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Abstract. We characterize the common range of the adjoints of cyclic multi-
plication operators on the Drury–Arveson space. We show that a function belongs

to this common range if and only if its Taylor coefficients satisfy a simple decay

condition. To achieve this, we introduce the uniform Smirnov class on the ball and

determine its dual space. We show that the dual space of the uniform Smirnov class

equals the dual space of the strictly smaller Smirnov class of the Drury–Arveson

space, and that this in turn equals the common range of the adjoints of cyclic

multiplication operators.

1 Introduction

1.1 Known results on the disk. Let H2 denote the Hardy space on the

unit disk D, and let H∞ denote the bounded analytic functions on D. If m ∈ H∞

we let Tm : H2 → H2, f 7→ mf denote the multiplication operator. We call its

adjoint T∗
m a co-analytic Toeplitz operator. In [15], H. Helson asked

Question 1.1. What functions are in the range of T∗
m for every outer function m

in H∞?

He was led to this question from the following considerations. The Nevanlinna

class of D is defined as

(1.2) N(D) =

{
f : holomorphic on D, sup

0<r<1

∫
log(1 + |f (reiθ)|)dθ < ∞

}
.
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The Smirnov class N+(D) is a subset of functions in N(D):

(1.3) N+(D) =

{
f ∈ N(D) : lim

r↑1

∫
log[1 + |f (eiθ) − f (reiθ)|]dθ = 0

}
,

where f (eiθ) is the non-tangential limit, which exists a.e. [13, Thm. II.5.3]. It can

be shown (see, e.g., [13, Sec. II.5]) that

N(D) = {f = g/m : g ∈ H2, m ∈ H∞, m 6= 0 on D}(1.4)

N+(D) = {f = g/m : g ∈ H2, m outer}(1.5)

= {f = q/m : q ∈ H∞, m outer}.

We shall use outer throughout the note to mean an outer function in H∞. Helson

considered the locally convex inductive limit topology I on N+(D) that comes from

viewing it as

N+(D) =
⋃

{
1

m
H2 : m outer}.

First we put a norm on each 1
m

H2 by declaring

‖g‖ 1
m

H2 := ‖mg‖H2

(so dividing by m is a unitary from H2 onto 1
m

H2). Then I is the translation-

invariant topology that has a neighborhood base at zero consisting of all absolutely

convex sets � with the property that � ∩ 1
m

H2 is open for each outer function m

(this is the same as saying that m� ∩ H2 is open in H2 for every outer m). In other

words, I is the finest locally convex topology on N+(D) that makes all inclusions
1
m

H2 →֒ N+(D) continuous. Helson proved in [15] the following theorem:

Theorem 1.6. Let h(z) =
∑∞

n=0 γnzn be in H2. Then the functional

Ŵ :
∑

bnzn 7→
∑

bnγn

is a continuous linear functional on (N+(D), I) if and only if h is in the range of T∗
m

for every outer function m.

He asked for an intrinsic characterization of such h. One can view the condition

of Question 1.1 in some ways as a smoothness condition. Indeed, if m(z) = 1 − z

and T∗
mf = h, then denoting the k-th Taylor coefficient of a holomorphic function g

by ĝ(k), we have ĥ(k) = f̂ (k) − f̂ (k + 1). So h has a telescoping Taylor series

when evaluated at 1, and by Abel’s theorem limr↑1 h(r) exists. Similarly looking

at symbols that are powers of (eiθ − z), one can show that if h is in
⋂

m outer ran(T∗
m),

all its derivatives have radial limits everywhere on the unit circle.



COMMON RANGE 3

There is another topology on N+(D). One can define a metric on N(D) by

ρ(f, g) = sup
0<r<1

∫
log(1 + |[f − g](reiθ)|)dθ.

The Nevanlinna class with the metric ρ is not a topological vector space, because

scalar multiplication is not continuous [27]. On the smaller Smirnov class, ρ

makes it into a topological vector space with a complete translation invariant

metric (however it is not locally convex). The dual of (N+(D), ρ) had been found

by N. Yanagihara [30]:

Theorem 1.7. The functional

Ŵ :
∑

bnzn 7→
∑

bnγn

is a continuous linear functional on (N+(D), ρ) if and only if there exist constants

M, c > 0 so that

(1.8) |γn| ≤ Me−c
√

n for all n ∈ N.

