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The histidine kinase NahK regulates pyocyanin production
through the PQS system
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ABSTRACT Many bacterial histidine kinases work in two-component systems that
combine into larger multi-kinase networks. NahK is one of the kinases in the GacS
Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the
opportunistic pathogen Pseudomonas aeruginosa. This network has also been associated
with regulating many virulence factors P. aeruginosa secretes to cause disease. However,
the individual role of each kinase is unknown. In this study, we identify NahK as a novel
regulator of the phenazine pyocyanin (PYO). Deletion of nahK leads to a fourfold increase
in PYO production, almost exclusively through upregulation of phenazine operon two
(phz2). We determined that this upregulation is due to mis-regulation of all P. aeruginosa
quorum-sensing (QS) systems, with a large upregulation of the Pseudomonas quinolone
signal system and a decrease in production of the acyl-homoserine lactone-producing
system, /as. In addition, we see differences in expression of quorum-sensing inhibitor
proteins that align with these changes. Together, these data contribute to understanding
how the GacS MKN modulates QS and virulence and suggest a mechanism for cell
density-independent regulation of quorum sensing.

IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium that establishes
biofilms as part of its pathogenicity. P. aeruginosa infections are associated with
nosocomial infections. As the prevalence of multi-drug-resistant P. aeruginosa increa-
ses, it is essential to understand underlying virulence molecular mechanisms. Histidine
kinase NahK is one of several kinases in P. aeruginosa implicated in biofilm formation
and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers
biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK
plays additional important roles in the P. aeruginosa lifestyle, including regulating
bacterial communication mechanisms such as quorum sensing. These effects have larger
implications in infection as they affect toxin production and virulence.
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Pseudomonas aeruginosa is a Gram-negative bacterium that establishes biofilms as Ush

part of its pathogenicity. P. aeruginosa is associated with nosocomial infections that Address correspondence to Elizabeth M. Boon,
cause complications for patients with cystic fibrosis, cancer, or burn wounds (1). The elizabeth.boon@stonybrook.edu.
most at-risk patient groups are those on ventilators, a problem intensified by increased Tihe awiliens dedkie he @arifilia: of iniaiest.
ventilator use during the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)
pandemic (2). Acute P. aeruginosa infections that lead to sepsis are typically associated
with the planktonic state, where the bacteria travel around the body infecting various
organs rapidly (1, 3). Chronic P. aeruginosa infections can lead to pulmonary illnesses,
especially in people who already have higher susceptibility to respiratory problems, such
as cystic fibrosis patients (4). These chronic infections are usually associated with the
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biofilm or sessile state (1, 4). This planktonic-to-sessile switch is an essential part of P.
aeruginosa virulence.

The GacS Multi-Kinase Network (MKN) regulates the planktonic-to-sessile switch (3,
5). Several kinases, including GacS, PA1611 (PA14_43670), RetS, SagS, and NahK, signal
in this network to regulate the activity of a post-transcriptional global regulator protein,
RsmA (Fig. 1A) (3, 5). RsmA inhibits translation of mRNAs related to biofilm formation,
quorum sensing (QS), pyocyanin (PYO) production, and type VI secretion systems,
promoting the planktonic state (3, 5). RsmA is inactivated by the small regulatory RNAs,
rsmY and rsmZ, which are transcribed in response to MKN activity (3, 5). All kinases in this
network are hybrid histidine kinases that respond to extracellular signals which include
nitric oxide (NO), glycan mucins, and calcium ions. However, further study is needed to
identify additional signals and determine the physiological consequences for how these
signals modulate RsmA activity (5-8).

NO is a diatomic gas that signals biofilm dispersal in many bacteria at low nanomolar
to picomolar concentrations (10). The source of NO to which P. aeruginosa has evolved
this response is unknown. It could be host-derived, environmental, or derived from P.
aeruginosa denitrification. In P. aeruginosa, the NO-sensing protein NosP is necessary for
biofilm dispersal (6). At a molecular level, NosP functions by inhibiting its cocistronic-
associated kinase, NahK, when in the ferrous NO-ligated state (6). NahK is one of four
kinases that regulate the phosphorylation state of HptB, which is one of the main
response regulators in the GacS MKN (6, 11). When HptB is not phosphorylated, HptB
indirectly activates transcription of rsmY, leading to inactivation of RsmA and, thus,
promotes biofilm formation (5). NosP and NahK have also been identified as part of the
Pseudomonas biofilm transcriptome through comparative transcriptome analysis of 138
biofilm-forming clinical Pseudomonas aeruginosa isolates (12). Outside of these works,
not much is known about the molecular roles of NosP and NahK in biofilm regulation
and other cellular processes, even though the GacS MKN is implicated in essential
bacterial processes including QS, antibiotic resistance, metabolism, replication, and
virulence (3,12, 13).

