32 S cm–1 with Ea = 90 meV.236 Films grown on graphite substrates provided a face-

on orientation independent of deposition rate.236 Such films were found to yield slightly more durable 

cathode materials in lithium batteries, compared to edge-on films on ITO glass.237,238 More recently, 

electrochemical growth of conducting films of TOT was explored.239 TOT (R = t-Bu) was also used 

as a building block for triplet ground state diradical.240     

Stable dithiazolyl (DTA) radicals occur in three major classes,241,242 as outlined in Figure 5. In 

particular, 1,2,3,5-DTA (or dithiadiazolyl) derivatives, which generally show strong propensity for 

dimerization,241,242 provided both organic radical with the highest ordering temperature and interesting 

cases of magnetic bistability;.243-246 that is, 4-cycanoterafluorophenyl derivative is a weak ferromagnet 

(canted antiferromagnet) with ordering temperature of 36 K.243,244,247,248,249 At high pressure, his 

material reaches ordering temperature of 70 K but with the trade-off of decreased spontaneous 

magnetization (decreased canting).244 

Another interesting stable DTA-radical is TTTAP (Figure 4), originally reported by 



Wolmershäuser and Johann in 1989.250 Ten years later, magnetic properties of this radical were studied 

by Awaga who discovered a first-order magnetic phase transition with an unusually wide thermal 

hysteresis loop in the 230–305 K range.251 The same compound was thoroughly studied by Rawson 

and Palacio groups giving hysteresis loop in the 234 – 317 K range.252 As it is typical for this type of 

transitions, the high- and low-temperature phases are paramagnetic and diamagnetic, respectively; 

paramagnetic phase is modelled by 1D S = ½ Heisenberg chain with antiferromagnetic J/k = –320 K, 

with relatively strong interchain couplings, and diamagnetic phase corresponds to formation of dimers 

with strong intermolecular antiferromagnetic coupling (EST < –4 kcal mol-1).252,253   

Interestingly, one of the crystalline polymorphs of amino-bridged bis(1,2,3-DTA), ABBDTA 

(Figure 5), forms essentially diamagnetic -dimer, containing hypervalent S-S bond, up to 380 K. 

Above this temperature there is a sharp increase in χT leading to paramagnetic phase with S-S bonds 

broken. Upon cooling, the -dimers are reformed at 375 K, thus providing a narrow thermal hysteresis 

loop but at high temperature.254     

The selenium-based radicals (B – D, Figure 5) also displayed strong exchange interactions, which 

gave rise to ferromagnetically ordered phases with relatively high ordering temperatures (up to 17 K 

for D) and coercive fields (up to 1400 Oe for D).255,256 Although for A – D, σRT < 0.001 S cm-1, σRT 

shows an increase by 2 orders of magnitude together with Ea decrease with increasing selenium content 

from Ea = 0.43 eV in A to 0.19 eV in D.255 

Finally, oxo-bridged bis(1,2,3-DTA), OBBDTA (Figure 4), may be viewed as a recent culmination 

of research on neutral DTA-radical-based single component conductors, with σRT near 0.04 S cm–1 and 

Ea = 0.05 eV.257 This radical also exhibits Pauli-like temperature independent paramagnetic behavior, 

with χTIP = 6 × 10–4 emu mol–1. At the pressure of 6 – 8 GPa, σRT  10 S cm–1 and Ea < 0.257 For 

comparison, both RT and 383K for ABBDTA are only ~10-4 S cm-1 (at pressure of 0.5 GPa).254  

 

 



 

 

3. Radicals and Radical Ions with SOMO-HOMO Inversion (SHI) 

 

3.1. General overview. 

There are now quite a few organic radicals with an electronic energy structure, defined as SOMO-

HOMO level inversion, which then formally violates the Aufbau principle,258 that is, the energy level 

of singly occupied molecular orbital (SOMO) is below the level of the highest occupied molecular 

orbital (HOMO). The topic of SOMO-HOMO inversion (SHI) was the subject of three recent 

reviews.259-261  

In our review, we define SHI by the difference in energy of electrons in HOMO (average of -

MO and -MO) vs. SOMO (-MO); i.e., SHI > 0 implies that the energy of SOMO is below the energy 

of HOMO on the per electron basis (Eq. 1). Alternatively, SHI < 0 implies that the energy of SOMO 

is above that of the HOMO on the per electron basis, i.e., orbital electron energies follow the usual 

Aufbau principle.  

Our definition encompasses, the more restrictive, commonly used criterion for SHI in terms of -

MO’s, that is, SHI > 0 means that the energy of -SOMO is below -HOMO (Eq. 2).  

 

SHI = [(-HOMO + -HOMO)/2] – -SOMO         (1) 

SHI = -HOMO – -SOMO              (2)  

 

The initial hint for possibility of SHI > 0 came from unrestricted INDO computation on galvinoxyl 

radical (Figure 5, Section 2.3), which showed the energy of -SOMO in between -HOMO and -

HOMO, with apparent SHI < 0.262 The first organic radical with SHI > 0 was reported for TEMPO-

TTF in 1993 by Sugimoto et al. (Figure 6).263 Significance of SHI > 0 was first recognized by 

Sugawara and coworkers in a series of ‘1990 – ‘2000 publications,264-268 describing an effort to develop 



purely organic ferromagnetic metals, which was beautifully summarized in their ’2011 review 

article.269 Their radicals largely consist of nitronyl nitroxide connected via C2 to an electron-rich -

systems (Figure 6); upon 1-electron oxidation of the -system S = 1 ground state diradical cation is 

typically obtained, as discussed in Section 4.3. The SHI > 0 in such radicals may be rationalized270 by 

higher electronegativity of oxygens and nitrogens, associated with nitronyl nitroxide, at which SOMO 

orbital is primarily localized; HOMO is primarily localized on the -system. 

 

 

Figure 6. Examples of Sugimoto (1993), Sugawara (1994 – 2009), and Coote (2013) radicals with SHI > 0. 

 

 The ‘2013 landmark publication by Coote and co-workers demonstrated both computationally and 

experimentally that distonic radicals (spin and charge localized on separate atoms), such as 4-

Carboxy-TEMPO (Figure 6), are stabilized by SHI > 0 in the gas phase, as shown by smaller NO-H 

bond dissociation energies associated with the SHI > 0 radical.271 However, later they showed that the 

effect is diminishing in polar solvents, and especially in water, where SHI < 0 is obtained.272  

Luccarini et al. confirmed experimentally the absence of extra stabilization in polar solvents for the 

radicals such as 4-Carboxy-TEMPO.273            



 While organic radicals in general serve as efficient fluorescence quenchers,196,274 certain radicals 

with donor acceptor structures (D–A•), where A• is an electron withdrawing radical unit, may be 

luminescent.152 In such radicals, the ground state and excited state are both doublet (S = 1/2) states, 

facilitating spin-allowed radiative transitions, which is especially important for organic light emitting 

diodes (OLEDs).275 Discovery of photoluminescence in tris(2,4,6-trichlorophenyl)methyl (TTM) 

radical substituted with electron-rich -systems based on carbazoles dates to 2006/2007, though the 

reported quantum yields of fluorescence were rather low, f <0.6%.276 Analogous 

perchlorotriarylmethyl (PTM) radicals, with SHI > 0, showed outstanding photostability, e.g., PTM-

3NCz (Figure 7).277-280 A few other PTM and TTM radicals -conjugated with electron-rich carbazole-

based non-alternant -systems were found to possess very high values of f (Figure 7).275,277,281-284 

Moreover, such radicals provide building blocks for near infra-red OLEDs.277,280,282,284 Such radical-

based red-colored OLEDs could be refined to give a very good maximum external quantum efficiency 

(EQEmax) of up to 27% (Figure 7).280,284   

 

 

Figure 7. Examples of luminescent chlorinated triarylmethyl radicals. 

  

3.2. Radicals and radical ions embedded in helical -systems. 

[n]Helicenes and corresponding double helical structures are fascinating compounds with some of 

strongest molecular chiroptical properties.285-287 Paramagnetism, associated with an S = ½ radical 



conjugated within helical or double helical -system, may render unique properties due to the 

combination of chirality and delocalized electronic spin that could facilitate discovery of new organic 

magneto-optic materials and devices.288-294 There are relatively few open-shell helical molecules with 

such a distinctive combination of properties, and they are mostly represented by radicals or radical 

ions of short helical structures. In Figure 8, we show recent examples helical radicals, for which the 

sign of SHI was not reported.295-298  

 

Figure 8. Examples of helical S = ½ radicals.  

Notably, monolayer of diamagnetic [4]helicene quinacridinyl cation (derived from the radical in 

Figure 8) on highly oriented pyrolytic graphite (HOPG) provides efficient spin filtering with ca. 50% 

spin polarization at room temperature, as measured with magnetic conductive probe atomic force 

microscopy; also, the same cation gives an unusual temperature independent (1.6 – 300 K), 

antisymmetric magnetoresistance, MR = 2 %, with the enantiomer-dependent sign.290 Considering that 

achiral organic S = ½ radicals were computed to provide significant spin polarizations, depending on 

the radical type and substitution,294 chiral helical and double helical radicals have a significant potential 

in development of organic spin filters.    

Since SHI > 0 becomes commonly associated with improved stability of the radical, it is important 

to compare different radicals vs. their SHI status (Figure 9). For example, among hetero[7]helicene 

radical cations299,300 and aminyl radical,300 SHI > 0 may be associated with longer 1/2 in solution at 

room temperature, e.g., for relatively sterically unencumbered aminyl radical AT7HA 1/2 = 8 h in 



dichloromethane/acetonitrile (DCM/MeCN) at room temperature was determined in 2016 (Figure 

9).300 Conjoined double helical radical cation CD5H shows SHI > 0 according to Eq. 1 (Figure 9), 

though as reported in 2019 its SHI is less than 0 (“near degenerate -SOMO and -HOMO”).301 The 

persistence of the radical cation, which could be isolated and handled on air with near perfect spin 

concentration, was not studied rigorously. However, the corresponding S = 1 ground state diradical 

dication, which is most likely more reactive than the radical cation, possessed 1/2 = 16 d in air-

saturated dibutyl-phthalate in the presence of excess of oxidant ([NO][SbF6]).
301  

In 2020, Favereau and coworkers were able to isolate, resolve, and characterize two radical cations 

with SHI > 0: axially chiral DCb and helical DCb7H.302 The greater persistence of DCb, compared to 

DCB7H, may possibly be associated with the stronger SHI (Figure 9).259  

Racemic radical cations of thiophene double helix, with high spin concentrations, were studied in 

solution in 2021.303 Interestingly, spin density was delocalized just over the carbon atoms (g-values of 

2.0012 and 2.0017) in the single ,-cyclooctatetrathiophene (,-COTh) moiety, highlighted in 

yellow color for TDH-TMS8 and TDH-TMS12 (Figure 9). Consequently, reduction potentials for both 

radical cations were similar (ca. +1.33 V vs SCE). It should be noted that while D2-symmetric radical 

cation TDH-TMS8 consists of a single central ,-COTh moiety, which is flanked by the two ,-

COTh moieties, C2-symmetric radical cation TDH-TMS12 consists of three ,-COTh moieties, 

flanking the two ,-COTh moieties. Notably, TDH-TMS8 with SHI < 0 was considerably more 

persistent (1/2 > 12 h in degassed DCM at rt), compared to TDH-TMS12 (1/2  5 min in degassed 

DCM at rt). This is an unusual case where SHI does not control the persistence of radicals. The greater 

persistence of TDH-TMS8 was associated with steric shielding of all carbons bearing significant spin 

density within ,-COTh moiety by the two adjacent β,β-COTh moieties (and TMS groups).303 

 



 
 

Figure 9. Examples of helical and double helical S = ½ radicals for which SHI (eq. 1) was determined.  

 

In 2022, Favereau and coworkers were able to synthesize, resolve, and study tetra-carbazole 

radical cations (and the corresponding diradical dications) TCb1 and TCb2, both with SHI > 0, derived 

from previously prepared DCb7H (Figure 9).304 In these radical cations, spin density is localized 

primarily on the 6,6’-dicarbazole (6,6’-DiCb) moiety as highlighted in yellow for TCb1. In analogy 



to the thiophene double helices discussed above, TCb1 consists of a single central 6,6’-DiCb moiety, 

flanked by two carbazoles, TCb2 consists of two terminal 6,6’-DiCb moieties. Based on the discussion 

in the preceding paragraph, it is not surprising that TCb2 is less persistent (vs. TCb1), in spite of 

having stronger SHI > 0 and being “protected” by the methoxy groups. We note that enantiomerically 

enriched tetra-carbazole radical cations provided surprisingly weak chiroptical properties, e.g.,  of 

the order of 5 L mol-1 cm-1.304 

We conclude this section with a note concerning the ground states of the single electron oxidized 

species corresponding to compounds in Figure 9, to be discussed in a more general fashion in the 

following Section 3.3. While the radical cation derived from relatively persistent aminyl radical 

AT7HA was predicted computationally to possess S = 1 ground state (Section 3.3),300 we were not able 

to confirm it experimentally. Diradical dication of CD5H in dibutyl-phthalate possesses S = 1 ground 

state with experimentally determined EST  0.3 kcal mol-1 (Section 4.4).301 Favereau’s diradical 

dications and those derived from thiophene double helices are either singlet ground states or possess 

near degenerate singlet and triplet states.303,304 Diradical dication of D5HMe and aminyl diradical of 

D5H are predicted by DFT computations to be triplet ground states (Section 3.3). 

  

3.3. Is there a relation between the SOMO-HOMO electron energy difference (SHI) in 

monoradicals (ions) and singlet triplet energy gap (EST) in diradicals (ions)?  

 Sugawara in his ‘2011 review noted that when some of the nitronyl nitroxide radicals with SHI > 

0 are oxidized to the corresponding radical cations, triplet ground state species are obtained,269 with 

some exceptions.264,266 Here we seek a more quantitative relationship between SHI in S = ½ 

monoradicals, defined by Eq. 1, and EST in the corresponding diradicals. Since SHI is derived from 

DFT computations, we explore a relationship between DFT-determined EST and SHI in the gas phase. 

In Figure 10, we summarize the structures of S = ½ monoradicals with their SHI values, which provide 



an excellent linear regression with EST in the corresponding diradicals (Figure 11). Structures of the 

three outliers, not included in the regression, are shown in Figure 12.  

 
Figure 10. Structures and spin density maps (isodensity level of 0.002 electron/Bohr) used for linear regression 

of singlet-triplet energy gaps, EST (kcal mol-1) vs. SHI (kcal mol-1); see: the following Figure 11. EST values 

are for diradicals and SHI values are for one-electron reduced species; e.g., radical anions for neutral diradicals. 

Except for double helical D5HMe, all diradicals were studied before; also, spin density maps for AT7H, CD5H, 

and TATHP may be found in refs 300 and 301. SHI values are from eq. 1 and the values in parentheses are in 

terms of -MO’s (eq. 2). Values of EST were typically computed at the UB3LYP/6-31G(d,p)+ZPVE (or 

UB3LYP/6-311+G(d,p)+ZPVE) level of theory (gas phase) and were corrected for spin contamination; 

geometries for both triplet and BS singlet (checked for stability) were optimized. 



 

Figure 11. Linear regression between DFT-computed EST and SHI (Eq. 1) for twelve C- and N-centered 

diradicals. The value of P = 1.55  10-10 for slope indicates that the value of 0.54 is reliably determined, however, 

P = 0.099 > 0.05 for intercept indicates that the value of 0.6 is not statistically significant. All EST and SHI 

values are computed in the gas phase (see: preceding Figure 10), typically, at the UB3LYP/6-31G(d,p)+ZPVE 

and UB3LYP/6-31+G(d,p)+ZPVE levels of theory, respectively. Outliers are not included in the linear 

regression (see: following Figure 12). 

 

Figure 12. Structures for outliers in the linear regression of singlet-triplet energy gaps, EST (kcal mol-1) vs. 

