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Twisting a Cylindrical Sheet Makes it a Tunable Locking Material
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A buckled sheet offers a reservoir of material that can be unfurled at a later time. For sufficiently thin yet
stiff materials, this geometric process has a striking mechanical feature: when the slack runs out, the
material locks to further extension. Here, we establish a simple route to a tunable locking material: a system
with an interval where it is freely deformable under a given deformation mode, and where the endpoints
of this interval can be changed continuously over a wide range. We demonstrate this type of mechanical
response in a thin sheet formed into a cylindrical shell and subjected to axial twist and compression, and we

rationalize our results with a simple geometric model.
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When a thin material is compressed, small-scale wrin-
kles and folds may form to collect excess length. Looking
at this process in reverse, buckled microstructures can be
thought of as a reservoir of material that can be deployed
at a later time. This strategy is exploited in designed
structures ranging from the common umbrella to inflatable
satellites [1,2]. It is also harnessed in nature, for instance
in the capture thread of the orb-weaving spider [3.4]
and in rabbit mesentery [5]. The process of buckling
and deploying material length is rich in its geometric
aspects [6], and it also has a striking mechanical feature: a
wrinkled sheet has approximately no resistance to exten-
sion until it becomes taut, at which point the force to
stretch the system further rapidly increases [Fig. 1(c)].
This mechanical response has been idealized in a theory of
so-called “locking materials™ [7,8].

Here, we establish a simple route to a tunable locking
material: a system with an interval where it is freely
deformable, and where the endpoints of this interval can
be changed continuously over a wide range. We demon-
strate this type of mechanical response in a thin cylindrical
sheet subjected to axial twist and compression. Our
measurements show that this system is soft to twisting
up to a threshold “locking angle” ¢,. By adapting the basic
physical picture of tension field theory [9-12] into simple
length-preserving arguments, we predict the locking angle
as a function of a small set of geometric parameters.
We identify a universal phase boundary between the soft
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deformations facilitated by buckling and the stiff response
where the system becomes taut, in agreement with our
experiments. These results show how a material’s locking
position can be tuned in sifu, which could find use in
applications where a reprogrammable mechanical response
is desired [13].

The phenomenon we study is shown in Fig. 1. Here, a
rectangular mylar sheet (thickness ¢ = 6.5 pm, Young’s
modulus £ = 3.4 GPa) has been curved into a cylindrical
shell by gluing two of its edges to rigid rings of radius
R = 9.5 mm, which are mounted in a rheometer (Anton
Paar MCR 302) for mechanical testing. Undeformed, the
cylinder strongly resists extension, but will readily buckle
and wrinkle under compression. Starting from an initial
height of H =26.9 mm, the cylinder is axially com-
pressed to a height 7 = 22.2 mm so that it buckles into
a loosely crumpled configuration [Fig. 1(a)]. Then, we
slowly rotate the top ring. When the magnitude of the
rotation angle ¢ reaches approximately 81°, we witness
two striking events at once: (i) the complex crumpled state
gives way to regular wrinkles, and (ii) the magnitude of
the torque on the top ring begins to increase dramatically
[Fig. 1(b)]. Performing this deformation cyclically reveals
that these mechanical measurements and morphological
transitions are repeatable.

The normal force on the top ring during the experiment
also shows a dramatic increase in magnitude at the same
angle ¢, as we show in Fig. 1(c). The wrinkled morphol-
ogy of Fig. 1(a) shows why the two signals are linked:
stresses are transmitted between the bottom and top rings
along the wrinkle crests and troughs, which are tilted with
respect to the vertical axis. Thus, we may use the normal
force as a secondary signal to measure @,.

Geometric model—To understand the emergence of
ordered wrinkles at a qualitative level, we imagine that

Published by the American Physical Society
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FIG. 1. Morphology and mechanics of a twisted cylindrical

sheet. (a) A 6 pm thick shell of height H = 26.9 mm and radius
R =9.5 mm is mounted between parallel plates, compressed
axially and then twisted. At a threshold twist angle, the shell
transitions from a disordered buckled state to an ordered wrinkled
state. Left: ¢ = 0. Right: ¢ = 90°. (b),(c) Torque and vertical
force on the top plate as such a cylinder is twisted cyclically
between +90° at constant separation (2 = 22.2 mm). The data
rapidly increase in magnitude at the “locking angle” ¢,. Our
model predicts ¢, = 81° for this shell [see Eq. (1)]. Dashed lines:
predicted response past ¢, (see SM and text).