In P. aeruginosa, three QS systems act sequentially: /as, rhl, and pgs (13). RsmA and the
GacS MKN control QS and phenazine production as part of their global regulon (5). When
RsmA is active, it inhibits translation of lasR and rhIR (13). At high cell density, RsmA
repression is relieved, allowing for QS to occur, which also results in phenazine produc-
tion (13). PYO production is controlled, in part, by all three QS systems that contribute to
the transcriptional activation of two phenazine-producing operons, phzA1-G1 (phz1) and
phzA2-G2 (phz2) (14). These operons are ~98% identical at the genomic level and each
one is sufficient to confer production of phenazine-1-carboxylic acid (PCA), a precursor
to the well-characterized blue phenazine, PYO. LasR and RhIR are known to activate phz1
directly, while the Pseudomonas quinolone signal (PQS) influence on phz2 is indirect
through an unknown mediator (15). These operons are also controlled by additional
factors, such as other transcription factors and QS inhibitor proteins (13, 16). While both
operons contribute to phenazine production, phz2 is more important than phz1 for host
colonization in mouse models (14).

Many factors in the GacS MKN have been shown to influence PYO production (5, 8, 17,
18). Deletion of hptB leads to decreases in motility and virulence, but effects on PYO or
other toxins were not reported (11, 19). gacS and gacA deletions have shown decreases
in virulence and biofilm production, with some reports showing a twofold decrease in
PYO production (8, 18, 20). In P. aeruginosa strain PAO1, ArsmY and ArsmZ have been
shown to have decreases in PYO production, while ArsmA has a modest increase in PYO
levels, about twofold compared to wild type (18). Recently, AretS in P. aeruginosa strain
PAO1 has been shown to also have an increase in PYO production similar to ArsmA, with
an increase of about twofold (8). Overall, this suggests a novel regulation of PYO by NahK
in this network. Here, we describe a novel role for NahK in modulation of the PQS system,
which results in downregulation of phz2 expression, and, therefore, also decreases PYO
production.
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FIG 1 Pyocyanin is overproduced in AnahK. (A) Representation of NahK in the GacS MKN. All kinases function to regulate the activity of post-transcriptional

regulator protein, RsmA. RsmA activity regulates quorum sensing, which in turn regulates PYO production. (B) Chloroform extract of AnahK supernatant has a
bright blue color. (C) PYO is characterized by a peak at 520 nm in 0.1M HCI (9). AnahK is diluted fourfold in 0.1M HCl compared to wild type. (D, E) Beer’s law
quantification of pyocyanin production at 520 nm (extinction coefficient 17.072 from 21). (D) Planktonic, liquid cultures (n = 3), and (E) biofilm, agar cultures. n =

3. (F) Overexpression of rsmA in wild type and AnahK complements the PYO phenotype, suggesting that absence of nahK represses RsmA activity, which in turn

increases PYO production. P-values were calculated using one-way analysis of variance and a Tukey multiple comparisons test. *P < 0.5.
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RESULTS
Deletion of nahK leads to overproduction of the phenazine PYO

After discovering the role of NosP and NahK in biofilm dispersal, we became interested
in how these proteins individually contribute to RsmA-dependent phenotypes (Fig. 1A)
(6). We generated a genetic deletion of nahK and found that this strain secreted a
blue pigment into the culture supernatant (Fig. 1B). The blue coloration indicated the
phenazine PYO, which we verified using acidified-chloroform extraction of supernatant
and UV-visible light spectroscopy (Fig. 1C) (9). The AnahK strain showed a fourfold
increase of PYO in planktonic culture and a twofold increase in biofilms relative to wild
type (Fig. 1D and E) (21). PYO production was reduced by complementation of nahK
in both planktonic and biofilm cultures (Fig. 1D and E). Finally, we determined that
the AnahK strain regulates PYO production through RsmA by overexpressing rsmA in
AnahK on a constitutively active promoter. The AnahK rsmA overexpression strain shows
complete complementation of the AnahK PYO phenotype (Fig. 1F). This result indicates
that RsmA is inactive in AnahK, leading to the PYO production increase.