SHI (kcal mol-1); see: the preceding Figure 11. EST values are for diradicals, and SHI values are one-electron 

reduced species, e.g., radical anions derived from neutral diradicals. Aminyl diradical (corresponding to Outlier 

1)112,114 and radical cation (Outlier 3)303 were studied both experimentally and computationally. Radical anion 

D5HMe and corresponding aminyl diradical were not previously studied. SHI values in parentheses are in terms 

of -MO’s. Values of EST were typically computed at the UB3LYP/6-31G(d,p)+ZPVE (or UB3LYP/6-

311+G(d,p)+ZPVE) level of theory (gas phase) and were corrected for spin contamination. 

 

Notably, the correlation between the twelve values of EST (Figures 10 and 11) and corresponding 



values of SHI (as defined by Eq. 2) is significantly worse, as indicated by the values of statistically 

adjusted coefficients of determination, i.e., Radj
2 = 0.935 vs 0.984 (Figure 11). 

One of the weaknesses of the present approach is the use of the UB3LYP functional in the gas 

phase, which provides symmetric structures for radical anions, especially for m-phenylene-based 

structures. Already in 1991, it was established experimentally that in tetrahydrofuran or 2-

methyltetrahydrofuran (THF or 2-MeTHF) in the non-planarized m-phenylene-based triarylmethyl 

radical anions (for a “planarized” version, i.e., PTAM, see: Figure 10), spin density is localized on one 

of the triarylmethyl moieties on the EPR spectroscopic time scale. This distortion was rationalized in 

terms of second order Jahn-Teller effect.305 Consequently, for radical anion of m-xylylene, MX (Figure 

10), we find that while using UB3LYP C2v-symmetric structure is obtained, but when employing 

UwB97XD functional in THF PCM solvent model, Cs-symmetric structure, with spin density confined 

to one phenylmethyl moiety, is found to be the global minimum. Analogous results were found for 

TDH-TMS12 (and related radical cations)303 and radical anions DAMX (Figure 10), as well as PTAM. 

Next, we investigated nitronyl nitroxide based radical anions derived from S = 1 ground state 

diradicals, spanning a wide range of DFT-computed EST from 1.4 to 9.8 kcal mol-1 (Figure 13). The 

first three radical anions in Figure 13 are derived from thoroughly studied experimentally S = 1 ground 

state diradicals (Section 4.3). The other three radical anions or diradicals are not explored 

experimentally yet. We were somewhat surprised by the bad linear regression between EST and SHI 

(Figure 14), despite structural similarity between all six diradicals. In particular, P-values of >>0.05 

for slope and intercept, 0.60 and 0.38, indicate that they are not statistically significant.    



 

Figure 13. Structures and spin density maps ((isodensity level of 0.002 electron/Bohr) of radical anions with 

strong SHI (kcal mol-1), which fail to provide linear regression with corresponding diradicals singlet-triplet 

energy gaps, EST (kcal mol-1); see: following Figure 14. Radical anions 1-SH – 3-SH are derived from 

previously synthesized diradicals; radical anions A-SH – C-SH and corresponding diradicals were not 

previously studied. SHI in parenthesis is in terms of -MO’s. Values of EST were typically computed at the 

UB3LYP/6-31G(d,p)+ZPVE (gas phase) level of theory and were corrected for spin contamination. 

 



 

Figure 14. Failed linear regression between DFT-computed EST (gas phase) and SHI (THF) for 

nitronyl nitroxide (and oxo-verdazyl) based high-spin diradicals and corresponding radical anions; see: 

preceding Figure 13.  

 

We associate this failed linear regression (Figure 14) to dominance of electronegativity as the 

major factor controlling the value of SHI in nitronyl nitroxide based radical anions. Also, some of the 

structures show significant distortions from planarity.    

 

4. High-Spin Di- and Tri-Radicals.  

4.1. Design rules for high-spin di- and polyradicals. 

Stable high spin organic radicals (S ≥ 1) are attractive targets for organic materials for potential 

applications such as organic magnets,32,306,307 spintronics,7,308 spin filters,308-310 and memory 

devices.311,312 Compared to many existing stable S = ½ monoradicals, only relatively few of stable and 

even fewer thermally robust high-spin organic radicals were reported. Developing new high-spin 

molecules is challenging, and this part of the review will focus on recent work from ours and other 

groups. 

Organic monoradicals, containing one unpaired electron, can be considered as the fundamental 

spin-bearing units or centers (S = 1/2). In a di- or triradical, in which multiple radical S = ½ centers are 



conjugated, exchange coupling between S = ½ spin centers may lead to either high- or low-spin ground 

state. The main objective in the molecular design of high-spin di- and triradicals is to obtain 

ferromagnetic coupling between S = ½ centers, leading to a high-spin (S ≥ 1) ground state. This 

ferromagnetic interaction should ideally be strong, leading to a large separation in energy between the 

high-spin ground state and low-spin excited states.  

Design of high-spin di- and triradicals for practical applications requires that the following two 

minimal conditions are satisfied.313,14 

(1) The high-spin ground state should be at least a couple of kcal mol-1 (>> RT = 0.6 kcal mol-1 ≈ 

thermal energy at room temperature) below the lowest excited state, 

(2) The radicals should be stable, or at least persistent, at room temperature to be easily handled 

without special precautions.  

In a diradical, exchange coupling between two S = ½ spin centers S1 and S2 could be described by 

the effective Heisenberg Hamiltonian:314,315  

𝑯 =  −2𝐽𝑺1• 𝑺2                             (3) 

where the factor of “–2” is traditionally used in chemistry literature. Parameter J is the exchange 

coupling constants, usually given in Kelvins (K) as J/k (k is the Boltzmann constant), or alternatively, 

singlet triplet energy gap, 2J = EST, usually reported in kcal mol-1. Negative J value requires the 

lowest energy state to have antiparallel spins, leading to antiferromagnetic interaction, i.e., the case of 

low-spin ground state. Positive J value means the lowest energy states have parallel spins and 

ferromagnetic interaction occurs, i.e., the case of high-spin ground state. The energy gap between 

singlet and triplet states (EST) therefore is given by 2J. In other words, the ground state type, high-

spin or low-spin, and the corresponding energy gap are decided by the sign and magnitude of J 

value.313,14  

In planar π-conjugated diradicals, corresponding to alternant -systems, ferromagnetic vs. 



antiferromagnetic exchange coupling between S = 1/2 spin centers is governed by the π-connectivity 

and can be qualitatively predicted using Ovchinnikov parity models.316 It is also assumed that the 

through-bond exchange interactions between S = ½ spin centers are dominant in π-conjugated 

radicals.313,14 In the models, each adjacent spin in the π-system is assumed to possess the opposite spin 

of its nearest neighbor. The difference between the spin-up count vs the spin-down count decides the 

ground state, e.g., if difference equals to two, then the S = 1 triplet ground state is predicted (Figure 

15).316 

   

 

Figure 15. Ferromagnetic and antiferromagnetic exchange coupling predicted using Ovchinnikov parity models. 

Values of ΔEST are in kcal mol-1. Reproduced from ref 314. Copyright 2015 American Chemical Society.  

Using methyl radicals as S = ½ spin centers and ethylene as a coupling unit, we can see that the 

1,1-connection at ethylene leads to non- Kekulé TMM, a triplet ground state molecule and 1,2-

connection provides Kekulé butadiene, a closed shell molecule with a singlet ground state. While 

TMM and butadiene possess large ΔEST,317-319 another non- Kekulé molecule such as TME, obtained 

by 1,1-connection of two ethylenes with two methyl radicals, is a singlet ground state with a very small 

ΔEST.320,321 Analogous results are obtained for m-xylylene, p- and o-xylylene and 3,3’-

dimethylenebiphenyl (3,3’-DMBP) (Figure 15).322,323 

Coupling units that lead to ferromagnetic coupling between S = ½ spin centers (e.g., 1,1-ethylene, 



m-phenylene) are termed ferromagnetic coupling units (FCU’s), and those that lead to 

antiferromagnetic coupling (e.g., 3,3′-biphenyl) are termed antiferromagnetic coupling units (ACU’s) 

(Figure 15).313,324 

Although it was believed for a long time that the presence of Kekulé resonance form implied a 

singlet ground state, the exceptions to this rule will be discussed in Section 4.4.      

Ovchinnikov parity models are simple and convincing tools for predicting the ground state of π-

conjugated diradicals. However, the strength of exchange interaction is unclear from the parity models. 

What causes the huge difference in |ΔEST| between TMM and TME? To understand this problem, the 

singly occupied molecular orbitals (SOMOs) are considered in the diradicals. Borden and Davidson 

classified the SOMOs can be non-disjoint (spatially coinciding at some atoms) and disjoint (not 

spatially coinciding at any atoms).325 Exchange interaction is weak for disjoint SOMOs such as in 

TME, while exchange interaction is strong and ferromagnetic for non-disjoint SOMOs in TMM 

(Figure 16).318,319,321 In TMM, when two unpaired electrons align parallel, a node is introduced in the 

spatial part of the wave function and, as a result, the Coulombic repulsion is reduced effectively in the 

spatially coinciding area.325 Analogous conclusions are reached for m-xylylene and 3,3’-DNBP (Figure 

16). 

 
Figure 16.  Singly occupied MO’s (SOMO’s) of triplet states for disjoint and non-disjoint non- Kekulé 

diradicals at the UB3LYP/6-311G(d,p) level. Reproduced from ref 314. Copyright 2015 American Chemical 

Society.  

 



  

4.2. Magnetic characterization of diradicals and triradicals.  

Electron paramagnetic resonance (EPR) spectroscopy and superconducting quantum interference 

device (SQUID) magnetometry are two dominant tools for studying magnetic properties of high-spin 

radicals. There is also a role for NMR spectroscopy. Most important objectives are determination of 

ground state and of energy gaps between low- and high-spin states, ELS-HS. 

4.2.1. EPR spectroscopy.  

Continuous wave (CW) EPR spectroscopy is widely utilized to measure the high-spin state spectra 

of radicals (S ≥ 1), for which g-tensor and zero-field splitting (ZFS) parameters D and E, and in 

favorable cases, large components of nuclear hyperfine coupling tensors A, are obtained. Because the 

ZFS parameters are inherently anisotropic, the samples are measured in frozen glassy matrices, with 

typical radical concentration of <1 mM, to minimize the intermolecular interactions. Specifically in 

organic radicals, composed of light elements, ZFS parameters largely originate in purely anisotropic 

magnetic dipole – dipole interactions, thus D-value in diradicals provides approximate measure inter-

spin distance.326,327  

For S ≥ 1 states with significant (D/)-values, where  is microwave frequency, characteristic half-

field, formally forbidden transitions (|mS| = 2) may be detected; in the absence of resolvable nuclear 

hyperfine couplings, |mS| = 2 transition corresponds to a single peak for S = 1 state, while more 

complex pattern is observed for S ≥ 3/2 states.24,328,329 In favorable cases, |mS| = 3 transition (third-

field) may be detected for triradicals at low temperature using commonly available X-band instruments 

( = 9 GHz).24,328,329  

Detection of EPR spectra for high-spin state only shows that the high-spin state is significantly 

populated at the temperature of measurement, and it does not establish the ground state. This is 

especially true for diradicals because the low-spin state (S = 0) is typically EPR silent. The same 



statements are valid for more sophisticated pulse EPR nutation spectra, where the frequencies 

characteristic for S = 1/2, 1, 3/2… states may be observed. Note that that even if only nutation 

frequencies corresponding to S > 1 state are observed, this does not mean that this state is the ground 

state, because the low-spin S ≥ 1/2 states may possess unfavorable electron spin relaxation times to be 

efficiently observed in the nutation experiment.         

The traditional way to obtain a better insight to the nature of the ground state was to study the 

double integrated intensity (I) of EPR spectrum vs. temperature (T). When a curved plot of IT vs. T or 

I vs. 1/T is obtained then the ground state may be unequivocally established, when the precautions 

against microwave saturation are taken (see: below). That is, if the plots are curved upwards at lower 

T, which implies increased population of high-spin state, and this, in turn, implies high-spin ground 

state.313 Downward curvatures at lower T imply low-spin ground state.313 Energy gaps between the 

low- and high-spin state, ELS-HS, may be obtained by numerical fitting to equations obtained by 

solutions of Heisenberg Hamiltonian (eq. 4), 

         H = –2JkjSk•Sj                       (4) 

where the nearest neighbor spins are typically considered, Jkj is the pairwise exchange coupling 

constant, and the summation is done over all nearest neighbors for k, j from 1 to n (n = total number 

of S = ½ sites).313,330 For a diradical, singlet triplet energy gap, EST = 2Jkj; more complex, connectivity 

dependent formulas are found for doublet quartet energy gap EDQ in triradicals.330 

However, the most common occurrence is a flat plot of IT vs. T or linear plot of I vs. 1/T, which 

indicates the temperature independent ratio of the high- to low-spin states; consequently, this implies 

either high-spin ground state (case 1) or near degenerate high- and low-spin states (case 2). 

Specifically, in the second case, the energy gap between the low- and high-spin state, |ELS-HS| < 

0.5RTlowest, where Tlowest is the lowest temperature at which the I is measured; in the first case of the 

high-spin ground state, this means approximately ELS-HS > 2RThighest, where Thighest is the highest 



temperature of the I-measurement. For example, if Tlowest = 5 K and Thighest = 150 K, then the following 

limiting values may be obtained: |ELS-HS| < 0.005 kcal mol-1 or ELS-HS > 0.6 kcal mol-1 for the second 

and first case, respectively. It is important to avoid microwave saturation, especially at low 

temperatures, by either obtaining rigorous microwave saturation plots (I vs. P1/2) at near Tlowest, where 

P is microwave power in the range of at least two orders of magnitude, or by acquiring the I vs T data 

at significantly different microwave powers.323,329,331 Typically, I of |mS| = 2 transition is studied, 

because this partially forbidden transition is much more difficult to saturate332 and it may be well 

separated from the impurity peaks. In addition, when claiming purity of S = 1 diradical, one has to 

make sure that the spectrum is obtained under the conditions, in which the S = ½ monoradical is not 

partially saturated.    

More recently, our group introduced quantitative variable temperature EPR spectroscopy for 

studies of di- and triradicals.147,149,150,301,333 Instead of IT vs. T plots, χT vs. T are plotted, where χ is 

paramagnetic susceptibility of the sample, determined with S = ½ reference. The χT vs. T plots are 

advantageous when trying to extract more than one J-value150 because, if the radical is pure and its 

weight is known accurately,150 then there are no additional parameters, beyond the J-values, to fit, thus 

avoiding over parametrization – a common problem when fitting EPR intensity or magnetic data. 

Notably, in selected not-too-polar solvents and matrices, such as dibutyl phthalate, toluene/chloroform, 

etc., reliable values of χT can be obtained at near and above room temperature in a fluid 

solvent.147,150,301 It is important that the S = ½ reference (e.g., TEMPONE) is dissolved in the identical 

solvent as the sample and its spectra are obtained with comparable parameters. Now there is no 

ambiguity concerning the ground state because, if only high-spin ground state is predominantly 

populated, then, assuming g  2, χT = S(S+1)/2 emu K mol-1, e.g., χT = 1.00 emu K mol-1 for S = 1 

ground state diradical. In contrast, when low- and high-spin states are near degenerate, which 

essentially means a mixture of S = ½ radicals, for polyradical with n S = ½ sites, χT = n*0.5(0.5+1)/2 



emu K mol-1, e.g., χT = 0.75 emu K mol-1 for a diradical with near degenerate singlet and triplet states. 