the cylinder of initial height H is constructed of many
vertical “ropes,” which are inextensible yet have zero
resistance to bending. When the cylinder is compressed
to a smaller height 4, these ropes buckle to collect the extra
slack along their length. This buckling of the ropes serves
as a reservoir of material that allows the cylinder to then be
twisted by ¢, until at some crucial angle ¢, the slack runs
out and the ropes become taut. The same picture holds if the
initial direction of the ropes is skew, forming a set of
geodesics that can be characterized by an offset angle 6 at
the cylindrical surface [see the segment ABin Fig. 2(a)]. As
we will now show, there is a precise 0 of the tilted ropes that
forms the strongest constraint to the rotation. It is the
geometric selection of @ that determines the locking angle
@, and the final orientation @ of the wrinkles for the
buckled configuration.

The key geometric observation is that the initial length of

the rope AB = v'H% + R%6?, must match the final length
of the rope A'B = \/h® +2R> —2R*cos(d + ¢) at the
point the system becomes taut. Equating these two and

FIG. 2. Geometric idealization for compressing and twisting an
inextensible cylindrical shell. (a) A cylindrical shell with an
initial height H is compressed to a final height 4 and then twisted
by ¢. In this process, a geodesic AB, represented by the offset
angle 6, is mapped onto a straight line A’B. Finding the largest
allowed twist ¢, that does not stretch the material between any
two points amounts to identifying the most constraining € that
gives the least amount of twist while preserving the length
AB = A’'B. (b) An undeformed cylindrical shell and its idealized
gross shape after compression and twist, showing the corre-
sponding geodesics preserving the length. (c) Shape of a locked
cylinder (¢ = ¢,) with C = 0.64 and p = 1.42. Green curves:
hyperbola given by Eq. (3) in the marked x —z coordinate
system. Red line: asymptote of the hyperbola, which matches the
wrinkle angle a.

introducing a dimensionless compression parameter and a
dimensionless aspect ratio,

C= (H?-h?)/(2R)?
p=H/(2R),

we obtain 1 —6?/2 —cos(6 + ¢) = 2C. To see which 0
poses the strongest constraint to rotation, we seek the value
of @ for which ¢ is minimized; physically this corresponds
to finding the set of lines in the undeformed cylindrical
shell that become taut first, as the compressed shell is
gradually twisted. The amount of twist ¢, that locks the
system is thus:

ve = min{p(0)}

— _zm—s—cos‘l(l —2\/6)- (1)

This minimum ¢ occurs at 6,, =2+/v/C — C, which
identifies the material lines in the undeformed cylinder
that lock the system.

To help visualize this picture, Fig. 2(b) is an illustration
of these material lines (black helices wrapping the cylin-
der), and their taut counterparts in the compressed, twisted
shell at @,. Each taut line makes an angle a with the
horizontal. To obtain an expression for «, we use the
geometry in Fig. 2(a) to express «a in terms of ¢, + 0,,, h,
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and R. Applying the definitions of the compression
parameter C and the aspect ratio p, we find

1 P =C
ol (2)

We may also use these geometric arguments to obtain
the overall shape of the shell at ¢, (neglecting the wrinkly
undulations). Because each point on the locked shell
belongs to one taut line, the overall shape is given by

a = tan~

sweeping the straight line A’B in Fig. 2(a) about the axis of
the cylinder. This surface thus generated is a hyperboloid of
revolution [14,15], and its side profile is the hyperbola

x*/a* =72 /c* = R%. (3)

Remarkably, the angle a of the line A’B is equal to the
angle of the asymptote of the side-view profile [16],
z=(c/a)-x =tana-x. This allows us to express the
ratio ¢/a in terms of p and C, through Eq. (2). To obtain ¢
and a, we combine this result with Eq. (3) applied to the
top boundary of the cylinder, R?/a*>—h?/(4c?) = R°.
Solving these two equations gives: a®> =1—+/C and
= (-0 -VO)/VC.

As a first test of our model, we compare these predictions
with the cylinder from Figs. 1 and 2(c) with C = 0.64 and
p = 1.42. Figure 2(c) shows the predicted hyperbolic
shape, which is in reasonable agreement with the observed
side-view profile, allowing for the finite-amplitude wrin-
kles that protrude from the hyperboloid shape, and that we
neglect in the model. We also show the asymptote, which
agrees with the orientation of the wrinkles passing through
the center of the shell in the plane normal to the line of
sight. Finally, the locking angle predicted by Eq. (1),
@, = 81°, is in reasonable agreement with the location
of the rapid increase in magnitude of the force and torque
curves in Figs. 1(b) and 1(c).