AnahK is more virulent than PA14 wild type

PYO is a redox-active pigment that contributes to P. geruginosa pathogenicity by
generating reactive oxygen species. For example, PYO has been shown to result in
death of neutrophils by interfering with their mitochondrial respiratory chain (22). To
determine if AnahK is more virulent than wild type P. aeruginosa PA14, we performed
a Caenorhabditis elegans slow-killing assay. Over 4 days, only 36% of worms survived
that were fed with AnahK, compared to 78% survival of worms fed with wild type (Fig.
2). This reduction was partially restored by complementing the AnahK strain with nahK
expressed off a plasmid (Fig. 2). We have additionally shown a similar phenotype in a
mung bean virulence model that demonstrates AnahK kills sprouts more readily than
wild type (Fig. S1).

AnahK mis-regulates phenazine biosynthesis genes

We then set to determine the molecular mechanism of NahK-dependent regulation of
PYO production. Phenazine biosynthesis occurs through a branched, multi-step pathway
(23). The first step is the conversion of chorismic acid to PCA by the two redundant
phenazine operons, phz1 and phz2, which have ~98% DNA sequence homology (14, 15,
23). Despite their conservation, the two operons are under the control of different
promoter sequences, leading to differential regulation (14, 15). In PA14, both phz1 and
phz2 contribute to phenazine production in planktonic cultures while, during biofilm
growth, phz2 is the dominant operon (14). Therefore, we investigated which phz operon
was responsible for NahK-dependent PYO production in planktonic culture.

To study the transcriptional activity of each operon, we generated mScarlet transcrip-
tional reporters with the promoters of phzl or phz2 driving mScarlet expression and
genomically integrated them into wild type and AnahK strains. We then grew the strain
planktonically for 24 h and tracked the mScarlet fluorescence signal (Fig. 3A). We found
that expression of the Pphz2-mScarlet reporter was increased in both strains compared
to Pphz1-mScarlet. Pphz1-mScarlet had minimal expression in both wild type and AnahK
(Fig. 3A). AnahK attB::Pphz2-mScarlet had higher expression than the wild type, suggest-
ing that phz2 was upregulated in AnahK, giving rise to the PYO overproduction pheno-
type (Fig. 3A and 1D). This same trend was also observed in biofilm; however, the
differences were not statistically significant (Fig. 3B). This trend is expected since
phenazine production in biofilms is mostly phz2-dependent (14). As with PYO overpro-
duction (Fig. 1F), this phenotype is also complemented by overexpression of rsmA in
AnahK attB:Pphz2-mScarlet (Fig. S2), indicating that a lack of nahK results in a loss of
rsmA, which is consistent with NahK acting through the GacS MKN and RsmA to regulate
the phz2 operon.
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FIG 2 AnahK is more virulent than PA14 wild type. Slow-killing kinetics of all strains in the nematode C. elegans. After 5 days of exposure to the bacteria, wild

type shows ~20% killing, while AnahK shows ~55% killing. Error bars represent the standard deviation of at least four biological replicates, with each replicate

consisting of 30-35 worms. P-values were calculated using one-way analysis of variance. *P < 0.5, ****P < 0.0001.

The conversion of PCA to PYO is mediated by two enzymes: the S-adenosyl methio-
nine (SAM)-dependent methyltransferase PhzM converts PCA to 5-methylphenazine-1-
carboxylic acid betaine (23, 24). The oxygen-dependent monooxygenase PhzS converts
5-methylphenazine-1-carboxylic acid betaine to PYO (25-27). PhzS can also use PCA as a
substrate to make 1-hydroxyphenazine (23, 28, 29). To further determine that phz2 drives
PYO production in AnahK, we generated AnahK strains that contained deletions of either
phzl or phz2 and quantified phenazine production. These strains were also
AphzHAphzMAphzS (AHMS); therefore, the only phenazine produced is PCA. When
phenazines were quantified, AnahKAphz1HMS produced PCA levels comparable to
AnahK (Fig. 3C). AnahKAphz2HMS generated nearly no detectable PCA, suggesting that
nearly all phenazines produced by AnahK are produced by phz2 (Fig. 3C).

To assess if PhzM and PhzS are affected by NahK, we assessed the expression of these
corresponding genes in AnahK (Fig. 3D). Indeed, both phzM and phzS were upregulated
in AnahK compared to wild type (Fig. 3D).