For some di-, tri-, and tetraradicals, the χT vs. T plots are not feasible up to near room temperature 

because of limited stability and/or preparation conditions for radical, requiring use of relatively polar 

ethereal solvents such as 2-MeTHF. In those cases, χT-values are measured at low temperatures (T < 

130 K), near or below the glass transition of the solvent.114,115 In special cases, such as S = 3/2 aminyl 

triradicals AT1 and AT2 (Figure 17), where the EPR spectra for S = 3/2 ground state and S = ½* 

excited state (as well as for other admixed species) are significantly different, then the doublet-quartet 

energy gap EDQ  1 kcal mol-1 may be obtained from direct spectral simulation by finding the ratio 

of S = ½* to S = 3/2 state.115 The obtained values of EDQ are in excellent agreement with those 

obtained from the SQUID data (see: below) but they require spectral simulations of multiple samples. 

 
Figure 17. Aminyl triradicals with S = 3/2 ground states.  

EPR spectroscopy is also a useful tool to investigate the persistence of radicals. When well-

resolved spectra are available, monitoring of I vs. time is equivalent to obtaining concentration vs. 

time curve. When overlapped spectra are present, this approach provides depressed rate constants for 

the original high-spin radical, leading to overestimated half-lives, e.g., for S = 3/2 triradicals AT1 and 



AT2 (Figure 17). To obtain correct concentration (or molar fraction) vs. time curves, the spectra of 

decayed mixture of radicals must be simulated and corrected for the presence of diamagnetic species 

by the measurement of χT at each time point.115 This allows to unravel complex consecutive kinetics, 

such as for AT1 and AT2.115  

 

4.2.2. SQUID magnetometry.  

Determination of the ground state value of total spin S and the energy gap ELS-HS by SQUID 

magnetometry is based on thermal population of either mS-substates or low- vs. high-spin electronic 

(spin) states.  

Magnetic measurements are traditionally carried out on polycrystalline solids. Because most 

organic radicals exhibit weak-to-moderate intermolecular antiferromagnetic interactions, this prevents 

implementation of the most powerful Brillouin function-based method for determination of the ground 

state for high-spin radical. This method is fundamentally based on detection of thermal population of 

mS-substates in the presence of external magnetic field. To weaken the intermolecular interactions, 

SQUID measurements may be performed on dilute, 5 – 20 mM, samples in matrices. While various 

high-Tg polymer matrices were used for this purpose, our group have developed and perfected over the 

years solution/matrix sample containers that allow sample preparation at low temperature and 

minimize diamagnetic background.31,111,115 Using 5 – 20 mM radical samples, magnetization (M) is 

measured vs. external magnetic field (H) at low temperatures (usually 1.8, 2, 3, and 5 K). The saturated 

magnetization Msat and the total spin S are obtained by fitting the plots of normalized magnetization 

M/Msat vs. H/(T – ) to the Brillouin function, where  corresponds to the mean-field correction for 

residual intermolecular interactions (typically,  < 0.1 K). Because the values of S are based upon the 

curvature of the M/Msat vs. H/(T – ) plots, they are independent of sample concentration. The values 

of Msat (in B = Bohr magnetons) are concentration dependent and they provide spin concentration, 



i.e., fraction of unpaired electron per radical site, e.g., Msat = 1.0 B implies perfect, 100% spin 

concentration per radical site.110-113,115,148      

 For pure polycrystalline radicals, measurement of M vs. T at fixed values of H (e.g., 3, 0.5, and 

0.05 Tesla) in both warming and cooling modes allows for routinely obtaining reliable χT vs. T plots 

in the wide temperature range (1.8–400 K). With the oven option for SQUID instrument, an  

extended temperature range of up to 800 K is available (Figure 18).334  

 
Figure 18. Example of SQUID magnetometry in the temperature range of 100 – 800 K, with fit to χT vs. T data 

giving EST  –8.0 kcal mol-1.334 Reproduced with permission from ref 334. Copyright 2018 Springer Nature. 

To obtain reliable values of χ, especially at high T (near or above the room temperature) two 

critical conditions must be met. 

(1) The sample must be perfectly free of magnetic impurities (e.g., rust or other magnetic metal 

contaminants); i.e., as a minimum, χT vs. T plots must be coinciding at widely different values of H, 

(2) A reliable correction for diamagnetism should be performed; as Pascal constant-based correction 

usually overestimates amount of diamagnetism, and thus leads to overestimated values of EST – a 

common problem in the literature. A better approach is to do point-by-point correction with the 

diamagnetic precursor to the radical. 

 For a dilute radical in solution/matrix, obtaining a reliable χT vs. T plot is much more challenging. 

First, the positive Mrad > 0 with Mrad ~ 1/T from radical will be superposed on a large negative Mmatrix 

< 0 that is constant (i.e., independent of temperature); therefore, it is expected that for the measured M 

= Mrad + Mmatrix, diamagnetic M < 0 values at high T and paramagnetic M > 0 at low T will be obtained. 



Consequently, at some intermediate temperature range where M  0, the value of M could not be 

measured reliably. Second, correction for diamagnetism is much more demanding; for solution 

samples, complete point-by-point correction is practical for radicals with limited persistence,31 and for 

polymer matrix samples, point-by-point correction can be carried out in order to at least offset the 

diamagnetism of the matrix and the sample holder.148,150 Third, while for thermally robust di- and 

triradicals in polystyrene matrix (Tg = 373 K), in custom-made quartz tubes, practical temperature 

range of 1.8 – 370 K is available.148,149 For radicals in organic solvents (e.g., THF and 2-MeTHF), a 

more limited range of 1.8 – 150 K is typical.110-113,115 (For a relatively concentrated, 20 mM tetraradical 

in 2-MeTHF, the χT vs. T data in the 1.8 – 200 K in the cooling mode could be obtained.)214  

 Once a reliable χT vs. T plot is obtained, and assuming that no strong intermolecular exchange 

interactions are present, the ground state may be determined as outlined in the EPR spectroscopy 

Section 4.2.1. Because the SQUID data are typically obtained with less scatter, compared to χT-values 

in quantitative EPR spectra, the more reliable values of ELS-HS may be extracted from fits to the χT 

vs. T (or χ vs. T) data; in the case, of a flat χT vs. T plot, significantly more robust limiting values for 

ELS-HS (or |ELS-HS|) are available from SQUID measurements. 

 As shown in the Figure 19 (below), determination of ground state and ΔEST for a diradical faces 

the following challenges:  

(1) for very low values of ΔEST ~  2 K the sample must consist of magnetically isolated diradicals, 

that is, laborious SQUID studies on progressively more dilute samples are needed and 

(2) for very high values ΔEST > 1000 K, correction for diamagnetism has to be perfect and the sample 

should be perfectly pure, especially without traces of magnetic impurities; for example, when the 

highest temperature of measurement is typical 300 K, the relative difference in χT is only of the order 

of 1.1%, when comparing diradicals with ΔEST = 1000 K and ΔEST = 2000 K; when comparing ΔEST 

= 2000 K and ΔEST = 4000 K, the difference becomes a negligible 0.04%. 



 The plots in Figure 19, also illustrate why diradicals with ΔEST >> 0.6 kcal mol-1 are important.  

That is for a diradical with ΔEST > 2.0 kcal mol-1, occupancy of the triplet state is greater than ~99% 

at room temperature. It should be noted that, for a diradical, value of χT (in emu K mol-1 and g = 2) is 

equal to a molar fraction of triplet state.  

     

 

Figure 19. Plots of χT vs. T, with T = 2 – 400 K, for diradicals with various values of ΔEST. Note that value of 

χT (as plotted in emu K mol-1 and g = 2) is equal to a molar fraction of triplet state; alternatively, χT*100% is 

equivalent to a percent occupancy of triplet state. Inset plot: expanded plot for diradicals with ΔEST = 2.0 – 8.0 

kcal mol-1 (1000 – 4000 K) illustrating challenge of determination large values of ΔEST > 2.0 kcal mol-1.    

 

We also note the feasibility of determining relatively small ELS-HS (and especially negative) based 

on fitting the plots of normalized magnetization M/Msat vs. H/T at low temperatures, e.g., EST ~ –1 K, 

H = 0 – 5 Tesla, T = 1.8 – 3 K. In this approach, the thermal population of mS-substates is perturbed 

by the presence of nearby low-spin state. 214,321,323       

 Although rarely used, the variable temperature NMR-based paramagnetic shift method may be 

used to assess ΔEST ≈ RT, 313,335 analogously to the IT vs T data, where I corresponds to the EPR 



intensity, in variable temperature EPR spectroscopy. In addition, 1H NMR Evans method336,337 is 

occasionally used to determine values of χT, especially at room temperature – this is a useful tool to 

confirm purity of radicals.214,217 

   

4.3. High-spin di- and triradicals based on nitronyl nitroxide (NN) 

 

According to Ovchinnikov parity models, trimethylenenemethane (TMM) is a high-spin diradical 

possessing a triplet ground state with ΔEST
 ≈ 16 kcal mol-1 (Figure 15).318,319 TMM is a great prototype 

for designing high-spin radicals.35,124 Moreover, nitronyl nitroxide can be regarded as a potential 

TMM-type radical if the C2 position, possessing negative spin density, is connected to other radical 

center with positive spin density at the atom X, forming C2-X bond; consequently, a diradical with 

high-spin ground state is obtained (Figure 20). Alternatively, when the spin density at atom X is 

negative (e.g., a node in the SOMO at atom X), then the singlet ground state diradical, with 

connectivity analogous to TME (Figure 15), is obtained (Figure 20). 

 

 
 

Figure 20. The structures of trimethylenenemethane (TMM) and tetramethyleneethane (TME), and C2-

substituted nitronyl nitroxides. 

   

  In general, radical stability could be improved when radical center is well shielded by bulky groups, 

or its spin density delocalized via resonance. Among many types of radicals, nitroxides play pivotal 



role in radical families. Most of nitroxides are stabilized by tertiary alkyl groups at -carbon position 

to prevent dimerization or hydrogen abstraction. In addition, spin delocalization over two nitrogen and 

two oxygen atoms provides good thermodynamic and chemical stability. In summary, the nitronyl 

nitroxides possess excellent stability, enabling wide range of applications.253,338  

 

4.3.1. Synthetic routes to high-spin nitronyl nitroxide-based radicals 

In 1968, Osiecki and Ullman first reported a new stable nitroxide radical called nitronyl 

nitroxide,212 which was prepared by condensation of aldehydes with 2,3-bis(hydroxyamino)-2,3-

dimethylbutane followed by oxidation reaction with NaIO4 (Scheme 1).339 It is worth noticing that for 

nitronyl nitroxide with R = H (Scheme 1), the pKa of the C2-H (C2 is the carbon atom between two 

nitrogen atoms) is 21.9,340 allowing many further modifications after deprotonation, including 

reactions with electrophilic reagents.341,342 Since seminal derivative R= Au-PPh3 (NN-Au) reported by 

Okada group,343,344 a series of organometallic derivatives R = M-L have been prepared and 

investigated,342-347 such as, R = Li from Tretyakov group342 and R = ZnCl from Suzuki group.346 Those 

NN derivatives dramatically promote the discovery of high-spin radicals though direct coupling 

compared to the condensation reactions. 

  The NN-based high-spin di- or tri-radicals are generally prepared through condensation or coupling 

method. In the condensation reaction, the nitronyl nitroxide is synthesized through reaction of 

aldehydes (R-CHO) and 2,3-bis(hydroxyamino)-2,3-dimethylbutane and followed by oxidation 

reaction.212 If the R group in aldehydes is either a stable radical or it can be converted to radical 

fragment, the final NN-based high-spin di- and triradicals are possible (vide infra).147,148,348 However, 

this approach requires multistep reactions to construct final high-spin molecules, and the yield 

sometimes is far from satisfying.  

An alternative approach is based on the low pKa of C2-H, which was mentioned in the preceding 



paragraph. This allows for C2-functionalization of nitronyl nitroxide by deprotonation with NaOH or 

LHMDS, and then reacting with electrophilic reagents, such as nitrones,349 or cross-coupling with aryl 

iodide.344-346 One of the recent advances involve the use of electron rich sterically encumbered 

phosphines as ligands in NN-Au or in Pd-catalysts, which enables cross-couplings with aryl bromides 

or electron-rich open-shell aryl iodides.149,350 This direct coupling method also can install skeletons of 

high-spin NN radicals, providing a powerful and flexible way to synthesize and increase the diversity 

of high-spin NN radicals. Based on these two approaches, high-spin radicals have been synthesized 

(Scheme 1). 

 

Scheme 1. Synthetic approaches to nitronyl nitroxide-based high-spin radicals. 

 

4.3.2. High-spin nitronyl nitroxide-based neutral di- and triradicals  

The simplest stable TMM-analogues are based on the connection of the NN (or imino nitroxide) 

moiety with alkyl or aryl nitroxide fragments (Figure 20); the short through-bond pathway between 

two spin centers leads to strong ferromagnetic exchange interactions in diradicals 1 – 4 (Figure 



21).349,351,352 

 

Figure 21. Structures of stable, neutral high-spin di- and tri-radicals based on the nitronyl nitroxide. ΔEST and 

ΔEDQ (doublet quartet energy gap) are in kcal mol-1. 

 In 2010, Okada and co-workers prepared nitronyl nitroxide 1 and imino nitroxide 2.349 Diradical 

1 was assembled by nucleophilic addition of the 2-lithio(nitronyl nitroxide) with tert-butyl nitrone 



followed by oxidation with lead (VI) dioxide. Deoxygenation of nitronyl nitroxide 1 by nitrous acid 

provided imino nitroxide 2. Using analogous nucleophilic addition strategy, the same group 

synthesized diradical 3 in 2022,351 and very recently, Tretyakov group synthesized diradical 4.352 

These diradicals are stable under ambient conditions and possess strong ferromagnetic interactions: 

reported values of ΔEST are 1.56, 2.2, >4.0, and 1.76 kcal mol-1 for 1, 2, 3, and 4 respectively. 

Furthermore, 1 and 2 can be sublimed at 55 – 70 ℃ without decomposition under reduced pressure. 

The dihedral angles between the nitronyl nitroxide and C, N, O unit of the tert-butylnitroxide group in 

1 and 2 are 73º and 40º, which may explain the larger ΔEST in 2 since an enhanced intramolecular 

exchange interaction with less torsional angle. Analogous dihedral angles in 3 and 4 are 18 and 64. 

We note that diradicals 1 and 2 are analogous to diradicals 5 and 6, and the stronger intramolecular 

exchange interactions stem from the shorter exchange coupling pathway between two spin centers. 

The EPR spectra of 1 and 2 in glassy diethylphthalate matrix exhibit |ΔmS| = 1 and partially 

forbidden |ΔmS| = 2 transitions, characteristic for triplet state of a diradical (Figure 22). Stronger |ΔmS| 

= 2 transition of 2 agrees with larger spectral width (higher |D| value) of the |ΔmS| = 1 transitions. 

Diradical 1 and 2 possess strong intramolecular interactions and weak intermolecular interactions 

based on SQUID results. When decreasing temperature from 300 to 150 K, the χT vs T plots of 

diradical 1 increase from 0.983 emu K mol-1 to 1.000 emu K mol-1. Compared to diradical 1, the χT vs 

T plots of radical 2 is slightly increased from 0.990 emu K mol-1 to 0.995 emu K mol-1 for broader 

temperature range of 300 to 100 K. When lowering temperature from 150 to ~2 K, χT values of 

diradical 1 and 2 decrease dramatically due to the intermolecular antiferromagnetic interaction. The 

plots of χT vs T are fitted to the modified Bleaney-Brower equation (eq. 5) for diradical (H = -2JS1·S2).  

𝜒𝑇 =
2𝑁𝐴𝜇𝐵

2 𝑔2𝑇

𝑘𝐵(𝑇 − 𝜃)[3 + exp (−
2𝐽

𝑘𝐵𝑇
)]

                             (5) 

  Where NA is the Avogardo constant, µB is Bohr magneton and kB is Boltzmann constant. Mean-field 



parameter θ (in K) is used to characterize the strength of intermolecular interaction.7 When the θ is 

positive value, it suggests ferromagnetic interaction between molecules. Otherwise, negative θ value 

means antiferromagnetic interaction between molecules. Diradical 1 and 2 have moderate 

antiferromagnetic interactions with θ value of –1.5 and –2.7 K, respectively. The key parameters for 

magnetic characterization of diradicals 1 – 4 are listed in Table 4.3.2. 

