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Abstract

We prove that the invariant subspaces of the Hardy operator on L2[0, 1] are the
spaces that are limits of sequences of finite dimensional spaces spanned by monomial
functions.

1 Introduction

The space L2[0, 1] is a cornerstone of analysis. One way to analyze it is to use the exponential
functions eitx, which have the advantage of being eigenfunctions for differentiation. Another
way is to use the monomial functions xs. The Müntz-Szász theorem gives necessary and
sufficient conditions for a collection of monomial functions to span L2[0, 1]. Monomials are
eigenfunctions for the Hardy operator H, defined by

Hf(x) =
1

x

∫ x

0

f(t)dt.

Conversely, if T is a bounded linear operator on L2[0, 1] that has xs as an eigenvector
whenever xs is in L2[0, 1], then T is a function of H; specifically, it is of the form φ(H) for
some function φ that is bounded and analytic on the disk D(1, 1) = {z ∈ C : |z− 1| < 1} [4].

We shall use L2 to denote L2[0, 1] throughout. Hardy proved in [9] that H is bounded
on L2 (and indeed on Lp for all p > 1). For a treatment of H consult the book [13]. What
are its invariant subspaces?

Let S denote the half plane {s ∈ C : Re (s) > −1
2
}. Then if s ∈ S, the monomial function

xs is in L2, and Hxs = 1
s+1

xs; moreover the monomials constitute all the eigenvectors of
H. Any space that is the linear span of finitely many monomial functions is invariant for
H. We shall call such a space a finite monomial space. It is the object of this note to prove
that every invariant subspace of H is a limit of finite monomial spaces.

The Hardy operator is unitarily equivalent to 1 − S∗, where S is the unilateral shift
[7]. Its invariant subspaces are therefore described by the celebrated theorem of Beurling
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[5] which described the invariant subspaces of the shift using the beautiful theory of Hardy
spaces of holomorphic functions. Using this theory, Theorem 1.4 below is well-known. It
is proved as the Theorem on Finite Dimensional Approximation [16, p.37]. However, the
point of this note is to describe the invariant subspaces of H without using any Hardy space
theory, just using L2 techniques and functional analysis. Our hope is that this approach will
not only illuminate L2 with a new light, but may also generalize to related spaces, such as
Lp or weighted Lp spaces.

Definition 1.1. For S a finite subset of S we let M(S) denote the span in L2 of the mono-
mials whose exponents lie in S, i.e.,

M(S) = {
∑
s∈S

a(s)xs | a : S → C}.

We refer to sets in L2 that have the form M(S) for some finite subset S of S as finite
monomial spaces.

Definition 1.2. If M is a subspace of a Hilbert space H and {Mn} is a sequence of closed
subspaces, we say that {Mn} tends to M and write

Mn →M as n→∞

if
M = {f ∈ H | lim

n→∞
dist(f,Mn) = 0}.

Definition 1.3. We say that a subspace M of L2 is a monomial space if there exists a
sequence {Mn} of finite monomial spaces such that Mn →M.

Equipped with these definitions, we can now state our main theorem.

Theorem 1.4. Let M be a closed non-zero subspace of L2. Then M is invariant for H if
and only if M is a monomial space.

One way to construct a monomial space is to take the closed linear span of an infinite
set of monomial functions,

M = ∨{xsk : k ∈ N}. (1.5)

The Müntz-Szász theorem (proved in [15, 18] for integer exponents, and in [19] for general
real exponents) characterizes when such a space is a proper subspace of L2. See [6] for a
thorough treatment.

Theorem 1.6. (Müntz-Szász)

∨{xsk : k ∈ N} = L2 if and only if
∑
k

2Re sk + 1

|sk + 1|2
=∞.

Not every monomial space looks like (1.5). It is easy to see that for any 0 < s < 1, the
space {f ∈ L2 : f = 0 a.e. on [0, s]} is invariant for H, and hence is a monomial space. (For
an explicit construction of finite monomial spaces that converge to this subspace, see [3].)
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Our goal is to give a real analysis proof of Theorem 1.4. To do this, we first need some
preliminary results. In Section 2 we state two theorems about Hilbert spaces that we will use.
The first, due to von Neumann in 1929, describes isometries on a Hilbert space. The second,
due to Quiggin in 1993, gives a sufficient condition to extend partially defined multipliers of a
reproducing kernel Hilbert space without increasing the norm. We apply Quiggin’s theorem
to the commutant of the Hardy operator in Section 4.