Quorum sensing is mis-regulated in AnahK

Both phz operons, phzM and phzS, are regulated by QS (15). To understand how QS
systems are involved in modulating PYO production in our system, we performed
quantitative PCR (qPCR) on the regulators of the phz operons (Fig. 4). Phz1 is activated by
two of the main QS pathways, the las and rhl systems (13). Lasl and Rhll are lactone
synthases that make N-acyl homoserine lactones, which activate the transcription factors
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FIG 3 Phz2 is the driver of PYO production. (A) Pphz2-mS is expressed more than Pphz1-mS in the wild type and AnahK planktonically. AnahK has higher

expression of Pphz2-mS than wild type overall. P-values were calculated using one-way analysis of variance and a Tukey multiple comparisons test at final time

point. n = 3. (B) Pphz2-mS is expressed more than Pphz1-mS in the wild type and AnahK biofilms. P-values were calculated using one-way analysis of variance and

a Tukey multiple comparisons test. n = 3. (C) High-performance liquid chromatography (HPLC) quantification of phenazines PCA and PYO in wild type, AnahK,
AnahKAphz1HMS, and AnahKAphz2HMS. n = 3. (D) Quantitative PCR for phzM and phzS in AnahK compared to wild type. Gyrase A was used as a housekeeping

gene (30,). P-values were calculated using unpaired, two-tailed t-tests comparing AnahK ACt values to wild type ACt values. n = 3. *P-value <0.05, **P-value <0.01,

*** P-value <0.001.

LasR and RhIR (15, 30, 31). In agreement with Fig. 3, factors that activate phz1 showed no
difference in transcriptional levels in AnahK compared to wild type levels (Fig. 4). phzM
and phzS are also thought to be controlled primarily through the las and rhl systems
because these genes flank the phz1 operon. This may suggest a role for the las and rh/
systems in the AnahK phenazine phenotype that is not appreciated by the fluorescent
transcriptional reporter.

Regulation of phz2 is not mediated by LasR/RhIR directly and is overall not as well
understood as that for phz1 (14, 15). phz2 is activated primarily by two factors: QS
inhibitor protein RsaL and PQS (14). RsalL is a global transcription factor that can be
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FIG 4 Pyocyanin production may be regulated by the PQS system and rsaL. qPCR for the main quorum-sensing transcriptional regulators in AnahK compared to

wild type. Pyocyanin production is potentially induced by each of these transcriptional regulators. Gyrase A was used as a housekeeping gene (30). Bars above

and below the threshold represent upregulation and downregulation, respectively. P-values were calculated using unpaired, two-tailed t-tests comparing AnahK

ACt values to wild type ACt values. n = 3. *P-value <0.05, **P-value <0.01.

activated by LasRl and is involved mostly in combating oxidative stress (15). It is also
mostly studied within the context of the las system, as Rsal represses the las operon (32).
Itis believed that RsaL indirectly controls phz2 via an unidentified regulator (15).

PQS is a QS molecule that has additional functions of iron binding and antioxidant
properties (33). phz2 expression correlates directly with PQS production; when PQS is
upregulated, phz2-mediated PCA production is upregulated (15). PQS is also synthesized
from precursor molecule chorismic acid and converted to PQS by the pgs operon which
includes pgsABCD and pgsE (33, 34). Current research suggests pgsE can be differentially
regulated in the absence of RhIR and compensate for some RhIR-mediated transcrip-
tional regulation (35). MvfR/PgsR senses PQS and regulates the pgs operon (13). Genes in
the pgs operon and rsal are highly upregulated in AnahK compared to wild type (Fig. 4).

To corroborate these results, we performed untargeted liquid chromatography-mass
spectrometry (LCMS) to quantify QS molecules from the bacterial supernatant of the
wild type and AnahK strains (Fig. 5; Fig. S3). PYO and PYO precursors, including PCA
and phenazine-1,6-dicarboxylic acid (PDC), were more present in AnahK supernatant
compared to wild type. PQS derivatives, like 2-heptyl-4-quinolone (HHQ) and dihydroxy-
quinoline (DHQ), were more prevalent in AnahK compared to wild type (Fig. 5). Interest-
ingly, we found a reduction in N-(3-oxododecanoyl)-L-homoserine lactone (C12-HSL)
production in AnahK, suggesting that there may be post-transcriptional regulation of the
las quorum-sensing system. Many pathogenic and clinically relevant strains of Pseudomo-
nas aeruginosa have defects or deletions in the las system (36). This may relate to other
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(Table S4).

ways AnahK is more virulent than wild type, possibly separate from PYO production (Fig.
2). RsmA activity is also known to inhibit the Las system post-transcriptionally, which
overall promotes pathogenicity (37). Because NahK activity may regulate RsmA activity
through the HptB branch of the GacS MKN, this may suggest that deletion of nahK
improperly promotes RsmA activity, leading to these changes in QS.