 

 
Figure 22. Top: EPR spectrum of 1 (I) and of 2 (II) measured in frozen diethylphthalate matrix at 200 K with ν 

= 9.416402 GHz (for 1) and ν = 9.425181 GHz (for 2). Bottom: Variable temperature χT vs T for 1 (I) and 2 (II). 

The red solid lines are the simulation lines based on a modified Bleaney-Bowers model. Reproduced from ref. 

349. Copyright 2010 American Chemical Society 

Table 4.3.2. Magnetic properties of diradicals 1, 2, 3, and 4. 

Radical  D  

(MHz) 

E 

(MHz) 

J/k 

(K) 

1 EPR/SQUID 758   48 390 

2 EPR/SQUID 1916  150 550 

3 EPR/SQUID 561 38 >1000 

4 EPR/SQUID 845 60 440 

     

 

   In 1995, Iwamura and Inoue synthesized a stable high-spin diradical 5, 2-[p-(N-tert-butyl-N-



oxyamino)phenyl]-4,4,5,5-tetramethyl-4,5-dihydroimidazol-3-oxide-l-oxy and analogous imino-

nitroxide diradical 6 (Figure 21).348 The diradical 5 was prepared by condensation method and isolated 

as violet needles. X-ray crystal structure of 5 shows the three moieties, nitronyl nitroxide, para-

phenylene ring and C, N, O unit of the tert-butylnitroxide group, are twisted (the dihedrals are 27º and 

22º, respectively). The moderate dihedrals facilitate the delocalization of spin densities, producing 

large intramolecular exchange interaction. Polycrystalline diradical 5 and 6 form chain structure with 

the contacts between the NO groups as the intermolecular antiferromagnetic interactions. Subsequently, 

ΔEST is determined to 1.28 kcal mol-1 for diradical 5 and 0.43 kcal mol-1 for imino-nitroxide diradical 

6 by spin-1/2 Heisenberg ferromagnetic-antiferromagnetic alternating chain model (HFAA chain 

model).353 

Subsequently, Iwamura group synthesized triradical 7,354 using condensation method, as they 

utilized in preparation of diradical 5. By deoxygenation of 7, imino-nitroxide (IN) triradicals 8 and 9 

were obtained.354 These triradicals are stable and isolated as powders. X-ray crystal structure of 8 

shows the NN moiety has resonance contribution of quinonoid form, while IN moiety does not 

contribute to such resonance form. Specifically, two short C-C bond distances are 1.370 Å and four 

long C-C bond distances are 1.401 – 1.431 Å in para-phenylene ring linked to the NN moiety, leading 

to the change from a regular hexagon structure towards a bond-alternating quinonoid structure. 

However, the C-C bond distances in para-phenylene linked to the IN moiety are more uniform (1.380 

– 1.411 Å) and the ring maintains the regular hexagon structure. The quinonoid form enhances the 

exchange interaction between center nitroxide and nitronyl nitroxide (Figure 23); therefore, the 

exchange coupling J1/k and J2/k in 8 are expected to be different.354 This phenomenon was not obvious 

in diradical 5: the crystal structure analysis shows the bond distances in para-phenylene ring is changed 

by 0.01 – 0.02 Å (two short C-C bond distances: 1.365 and 1.373 Å, four long C-C bond distances: 

1.387 – 1.393 Å).348 The quinonoid form enhances the exchange interaction between nitroxide and 



nitronyl nitroxide; therefore, the exchange coupling J1/k in 5 vs. 8 are expected to be somewhat 

different (Figure 24).  

 

Figure 23. The resonance structures of 5 and 8, and selected bond distances (Å). 

EPR spectra of triradicals 7 – 9 in glassy 2-methyltetrahydrofuran at 7 – 12 K show an intense 

center peak for all triradicals. All the χT vs T plots of triradicals show the magnetic susceptibilities 

increase from 300 K to roughly 60 K then decrease dramatically to 2 K. The former increase is due to 

the greater population of molecules in the quartet ground state when temperature is decreasing. The 

latter decrease comes from the intermolecular antiferromagnetic interaction at lower temperature. The 

intramolecular coupling constants are determined by the asymmetric linear triradical model (eq. 6).  

                  𝑯 = −2(𝐽1𝐒1 ∙ 𝐒𝟐 +  𝐽2𝐒𝟐 ∙ 𝐒𝟑)                                             (6)  

  Where J1 (J2) is the exchange coupling constant between S1 and S2 (S2 and S3); eq. 6 corresponds to 

specific case for a more general eq. 4. Intramolecular coupling constant J13 between two terminal 

radicals is ignored because it is much smaller than J1 and J2. Here J13 is assumed to be 2 orders of 

magnitude smaller than J1 and J2, according to study the properties of one-dimensional nonclassical 

polymers (NCP).355 In triradicals 7 – 9, coupling constants are in a good agreement with the 

intramolecular coupling constants of diradicals 5 and 6 (Figure 24). 



 

 

Radical  J1/k (K) J2/k (K) 

5 SQUID 319      - 

6 SQUID 108      - 

7 SQUID 231 231 

8 SQUID 349 130 

9 SQUID 127 127 

 

Figure 24. Model for exchange coupling in triradicals 7 – 9 (linear triradical model, it is asymmetric when J1 ≠ 

J2) and doublet-quartet energy gap ΔEDQ for the lowest S = 1/2 excited state, ΔEDQ2 for the second lowest S = 

1/2 excited state.354 The table summarizes exchange coupling constants J/k of diradicals 5, 6 and triradicals 7 - 

9. 

Annulated hydrazyls such as 1,2,4-benzotriazinyl radical (Blatter radical) and oxoverdazyl radical 

possess excellent stability. Their stability originates from excellent spin delocalization optimized by 

π-orbital overlap between the atoms in the 6-membered ring structure, making them great radical 

fragments for constructing stable high-spin radicals.3 In addition, Okada and co-workers recently 

discovered the Pd(0)-catalyzed cross-coupling reaction between gold(I)-nitronyl nitroxide(NN-Au) 

complex and aryl iodides,344 inducing the development of cross-coupling reaction between gold(I)-

nitronyl nitroxide complex and derivatives of Blatter radical and oxoverdazyl radical.149,153,154  



  In 2016 – 2021, our group had designed and synthesized high-spin diradicals 10,147 11,148,149 and 

triradical 12149 based on NN and Blatter radical (Figure 21). These NN-Blatter diradicals and triradical 

possess robust thermal stability and good magnetic properties, which have been applied to form thin 

films via evaporation under controlled conditions.148,149 Diradicals 10 and 11 are originally synthesized 

by the condensation of corresponding formyl-benzotriazinyl (formyl-Blatter) radical and 2,3-

bis(hydroxyamino)-2,3-dimethylbutane followed by oxidation reaction, with isolated yields of 4 – 12 % 

and 18 – 29 % in the multistep syntheses. The overall yield of a similar procedure for triradical 12 is 

rather low,  1%.  

In contrast to the disappointing yield under condensation conditions, direct cross-coupling 

reaction of di-iodo-Blatter radical with NN-Au (Scheme 1), using the highly reactive Pd(0)-catalyst, 

Pd[(t-Bu)3P]2, gives significantly higher 19 – 42 % yield, in a shorter, more convergent synthesis. 

Similarly, diradical 11 is generated in 30 – 44 % yield when mono-iodo-Blatter radical is cross-coupled 

with NN-Au.149 

We discuss X-ray crystal structures of 10, 11, and 12 (Figure 25) to better understand the structure-

property relationships regarding magnetic properties.  

In diradical 10, two dihedral angles between the NN moiety and Blatter radical π-system are ~30º 

and 49º, respectively. Two nonequivalent molecules, A and B, are observed in diradical 11. In molecule 

A, the NN moiety is nearly coplanar with the Blatter radical π-system with the corresponding torsional 

angle in the (-13) – (-15)° range, while in molecule B, there is considerably greater out-of-plane 

twisting with the corresponding torsions of 28 – 30°. In the crystal, molecules A and B pack in an 

alternating fashion into one-dimensional chains along crystallographic a-axis with close 

intermolecular N···N and O···N contacts.  

 



      
Figure 25. Structures of diradicals 10, 11 (molecule A), and triradical 12 with selected torsional angles. For 12, 

two pseudo polymorphs are shown.   

  For triradical 12, two single crystal X-ray structures were obtained: triclinic (centrosymmetric P-1) 

and orthorhombic (Pna21). The orthorhombic structure contains one molecule of chloroform, which 

is a solvent polymorph. The two pseudo polymorphs have significantly different crystal packing. The 

triclinic structure consists of Ci-symmetric dimers of triradical molecules, while the orthorhombic 

structure contains one-dimensional -stacks of triradical molecules. For triclinic structure, both NN 

moieties are nearly coplanar with the Blatter radical π-system with torsional angles of 21.0 – 22.5º 

and 33.7 – 34.1º. Similar torsional angles between NN moieties and Blatter radical π-system are 

found in the orthorhombic structure, i.e., 19.0 – 19.8º and 28.6 – 30.9º. We note that the exchange 

coupling pathways between NN moiety and Blatter radical π-system are different. Therefore, the 

exchange couplings constants, J1/k and J2/k, are expected to be significantly different in 12 (Figure 25).      

  Furthermore, quantitative EPR spectroscopy and SQUID magnetometry of radicals in various glassy 

matrices and/or polycrystalline powders give ΔEST = 0.5 kcal mol-1 for 10, ΔEST ≥ 1.7 for 11 and ΔEDQ 

≈ 0.2 – 0.3 kcal mol−1, ΔEDQ2 ≈ 1.2 – 1.8 kcal mol−1 for triradical 12. Triplet ground states are 



established unequivocally by magnetization data. Low-temperature EPR spectra of diradical 10 and 11 

show triplet state (S = 1) and diradical 10 has a much smaller ZFS parameter |D|, compared to that for 

11. For polycrystalline 10 and 11, strong intermolecular antiferromagnetic interactions are observed in 

SQUID magnetometry. The plots of χT vs. T are fitted to the modified Bleaney-Brower equation for 

diradical requiring relatively large absolute value of negative mean-field parameters, θ ≈ -6 K and -14 

K, respectively. Notably, fitting both χT vs. T and χ vs. T data at low temperatures of polycrystalline 

11 satisfies 1-D antiferromagnetic S = 1 chain model, with relatively large intrachain J’/k = –14 K, 

which is consistent with its crystal packing.  

Low-temperature EPR spectra of triradical 12 show a quartet state (S = 3/2) in 2-MeTHF or 

toluene/chloroform (3:1) glassy matrices. Only a weak |ΔmS| = 2 transition can be detected and no 

|ΔmS| = 3 transition is observed. The spectral width for S = 3/2 triradical 12 in toluene/chloroform glass 

is 4D ≈ 320 MHz, which is intermediate between 2D ≈ 140 MHz for S = 1 diradical 10 and 2D ≈ 480 

MHz for 11. This reflects the intermediate strength of magnetic dipole-dipole interactions in 12 that 

dominate the EPR spectra in glassy matrices. Energy gaps ΔEDQ ≈ 0.2 kcal mol−1 and ΔEDQ2 ≈ 1.2 kcal 

mol−1 are obtained by variable temperature quantitative EPR spectroscopy on triradical 12 in 

toluene/chloroform glass/solution. When the triradical 12 is prepared in polystyrene glass and 

measured by SQUID magnetometry, the quartet ground state is unequivocally confirmed by 

magnetization data, as well as ΔEDQ ≈ 0.30 kcal mol−1 and ΔEDQ2 ≈ 1.83 kcal mol−1 are obtained from 

χT vs T plots. We speculate that different values for doublet quartet energy gaps might be associated 

with slightly different conformations (dihedral angles) for 12 in different glassy matrices/solutions. 

Both EPR and SQUID data of triradical 12 are fitted to the asymmetric linear triradical model (Figure 

24). 

  Both diradicals and triradical are very stable and they can be purified by silica gel column 

chromatography under ambient conditions. It is worth noticing that diradicals 10, 11 and triradical 12 



may be viewed as thermally robust; they show onsets of decomposition in thermal gravimetry analysis 

(TGA) at 175 ℃, 160 ℃ and 160 ℃, respectively. Diradical 10 can be sublimed without 

decomposition at 140 ℃ under vacuum (p ≈ 6  10-6 mbar). Such excellent thermal stable di- and tri-

radicals paved avenue for further pure organic high-spin materials designs and applications. The 

diradical 11 and triradical 12 were evaporated under ultra-high vacuum (UHV) conditions to form thin 

films (ca. 1 nm nominal thickness) on SiO2/Si (111) wafers by using organic molecular beam 

deposition (OMBD) at room temperature. The films were investigated by X-ray photoelectron 

spectroscopy (XPS), which can report on the chemical environment of C 1s core and N 1s core. 

Specifically, the C 1s core level line and the N 1s core level line of diradical 11 and triradical 12 are 

similar since they are both from NN moieties and Blatter radical π-system and have similar chemical 

environment. Specifically, the spectra show 3 types of carbon and 4 types of nitrogen with different 

ratios, e.g., the high bonding energy peak (~402 eV) in N 1s core level spectrum of triradical 12 is 

more intense than that of diradical 11 owing to the contribution of two NN moieties. While the films 

are stable under UHV, they show signs of decomposition in XPS after few hours at ambient 

conditions.148,149 Notably, drop-cast films of 12, with thickness of the order of hundreds nm, show 

much slower decay at ambient conditions, with XPS spectra showing saturation (plateau) behavior 

after a few days.149    

   Recently, a series of high-spin radicals 14 – 17 have been designed and synthesized in good yields 

via the cross-coupling reaction of iodo-oxoverdazyl radicals and NN-Au by Tretyakov and co-

workers.153,154 The design is similar relying on connection of two stable radicals to provide TMM 

topology, which generates a spin exchange coupling through the connecting C-C bond. However, the 

degree of spin delocalization onto the phenyl groups in oxoverdazyl radical is smaller than that in 

Blatter radical, leading to lower spin density at the carbon, which is bonded to carbon C2 of the NN 

moiety. Consequently, significantly weaker exchange couplings between oxoverdazyl radical and 



nitronyl nitroxide are found. Thus, these diradicals and triradicals possess rather small ΔEST and 

ΔEDQ.153,154  

   All these radicals are very stable, and they can be purified by silica gel column chromatography 

under ambient condition as well. In addition, diradicals 13, 14 and 15 show an apparent onset of 

decomposition in TGA at 217 ℃, 192 ℃ and 183 ℃, respectively. No TGA data of diradical 16 and 

triradical 17 was reported.154 

  In these radicals, different torsional angles (9 – 36º in 13 – 15, 28.3 – 51.3º in 16 and 17) are found 

between the NN moieties and respective phenyl rings, and between the phenyl rings and oxoverdazyl 

moieites (13 – 47º in 13 – 15, 6.9 – 53.2º in 16 and 17).  

  Singlet ground state for diradical 13 is confirmed by SQUID magnetometry and characterization of 

13 will not be discussed here. Low-temperature EPR spectra of diradical 14 and 15 are recorded. 

Simulation of low-temperature EPR spectra of diradical 14 and 15 show axial symmetry (E = 0). Larger 

|D| for diradical 15 is consistent with stronger |ΔmS| = 2 transition. The simulation of room temperature 

EPR spectra of 14 and 15 corresponds to 6 nitrogen hyperfine interaction (2 from NN moiety and 4 

from verdazyl moiety). For diradical 16 and triradical 17, only room temperature EPR spectra are 

reported. Simulations of EPR spectra for 16 and 17 indicate that the hyperfine couplings originate from 

6 and 8 nitrogens (14N), respectively.  