In Section 3 we describe the Laguerre basis for L2, the basis obtained by evaluating the
Laguerre polynomials on log 1

x
, which are also the functions obtained by applying (1−H∗)n

to the constant function 1. In section 5 we deal with multiplicity; this corresponds to
generalizing the notion of finite monomial space to allow not just monomials xs, but also
functions of the form (log x)mxs. In Section 6 we prove that certain rational functions are
cyclic for H∗. Finally in Section 7 we prove Theorem 1.4. Our strategy to prove that
an invariant subspace M of H is a monomial space is to look at the projection η of the
constant function 1 onto M⊥, and show that the function η uniquely characterizes M. We
then approximate η by functions that arise in a similar way from finite monomial spaces,
and show that this proves that the finite monomial spaces coverge to M in the sense of
Definition 1.2.

2 Some results from operator theory

An operator V defined on a Hilbert space H is called an isometry if it preserves norms; a
co-isometry is the adjoint of an isometry. An isometry V is called pure if ∩∞n=0ran(V ∗)n = 0.
The von Neumann-Wold decomposition describes the structure of isometeries [20, 21]. We
state it not in its most general form, but in a way that will be useful below.

Theorem 2.1. (von Neumann - Wold)
(i) Every isometry is the direct sum of a unitary operator and a pure isometry.
(ii) If V is a pure isometry on the space H, and M = ker V ∗, then H = ∨{T jm : m ∈

M}. The dimsnsion of M is called the multiplicity of V .
(iii) If V is a pure isometry of multiplicity 1 and f is any non-zero vector in H then

H = ∨{V if, (V ∗)jf : i, j ≥ 0}.

We shall also need a result on extending the adjoints of multiplication operators, due
to Quiggin [17]. We say that a sesquilinear form `(x, y) has one positive square if for any
finite set of points {x1, . . . , xN}, the self-adjoint N -by-N matrix `(xi, xj) has one positive
eigenvalue.

Theorem 2.2. (Quiggin): Let (H, k) be a reproducing kernel Hilbert space on a set X. A
sufficient condition that every bounded operator T defined on ∨{kx : x ∈ X0} for some subset
X0 ⊆ X that has the form

Tkx = α(x)kx, x ∈ X0

extend to a bounded operator T̃ : H → H that has the form

T̃ kx = α̃(x)kx, x ∈ X0

and satisfies ‖T̃‖ = ‖T‖ is that the reciprocal 1
k(x,y)

has exactly one positive square.
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In the form stated, the converse to Quiggin’s theorem is not true. However, if one requires
norm-preserving extensions in the vector-valued case too, then the condition that 1

k(x,y)
has

one positive square is both necessary and sufficient. This was proved by McCullough [14] in
a different context, and put in a unified context in [1]. See also the paper by Knese [11] for
an elegant proof of necessity, and [2] for a discussion in a book.

3 The Laguerre basis for L2

The following identity is a special case of one in [10]. In our case, it is easily proved by
checking on polynomials; see e.g. [3].

Lemma 3.1. Let f ∈ L2. Then

‖f‖2 = ‖(1−H)f‖2 + |
∫ 1

0

f(x)dx|2

Consequently, 1−H is a co-isometry with one dimensional kernel. As

(1−H)kxn =

(
n

n+ 1

)k
xn,

we see that 1−H∗ is a pure isometry of multiplicity 1. Let us state this for future use.

Proposition 3.2. (Brown, Halmos, Shields) The operator (1 − H∗) is a pure isometry of
multiplicity one.

Proposition 3.2 was first proved in [7]. If we apply powers of (1 − H∗) to the constant
function 1, we get a useful orthonormal basis. This was first found explicitly in [7], and
developed further in [12].

Lemma 3.3.

(H∗)j 1 = (−1)j
(log x)j

j!
(3.4)

Proof. We proceed by induction. Clearly, (3.4) holds when j = 0. Assume j ≥ 0 and (3.4)
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holds. Then

(H∗)j+1 1 = H∗((H∗)j 1)

=
(−1)j

j!
H∗(log x)j

=
(−1)j

j!

∫ 1

x

(log t)j

t
dt

=
(−1)j

j!

∫ 0

log x

ujdu

= (−1)j+1 (log x)j+1

(j + 1)!

Lemma 3.5.

(1−H∗)n 1 =
n∑
j=0

(
n

j

)
(log x)j

j!

Proof. By Lemma 3.3,

(1−H∗)n 1 =
n∑
j=0

(−1)j
(
n

j

)
(H∗)j 1

=
n∑
j=0

(−1)j
(
n

j

)(
(−1)j

(log x)j

j!

)

=
n∑
j=0

(
n

j

)
(log x)j

j!
.