Quorum sensing is mis-regulated at both a transcriptional and post-transla-
tional level

QS systems in P. aeruginosa have several layers of regulation. First, these systems work
sequentially as a function of cell density and regulate each other (the las system activates
the rhl system, which in turn inactivates las). A similar feedback mechanism has been
described for rhl and pgs, where RhIR activates the pgs operon and PgsR turns off the rh/
operon (13). QS is also regulated by QS inhibitor proteins, many of which need further
characterization (13). The best-characterized inhibitors include RsalL and QscR, inhibitors
of the las system, QteE, inhibitor of the rhl system, and QslA, inhibitor of the pgs
system (38-40). The mechanism of inhibition is typically by protein-protein interaction,
where the inhibitor binds the transcription factor, inactivating it (13). Because these
are protein-protein interactions, we hypothesized that if inhibition of the las and rh/
system was occurring, this inhibition would not be seen in the transcription levels of the
transcription factors LasR and RhIR via qPCR (Fig. 4). Using gPCR, we examined relative
levels of each inhibitor in AnahK compared to wild type (Fig. 6). As expected, we saw an
increase in QS inhibitors for the las and rhl systems, and a decrease in the inhibitor for the
pgs system (Fig. 4 and 6).

Surprisingly, overexpression of QS inhibitors in wild type or AnahK does not appear to
affect PYO production (Fig. S4). Overexpression of rsal or gslA does not change PYO
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production in PA14 wild type (Fig. S4A). Overexpression of gslA in AnahK does not
complement the PYO overexpression phenotype (Fig. S4B). Several gslA-regulating
factors have been suggested, including PA0225, PA2758, PA1315, PA0479, and CatR (41).
In AnahK relative to wild type, unlike gs/A, these genes are not differentially regulated;
the only gene with a slight downregulation is PA0479 (Fig. S5A). In a AnahK + pUCP22
rsmA (AnahK rsmA++) strain compared to wild type, the expression of these genes was
also unchanged compared to wild type (Fig. S5B). Therefore, these gslA-regulating factors
appear to be independent of the NahK and the GacS MKN. It is likely that the GacS MKN
is an additional gslA regulating system.

PQS promotes phz2 expression in AnahK

Once we found that PQS was increased in AnahK, we then asked if PQS was increasing
phz2-mediated PYO production in our strains. To determine this, we devised a co-culture
experiment. A donor strain, either wild type or AnahK, would provide PQS to a recipient
strain that could not produce PQS (ApgsABC) but did encode for either the phz1 or phz2
transcriptional mScarlet reporter (ApgsABC attB::Pphz1-mS and ApgsABC attB::Pphz2-mS).
Upon co-culturing, we could track activation of the phz reporters as a function of growth.
Wild type or AnahK would provide PQS that activates phz2 in ApgsABC attB::Pphz2-mS in
a manner dependent on amount of PQS secreted. ApgsABC attB::Pphz-mS reporter strains
did not activate the reporters during their own growth, only when co-cultured (Fig. S6).
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When co-cultured with wild type, phz2 activated more than phz1, similar to our previous
finding in Fig. 4 (Fig. 7A). When co-cultured with AnahK, phz2 activated more than phz1,
and phz2 activation was increased compared to wild type phz2 activation levels (Fig. 7A).
To further confirm this was due to PQS itself, we also generated ApgsR attB::Pphz reporter
recipient strains that are unable to respond to PQS. These strains, when co-cultured
with either wild type or AnahK, showed no activation of either reporter (Fig. S6A). In
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FIG 7 PQS drives phz2 in AnahK. (A) Co-cultured wild type or AnahK with ApgsABC (planktonic) containing either the phzT or phz2 mScarlet reporter shows

increased activation of phz2 with both donors, with a higher activation in AnahK. n = 3. P-values were calculated using one-way analysis of variance and a Tukey
multiple comparisons test at final time point. *P < 0.05. (B) 3-day biofilms of co-cultured wild type or AnahK with ApgsABC containing either the phz1 or phz2
mScarlet reporter show increased activation of phz2 with both donors, with a higher activation in AnahK. n = 3. P-values were calculated using one-way analysis
of variance and a Tukey multiple comparisons test at final time point. *P < 0.05.
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addition, co-cultured wild type or AnahK with ApgsABC attB::Pphz2-mS showed increased
activation in a 3-day colony biofilm (Fig. 7B).

We then determined PYO concentrations in wild type and AnahK supernatants after
exposure to 1 uM of the PgsR inhibitor, M64 (42). With M64, both wild type and AnahK
had diminished PYO production, further suggesting PQS was driving PYO production
(Fig. 7C). Overall, this suggests that AnahK overexpresses phz2-mediated PYO because
the strain generates an increased amount of PQS.