Tunability.—A more comprehensive test of the pre-
dicted locking angle involves probing it as a function of
the axial compression. Indeed, our geometric model
predicts the phase boundary between relaxed and
stretched states, and we may plot Eq. (1) on a phase
diagram as in Fig. 3. At a given axial compression, C, the
shell is soft to rotation within the interval |@| < @,.
Figure 3 shows that the width of this interval can be
tuned on demand between 0 and 360°.

To test this picture, we designed a protocol to trace out
the phase boundary in a single experiment. We twist the
cylinder back and forth between +360° at a constant rate,
keeping a small separation force —0.5 N between the top
and bottom plates of the cylinder. The exact value of this
force is not important, but it must be small enough to avoid
tearing the material, and large enough to activate relaxa-
tions of the wrinkle pattern toward the lowest-energy
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FIG. 3. Phase diagram of a cylindrical shell subjected to axial
compression C and twist ¢. Modeling the system as a material
that can compress but not stretch makes every point in the
“relaxed” phase accessible (up to the horizontal line C = p? that
corresponds to full compression with 7 = 0). Our geometric
model predicts the phase boundary where the system locks and
becomes taut [Eq. (1), black line]. Red curve: experiment with a
1.5 pm thick shell with R = 9.5 mm and H = 26.9 mm, cycling
between ¢ = +180° at a constant rate while applying a small
lifting force F = —0.5 N at the top boundary. The data are in
good agreement with our model that has no free parameters. The
small discrepancy around ¢ = O is due to finite stretching; see
SM [17].

ordered state [see Supplemental Material (SM) [17] ]. This
force causes the cylinder to gradually decrease or increase
its height in response to the continuous twisting, main-
taining a taut configuration. In this process we track the
twist angle ¢ and the resulting compression C, calculated
from the initial height H and the adapted height 4.
Figure 3 shows an excellent match between the curve
traced out by the test cycle and the relation from Eq. (1),
within the working regime || < 180° of our geometric
model. This is notable given that our model does not
include the bending or stretching moduli of the sheet, and
it does not take into account the finite size of the wrinkles
or the boundary layer where the wrinkle amplitude decays
to zero at the clamped boundaries.

There is another striking simplicity of the behavior:
Equation (1) predicts that the phase diagram is independent
of the initial shape of the cylinder—p is absent from Eq. (1)
and the phase diagram axes (Fig. 3). To further demonstrate
this universality, we perform a new experiment with a
cylinder of aspect ratio p = 0.79 and compare it to the
earlier test with p = 1.42. Figure 4(a) shows that the curves
followed by the slender and squat cylinders both fall along
our model prediction [Eq. (1)].

The fates of the two cylinders at their limits of rotation,
however, are different. When the slender cylinder (p =
1.42) is twisted toward 180° a tight waist appears that
contracts to a small size to form a double-cone structure
[Figs. 4(b)-4(e)]. Indeed, at ¢, = 180° (C =1), our
geometric argument predicts that all lines of tension
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FIG. 4. Effects of the aspect ratio p of the cylinder. (a) Locking curves for two 1.5-pum-thick cylindrical shells with the same radius
R = 9.52 mm but different heights, twisted from 0° to 360° at a constant rate while applying a small lifting force ¥ = —0.5 N at the top
boundary. Green: H = 26.9 mm, p = 1.42. Magenta: H = 15.0 mm, p = 0.79. (b)—(e) Side-view images of the slender shell (p = 1.42)
at ¢ = 0°, 120°, 180°, 360°. (f)—(h) Side-view images of the squat shell (p = 0.79) at ¢ = 0°, 52°, 87°. (i) Bottom-view image of the
configuration of (h). (j) Markers: observed angle of wrinkles with respect to the vertical direction, versus the locking angle ¢,, for the

two cylinders. Curves: Eq. (2) for the angle of the lines of tension.

[represented by A’B in Fig. 2(a)] simultaneously pass
through the center of the cylinder. A simple way for our
model to handle this self-contact is for the lines of tension
to curl around one another at the apex of the double cone,
leaving h fixed even as the twist exceeds 180°. This
idealized behavior is represented by the horizontal line
C=1 for ¢, > 180° in Fig. 4(a). The torque is zero
along this line as the lines of tension have lost their
azimuthal component. In the experiment, the finite thick-
ness of the shell causes a finite-sized waist to form, so
that the dimensionless compression C rises slowly for
@, > 180° and a small torque is observed.