We have proved that the functions

en(x) =
n∑
j=0

(
n

j

)
(log x)j

j!
(3.6)

are orthonormal. To see that they are complete, note that their closed linear span M is
invariant under H∗ and contains the function 1. Since the constant functions are the kernel
of the pure co-isometry (1 −H), this means M = L2 by the von Neumann-Wold Theorem
2.1. So we have proved the following result, which was first proved in [7] and [12].
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Theorem 3.7. (Brown, Halmos, Shields) The functions en defined by (3.6) form an or-
thonormal basis for L2.

The Laguerre polynomials are the polynomials

pn(x) =
n∑
j=0

(−1)j
(
n

j

)
(x)j

j!
.

These are orthogonal polynomials for L2[0,∞) with the weight function e−x. As en(x) =
pn(log 1

x
), the change of variables t = log 1

x
is an alternative way to prove that en are or-

thonormal.
The functions en are generalized eigenvectors of H at 1. Later we shall need the following.

Proposition 3.8. Let s ∈ S. The (n+ 1)st generalized eigenvector of H with eigenvalue 1
s+1

is in the linear span of {xs, (log x)xs, . . . (log x)nxs}.

Proof: We want to prove

Ker(H − 1

s+ 1
)n+1 = ∨{xs, (log x)xs, . . . (log x)nxs}. (3.9)

This is true when n = 0, since

Hxs =
1

s+ 1
xs. (3.10)

Differentiate both sides of (3.10) with respect to s. We get

H(log x)xs =
1

s+ 1
(log x)xs − 1

(s+ 1)2
xs. (3.11)

Now we proceed by induction. The inductive hypothesis is that

H(log x)nxs =
1

s+ 1
(log x)nxs +

n−1∑
j=0

cj(s)(log x)jxs (3.12)

for some functions cj. We have proved (3.12) for n = 0 and 1. (The n = 1 case we proved
just for expositional clarity). Assume the hypothesis holds up to n. Differentiate (3.12) with
respect to s and we get

H(log x)n+1xs =
1

s+ 1
(log x)n+1xs− 1

(s+ 1)2
(log x)nxs+

n−1∑
j=0

c′j(s)(log x)jxs+cj(s)(log x)j+1xs.

Thus by induction, (3.12) holds for all n, and hence so does (3.9). 2
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4 Commutant Lifting for the Hardy operator

Suppose T : L2 → L2 commutes with H. Then it must have the same eigenvectors, and so
be a monomial operator of the form

T : xs 7→ α(s)xs. (4.1)

When is such an operator bounded?

Theorem 4.2. The operator T commutes with H and has norm at most M if and only if
T is of the form (4.1) and, for any finite set {si}Ni=1 ⊂ S, the matrix(

M2 − α(si)α(sj)

1 + si + sj

)N

i,j=1

(4.3)

is positive semidefinite.

T may be defined by (4.1) just on some subspace of L2. The positivity of (4.3) on this
set is necessary and sufficient to lift T from the span of {xsi} to an operator on all of L2 that
commutes with T and has the same norm. Without loss of generality we can take M = 1.

Theorem 4.4. Suppose that for some subset S0 ⊆ S there is an operator

T : ∨{xs : s ∈ S0} → ∨{xs : s ∈ S0}
T : xs 7→ α(s)xs.

A necessary and sufficient condition for T to extend to an operator from L2 to L2 that
commutes with H and has norm at most one is that for every finite set {si} ⊆ S0, we have(

1− α(si)α(sj)

1 + si + sj

)
≥ 0.

Notice that Theorem 4.2 is a special case of Theorem 4.4, so we shall just prove the latter
theorem.

Proof: (of Theorem 4.4.) Necessity: We have that 1− T ∗T ≥ 0. Therefore

〈(1− T ∗T )xsj , xsi〉 =

(
1− α(si)α(sj)

1 + si + sj

)
(4.5)

is a positive semi-definite matrix for any subset of S0.
Sufficiency: Suppose that (4.5) is positive semi-definite for every finite subset of S0. Then

T commutes with H|∨{xs:s∈S0}. Let us define a kernel on S by

k(s, t) =

∫ 1

0

xtxsdx

=
1

1 + t+ s
.
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The reciprocal of k is the sesquilinear form

`(s, t) = (
1

2
+ t) + (

1

2
+ s)

=
1

2
(
3

2
+ s̄)(

3

2
+ t)− 1

2
(
1

2
− s̄)(1

2
− t).