DISCUSSION

Here, we describe the effect of the histidine kinase (HK) NahK on the PQS-dependent
production of the phenazine PYO in P. aeruginosa PA14 (Fig. 8). NahK is conserved in
many Gram-negative bacteria, and NO regulation of QS systems has been studied in
Vibrio cholerae, Vibrio harveyi, and Staphylococcus aureus (43-45). In V. cholerae, the nosP/
nahK operon encodes for VcNosP, a NO sensor, and hybrid HK VpsS. The mechanism is
similar; NO-bound NosP (VpsV) inhibits VpsS, leading to dispersal. There, VpsS affects QS
by transferring a phosphoryl group to LuxU, and subsequently to the transcription factor
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FIG 8 NahK regulates PQS and QS inhibitors by modulating RsmA. Inhibition of NahK leads to decreased RsmA signaling. This signaling activates PQS

production and represses PQS inhibitor QslA. It also represses the LasR system through activation of LasR QS inhibitors. Increased RsalL and PQS production

increases phz2-mediated PYO production.
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LuxO, which results in increased virulence and biofilm formation at low cell density (43).
Therefore, it was reasonable to hypothesize that in P. aeruginosa, the nosP/nahK operon
would influence QS and its downstream effectors. However, it is surprising how large of
an effect AnahK has on PYO production that was previously unexplored.

The GacS MKN that NahK is implicated in has been shown to indirectly affect PYO
production through RsmA regulation of QS (3, 5). In PAO1, ArsmY and ArsmZ have been
shown to decrease PYO, while ArsmA, AgacS, and AretS have shown increases in PYO (8,
18, 46). Many studies focus on how these GacS MKN factors influence the Las and Rhl
systems, suggesting these modulations of PYO are potentially through a phz7-mediated
overexpression, rather than a phz2-mediated one (5). Our data instead suggest these
changes in PYO may be the result of changes in PQS production and phz2 expression.
However, deletions of all factors in the GacS MKN need to be characterized more robustly
in PA14 to establish this mechanism.

The data presented here could also suggest that there is a more direct link between
NahK and QS. It is possible that NahK can either heterodimerize with other kinases in P.
aeruginosa or phosphorylate other proteins. Recently, these types of interactions have
been appreciated for other kinases in the GacS MKN. Orphan sensor kinase Sags is
known to crosstalk outside of the GacS MKN with BfiS and NicD to regulate cyclic di-GMP
and rsmZ levels, both to control biofilm formation in a Gac-independent manner (17). In
Shewanella oneidensis, SoNahK is known to phosphorelay with three response regulators,
leading to transcriptional and cyclic di-GMP production changes (47). Based on what is
known in S. oneidensis and other kinases in the P. aeruginosa GacS MKN, it is possible
that NahK could have another unidentified response regulator. This requires additional
research.

It is also surprising that nahK has not appeared in screens for regulators of PYO. It
has been suggested that the nosP/nahK operon is QS-regulated (12, 48). Letizia et al.
suggest that, in the absence of all other QS transcription factors and signaling molecules,
RhIR downregulates the nosP/nahK operon in PAO1 (48). Perhaps, NahK functions as an
important intermediate to transition from the Las/Rhl systems to the PQS system during
stationary phase. There may be a mechanism where RhIR transcriptionally represses
NahK to lower NahK signaling, which would therefore activate the PQS system, similar
to how deletion of nahK promotes PQS production as shown here. However, additional
research is required to know when NosP and NahK are present and active in the bacteria.

NahK may also play an important role in connecting PYO, biofilm regulation, and
anaerobic respiration. Intracellular NO levels in P. aeruginosa are indirectly regulated
by all three QS systems because they play a role in controlling the denitrification
machinery (49). PQS specifically regulates denitrification processes, so there is potential
for a feedback loop between NosP/NahK signaling, PQS production, and NO produced
by the denitrification process and/or anaerobic respiration. While PQS is not usually
present microaerobically (PQS is generated from HHQ by PgsH, which is a flavin adenine
dinucleotide [FAD]-dependent monooxygenase) many of the precursors are produced
anaerobically (33).