  Polycrystalline samples of diradicals 14 – 16 and triradical 17 are investigated by SQUID 

magnetometry. The χT vs T data for diradical 14 and 15 show the value of χT is close to 0.75 

K·emu·mol-1 at 300 K, which is close to the theoretical value of two magnetically independent S = ½ 

spins. Relatively small singlet-triplet energy gaps, ΔEST ≈ 0.29 kcal mol-1 for 14, ΔEST ≈ 0.07 kcal mol-

1 for 15 are reported. High-spin diradical 16 and triradical 17 have moderate low-spin high-spin energy 

gaps, ΔEST ≈ 0.39 kcal mol-1 for 16, and ΔEDQ ≈ 0.05 kcal mol−1, and ΔEDQ2 ≈ 0.43 kcal mol−1 for 17, 

obtained by fitting to the modified Bleaney-Bowers equation of diradical and the asymmetric linear 



triradical model (Figure 24), respectively.   

4.3.3. High-spin nitronyl nitroxide-based diradical anions 

The radical metal complexes are significant in the design of single-molecule magnet (SMM) 

because the paramagnetic spin centers can be bridges between metal centers and enhance the spin 

exchange interaction between metal centers and radicals.356 Among these radicals, both semiquinone 

radical anion and nitronyl nitroxide radical are widely used as paramagnetic ligands in SMMs.356 

  In 2000 and 2003, Shultz and co-workers reported semiquinone-nitronyl nitroxide diradical anion 

Zn complexes 18 and 19 (Figure 26).357,358 The complexes 18 and 19 were prepared by the 

condensation method (Scheme 1), starting with catechol-aldehyde synthetic intermediate, and then 

reacted with metal complexes and oxidized on air.357 Magnetic susceptibilities of polycrystalline 

complexes 18 and 19 are measured by SQUID magnetometry. Notably, strong intramolecular 

ferromagnetic coupling constant J in 18 is estimated as the lower limit >0.89 kcal mol-1 (>310 cm-1) 

by the absence of curvature in the plot of χT vs T of polycrystalline sample.357 Intramolecular coupling 

constant J in 19 is determined to 0.28 kcal mol-1 (100 cm-1) by fitting to the Bleaney-Brower equation 

without intermolecular interaction.358  

 

Figure 26. Structures of Shultz semiquinone – nitronyl nitroxide high-spin diradicals (diradical anions). Values 

of ΔEST are in kcal mol-1. 

 

 

 

 

 



4.3.4. High-spin nitronyl nitroxide-based di- and triradical cations.  

 Stable organic radical cations provide another attractive feature in the design of high-spin di- and 

triradicals. The important prerequisite for the design of stable radical-substituted radical cation systems 

is that the 1st oxidation potential (E1°) for the radical is significantly more positive, compared to the 1st 

oxidation potential of the neutral precursor to the radical cation. Because heteroatom substituted 

extended -systems have typically E1° of the order of +0.5 V (vs. SCE), nitronyl nitroxide with E1° ≈ 

+0.9 V311 for nitronyl nitroxide or even oxoverdazyl E1° ≈ +0.6 V (vs. SCE)359 are good choices. We 

note that Blatter radical (E1° = +0.10 V)360 and phototetrazolinyl radical DiCN-PHT (E1° = –0.14 V) 

(Figure 3)161 are too easy to oxidize, and thus they are not suitable. 

In 2000, thianthrene linked nitronyl nitroxide radicals 20, 21, and 22 were synthesized by 

Sugawara and co-workers (Figure 27).265 High-spin states in diradical cation and triradical cations are 

detected by pulsed EPR nutation spectroscopy at low temperatures. However, the energy gaps, ΔEST 

and ΔEDQ were not measured.265 We note that the 1st oxidation potential for thianthrene, E1° = +1.26 

V (vs. SCE),360 though comparable to E1° ≈ +0.9 V for nitronyl nitroxide, implies that a significant 

fraction of nitronyl nitroxide radical will get oxidized to diamagnetic cation, giving complex mixtures 

of radicals.    

  More recently, Okada and his co-workers have rationally designed and synthesized high-spin stable 

NN-linked electron donors di- and triradical cations, based on diphenyldihydrophenazine (DPP·+-NN, 

23 – 25),361,362 trioxytriphenylamine (TOT·+-NN, 26 and DOTT+-NN, 27),363,364 and phenothiazine 

(PTZ·+-NN, 28).365 These high-spin di- and triradical cations 23, 25 – 28 have good stability and large 

intramolecular exchange couplings between electron-donor moiety and nitronyl nitroxide (Figure 27). 

In 2004, Okada and co-workers synthesized high-spin diradical cation 23 based on 

diphenyldihydrophenazine (DPP·+-NN).361 The diradical cation salt can be isolated as perchlorate 

(ClO4
-) salt and is stable at ambient conditions. X-ray crystallography of 23 shows formation of a 



dimer (Figure 28). Intramolecular interaction in polycrystalline 23 is determined from χT vs. T data 

using SQUID magnetometry. Lower limit for singlet triplet energy gap, ΔEST
 ≥ 2.8 kcal mol-1, is 

obtained by fitting dimer model (H = -2J1(SNN1·SDPhz1+SNN2·SDPhz2)-J2SDPhz1·SDPhz2).
361 This result is 

apparently only reproducible at T >100 K. However, we doubt the reliability of the finding of such 

large ΔEST
 ≥ 2.8 kcal mol-1 (or pairwise J/k ≥ 800 K) in 23 (vide infra). In addition, when 

tetrabromoferrate (FeBr4
-) is used as a counter anion for diradical cation 23, a three-dimensional, long-

range ferrimagnet is observed with ordering at Tc = 6.7 K, based upon measurements of dc and ac 

magnetic susceptibilities and heat capacity.366  

 
Figure 27. Structures of stable high-spin diradicals and triradical cations based on nitronyl nitroxide. Values of 

ΔEST and ΔEDQ are in kcal mol-1. 



 
Figure 28. Molecular structure (I), a dimer structure in the crystal packing (IIa), and a schematic diagram of 

magnetic interaction (IIb) for diradical cation 23. (I) Drawn at 50% ellipsoids level; hydrogen atoms, the counter 

anion, and the solvent are eliminated for clarity. Reproduced from ref. 361. Copyright 2004 American Chemical 

Society 

In 2020, Okada group reported another high-spin diradical/triradical system based on NN-DPP-

NN 24, which can be switched by redox-induced modulation.362 Triradical cation NN-DPP·+-NN 25 is 

generated by one-electron oxidation of diradical 24. Both neutral diradical and triradical cation are 

stable and can be isolated as solids. For diradical 24, very weak intramolecular exchange coupling 

between two nitronyl nitroxide is observed due to the long through-bond, cross-conjugated pathway 

between two spin centers. In contrast, NN-DPP·+-NN 25 has stronger intramolecular exchange 

interaction because of the shorter exchange coupling pathways and smaller dihedral angles between 

the dihydrophenazine plane and the NN moieties. EPR spectrum of diradical 24 at room temperature 

shows a well-resolved nine-line spectrum, which corresponds to four equivalent 14N nuclei (Figure 

29a). EPR spectrum of triradical cation 25 at 200 K show a strong center single peak and two small 

side peaks. Forbidden |ΔmS| = 2 transitions are observed and their intensities are increased when the 

temperature is decreasing, which suggests the quartet ground state of 25. Intramolecular interactions 

of polycrystalline 24 and 25 are determined by χT vs T from SQUID magnetometry. High-spin 

diradical 24 and triradical cation 25 have small singlet-triplet energy gap, ΔEST = 0.0062 kcal mol-1 for 

24, and moderate doublet quartet energy gap, ΔEDQ = 0.32 kcal mol−1 (J/k = 160 K) for 25 by fitting 

to the modified Bleaney–Brower equation of diradical and symmetric linear triradical model (Figure 

24), respectively.  



We note that for ΔEDQ  0.3 kcal mol−1, there will be a significant population of the lowest S = ½* 

excited state at 200 K; presumably, large part of the difference between the experimental and simulated 

intensity for the center peak of 25 might be assigned to the S = ½* state, in addition to incidental S = 

½ impurities (Figure 29b). This suggests that the pairwise J/k = 160 is correct, at least concerning order 

of magnitude; this would imply that pairwise J/k ≥ 800 K (and ΔEST
 ≥ 2.8 kcal mol-1) in diradical cation 

23 are badly overestimated (see: further discussion in Section 4.3.5). We add that the pairwise J/k 

values in the classic Iwamura’s nitroxide di- and symmetric triradicals are similar: 319 K (5) vs. 231 

K (7) and 108 K (6) vs 127 K (9) as illustrated in Figure 24.     

 

 
Figure 29. EPR spectra of a) 24 in toluene at 293 K (9.41575 GHz, giso=2.0067) and b) 25. For b), black solid 

and red broken lines showed the observed spectrum of the allowed transition in a glassy diethyl phthalate matrix 

at 200 K (9.438855 GHz) and simulated spectrum of the quartet species by using gxx=2.0080, gyy=2.0040, 

gzz=2.0030, gav=2.0055, |D/hc| =0.00473 cm-1, and |E/hc| =0.00057 cm-1, respectively. Reproduced with 

permission from ref. 362. Copyright 2020 Wiley. 

Subsequently, Okada and coworkers reported the diradical cations 26 (NN-TOT+) and 27 (NN-

DOTT+) (Figure 27).363,364 NN-TOT was synthesized by condensation of TOT-formyl derivative with 

2,3-bis(hydroxyamino)-2,3-dimethylbutane and followed by oxidation reaction. NN-DOTT was 

assembled by Pd(0) cross-coupling reaction of iodo-DOTT and NN-Au. X-ray structures show 

moderate dihedral angles between radical cation plane and NN moiety (28º for 26 and 33º for 27, 

respectively), which is helpful in generating large spin exchange intramolecular interaction.  



The χT vs T of polycrystalline 26-GaCl4
- and 27-SbF6

- are investigated by SQUID magnetometry. 

The χT value of 26-GaCl4
- is 0.964 emu K mol-1 at 300 K and increases to 0.992 emu K mol-1 at 200 

K. This value is so close to 1.000 (pure S = 1 spin with g = 2.000), which implies there is a strong 

intramolecular exchange coupling, J/k > 300 K, between the NN moisty and TOT+ radical cation. 

Simulation of the χ vs T data in the T = 3 – 300 K range, using modified “S = 1” Fisher chain model   

provided intramolecular feromagnetic exchange coupling J/k = 400 K and intra-chain (inter molecular) 

antiferromagnetic exchange coupling J’/k = –1.85 K; this corresponds to ΔEST = 1.6 kcal mol-1 (2J/k 

= 800 K).363   

For 27-SbF6
-, χT value is 0.884 emu K mol-1 at 300 K and slightly decreases to ~ 0.8 emu K mol-

1 at 100 K. The intramolecular exchange coupling between the NN moiety and DOTT+ radical cation 

is assumed to be larger than thermal energy, J/k > 300 K (vide infra), and S = 1 (NN-DOTT+) spin is 

applied to χ vs T data when simulating the intermolecular antiferromagnetic interactions, using 

modified Fisher S = 1 chain model. A weak intra-chain interaction, J’/k = –7.4 K, and a comparable 

inter-chain interaction, zJ”/k = 2.5 K are found. While the fit of χT vs T data with the modified Fisher 

chain model is satisfactory at low temperatures, near the room temperature, the fit is not as good. Most 

likely, the interaction between NN moiety and DOTT+ is not strong enough to regard as a S = 1 spin 

near the room temperature. We note that the value of χT = 0.884 emu K mol-1 at 300 K is close to 0.89 

emu K mol-1 for a diradical with singlet triplet gap, 2J/k = 300 K (Section 4b2, Figure 19). 

In addition, diradical cation 27 shows a magnetic phase transition from the antiferromagnetic state 

to the weak ferromagnetic state at TN = 2.65 K based on susceptibility and heat capacity measurements. 

For the FeBr4 salts of 27 magnetic phase transition into a weak ferromagnet at 7 K is suggested. 

  Recently, Okada also reported a diradical cation 28 (DAA-PTZ-NN+) (Figure 27), which was 

synthesized by Pd(0) cross-coupling reaction of iodophenothiazine DAA-PTZ-I with NN-Au (Scheme 

1) followed by oxidation reaction of the PTZ moiety to corresponding radical cation. Here, both GaBr4
- 



(S = 0) and FeBr4
- (S = 5/2) are used as counter anions.365 The EPR spectrum is relatively narrow with 

|D| = 60 MHz and a weak |ΔmS| = 2 transition is found for 28-GaBr4 in butyronitrile glass at 100 K. 

The χT vs T plot for polycrystalline 28-GaBr4
- is obtained using SQUID magnetometry. Specifically, 

the χT value of 28-GaBr4
- is 0.96 emu K mol-1 at 300 K and the value is approaching 0.99 emu K mol-

1 at 100 K, then the χT value decreases rapidly when temperature is lowered to about 0.5 emu K mol-1 

at 2 K. This indicates a strong intramolecular and weak intermolecular exchange coupling in 

polycrystalline 28-GaBr4
-. Value of ΔEST

 = 1.28 kcal mol-1 (J/k = 320 K) for 28-GaBr4
- is determined.  

It should be mentioned that diradical cation of NN-PTZ without diarylamine substituent could not be 

isolated – presumably due to its lack of sufficient persistence.346 

 

4.3.5. The relation between the hyperfine coupling constant in monoradicals and pairwise 

exchange coupling constant J/k in NN-based diradicals and triradicals. 

Large spatial “coincidence” of spin density at the two adjacent radical fragments, one with  and 

one with  spin at the connecting atoms, are necessary for strong ferromagnetic exchange interaction 

in the resultant TMM-like, NN-based high-spin di- or triradical (Figure 20). Spin density delocalization 

into the ferromagnetic coupling unit (FCU) can then affect the pairwise exchange coupling constant 

J/k in the high-spin di- or triradical, with the greater spin density within the FCU, corresponds to the 

greater J/k.313 The magnitude of spin density within the FCUs of these high-spin di- and triradicals, 

and thus the magnitude of pairwise J/k will be governed by two factors: spin density at the atom X 

within the C2-X bond and average torsion angle  (Figure 30). Since spin density at atom X is directly 

related to absolute value of hyperfine coupling constant, |A(1H)|, for 1H within the X-H bond in the 

corresponding monoradical, we should be able to correlate J/k with |A(1H)| and  (Figure 30).  



 
Figure 30. Conceptual relationship between pairwise J/k in NN-based high spin di- and triradicals, and |A(1H)| 

in monoradicals. 

McConnell’s relationship367 estimates of the spin density at sp2-hybridized carbon atom in organic 

radicals as: 

                       A(1H) = QCH*ρC                             (7) 

where A(1H) (in MHz) is hyperfine coupling constant for 1H within the C-H bond and ρC is the spin 

density at carbon. Value of the “constant” QCH generally depends on the type of monoradical, as its 

value decreases with negative and increases with positive charge.368,369 Typical values of QCH (in MHz 

or Gauss) fall into the following ranges:368 

(1) radical anions, –56 – (–76) MHz or –20 – (–27) Gauss  

(2) neutral radicals, –64 – (–84) MHz or –23 – (–30) Gauss 

(3) radical cations, –73 – (–90) MHz or –26 – (–32) Gauss  

A relationship analogous to that in eq. 7 can be applied to sp2-hybridized nitrogens:368,370 

        A(1H)N = QNH*ρN                             (8) 

where A(1H)N is hyperfine coupling constant for 1H within the N-H bond and ρN is the spin density at 

nitrogen. We will use unambiguously determined value QNH = A(1H)N = –72.5 MHz (ANH = –25.9 

Gauss) in NH3 radical cation.371 Because in isoelectronic methyl radical, QCH = A(1H) = –64.5 MHz 

(ACH = –23.0 Gauss),369 we will use a factor of QCH/QNH to convert experimentally determined values 



of A(1H)N (or ANH) to “adjusted |A(1H)|” (or “adjusted ACH”).   