So for any N ≥ 2 the matrix [`(si, sj)]
N
i,j=1 is a rank 2 symmetric matrix, with one positive

and one negative eigenvalue. By Theorem 2.2, T extends to an operator of norm 1 on all of
L2 that has each xs as an eigenvector, and hence commutes with H. 2

5 Monomial spaces with multiplicity

If one takes the two dimensional monomial spaces M(s, s + h) and lets h → 0, the spaces
converge to the two-dimensional space spanned by xs and ∂

∂s
xs = (log x)xs. So if we have a

multi-set S = {s1, . . . , s1, s2, . . . , s2, . . . , sn}, where each sj appears mj times, we will define

M(S) = ∨{xs1 , (log x)xs1 , . . . , (log x)m1−1xs1 , . . . , xsn , (log x)xsn , . . . , (log x)mn−1xsn}.
(5.1)

We shall call a set of the form (5.1) a generalized finite monomial space.

Proposition 5.2. Every generalized finite monomial space is a limit of finite monomial
spaces.

Proof: Fix m ≥ 2. Let

M1 = ∨{xs, (log x)xs, . . . , (log x)m−1xs}.

Let ω be a primitive mth root of unity, and let h be a small positive number. Let

M2 = ∨{xs+ωjh : 0 ≤ j ≤ m− 1}.

We shall prove that there is a constant C, which depends on s and m but not h, so that

f ∈M1 ⇒ dist(f,M2) ≤ Chm (5.3)

f ∈M2 ⇒ dist(f,M1) ≤ Ch. (5.4)

As every generalized monomial space of the form (5.1) is the sum of finitely many spaces of
the form M1, this will prove the proposition.

In the proof we shall use C for a constant that depends on m but not h, and which may
change from one line to the next.

Proof of (5.3). (i) First take s = 0. By Taylor’s theorem, for any unimodular number τ
and any x > 0 we have

|xτh −
m−1∑
n=0

(τh)n

n!
(log x)n−1| ≤ hm

m!
(log x)mx−h. (5.5)
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Consider the function f(x) = (log x)n, for some n ≤ m − 1. We shall approximate this by
the function g ∈M2 given by

g(x) =
1

m

n!

hn

m−1∑
j=0

ω̄njxω
jh.

The choice of arguments for the coefficients means that if one adds together the Taylor series
for each xω

jh, all the terms cancel except for the ones that are n mod m one, so

|g(x)− (log x)n| ≤ Chm(log x)m+nx−h (5.6)

where C is independent of x. Integrating the square of (5.6) we get that dist((log x)n,M2) ≤
Chm. As the functions (log x)n form a basis for M1, we deduce that (5.3) holds.

(ii) For general s, the above argument shows that for each function xs(log x)n there is a
function g in M2 that satisfies the pointwise estimate

|g(x)− xs(log x)n| ≤ Chm(log x)m+nxRe s−h.

As long as h is small enough that Re s− h > −1
2
, we again can deduce (5.3).

Proof of (5.4). (i) First take s = 0. From (5.5), we get that dist(xω
jh,M1) ≤ Chm. So

the result will follow if we prove that whenever
∑
cjx

ωjh is in the unit ball of M2, then
cj = O( 1

hm−1 ). This in turn will follow if we can show that

dist(xω
`h,∨{xωih : 0 ≤ i ≤ m− 1, i 6= `}) ≥ Chm−1 (5.7)

for some non-zero C, as this proves that the functions xω
ih are not too colinear. For defi-

niteness, we will prove (5.7) for ` = 0. Let G(i, j) denote the Gram matrix with (i, j) entry
〈xωih, xω

jh〉 = 1
1+ωih+ω̄jh

. Then

dist(xh,∨1≤i≤m−1{xω
ih})2 = detG(i, j)m−1

i,j=0/ detG(i, j)m−1
i,j=1. (5.8)

By Cauchy’s formula for determinants

det(
1

1 + ωih+ ω̄jh
) =

∏
j<i |ωih− ω̄jh|2∏

i,j(1 + ωih+ ω̄jh)
.

Putting this into (5.8), we get

dist(xh,∨1≤i≤m−1{xω
ih})2 =

h2m−2
∏m−1

i=1 |ωi − 1|2

(1 + 2h)
∏m−1

i=1 |1 + (1 + ωi)h|2
.

This equation yields (5.7) for ` = 0, and by symmetry for all `.
(ii) For general s ∈ S, a similar argument gives dist(xs+ω

`h,M1) ≤ Chm, and

dist(xs+h,∨1≤i≤m−1{xs+ω
ih})2 =

h2m−2
∏m−1

i=1 |ωi − 1|2

(1 + 2Re s+ 2h)
∏m−1

i=1 |1 + 2Re s+ (1 + ωi)h|2
.

2

With more work, one can improve (5.4) to O(hm), but we do not need a sharper estimate.

Corollary 5.9. Any space that is a limit of generalized finite monomial spaces is a monomial
space.
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6 Some cyclic vectors for H∗

We know from Proposition 3.2 that the spectrum of H is D(1, 1), and for λ ∈ D(1, 1) that
H − λ is Fredholm with index 1. It follows that 1 + sH and 1 + sH∗ are invertible if and
only if s ∈ S.