For example, HHQ is produced by several enzymes (PqsABCDE) from anthranilic acid.
HHQ can bind most substrates PQS can bind with 100x less avidity (33). Therefore, in
large excess, as seen in the AnahK, we suspect HHQ can partially compensate for PQS
binding and lead to similar phenotypic outcomes (33). Similar ideas have been shown for
other PQS precursor and derivative molecules, including DHQ, which has been studied
for its role in anaerobic respiration (50). In addition, PYO is thought to be used as an
extracellular electron shuttle to promote anaerobic respiration in deep layers of biofilms
that are not exposed to the environment (51, 52). It is possible that NO produced as a
byproduct of anaerobic respiration is activating NosP signaling, which therefore inhibits
NahK activity and, through modulating QS systems, produces more PYO to promote
more anaerobic respiration. Because of this, it is possible NahK has not shown up in
previous screens for phenazine regulators since its main role is specific to microaerobic
conditions.
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Overall, understanding how NahK links NO and QS may have important implications
for how NO sensing controls molecular mechanisms in the bacteria. In infection, where
immune cells secrete NO to combat bacterial invasion, it may be advantageous for NO
to trigger cell density-independent PQS signaling through NosP inhibition of NahK (53).
Indeed, one of the most intriguing results reported here is that AnahK turns on QS
systems, or at least the PQS system, in a cell density-independent manner, which is
consistent with this hypothesis. The PQS system drives activation of cytotoxicity through
phenazine production, as well as activates iron acquisition systems and modulates host
immune signaling (33). Therefore, NO signaling may be one early way bacteria activate
counter-mechanisms to survive in a host because NosP responds to signaling levels
of NO (6). Further characterization of the physiological relevance of NosP-mediated
NO signaling during infection is necessary to understand how NO and QS integrate
environmental signals.

MATERIALS AND METHODS
Bacterial strains, growth conditions, and media

The bacterial strains and plasmids used in this study are described in Tables S1 and S2.
Oligonucleotides are described in Table S3. P. aeruginosa strains were grown aerobically
in Luria-Bertani (LB) broth or succinate-based minimal media (35 mM KyHPO4, 22 mM
KH5POg4, 7.6 mM (NHg4)Cl, 1.7 mM MgSOg4, 40 mM succinic acid, and 27.5 mM NaOH, pH
7.0) at 37°C (54). Escherichia coli strains were grown aerobically in LB broth or on LB agar
at 37°C.

Generation of deletion strains

Markerless deletions were generated using methods previously described (8). In brief,
1 kb of flanking sequence for target locus was amplified and inserted in pMQ30 using
gap repair cloning into Saccharomyces cerevisiae InvSc1. Plasmids were than transformed
in E. coli donor strain WM3064 and conjugated into P. aeruginosa PA14 and selected for
on LB agar plates containing 100 pg/mL gentamicin. Double recombinants (markerless
mutants) were then selected on a modified LB medium (containing 10% sucrose and
lacking NaCl). Clones were confirmed via PCR.

Pyocyanin extraction

PYO extraction was performed as described previously elsewhere (55, 56). In brief, for
planktonic culture, supernatant was collected from 100 mL succinate media cultures
grown for 16-18 h. PYO was extracted via chloroform extraction, then extracted into
0.1M HCI for quantification. UV-visible light spectra was taken on a Varian Cary 100
Bio Spectrophotometer. PYO was quantified using Beer’s law (extinction coefficient
17.072 pg/mL) (55). For biofilm extraction, succinate-based minimal media agar plates
(1% agar) were prepared using 35 mm x 10 mm Petri dishes. Bacterial cultures were
adjusted to an optical density (OD) of 0.8 before spotting onto agar plate. Biofilms
were grown for 3 days at 25°C in the dark. The biofilm and agar were harvested and
submerged in 4 mL of chloroform overnight 25°C in the dark. PYO was quantified as
described above. For PYO quantification with exposure to M64 PgsR inhibitor, LB cultures
at ODggp of 0.05 were exposed to 1T uM of M64 and grown for 16-18 h. PYO was extracted
and quantified as described above.

C. elegans slow-killing assay

C. elegans slow-killing assay has been previously described as an effective method to
observe P. aeruginosa virulence (51). One hundred microliters of PA14 wild type and
PA14 AnahK were spotted onto slow-killing agar plates (0.3% NaCl, 0.35% Bacto-Peptone,
1 mM CaCly, T mM MgSOg4, 5 pg/mL cholesterol, 25 mM KPOg4, 50 pg/mL floxuridine
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[FUDR], 1.7% agar). Plates were subsequently incubated 24 h at 37°C and then left for 48
h at room temperature. Thirty to thirty-five larval stage 4 C. elegans were transferred onto
PA14 WT and PA14 AnahK seeded plates. Live worms were counted for 4 days.