Values of experimental |ACH| (or “adjusted |ACH|”) in Gauss for the following monoradicals are 

converted to |A(1H)| in MHz, using experimental g-values, as summarized in Figure 31 and Table 4.3.5: 

methyl nitroxide (its “adjusted |A(1H)|” is used for tert-butyl nitroxide),372,373 phenyl nitroxide,374,375 

tert-butylphenyl nitroxide,376 diphenyl nitroxide,377 Blatter radical,378 oxoverdazyl radical,379 3,5-di-

tert-butyl-semiquinone,380 3-tert-butyl-5-phenylsemiquinone,358 dihydro-phenazine radical cation,381 

trioxytriphenylamine radical cation,382 and phenothiazine radical cation.383  

Linear regression of J/k vs. |A(1H)| is reasonable,313,358 only when diradical cation 23 and 

diradicals 1, 3, and 4 are excluded as outliers (Figure 32). The reasons for exclusion of 23 were 

discussed in the preceding paragraphs – 23 is a clear-cut outlier. Diradicals 1 and 4 must be excluded 

because of large torsion angles  and 3 is excluded because of large error in its large value of J/k 

reported as the lower limit. For other 16 values of J/k, good correlation with |A(1H)| is obtained, with 

statistically adjusted R2 = 0.8777, because in the corresponding di- and triradicals the torsion angles  

are low to moderate (Table 4.3.5). In addition, this may suggest that differences in McConnell constants 

(QCH, Eq. 8) between neutral radicals and radical ions are either not significant in our set of 

monoradicals (Figure 31) or these differences are built-in to J/k. In the second case, this would mean 

that, with identical spin densities at atom X, values J/k are in the following order: radical cations > 

neutral radicals > radical anions.   



 
Figure 31. Structures of monoradical centers – fragments of NN-based di- and triradicals. Hydrogen atoms 

(protons), for which values of ACH and |A(1H)| are listed in Table 2, are highlighted in blue color. For 3,5-di-tert-

butyl semiquinone, it is assumed that the spin densities at C4 and C5 are very similar.380   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4.3.5. Experimental J/k for selected high-spin di- and triradicals (Figures 21, 26, and 27) and 

hyperfine coupling constants (|A(1H)|) for the corresponding monoradicals (Figure 31).  

Di- or 

triradical 

Corresponding 

monoradical 

ag 

 

|ACH| 

(Gauss) 

b|A(1H)| 

(MHz) 

cθavg 

() 

|A(1H)|*cos2 

(MHz) 

d J/k 

(K) 

Monoradical 

reference 

1 alkyl nitroxide 2.0055 e12.3 34.49 72.7 3.05 390  372/373 

3 phenyl nitroxide 2.0055 e11.3 35.75 17.6 28.85 >1000 374/375 

4 alkyl nitroxide 2.0055 e12.3 34.49 64.1 6.58 440 372/373 

5 
tert-butylphenyl 

nitroxide 
2.0060 1.9 5.33 27.4 4.62 319 376 

7 diphenyl nitroxide 2.0056 1.83 5.14 f26.5 4.11 231 377 

8 diphenyl nitroxide 2.0056 1.83 5.14 25.5 4.18 349 377 

10 Blatter radical g2.0033 0.61 1.71 28.6 1.32 121.5 36 

11 Blatter radical g2.0033 1.84 5.16 i21.5 4.46 438 37 

12 Blatter radical g2.0033 
0.61 1.71 31.8 1.23 94 38 

1.84 5.16 20.6 4.52 352 38 

14 oxoverdazyl radical 2.0037 0.65 1.82 35.7 1.20 72 39 

15 oxoverdazyl radical 2.0037 0.18 0.50 21.5 0.44 17.8 39 

17 oxoverdazyl radical 2.0037 
0.65 1.83 51.2 0.72 17 40 

0.65 1.83 28.1 1.42 105 40 

18 
3,5-di-tert-butyl-

semiquinone 
h2.0047 3.33 9.33 1.0 9.33 446 380 

19 
3-tert-butyl-5-

phenylsemiquinone 
h2.0047 0.61 1.71 i10.5 1.65 144 358 

23 
dihydrophenazine 

radical cation 
2.0029 1.75 4.90 20.4 4.31 700 381 

25 
dihydrophenazine 

radical cation 
2.0029 1.75 4.91 10.1 4.75 160 381 

26 
trioxytriphenylamine 

radical cation 
2.0031 2.60 7.28 29.8 5.48 400 382 

28 
phenothiazine radical 

cation 
2.0052 2.15 6.03 13.1 5.72 320 383 

ag is the isotropic g-value of monoradicals. bΔν = ΔB(gµB/h), conversion from Gauss to MHz, where h is the 

Plank’s constant, g is the isotropic g and µB is the Bohr magnetron. cThe θ is the average of torsional angles 

between NN moieties and corresponding monoradical-fragments in di- and triradicals; all data are from the 

crystallographic files.  dThe J/k is from SQUID, while the values of J/k for 10 and 12 are the averages from 

SQUID and quantitative EPR spectroscopy. e The “adjusted |ACH|” of alkyl nitroxides is derived from that of 

methyl nitroxide, |ANH| = 13.8 G, and for 1,3,5-triphenylphenyl nitroxide from that of phenyl nitroxide, |ANH| = 

12.75 G; these values are converted to the corresponding “adjusted |ACH|” by correcting for the different values 

of McConnell’s Q constants for nitrogen vs carbon; e.g., for alkyl nitroxides “adjusted |ACH|” = 13.8/(–25.9)*(–

23.0) G = 12.3 G. fThe single crystal structure of 7 is not obtained, thus for this triradical θ is assumed to be the 

average θ for 5 and 8. gThe g-value is from SI of ref 384. hThe g-value is from ref 385. iThe structures of diradical 

11 and diradical anion 19 contain two different molecules, their θ is the average value of two molecules. When 

it is assumed that in DCM-free polycrystalline material of 11, used for SQUID magnetometry, only molecules 

A are present, with |θavg|  14 , then |A(1H)|*cos2 = 4.86. 



  

Figure 32.  Plot of experimental J/k vs. |A(1H)| and linear regression. Outliers, such as diradical cation 23, 

diradical 1, diradical 3, and diradical 4 are not included in the linear regression; diradical cation 23 is shown in 

red color and diradicals 1, 3, and 4 are out of range of the plot and are not shown. Based on linear regression, 

predicted values of J/k for 23 and 3 are 268 and 1700 K, respectively. 

In 2003, in ground-breaking contributions, Shultz and coworkers386,387 established the Karplus-

Conroy-type388 relation between pairwise exchange coupling constant J (cm-1) and torsional angles θ 

between radical center (fragments) and ferromagnetic coupling unit, such as 1,2-connected ethene 

(Figure 33, Eq 9): 

J = Acos2(θ) – B        (9) 

where A is the constant for ferromagnetic term and B is the constant for antiferromagnetic term.  

Two series of TMM-based diradicals, bis(semiquinone) and bis(nitroxide), are studied (Figure 33). For 

bis(semiquinone) diradicals, A = 213 and B = 44 cm-1 and for bis(nitroxide) diradicals, A = 44 and B = 

17 cm-1 are determined. Smaller values of A and B for bis(nitroxides) reflect smaller spin densities at 

the connecting atom of monoradical nitroxide fragment. Thus, when the torsional angle is smaller than 

~ 50° for bis(semiquinone) diradicals and less than ~ 60° for bis(nitroxide) diradicals, they possess 



ferromagnetic intramolecular exchange interactions. Otherwise, they possess antiferromagnetic 

intramolecular exchange interactions. It should be noted that in these diradicals, the larger θ leads to 

increased antiferromagnetic through-space exchange coupling between the monoradicals, thus leading 

to relatively large values of B. 

 
Figure 33. Selected TMM-type bis(nitroxide) and bis(semiquinone) diradicals. The ethene coupler and torsional 

angle θ are shown. 

In addition to Shultz’s relation (eq. 9), we should consider Heller-McConnell relation389,390 for 

hyperfine coupling constant for  protons (eq. 10): 

      A(1H)β = QCH
*ρC*cos2(θ)        (10) 

where A(1H)β (in MHz) is the hyperfine coupling constant for  proton (H), ρC is the spin density at 

 carbon (C), QCH
 is the constant (in MHz). Dihedral (torsion) angle θ is defined by the Hβ-Cβ-Cα 

plane and the axis of 2p orbital with unpaired electron at Cα (Figure 34).  

 

Figure 34. Hyperfine coupling to  protons. 

Based on the above discussion, the torsional angle between NN moiety and bonding radical 

fragment in the NN-based high-spin radicals may need to be considered in the intramolecular exchange 



interaction. We note that in Shultz’s relations, A < B, and, for each pairwise J/k, two average torsion 

(or dihedral) angles θ are involved. However, in our system only a single average torsion angle between 

NN moiety and the bonded radical fragment is involved (Figure 30), and thus much larger θ (~90) 

might be required for crossover to antiferromagnetic J/k. In view of the above discussion and Heller-

McConnell relation, we propose the relation between the following experimental variables: pairwise 

J/k in NN-based high-spin di- and triradicals (neutral and ions) and torsion corrected |A(1H)| in related 

monoradicals: 

    J/k = A*|A(1H)|*cos2(θ)        (11) 

where A is the constant (slope in a linear regression). After exclusion of diradicals 1, 3, and 23 

from linear regression, statistically adjusted R2 = 0.8721 for the set of 17 values of J/k is obtained, 

indicating a reliable correlation. Based on the regression (Figure 35), we predict for 1, 3, and 23, 

“correct” values of J/k = 190, 1800, and 268 K, compared to experimental values 390, >1000, and >800 

K, respectively.349,351,361 The experimental value of EST for 1 was likely overestimated while for 23, 

as discussed in the prior sections, it was incorrect. For diradical 3, we confirm very large value of EST 

 7.2 kcal mol-1, which would be challenging to be determined by the experiment, based on the 

detection of thermal population of the lowest singlet excited state (Figure 19).    

 

 

 



 

Figure 35. Plot of experimental J/k vs. |A(1H)|*cos2() and linear regression. Outliers, such as diradical cation 

23, diradical 1, and diradical 3 (not shown) are not included in the linear regression; data points for 23 and 1 are 

shown in red color. Based on the linear regression, predicted values of J/k for 23, 1, and 3 are 268, 190, and 

1800 K, respectively.   

In addition, the average torsional angles ε of the phenyl groups (connected to N or C) in Blatter 

and oxoverdazyl radical are considered (Figure 36). Because the change of ε angles can affect the 

overlap of 2p-orbitals and then alter the spin delocalization. For instance, the average ε in Blatter 

radical is 54.2º.391 These angles decrease to 45.4º in 10,147 41.1º in 11,148 and 45.1º or 49.8º in 12 (12 

has two pseudo polymorphs).149 The smaller ε angle can increase the effective |A(1H)| in the Blatter 

radical moiety. Thus, the effective |A(1H)| in diradical 10 is larger than that of parent Blatter, thus 10 

lies above the regression line (Figure 35). 

 Two ε angles in 1,3,5-triphenyl-6-oxoverdazyl radical are 38.2º.379 However, the ε angles in 17 are 

different, 25.3º and 46.6º.154 As a result, two different ε angles in triradical 17 enhance the difference 

between J1/k and J2/k, due to two different  angles (Table 4.3.5). 



 

Figure 36. Structures of Blatter radical, oxoverdazyl radical, corresponding di- and tri-radicals and definition 

of torsional angles . All the angles are from the X-ray crystal structures. 147-149, 153, 154, 391 

 

4.4. High-spin diradicals with Kekulé resonance forms – rule breakers?  

In this section, we discuss exceptional high-spin diradicals, which possess Kekulé resonance 

forms. There is a significant classic work done, both experimental and computational, on 

antiaromatic diradicals, such as pentadienyl cation392-395 and benzene dication.396--398 In 2021, 

definitive work on triplet ground state of benzene dianion have appeared.399 We will focus our 

discussion on recent examples where the significant effort was done to determine the ground state, 

starting with odd alternant -systems and ending with even-alternant chiral -systems. 



1,8-Perinaphthyldiyl is a well-known non-Kekulé, C2v-symmetric molecule400 with planar, 

alternant -system (Figure 37), possessing connectivity corresponding to triplet ground state (Figures 

15 and 16). Recent computations by Borden et al at the (12/12)CASPT2/aug-cc-PVDZ+ZPVE level 

predict triplet ground state with EST = 4.4 kcal mol-1.401 (We should note that at the same level of 

theory, analogous 1,8-naphthoquinodimethane is predicted to be singlet ground state with EST = –

2.1 kcal mol-1.401) Wirz et al studied R = H and R = Me derivatives of 1,8-perinaphthyldiyl and also 

concluded that both molecules are triplet ground state. This conclusion was largely based on the 

absence of temperature dependence in UV-vis absorption, excitation, and fluorescence spectra, and 

their agreement with the computed spectra for triplet state; experimental absorption spectra showed 

absence of NIR bands, which were computed for the spectra of singlet state. Unfortunately, EPR I vs. 

1/T plots showed some downward curvature at low temperatures (e.g., for R = Me, EST  –0.006 

kcal mol-1), which were tentatively associated with either inadequate temperature control or 

microwave saturation (Section 4b1).402,403 In summary, we conclude that 1,8-perinaphthyldiyls are 

triplet ground states with substantial EST.  

In 1997, McMasters, Wirz, and Snyder reported on two 1,8-perinaphthyldiyl derivatives, with 

nonalternant -systems, that also possess Kekulé resonance forms, i.e., 2,2-dimethyl-2H-

benzo[cd]fluoranthene (29) and 2,2-dimethyl-2Hdibenzo[cd,k]fluoranthene (30) (Figure 37).404,405 

These molecules compensate the formal loss of a double bond in the diradical non-Kekulé resonance 

form with the aromatic resonance energy of fluoranthene and benzo[k]fluoranthene, respectively. 

Ground states for both diradicals are established based on the UV-vis-NIR absorption spectra; that is, 

for 29, well-resolved NIR bands extending to ca. 1300 nm are found, while for 30, the spectrum 

extends to just 665 nm, where a very sharp band is observed. These distinct spectral features for 

singlet vs. triplet states are reproduced by the Pariser−Pople−Parr (PPP) semiempirical type of 

computations.405  



 
Figure 37. (A) McMaster, Wirz, and Snyder diradicals 29 and 30. Values of ΔEST are in kcal mol-1. (B) and 

(C) EPR spectroscopy of diradical 30. Parts (B) and (C) of the figure are reproduced from ref. 405. Copyright 

2001 American Chemical Society 

 Singlet ground state for 29 is also supported by the absence of EPR signal for triplet state at 

temperatures up to 170 K, thus providing a rough upper limit estimate, EST < –1 kcal mol-1. In 

contrast to 29, a strong EPR spectrum corresponding to paramagnetically pure triplet state of 30 is 

detected in 2-MeTHF at 90 K; that is, the center peak at 3340 Gauss was assigned to double quantum 

transition in the triplet state (Figure 37). While plot of I vs 1/T is approximately linear in the 50 – 8 K 

(and 75 – 8 K) temperature range, when data points at 6 and 4 K are included, a curved plot, 

corresponding to EST < –0.015 kcal mol-1, is obtained. Analogously to the authors’ studies of 1,8-

perinaphthyldiyl (see above),402,403 the downward curvature of the I vs. 1/T plot is tentatively 

associated with inadequate temperature control or microwave saturation (Section 4b1).405 In 

summary, we conclude that diradical 30 is the triplet ground state with estimated lower limit of 

EST > +0.3 kcal mol-1.   