Lemma 6.1. If s ∈ S, then
xs = (1 + sH∗)−11.

Proof: We have

〈(1 + sH∗)xs, xt〉 = 〈xs, (1 + s̄
1

t+ 1
xt〉

=
1

t̄+ 1
= 〈1, xt〉.

2

Lemma 6.2. Suppose f(x) =
∑N

j=0 cjx
sj , where each sj ∈ S. If f is not orthogonal to any

monomial xt for t ∈ S, then f is cyclic for H∗.

Proof: By Lemma 6.1, we have

f(x) =
N∑
j=0

cj(1 + sjH
∗)−11.

Define a rational function r(z) by

r(z) =
N∑
j=0

cj
1

1 + sjz
,

and let p, q be polynomials with no common factors and r = p/q. The zeroes of q are at the
points {− 1

sj
: 1 ≤ j ≤ N}. We have

f = p(H∗)q(H∗)−11. (6.3)

Claim: p has no roots in D(1, 1).
Indeed, suppose p(z0) = 0 for some z0 ∈ D(1, 1). Let t0 = 1−z̄0

z̄0
∈ S. Factor p as

p(z) = (z − z0)p̃(z). Then

〈f, xt0〉 = 〈(H∗ − z0)p̃(H∗)q(H∗)−11, xt0〉

= 〈p̃(H∗)q(H∗)−11, (
1

t0 + 1
− z̄0)xt0〉

= 0.

This would contradict the assumption that 〈f, xt〉 6= 0 for all t ∈ S.
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Since q(H∗) is invertible, f is cyclic if and only if p(H∗)1 is cyclic. We now factor
p(z) = c

∏
(z − zj). If zj /∈ D(1, 1), then (H∗ − zj) is invertible. If zj ∈ ∂D(1, 1), then

(H∗ − zj) has dense range, since H has no eigenvectors on ∂D(1, 1). Therefore p(H∗) has
dense range, and in particular takes cyclic vectors to cyclic vectors. 2

If 〈f, xt〉 = 0, then f is in the range of H∗ − 1
1+t̄

. We shall say that 〈f, xt〉 vanishes to
order m if f is orthogonal to {xt, (log x)xt, . . . , (log x)m−1xt}.

Lemma 6.4. Suppose f(x) =
∑N

j=0 cjx
sj , where each sj ∈ S, and f 6= 0. Let

{t ∈ S : 〈f, xt〉 = 0} = {t1, . . . , tm},

counted with multiplicity. Let zi = 1
1+t̄i

for 1 ≤ i ≤ m. Then

f =
m∏
i=1

(H∗ − zi)g, (6.5)

where g is cyclic for H∗.

Proof: Write f = p(H∗)q(H∗)−11 as in (6.3). Let p∪(z) := p(z̄). Then

〈f, xt〉 = 〈p(H∗)q(H∗)−11, xt〉
= 〈1, p∪(H)q∪(H)−11〉

= 〈1,
p∪( 1

t+1
)

q∪( 1
t+1

)
xt〉

=
p( 1

t̄+1
)

q( 1
t̄+1

)
〈1, xt〉.

So the roots of p that lie in D(1, 1) are exactly the points {zi : 1 ≤ i ≤ m}. (Multiplicity is
handled by Proposition 3.8). Factor p as p(z) =

∏m
i=1(z − zi)p̃(z), where p̃ has no roots in

D(1, 1). Let g = p̃(H∗)q(H∗)−11. Then g is cyclic, and (6.5) holds. 2

Later we will need the next lemma.

Lemma 6.6. Let z ∈ D(1, 1). Then

(H∗ − z)[(z̄ − 1)H∗ − z̄]−1

is an isometry.

Proof: This follows by calculation, using the fact that 1 −H∗ is isometric. 2

7 Proof of Theorem 1.4

Sufficiency is obvious. For necessity, letM be a proper closed subspace of L2 that is invariant
for H. We must show that it is a monomial space.
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Lemma 7.1. Let M be a finite dimensional subspace of L2, of dimension n + 1, that is
invariant for H. ThenM is a generalized finite monomial space, i.e. there exist n+1 points
s0, . . . , sn, with multiplicity allowed, so that M = ∨{xsi : 0 ≤ i ≤ n}.