Mung bean virulence assay

To assess the comparative virulence of PA14 AnahK to PA14 wild type, mung beans were
exposed as described in Garge et al. with some minor modifications (57). Briefly, mung
beans (Cool Beans N Sprouts) were washed in 70% (vol/vol) EtOH/water, a solution of
30% commercial bleach and 0.02% Triton X-100, and then rinsed three times with sterile
ddH,O0. Sterilized mung beans were placed onto water agar (0.8%) and supplemented
with 2 mL of sterilized ddH,0 and wrapped to maintain. Seeds were left to germinate for
24 h at 37°C. After germinating, sprouts of similar length and appearance were selected
and randomly sorted into groups. Prepared overnight cultures of PA14 WT and PA14
AnahK were used to grow 100 mL cultures of each strain in fresh LB broth to an ODggg
of 1.0. The cultures were then centrifuged at 4,000 x g for 10 min and washed with 1X
phosphate-buffered saline (PBS) once. Fresh PBS was added and cultures were adjusted
to have the same ODggp. Then, 10 mL of the suspension was mixed in with the sprouts.
All sprouts were covered in a suspension of bacteria, or PBS in the case of the control,
and incubated at 30°C for 24 h.

After exposure to bacteria suspensions or PBS, each set of sprouts was rinsed with
sterile ddH,0. They were then transplanted to tubes with 30 mL of Murashige-Skoog
agar. Each sprout was placed in a tube and covered with aluminum foil. After planting,
plants were allowed to grow for 10 days. After 10 days, each plant was examined. Dead
plants were identified by their lack of stalks and visible necrosis. After recording each
plant’s status, they were removed from the agar and the weight mass was recorded.
Each plant was then placed on a glass sheet and scanned on an Epson Perfection V600
scanner. Each plant’s longest root tendril and stalk length were recorded.

qPCR

PA14 wild type and AnahK were grown in 5 mL succinate media for 7 h at 37°C with
agitation. Total cellular RNA from 5 mL cultures was isolated using the RNeasy Mini Kit
(Qiagen). The yield and purity of the RNA was evaluated by Nanodrop and 1% agarose
gel. cDNA was synthesized from 1 pug of RNA using the RevertAid First Strand cDNA
Synthesis Kit (Thermo Scientific). The 10 pL gPCR reaction included 0.3 puM of forward
and reverse primer described in Table S1, equal amounts of cDNA, and 5 pL of SYBR
green master mix (Thermo Scientific). qPCR was performed on a Lightcycler 480. Cycling
parameters were 95°C for 10 min, then 40 cycles of 95°C for 15 s and 60°C for 60 s. GyrA
was used as a reference gene and relative expression was determined using a standard
curve (58).

LCMS

Strains were grown for 24 h in 100 mL succinate media. Supernatant was collected by
centrifugation, then twice filtered before LCMS was performed, as described for other
bacteria elsewhere (59). LCMS was performed on a Bruker Impact Il QTOF. The data
were then compared to PAMDB database (http://pseudomonas.umaryland.edu) and the
Bruker database (MetaboBASE), then analyzed using Metaboanalyst software (60).

Construction of reporter strains

Five hundred base pairs were amplified from the PA14 genome using primers listed in
Table S3 and restriction cloned upstream of the coding sequence of mScarlet using Spel
and Xhol digest sites in the multiple cloning site of pLD3208. Plasmids were verified
by sequencing. Verified plasmids were introduced into PA74 using biparental conjuga-
tion with E. coli S17-1. Single recombinants were selected on M9 minimal medium
agar plates (47.8 mM NayHPO47H,0, 2 mM KH5PO,4, 8.6 mM NaCl, 18.6 mM NH4Cl,
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1T mM MgSOy, 0.1 mM CaCly, 20 mM sodium citrate dihydrate, 1.5% agar) containing
70 pg/mL gentamicin. The plasmid backbone was removed using flippase Flp-FRT
recombination using the pFLP2 plasmid (61) and selection on M9 minimal medium agar
plates containing 300 pg/mL carbenicillin. pFLP2 plasmid was cured by streaking on
LB agar plates without NaCl with 10% wt/vol sucrose. The presence of mScarlet in final
clones was confirmed by PCR.

Transcriptional mScarlet fluorescence assays

For reporter assays, strains containing mScarlet phz1 or phz2 reporters were grown
overnight in 5 mL LB, then 1:100 diluted into black walled, clear bottom 96-well plates
containing 200 pL succinate media. Over 24 h, every 30 min, the fluorescence (e.g.,
560 nm-610 nm) and optical density at 600 nm was determined for every well on a
SpectraMax iD3 plate reader. For mixing assays, strains were mixed together in a 1:1 ratio
of fluorescent, mScarlet-expressing and non-fluorescent cells. Over 24 h, every 30 min,
the fluorescence (e.g., 560 nm-610 nm) and optical density at 600 nm was determined
for every well on a SpectraMax iD3 plate reader (8). Plates were continuously shaking and
incubated at 37°C.
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