In 2022, Yasuda, Konishi, Kishi, and coworkers have succeeded in preparation of the 7th (final) 

nonalternant isomer of pyrene 31 (Figure 38A).406 Diradicals 31a and 31b are sensitive to air, with 

1/2 = 19 and 73 h. Both diradicals possess singlet ground state, and not surprisingly 31b possesses 

larger |EST|, suggesting better stabilization of zwitterionic singlet state by the electron withdrawing 



group (Dcp). However, the magnitude of this effect (3 – 4 kcal mol-1) is rather surprising (Figure 

38A). 

 
Figure 38. (A) Final nonalternant isomer of pyrene (azulene-based): singlet ground state with substituent 

dependent EST. (B) Nonalternant diradical 32: most likely, triplet ground state with large EST. Values of 

ΔEST are in kcal mol-1. 

 In 2022, Shintani, Sato, Shimizu and coworkers were successful in synthesis, isolation, and 

crystallographic characterization of air-sensitive (1/2 << 15 min on air) diradical 32.407 The diradical 

resonance form is clearly much better stabilized, compared to the Kekulé resonance form, which also 

comprises of antiaromatic 32 π-electron perimeter (Figure 38B). This is unlike in diradical 31, where 

the Kekulé form has an aromatic 14 π-electron perimeter and zwitterionic form (with two benzenoid 

rings) is a significant contributor (Figure 38A). Consequently broken-symmetry DFT computations 

predict triplet ground state with large EST = 6.3 kcal mol-1, which is comparable to EST = 6.4 kcal 

mol-1 computed at the similar level of theory (UB3LYP/6-31G(d)+ZPVE) for the planarized 

triarylmethyl diradical (see: the corresponding radical anion PTAM in Figure 10). This is reasonable 

because the DFT-computed spin density distributions in the triplet states of 32 and diradical PTAM 

are similar (Figure 39). Because the EPR spectrum of 32 shows a significant contamination (50%) 

with unknown S = ½ impurities (Figure 39ab,f), the authors are able to obtain only I vs. 1/T plot for 

|Δms| = 2 transition.407 (Authors fail to display full scale spectrum showing the center peak for S = ½ 

impurities and to demonstrate whether the spectrum was obtained under the conditions, in which S = 



½ species are not partially saturated; this makes our estimate of amount of S = ½ impurities very 

approximate.) An approximate linearity of this plot in the 4.7 – 68 K temperature range suggests 

either near-degenerate singlet and triplet states with |EST| < 0.02 kcal mol-1 or triplet ground state 

with EST > 0.3 kcal mol-1. We note that in the work done more than 30 years ago,34 air-sensitive 

diradical PTAM could be isolated as a reasonably pure polycrystalline solid, with a clean triplet EPR 

spectrum in glassy 2-MeTHF and SQUID data on the polycrystalline sample provided clear-cut 

evidence of the triplet ground state. We conclude that diradical 32 is most likely triplet ground state. 

 
Figure 39. EPR spectra of diradical 32 in toluene at 69 K (solid line: experiment, dashed line: simulation), (a) 

|Δms| = 1 and (b) |Δms| = 2. (c) Plot of the temperature dependence of the triplet signal intensity I versus 1/T 

from 68 to 4.7 K. (d) and (e) Spin density maps for triplet states of diradicals: simplified 32 ((d)) and PTAM 

((e), isodensity level of 0.002 electron/Bohr); darker and blue colors correspond to positive spin densities. (f) 

Simulation of the spectrum in (a) with monoradical-to-S = 1 diradicals molar ratio of 3:2.5; for both monoradical 

and two conformers of diradical (1.5:1), the parameters listed in ref 407 (Fig. S9, SI) are employed. Parts (a) – 

(d) of the figure are reproduced with permission from ref. 407. Copyright 2022 Wiley. 

In 2019, our group reported an air-stable diradical dication 33 of chiral D2-symmetric conjoined 

bis[5]diazahelicene with a high-spin (S = 1) ground state and ΔEST  0.3 kcal mol–1 (Figure 40).301 

(For a structure of analogous S = ½ radical cation, see Figure 10.) This diradical dication possesses 

closed-shell (Kekulé) resonance forms with Hückel antiaromatic 16 π-electron perimeters, as shown 

for a simplified structures of 33a in Figure 40.  



 

Figure 40. Structure drawing of diradical dication 33 and the representative resonance forms for simplified 

structure 33a. Reproduced from ref. 301. Copyright 2019 American Chemical Society. 

 

We note that the non-Kekulé resonance forms of 33a possess Hückel antiaromatic 16 π-electron 

perimeters, but these are well offset by two benzenoid rings, thus leading to relative stabilization of 

open-shell forms. 

The diradical dication is monomeric in dibutyl phthalate (DBP) solution/matrix and its EPR 

spectra are paramagnetically pure (Figure 41). Quantitative EPR spectroscopy is used to determine 

the ground state and ΔEST by the by measurements of χT in the T = 105–330 K range (Figure 41). 

The following standard procedure is employed: “Values of χT are obtained by spin counting using a 

standard such as TEMPONE in DBP (in triplicate, n = 3) and then are fit to the Bleaney–Bowers 

equation (e.g., eq. 5 with  = 0) to provide a singlet–triplet energy gap 2J/k = 145 ± 4 K (mean ± 

SE), i.e., ΔEST  0.3 kcal mol–1.“301   



 

 

Figure 41. EPR spectroscopy of 0.82 mM diradical dication 33 in DBP: (A) spectra at 117 K; (B) plot of χT 

vs. T, obtained by quantitative EPR spectroscopy. Reproduced from ref. 301. Copyright 2019 American 

Chemical Society. 

In a different experiment, quantitative EPR spectroscopy with 14 time points in the 0–48 h range 

and with accurate measurements (n = 3) of χT at 117 K, provides 1/2 > 2 weeks at ambient 

conditions (on air) in the presence of excess oxidant (NO+SbF6
-). 

Partially enantiomerically enriched samples of 33 show good chiroptical properties with Δεmax  

30 L mol–1 cm–1 and anisotropy factor |g| = |Δε|/ε  0.005;301 this value will be re-measured, as 

recently, we are able to isolate enantiomerically and paramagnetically pure 33, and to obtain its X-

ray structure. The reported value of |g| for 33 is comparable to |g| = 0.004 for the Osuka’s air-stable 

porphyrin-based S = 1/2 radical (Figure 8)298 and to those of [6]helicene (|g| = 0.007)408 and neutral 

carbon–sulfur [7]helicene (|g| = 0.004)409 but smaller than the |g| = 0.039 for neutral carbon–sulfur 

double helix.410 

In summary, the first triplet ground state diradical (dication), in which the spin density is 

delocalized over double helical (or helical) -system. Notably, triplet ground state was found despite 

the presence of Kekule resonance form with alternant -system. Although its chiroptical properties 



appear promising, the ΔEST  0.3 kcal mol–1 is still a bit too low and counterions are likely to affect 

the properties in the single crystals and thin films. We were able to identify two new triplet ground 

state diradicals, with double helical -systems, one neutral and another dicationic but with higher 

ΔEST (Figures 10 and 12). 

  

4.5. High-spin Blatter-based diradical as electrical conductor – rule breaker? 

This Section is focused on high-spin diradical 34 (Figure 42), which also possesses good 

electrical conductivity, σRT = 0.044 ± 0.012 S cm–1 (mean ± SE), at room temperature.150 These 

measurements were carried out on 15 randomly selected single crystals, with the best single crystal 

device possessing σRT = 0.13 S cm–1.150 The discovery of good electrical conductivity in 34 is 

unusual because its cross-conjugated -system does not promote electron delocalization305,313,329 or 

conductance.411-413 For example as mentioned in Section 3, in triarylmethyl-based radical anion, 

which formally derived by 1-electron reduction of high-spin ground state m-phenylene diradical, has 

the spin density localized on one of the two triarylmethyl moieties, based on EPR spectra (also, see: 

spin density maps for radical anion MX in Figure 10);305,313 similar localization of spin density is 

observed in high-spin diradical anions and diradical dianions formally derived from the 

corresponding high-spin tri- and tetraradicals.329 Significantly lower single molecule conductance 

observed for cross-conjugated -systems412,413 may be associated with quantum interference.411    

We will start with an overview of electrical conductivity in stable organic radicals, which were 

discussed throughout Section 2. Typical neutral π-radicals are insulators with σRT < 10–10 S cm–1, e.g., 

DPPH (Figure 3),127,128 galvinoxyl (Figure 5),128 and TEMPOL (Figure 4).175 Even recently prepared 

radicals forming -dimers or equidistant -stacks such as OR1,81 BR1,82 and Kubo’s phenalenyl79 

with R = perfluorophenyl (Figure 1) possess very low conductivity σRT < 3 × 10–9 S cm–1. We note 

that equidistant -stacks for BR1 and Kubo’s phenalenyl has plane-to-plane distances of 3.565 and 



3.503 Å, respectively. In comparison Haddon’s zwitterionic spiro-bis(phenalenyl) (R = benzyl) 

(Figure 1), forming a uniform one-dimensional S = ½ antiferromagnetic Heisenberg chain (J/k = – 75 

K) and possessing closest C---C contacts of 3.47 and 3.58 Å along the stacking direction, has RT = 

1.4 × 10-3 S cm-1 with Ea = 200 meV.85 Similarly, single crystal TOT (R = Br) (Figure 5), which 

forms slipped -stack with equidistant TOT moieties (3.43 Å), has σRT = 1.8 × 10–3 S cm–1 with 

Ea = 0.310 meV.231 Single crystal TOT (R = H) (Figure 5) possesses is reported to possess even 

higher σRT = 0.32 S cm–1 with Ea = 90 meV.236 This conductivity is similar to that in Boudouris’ thin 

films of PTEO (Figure 4)176 with RT  0.3 S cm-1 and Haddon’s zwitterionic spiro-bis(phenalenyl) 

(R = n-hexyl) (Figure 1) with σRT  0.3 S cm–1 and Ea = 50 meV.84  Oakley’s best optimized neutral 

radical, oxo-bridged bisthiazolyl, OBBDTA (Figure 5), attains σRT  0.04 S cm–1 with 

Ea = 50 meV;257 at high pressure, this radical exhibits metal-like behavior with σRT  0.04 S cm–1 and 

Ea < 0.257  

Examination of the spin density in Blatter radical reveals large positive and negative spin 

densities at C7 and C3. Therefore, application of parity rules (Figure 15) indicates to us that a 

connection between the C7 and C3 positions would provide a di-Blatter high-spin diradical (Figure 

42). 

 

Figure 42. Structure drawing of diradical 34 and the design leading to high-spin ground state. An asterisk 

corresponds to spin-up in Figure 15; spin up at N2 spans both N1 and N2. TGA onset of decomposition ≈ 1% 

mass loss. Blatter radical and its spin density map at the UB3LYP/6-31G(d,p) level of theory; positive (blue) 

and negative (green) spin densities are shown at the isodensity level of 0.002 electron/Bohr. Reproduced from 

ref. 150. Copyright 2022 American Chemical Society.  

Diradical 34 may be viewed as thermally ultra-robust, based on the high onset temperature (1% 

mass loss) in TGA (Figure 42). In the crystal, two fused-ring Blatter radical moieties are nearly 



coplanar, thus providing the conformation of 34 in the crystal that is near optimum for attaining both 

strong ferromagnetic coupling and electrical conductivity (Figure 43). The latter is promoted by the 

formation of 1D π-stacks along the  

 

Figure 43. Single-crystal X-ray structure of diradical 34 at 100 K, with carbon and nitrogen atoms depicted 

using thermal ellipsoids set at the 50% probability level (A, B); the Bravais, Friedel, Donnay, and Harker 

(BFDH) crystal morphology of 34 (C), confirmed by the experimental face index; needle and stacking 

direction are along the a-axis. (D, E) Spin density maps for triplet states of two conformations 34A and 34B 

(at the UB3LYP/6-31G(d,p)+ZPVE level). Reproduced from ref. 150. Copyright 2022 American Chemical 

Society.  

crystallographic a-axis, which coincides with the longest dimension of the single-crystal needle 

(Figure 43C), with an average plane-to-plane distance of 3.482 Å (planes defined by the N1–N6 and 

C1–C20 atoms). Because of multiple intermolecular C···C and N···C contacts within the sum of van 

der Waals radii plus 0.1 Å distances, in addition to a short C10···C12 = 3.381 Å contact (within the 

1D π-stack), involving predominantly atoms with significant (and same sign) spin densities, strong 

intermolecular antiferromagnetic interactions are anticipated in crystalline diradical 34. 

DFT computations at the UB3LYP/6-31G(d,p)+ZPVE level reveal that conformer 34A, 

corresponding to that found in crystalline 34 (Figure 43), is a global minimum with EST ≈ 1.37 kcal 

mol-1, compared EST ≈ 0.34 kcal mol-1 for 34B. Because the ΔEST > 0 is overestimated at this level 

of theory, conformer 34B may be a singlet ground state (ΔEST < 0). Indeed, the χT vs. T data, 

obtained by quantitative EPR spectroscopy for the diradical in toluene/chloroform soft glass/fluid in 

the T = 110–331 K range, are best fit to a model of two conformations, one with ΔEST > 0 (ca. +0.4 



kcal mol–1) and the other, a minor one, with ΔEST < 0.150 Major conformation may be trapped in a 

rigid polystyrene glass as confirmed by quantitative EPR spectroscopy, giving 2J/k = 275 ± 36 K, 

i.e., ΔEST ≈ +0.5 kcal mol–1. The M/Msat vs H/T data at T = 1.8, 3, and 5 K for 34 in polystyrene 

matrix approximately coincide with the S = 1 Brillouin curve, thus providing unequivocal evidence 

for the triplet ground state. Thus, we may conclude that 34A found in the crystal is the triplet ground 

state with ΔEST of the order of 0.5 kcal mol–1.150 

We are surprised to obtain unusual linear plots of conductivity, σ vs. T (Figure 44A, inset plot). 

Such plots may be interpreted in terms of temperature dependent effective Ea, which is ca. 12 meV 

and 0.03 meV in the high and low temperature ranges, respectively. To illustrate the smallness of Ea, 

it is perhaps better to express it as Ea/k; in the high and low temperature ranges we have Ea/k = 140 

and 0.06 K, respectively.150 Therefore, Ea/k << T, especially in the low temperature range, where 

carrier–phonon interactions are lowered, implies band-like transport.176            

 

Figure 44.  Solid state characterization of diradical 34. A, main plot: single crystal conductivity, , of 

diradical 34 (plotted on a logarithmic scale) as a function of the reciprocal temperature (1000/T), with the fits 



in the high- and low-temperature ranges, showing effective activation energies (Ea/k). Inset plot: single crystal 

 vs. T, showing near-linear relationship. B, SQUID magnetometry of polycrystalline 34: magnetic 

susceptibility,  vs. T for T = 1.8 – 320 K. C and D, EPR spectroscopy of polycrystalline 34 with particle size 

of <75 m: DI/Q ~  vs. T and representative EPR spectra, showing Dysonian line-shape, where DI is a 

double integrated intensity and Q is a microwave cavity quality factor. Reproduced from ref. 150. Copyright 

2022 American Chemical Society. 

Magnetic studies on polycrystalline 34 confirm this “near-metal-like” behavior.150 The plot of 

static of χ vs. T is nearly temperature-independent in the range from 20 to 320 K, and the value of χ ≈ 

2–3 × 10–3 emu mol–1 is consistent with Pauli paramagnetism (Figure 44B). This value of χ is greater 

than χ ≈ 5–6 × 10–4 emu mol–1 observed in spiro-bis(phenalenyl) (R = n-hexyl) (Figure 1) and oxo-

bridged bisthiazolyl, OBBDTA (Figure 5) monoradicals.84,257 Also, we note that the residual 

paramagnetism from some crystals in the polycrystalline sample appears as a shallow broad 

maximum at about 200 K due to one-dimensional S = 1 antiferromagnetic chains with a large J’/k ∼ 

−150 K.  