Proof: Consider H|M, which leaves M invariant. The space M is spanned by the
eigenvectors and generalized eigenvectors of H that lie in M. Suppose the corresponding
eigenvalues are sj, with multiplicity mj. By Proposition 3.8, the generalized eigenvectors are
of the form xsj , (log x)xsj , . . . , (log x)mj−1xsj . ThereforeM is the generalized finite monomial
space corresponding to the exponents sj with multiplicity mj. 2

To prove the full theorem, we use the idea of wandering subspace, due to Halmos [8]. Let

k0 := min{k : ek /∈M}.

Write N for M⊥. Write ek0 = ξ + η, where ξ ∈ M and η ∈ N . The assumption that
ek0 /∈M means η 6= 0. Let u = η

‖η‖ .

Lemma 7.2. We have u ⊥ (1−H∗)N .

Proof: Let f ∈ N . Then

〈u, (1−H∗)f〉 = 〈‖η‖ ek0 , (1−H∗)f〉
= ‖η‖〈(1−H)ek0 , f〉.

If k0 = 0, then (1 − H)ek0 = 0. If k0 > 0, then (1 − H)ek0 = ek0−1 ∈ M. Either way, the
inner product with f is 0. 2

Define an operator R in terms of the orthonormal basis en from (3.6) by

R : en 7→ (1−H∗)nu. (7.3)

Lemma 7.4. The operator R defined by (7.3) is an isometry from L2 onto N .

Proof: The functions {(1 − H∗)nu : n ≥ 0} form an orthonormal set. Indeed, by
Proposition 3.2 and Lemma 7.2, if m ≥ n then

〈(1−H∗)mu, (1−H∗)nu〉 = 〈(1−H∗)m−nu, u〉
= δm,n.

As R maps an orthonormal basis to an orthonormal set, it must be an isometry onto its
range.

We know that the range of R is contained in N . To see that it is all of N , observe that
by Lemma 7.2, we have that

∨{(1−H)mu : m ≥ 1}

is contained in N⊥ =M. As 1−H is a pure isometry of multiplicity 1, by Theorem 2.1 for
any non-zero vector f the vectors

{(1−H)mf, (1−H∗)nf : m,n ≥ 0}
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span L2. Therefore in particular, ∨{(H∗)nu : n ≥ 0} and ∨{Hmu : m ≥ 1} span L2, so

N = ∨{(H∗)nu : n ≥ 0}
M = ∨{Hmu : m ≥ 1}.

2

Let us calculate T = R∗, the adjoint of R.

Lemma 7.5. The adjoint of R is given by the operator

T : xs 7→ (1 + s)〈xs, u〉xs. (7.6)

Proof: We have

〈R∗xs, en〉 = 〈xs, (1−H∗)nu〉
= 〈(1−H)nxs, u〉

=

(
s

s+ 1

)n
〈xs, u〉.

We also have by Lemma 3.5

〈Txs, en〉 = (1 + s)〈xs, u〉〈xs, (1−H∗)n1〉
= (1 + s)〈xs, u〉〈(1−H)nxs, 1〉

=

(
s

s+ 1

)n
〈xs, u〉.

Therefore T = R∗. 2

We want to approximateM by monomial spaces. We shall do this by approximating u by
linear combinations of monomials. We have proved that T is a co-isometry that commutes
with H. This means by Theorem 4.4 that for each N , the matrix(

1− (i+ 1)(j + 1)〈u, xi〉〈xj, u〉
1 + i+ j

)N
i,j=0

≥ 0.

We shall assume for the remainder of this section that N is large enough that 〈u, xi〉 6= 0 for
some i ≤ N . Let CN ≥ 1 be the largest number C so that(

1− C2(i+ 1)(j + 1)〈u, xi〉〈xj, u〉
1 + i+ j

)N
i,j=0

≥ 0.

The hypothesis on N means CN is finite, and limN→∞CN = 1. Define T̃N by

T̃N : xi 7→ CN(i+ 1)〈xi, u〉xi, 0 ≤ i ≤ N.

By Theorem 4.4, this extends to an operator TN that maps L2 to L2, commutes with H, and
has norm equal to 1. So TN is of the form

TN : xs 7→ αN(s)xs. (7.9)
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Lemma 7.10. The function αN(s) is a rational function of degree at most N , and maps S
to D.

Proof: We know that

αN(i) = CN(i+ 1)〈u, xi〉, 0 ≤ i ≤ N, (7.11)

Let γ be a non-zero vector in the kernel of(
1− C2

N(i+ 1)(j + 1)〈u, xi〉〈xj, u〉
1 + i+ j

)N
i,j=0

≥ 0.

By Theorem 4.2, the matrix (4.3) has to be positive semidefinite when we augment the set
{0, . . . , N} by any other point s. This means by Lemma 7.14 that the first N + 1 entries in
the last column of the extended (N + 2)-by-(N + 2) matrix must be orthogonal to γ, so

N∑
i=0

1− αN(i)αN(s)

1 + i+ s
γi = 0.