On the other hand, a squat cylinder with p=H/(2R) < 1

cannot be twisted up to ¢ = 180°. At ¢, = —2/p — p*+
cos™!(1-2p) < 180°, h =0 and the top and bottom
come into contact as shown in the sequence of images
in Figs. 4(f)-4(h) for an experimental realization with
p = 0.79. This deformation results in a finite throat size,
seen in the bottom view of Fig. 4(i). As a consequence
of this evolution, a squat cylinder never loses its
locking ability.

The orientation of the lines of stress also depends on the
aspect ratio p. Figure 4(j) shows the measured wrinkle tilt o
for the same two cylinders but different aspect ratios
(p = 1.42 and 0.79) at a series of locked configurations.
For the slender cylinder (p > 1), the wrinkle direction
plateaus to the double-cone limit at large twist. For the
squat cylinder (p < 1), the wrinkles become more and more
skew until they lay down completely as the shell flattens
into a wrinkled annulus. Both trends are captured accu-
rately by our geometric prediction, Eq. (2).

Stiffness at locking.—To understand the stiffness that the
system presents as it locks, we extend our geometric model
to infinitesimal rotations beyond locking, where we expect
that the configuration of the wrinkles remains fixed while

the material is stretched along their crests and troughs.
In the SM [17] we show how the material strain may be
computed using Egs. (1)—(3) and then converted into the
vertical force and torque on the top plate. Figures 1(b)
and 1(c) show that these predictions with no free param-
eters quantitatively capture the data beyond locking.

Discussion.—We have shown how a thin cylindrical
shell can be manipulated to give rise to a tunable locking
behavior, where the torque and force dramatically increase
beyond the locking angles +¢,. Beyond the locking point
the material stretches, so that in the blue shaded region
of Fig. 3 the system acts as an extensional or torsional
spring [18] with a stiffness that we have rationalized. Our
geometric arguments show how ¢, can be set on demand
over a wide range—anywhere from 0° to 180°—and our
results apply to sufficiently thin cylindrical shells of any
aspect ratio. This behavior is amenable to applications, as
the system is lightweight and relies on a low-cost film.

At a twist angle of 180°, our purely geometric arguments
show that the sheet must make contact with itself. As we
approach this angle from below, the waist of the sheet
approaches zero radius, wrinkles become more prevalent,
and the sheet’s finite bending modulus and thickness play
a role, so that the experimental data begin to deviate from
our model. Eventually a tight bundle forms where the
material twists around itself in a neck that joins two
wrinkled cones—reminiscent of a twisted candy wrap-
per, sausage casing, party balloon [19], or towel. An
understanding of this bundle must take into account the
finite thickness of the film, the friction of self-contact,
and the geometric problem of packing the sheet into a
small cross section [20].

Our results suggest a fascinating landscape of configu-
rations for the sheet. In our idealized model, each point on
the phase boundary corresponds to a unique configuration
of the sheet, where uniform wrinkles orient at an angle «
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around a hyperbolic profile. This is reflected in our
experiments as a robust and repeatable ordered response
at the phase boundary, although the precise placement of
wrinkles can differ in each realization. Slightly away from
the phase boundary, the number of possible states expands
dramatically: even though the wrinkles still have a dom-
inant orientation, some are buckled and some have other
directions. Finally, deep into the “relaxed” phase (gray
region in Fig. 3), the sheet can be in a vast number of
metastable states [Fig. 1(a), left image], in contrast to the
relatively small set of “bottleneck™ states along the boun-
dary. The well-defined phase space that can be repeatably
accessed in our geometry may be useful in other inves-
tigations of metastable patterns in crumpled sheets, a topic
of contemporary interest [21-24].

Equally striking is the difference among the possible
paths from an arbitrary ¢, with one set of ordered wrinkles,
to —¢, with a mutually incompatible set. Uniquely, when
one travels along the phase boundary the wrinkles deform
smoothly as a changes, and they vanish momentarily at
¢, = 0. All other paths traverse the bulk, compressing and
buckling the initial wrinkles, and then straightening out the
resulting network via many snap-through events—a noisy,
messy, and highly path-dependent [24] journey that show-
cases the essential glassiness of a crumpled sheet.
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