The EPR spectroscopy on polycrystalline 34, with particle sizes <75 μm, confirms the 

temperature-independent χ in the T = 110–331 K range (Figure 44C). In addition, a Dysonian line 

shape (A/B > 1) (Figure 44D) confirms good electrical conductivity of polycrystalline 34.  

Notably, this diradical can be evaporated under UHV to obtain thin films (nominal thickness of 

ca. 1 nm) on silicon substrates, which remain unchanged after exposure to air for at least 18 h – a 

testament to its thermal ultra-robustness.150,414   

 

4.6 High-spin triangulene diradicals. 

As we discussed in Section 2.3, trioxytriangulenes have a long history dating to the classic 

contributions by Clar (35)227 and to the pioneering report by Bushby in 1993 of the triplet ground 

state diradical trianion 36 (Figure 45).228 Also, in 1925, Weiß and Korczyn synthesized derivatives of 

35 and recognized them as “trimethylene-triarylmethanes”.415   

  Clar’s attempts to obtain diradical 35 (Figure 45) by de-hydrogenation of various multihydro-



triangulenes, using Pd-catalyst, apparently resulted in polymers/oligomers, which could not be 

characterized at that time.227 In 2019, Richardson and coworkers developed a simplified synthesis of 

various dihydro-triangulenes and related compounds.416 Oxidation of one of the dihydro-triangulenes 

with p-chloranil resulted in a solid product, which according to laser desorption ionization mass 

spectrometry (LDI-MS) analysis showed peaks up to m/z = 1400 – likely corresponding to oligomers 

of 35.416 It should be noted that Mou and Kertesz predicted by DFT the dimerization energy of –23 

kcal mol-1 for singly -bonded dimer of 35,417 thus, suggesting that oligomerization of 35 will be 

quite exothermic.  

In 2017, Gross and coworkers prepared 35 on surface and characterized it by scanning tunneling 

and atomic force microscopy.418 Surface synthesis of aza-triangulene diradical cation 40 (Figure 46) 

was reported in 2022.419 Assignment of triplet state for 35 and 40 is based on weaker intensity of 

Kondo resonance, compared to S = ½ radical, however, no clear-cut evidence about EST is 

avaialable.419,420 

 

Figure 45. Triangulene diradicals. Abbreviation: Mes = 2,4,6-Me3C6H2. 

Bushby and coworkers228 were able to prepare three-fold symmetric S = 1 diradical 36 (|D| = 192 

MHz and |E| = 0), with a modest admixture of the corresponding S = ½ radical dianion. Although 

|mS| = 2 is observed at 13 K, it is rather weak and not suitable for obtaining I vs 1/T plot. In the EPR 

spectrum, height of the center peak, assigned to S = ½ radical, is only twice, compared to the S = 1 



side peaks – a remarkable feat because the diradical was prepared by the challenging 2-electron 

reduction of the corresponding diamagnetic anion (E1-/2- = –2.07 V and E2-/3- = –2.37 V vs 

AgNO3/Ag), using Na/K in dimethylformamide (DMF). Relatively low content of S = ½ impurity 

allows to obtain accurately fraction of S = 1 state intensity (I) by spectral simulation. Linear plot of I 

vs 1/T in the 13 – 37 K range is consistent with either near-degenerate singlet and triplet states with 

|EST| < 0.01 kcal mol-1 or triplet ground state with EST > 0.15 kcal mol-1. Based on what we know 

about triangulene system, this result suggests triplet ground state for 36.   

The authors228 report that a solution of 36 in DMF does not lose its EPR intensity, when stored 

for up to 5 months at room temperature, however, upon exposure to air, 36 is rapidly oxidized to the 

precursor diamagnetic anion. 

In 2001, Nakatsuji and coworkers,421 when attempting to prepare triangulene 37 (Figure 45), 

were able to obtain an EPR spectrum in toluene at 123 K, which they assigned to an S = ½ impurity 

(huge center peak of unknown height) and S = 1 state of 37. The S = 1 spectrum consisted of four 

symmetrically disposed side peaks, corresponding to D = 219 MHz and E = 0. Half-field transition, 

|mS| = 2, was referred to as “extremely weak”,421 and therefore, not suitable to obtain I vs 1/T plot. 

Nevertheless, the authors show linear I vs 1/T plot in the 3.7 – 16 K temperature range, where I is 

claimed to be triplet intensity.421 Assuming that I is associated with S = 1 state, then this linear plot 

would imply either near-degenerate singlet and triplet states with |EST| < 0.004 kcal mol-1 or triplet 

ground state with EST > 0.06 kcal mol-1. However, if I is obtained from the |mS| = 1 spectrum, 

dominated by the S = 1/2 impurity, it is likely to be heavily weighted by the S = ½ intensity, which 

will always lead to the linear plot, when measured properly. In summary, the triplet ground state for 

37 is not firmly established by the described experiments. 

In 2022, Juríček and coworkers, have reported synthesis of triangulene 38,422 using similar 

methodology to that for 37. Corresponding triangulene S = ½ radical was isolated and characterized 



by X-ray crystallography. Although diradical 37 is claimed to be persistent at room temperature for 

up to 3 weeks, there is no magnetic characterization by SQUID magnetometry or by quantitative 

EPR spectroscopy; authors’ EPR spectroscopic measurements does not even establish the triplet 

ground state.   

Nakatsuji’s ‘2001 communication, describing trinagulene 37, concluded with the following 

sentence: “Further stabilization of triangulene by additional substitutions is under way to isolate 

genuine non-Kekule´ PNBs in the crystalline state.”421 Some 20 years later, in 2021, Shimizu and 

coworkers have finally realized that vision, by reporting synthesis, isolation, and characterization of 

39.423 Triangulene diradical is prepared by the reduction of the precursor diol with SnCl2 in the 

presence of trifluoroacetic acid anhydride – most likely, via two one-electron reductions of the 

corresponding carbocations. Diradical 39 is isolated and characterized by the first X-ray structure for 

a triangulene diradical. Triplet ground state is established by SQUID magnetometry, giving a flat χT 

vs. T plot in the 20 – 300 K temperature range, with the value of χT > 0.75 emu K mol-1. This value 

is assigned to 82% S = 1 diradical and 18% S = ½ radical; the same S = 1/S = ½ ratio gives a 

reasonable fit to the M vs H/T Brillouin curve at 1.9 K.423 These data provide unequivocal 

confirmation of triplet ground state for triangulene diradical and suggest ΔEST >> 1.2 kcal mol–1. 

Further evidence for triplet ground state is obtained from heat capacity measurements under 

magnetic fields.423 Notably, the CW EPR spectra in rigid matrices showed surprisingly small value of 

“apparent |D|” and, consequently, extremely weak |mS| = 2 transition (vide infra). 

In 2022, Wu and coworkers424 attempted preparation of aza-triangulene diradical cation 41. It is 

not clear whether the diradical cation was actually synthesized because its EPR spectrum at room 

temperature does not match the simulated spectrum (see: red arrows in Figure 46B),424 as noticed by 

the authors in ref 424. In addition, because DFT-computed spin density distributions in triangulenes 

and aza-triangulenes are similar, the reported EST  0.8 kcal mol-1 is way too small (Figure 46C). 



While there may be many reasons for this result, it is plausible that this is an artefact due to Q-value 

of the cavity increasing at low temperatures. We should mention that for triangulene 35, EST  10 

kcal mol-1 is computed at the UB3LYP/6-31G(d)+ZPVE level of theory, with both triplet and broken-

symmetry (BS) singlet geometries optimized (Figure 10), and Shimizu reports experimental value of 

ΔEST >> 1.2 kcal mol–1 for triangulene 39.423 In addition for aza-triangulene 42, ΔEST > 2 kcal mol–1 

is measured by SQUID magnetometry (vide infra). We note that the X-ray structure of 41 is refined 

with a large number of constraints, leading to a relatively small reflections/(parameters + restraints) 

ratio; also there is a large residual electron density of ca. 1.5 electrons, possibly associated with 

SbCl6
- counterion.      

 

Figure 46. A: Aza-triangulene diradical cations 40, 41, and 42. Abbreviations: Mes = 2,4,6-Me3C6H2 

and Ar = 2,4,6-Cl3C6H2. B and C: EPR spectroscopy of 41. D and E: EPR spectroscopy and SQUID 

magnetometry of 42. Parts B, C, D, and E were reproduced form refs 424 and 425. Copyright 2022 

and 2023 Wiley. 



In 2023, Shintani and coworkers425 synthesized and isolated aza-triangulene diradical cation 42. 

Its EPR spectrum at room temperature perfectly matches the simulated spectrum (Figure 46D). 

Magnetic studies of polycrystalline 42 by SQUID magnetometry provide a flat χT vs. T plot in the 50 

– 300 K temperature range, corresponding to near perfect χT  0.95 – 0.98 emu K mol-1. These data 

provide unequivocal confirmation of triplet ground state for aza-triangulene diradical and, based on 

authors’ analysis of correction for diamagnetism, suggest ΔEST > 2 kcal mol–1.425 X-ray structure of 

42 is refined with adequate reflections/parameters ratio and small residual electron-and-hole 

densities. 

Notably, aza-triangulene 42, with nearly exclusively thermally populated triplet state at room 

temperature, shows a significant fluorescence at room temperature with quantum yield of about 

1%.425   

Somewhat surprisingly, CW EPR spectra in triangulenes 38, 39, 41, and 42 in rigid matrices give 

only relatively narrow center peaks without any discernible side peaks and very weak |mS| = 2 

transitions. Even for 42 dispersed in diamagnetic matrix, consisting of precursor diol of triangulene 

39, a similar EPR spectrum, but with a relatively broader center peak, is obtained, which can be 

simulated with “apparent |D|  37 MHz”. The question arises what is the possible origin of very low 

values of “apparent |D|” found in triangulenes 38, 39, 41, and 42?  

It was noted by the authors in ref 425, that three-fold symmetric conformations (E = 0) of 

triradicals AT1 and AT2 (Figure 17) also have rather low values of |D| = 36 – 37 MHz;115 however, 

the inter-spin distances in the triradicals are significantly longer than in 42 and other triangulenes. 

For analogous S = 1 diradicals AD-a-b (Figure 47A), with similar inter-spin distances to AT1 and 

AT2, experimental |D| = 61 – 71 MHz115 are comparable to |D| = 75 MHz, reported for the analogous 

3,4′-biphenyl-based triarylmethyl diradical.323  

 



 

Figure 47. A and B: Structures of diradicals AD-a-c and 43 – diradicals relevant to the apparent 

small value of |D| in triangulene diradicals. C and D: EPR spectra at 140 K and SQUID 

magnetometry for the identical sample of 20 mM diradical 43 in THF-d8, following annealing at 

room temperature for 1 h. After annealing at room temperature for additional 2 days, practically 

identical data are obtained, indicating that 43 is long-term persistent. Parts C and D are reproduced 

from ref 35. Copyright 2005 American Chemical Society. 

 

We then turn to ORCA-computations of zero-field splitting (parameters D and E),426 that are 

carried out at the B3LYP/EPR-II (UNO) level of theory, using dipolar spin-spin approximation 

(DSS) and neglecting spin-orbit contributions.427 For triangulene 35, we compute E = 0 and D = 

+492 MHz. We note that for analogous diradicals, with the same D-tensor orientations (D > 0), 

values of D are overestimated by a factor of about 2 at the same level of theory.112,114 For diradicals 



AD-a-c (Figure 47A) with D < 0, this overestimate is by a factor of about 2.5 – 3.115 This would 

suggest that the experimental |D| for triangulenes 38, 39, 41, and 42 should be in the 200 – 250 MHz 

range, which is in good agreement with Nakatsuji’s |D| = 219 MHz for 37.420 Notably, Bushby 

obtained a smaller |D| = 192 MHz228 because in 36 effective inter-spin distances may be somewhat 

longer due to a small fraction of spin density residing at the oxygens. 

We postulate that the very low values of “apparent |D|” found in triangulenes 38, 39, 41, and 42 

are due to exchange narrowing in aggregated samples that are relatively concentrated in poorly 

matched solvents/matrices. As early as 2005, we demonstrated this phenomenon in long-term 

persistent S = 1 ground state diradical 43 (Figure 47B).35 In a dilute frozen solution of ca. 2 mM 43 in 

2-MeTHF/THF at 100 K, EPR spectrum consists of a sharp center line (peak-to-peak line width of 

0.09 mT) with relative peak height of 100 and four symmetrically distributed well-resolved side-

peaks with relative peak height of one, corresponding to the triplet state with E = 0 and |D|  140 

MHz. The center peak does mostly correspond to an exchange narrowed diradical 43 because of the 

following findings. 

In more concentrated frozen solutions of ca. 20 mM 43 in THF-d8, EPR spectrum at 140 K 

consists of narrow center peak with a line width of 0.08 mT, and |mS| = 2 transition is practically 

not detectable (Figure 47C). SQUID magnetometry on the identical sample is clearly showing almost 

pure S = 1 ground state diradical, based on magnetization data; the value of χT < 1.00 emu K mol-1 is 

found because of difficulty in attaining quantitative mass transfers during the low-temperature 

preparation of 43 (Figure 47D).35 The indirect evidence for exchange narrowing due to aggregation 

of 20 mM 43 in THF-d8 is from correlation between mean-field parameter  = –0.05 – (–0.5) K, a 

measure of intermolecular antiferromagnetic exchange couplings, derived from M/Msat vs H/(T – ) 

magnetization data (as well as χT vs T plots at low temperatures) and the line-widths in the EPR 

spectra; that is, the narrower EPR spectra correspond to the greater value of ||.35 



Conclusion 

   Over 120 years after Gomberg’s discovery of triarylmethyl radicals, research on stable radicals 

continues to surprise us by the multitude discoveries of new properties and applications in diverse 

fields of science and technology. More recently, stable, and thermally robust high-spin di- and 

triradicals, with nearly planar -systems, have emerged as the new frontier in organic radicals. When 

properly designed, such radicals possess large energy gaps (vs. thermal energy) separating the high-

spin ground state and low-spin excited state. Thus, these radicals may possess relatively large 

populations of their high-spin ground state at room temperature, and their properties related to 

paramagnetism, scale with the factor of S(S + 1), where the total spin quantum number S corresponds 

to the high-spin ground state. This implies scaling with approximately n2, where n is the number of 

“unpaired” electrons, for many properties, including relaxivity of MRI contrast agents, dynamic 

nuclear polarization (DNP), etc., assuming that other controlling factors can be optimized too.  

Thermal robustness enables preparation of interesting thin films via evaporation, thus facilitating 

their potential applications in electronics and spintronics. One example of such high–spin diradical, 

so far, is a good electrical conductor – contrary to expectations.  

Two relations are established:  

(1) between DFT computed singlet triplet energy gap (ΔEST) in a subset of 12 diradicals and SHI, 

which is the difference in energy of electrons in HOMO vs. SOMO in the corresponding one electron 

reduced S = ½ species (mostly radical anions),  

(2) between 17 experimental pairwise exchange coupling constants J/k (e.g., equal to the half of the 

ΔEST in a diradical) in nitronyl nitroxide based high-spin di- or triradicals vs. hyperfine coupling 

constants in the corresponding monoradicals.   

Both relations may allow us to identify outliers, which may correspond to radicals where J/k is 

not measured or computed with sufficient accuracy, e.g., because of the large magnitude of 



experimental J/k.  

Double helical (or helical) high-spin di- and polyradicals, in which spin density is delocalized 

over the chiral -system, have been barely explored. Notably, the sole example of such high-spin 

diradical possesses alternant -system with Kekulé resonance form. Finally, derivatives of 

triangulene diradical provide stable high-spin diradicals with singlet triplet energy gaps, estimated as 

a few kcal mol-1, which are comparable to the previously reported persistent but air sensitive planar 

aminyl diradicals.      

We hope this review provides critical analyses that may contribute to the development of new 

magnetically and thermally ultra-robust high-spin radicals, which may contribute to ever emerging 

applications. 
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