This equation yields (
N∑
i=0

αN(i)γi
1 + i+ s

)
αN(s) =

N∑
i=0

γi
1 + i+ s

(7.13)

Let R(s) denote the right-hand side of (7.13), and L(s) denote the coefficient of αN(s) on
the left. Both R and L are rational functions, vanishing at infinity, with simple poles exactly
in the set

{−1− i : γi 6= 0}.

Their ratio αN = R/L, therefore, is a rational function with poles at the zero set of L, and
zeroes on the zero set of R. The degree will be at most N , since they both have zeroes at
infinity.

As ‖Txs‖ = |αN(s)|‖xs‖ ≤ ‖xs‖, we have αN : S→ D. 2

We used the following lemma, whose proof is elementary linear algebra.

Lemma 7.14. Suppose A is a positive semi-definite matrix, and γ is a non-zero vector in
the kernel of A. If there is a vector β and a constant c so that(

A β
β∗ c

)
≥ 0,

then 〈β, γ〉 = 0.

Lemma 7.15. Let α be a rational function of degree N with all its poles in the set {s :
Re (s) < −1

2
}, and with no pole at ∞.

(i) If α(−1) 6= 0, then there exists a sequence {s0, . . . , sN}, with multiplicity allowed, and
a function uN in the generalized finite monomial space M({s0, s1, . . . , sN}), so that

α(s) = (1 + s)〈xs, uN〉 ∀s ∈ S. (7.16)
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Moreover we can take s0 = 0.
(ii) If α(−1) = 0, then there exists a sequence {s1, . . . , sN}, with multiplicity allowed,

and a function uN in the generalized finite monomial space M({s1, . . . , sN}), so that

α(s) = (1 + s)〈xs, uN〉 ∀s ∈ S. (7.17)

Proof: Expand α(s)/(s+ 1) by partial fractions to get

α(s)

s+ 1
=

p∑
j=1

mj∑
r=1

(r − 1)!crj
(s− λj)r

.

There is no constant term, since the left-hand side vanishes at∞. We can assume that c
mj

j 6=
0 for each j. In case (i), there is a pole, which we denote λ1, at −1, and

∑p
j=1 mj = N + 1.

In case (ii) there is no pole at −1, and
∑p

j=1 mj = N .
The inverse Laplace transform of α(s)/(s+ 1) is

F (t) =

p∑
j=1

mj∑
r=1

crjt
r−1eλjt.

Define

uN(x) =
1

x
F (log

1

x
)

=

p∑
j=1

mj∑
r=1

c̄rj(log
1

x
)r−1x−λ̄j−1. (7.18)

Then, making the substitution e−t = x, we get

〈xs, uN〉 =

∫ 1

0

xsuN(x)dx

=

∫ ∞
0

e−stF (t)dt

= (LF )(s)

=
α(s)

s+ 1
.

Notice that each point −1− λ̄j is in S. We now define the multiset {s0, s1, . . . , sN} (respec-
tively, {s1, . . . , sN} ) by taking mj copies of the point −λ̄j − 1 for each j. 2

We shall prove in Lemma 7.22 that case (ii) cannot occur for αN .

Lemma 7.18. Let K = ker(1− TNT ∗N). Then K is H∗ invariant.

Proof: As H commutes with TN and (1−H)(1−H∗) = 1 by Lemma 3.1, we have

TN = (1−H)TN(1−H∗).
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So if g ∈ K then

‖g‖2 = ‖T ∗Ng‖2

= 〈(1−H)T ∗N(1−H∗)g, T ∗Ng〉.

As ‖1−H∗‖ and ‖T ∗N‖ are both equal to 1, we have

‖T ∗N(1−H∗)g‖ = ‖(1−H∗)g‖
= ‖g‖.

Therefore (1−H∗)g is also in K, and hence K is H∗ invariant. 2

Lemma 7.19. The operator TN is a co-isometry.

Proof: Let γ be as in the proof of Lemma 7.10. Let f(x) =
∑N

j=0 γjx
j. Then

(1− T ∗NTN)f = 0, so TN attains its norm on f . Let

g = TNf =
N∑
j=0

γjα(j)xj.

As f = T ∗NTNf , we have g = TNT
∗
Ng.

To prove TN is a co-isometry, we must show that

K = ker(1− TNT ∗N)

is all of L2. By Lemma 7.21, we know that K is H∗ invariant, and it contains the polynomial
g. If g were not orthogonal to any xt, then we would be done by Lemma 6.2.

As 〈xt, g〉 is a non-zero rational function of t, it can only have finitely many zeroes in S;
label these {t1, . . . , tm}, counting multiplicity. By Lemma 6.4 we have

g =
m∏
i=1

(H∗ − zi)h1,

where h1 is cyclic for H∗ and zi = 1
1+t̄i

. Let

h2 =
m∏
i=1

[(z̄i − 1)H∗ − z̄i] h1.

Then h2 is cyclic since it is an invertible operator applied to h1. Let

r(z) =
m∏
i=1

z − zi
(z̄i − 1)z − z̄i

.

By Lemma 6.6, r(H∗) is an isometry, and we have r(H∗)h2 = g. Therefore

‖h2‖ = ‖r(H∗)h2‖
= ‖TNT ∗Nr(H∗)h2‖
≤ ‖T ∗Nr(H∗)h2‖
= ‖r(H∗)T ∗Nh2‖
= ‖T ∗Nh2‖
≤ ‖h2‖.
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Therefore h2 ∈ K, and since K is H∗ invariant and h2 is cyclic, we get that K is all of L2

and hence T ∗N is an isometry. 2

Let RN = T ∗N . A similar calculation to the proof of Lemma 7.5 yields:

Lemma 7.21. The operator RN maps en to (1−H∗)nuN .

We are now ready to defineMN . Let αN be as in (7.9). Apply Lemma 7.15 to αN to get,
in case (i), a spaceM({s0, s1, . . . , sN}) that contains uN given by (7.18) and satisfies (7.16),
and in case (ii) a spaceM({s1, . . . , sN}) that contains uN given by (7.18) and satisfies (7.17).

We show that Case (ii) of Lemma 7.15 cannot occur.

Lemma 7.22. We have αN(−1) 6= 0.

Proof: Let us assume that we are in Case (ii) of Lemma 7.15. Let tj = −λ̄j − 1. In the
sequence {s1, . . . , sN} each tj appears with multiplicity mj, and no tj is 0. We have

uN =

p∑
j=1

mj∑
r=1

c̄rj(− log x)r−1xtj .

Since RN is isometric by Lemma 7.19, we have uN is orthogonal to (1 − H∗)kuN for every
k ≥ 1, and hence uN is also orthogonal to (1 −H)kuN for every k ≥ 1. For each j ≥ 1, let
pkj be a polynomial that vanishes at 0, vanishes at ti to order mi if i 6= j, and vanishes at tj
to order k. Since each such polynomial vanishes at zero, we have

〈uN , pkj (1−H)uN〉 = 0. (7.23)

Consider
p
mj

j (1−H)uN = c̄
mj

j xtj .

By (7.23), we conlcude that uN ⊥ xtj . Similarly p
mj−1
j (1 − H)uN equals c̄

mj

j (log x)xtj plus
some multiple of xtj . Therefore we conclude that uN is also orthogonal to (log x)xtj . Con-
tinuing in this way, we conclude that uN is orthogonal to every function inM({s1, . . . , sN}).
Since uN itself is in this space, we conclude that uN = 0, a contradiction. 2

Let MN = M({s1, . . . , sN}), in other words the space M({s0, s1, . . . , sN}) with the
multiplicity at 0 reduced by 1. Here is the final step.

Lemma 7.24. The sequence MN tends to M.

Proof: Let tj = −λ̄j − 1, with t1 = 0. We have

uN =

p∑
j=1

mj∑
r=1

c̄rj(− log x)r−1xtj .

As in the proof of Lemma 7.22, we conclude that uN is orthogonal to p(1−H)M({s0, s1, . . . , sN})
for every polynomial p that vanishes at 0. So uN is a constant multiple of the projection of
em1−1 onto M⊥

n .
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By Lemma 7.4, T ∗N is an isometry from L2 ontoM⊥
N . Therefore the projection PMN

onto
MN is given by 1− T ∗NTN . We have

TN : xi 7→ (i+ 1)〈xi, uN〉xi, 0 ≤ i ≤ N

= CN(i+ 1)〈xi, u〉xi, 0 ≤ i ≤ N.

As N → ∞, we have uN → u weakly and so TN → T in SOT. Therefore PMN
→ PM =

1−T ∗T in WOT and hence also SOT (since a sequence of projections converges in the SOT
if and only if it converges WOT). 2

8 Open Question

Let 1 < p < ∞, and p 6= 2. The Hardy operator is bounded on Lp[0, 1], and has xs as an
eigenvector whenever s ∈ Sp = {s ∈ C : Re (s) > −1

p
}. Any space that is the limit of finite

monomial spaces (with powers in Sp) is therefore invariant for H. Is every closed subspace
of Lp[0, 1] that is invariant for H of this form?

On behalf of all authors, the corresponding author states that there is no conflict of
interest. Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.
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