In [17] it was shown that the inclusion map from (N+(D), ρ) to (N+(D), I)

is continuous, and moreover I is the finest locally convex topology such that

inclusion is continuous. Consequently, both spaces have the same dual, and hence

Question 1.1 was answered.

Theorem 1.9. A function h =
∑

ĥ(n)zn in H2 is in the range of T∗
m for every

outer function m in H∞ if and only if there exist M, c > 0 so that

(1.10) |ĥ(n)| ≤ Me−c
√

n for all n ∈ N.

Remark 1.11. If m is any non-zero function in H∞, the range of T∗
m depends

only on its outer part. Indeed, factoring m = umo where u is inner and mo is outer,

we have that T∗
muf = T∗

mo
f and T∗

m annihilates (uH2)⊥. So Question 1.1 is the same

as asking for a characterization of

(1.12)
⋂

{ran(T∗
m) : m ∈ H∞, not identically 0}.

Remark 1.13. Functions satisfying the smoothness condition (1.8) come up

in multiple places. For example, in [9] they are shown to be the functions that are

the multipliers of every de Branges–Rovnyak space H(b) when b is not an extreme

point of the ball of H∞; see [25] for a treatment of these spaces. In [7], the authors

give bounds on the number of zeros such functions can have in D, and discuss how

the class coincides with a certain class of Cauchy transforms.
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1.2 New results on the ball. Let d be a positive integer, and Bd denote

the unit ball in Cd. Let us define the Drury–Arveson space H2
d to be the Hilbert

space of holomorphic functions on Bd with reproducing kernel given by

k(z, λ) =
1

1 − 〈z, λ〉Cd

.

We let N denote the natural numbers (including 0). The monomials {zα : α ∈ Nd}

form an orthogonal basis for H2
d . Their norms will come up frequently, so we shall

define

(1.14) ωα := ‖zα‖H2
d

=

√
α1! . . . αd!

(α1 + · · · + αd)!
.

For many questions regarding multivariable operator theory, the Drury–Arveson

space turns out to be the right generalization of H2 to the unit ball; see [6, 26] for

background on H2
d .

We shall let Mult(H2
d) denote the multiplier algebra of H2

d . For each m in

Mult(H2
d), we shall let

Tm : f 7→ mf

denote the multiplication operator, and we shall call its adjoint T∗
m a co-analytic

Toeplitz operator on H2
d . A multiplier m is called cyclic if ran(Tm) is dense in H2

d ;

since Mult(H2
d) is dense in H2

d , this is equivalent to saying that {ϕm : ϕ ∈ Mult(H2
d)}

is dense in H2
d . Our goal is to answer the d-dimensional version of Question 1.1.

Question 1.15. What functions are in the range of T∗
m for every cyclic m in

Mult(H2
d)?

In analogy to (1.4) and (1.5), we define the Nevanlinna and Smirnov classes

of H2
d by

N(H2
d) = {f = g/m : g ∈ H2

d, m ∈ Mult(H2
d), m 6= 0 on Bd},

N+(H2
d) = {f = g/m : g ∈ H2

d, m ∈ Mult(H2
d), m cyclic}.

In [3] we proved that N+(H2
d) is equal to

{f = φ/m : φ ∈ Mult(H2
d), m ∈ Mult(H2

d), m cyclic}.

As before, let us define the locally convex inductive limit topology I on N+(H2
d).

We norm each 1
m

H2
d by

‖g‖ 1
m

H2
d

:= ‖mg‖H2
d
.
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Then I is the translation-invariant topology that has a neighborhood base at zero

consisting of all absolutely convex sets � with the property that � ∩ 1
m

H2
d is open

for each cyclic multiplier m. Equivalently, I is the finest locally convex topology

on N+(H2
d) that makes all inclusions 1

m
H2

d →֒ N+(H2
d) continuous; see, e.g., [28,

13-1] for background. The polynomials are dense in (N+(H2
d), I), and Helson’s

theorem remains true; we prove this in Section 5.

Theorem 1.16. The function h ∈ H2
d is in

⋂
{ran(T∗

m) : m cyclic} if and only

if the functional

Ŵh : f 7→ 〈f, h〉H2
d

extends to be a continuous linear functional on (N+(H2
d), I).

To characterize these functions by their Taylor coefficients, we need to study

an appropriate version of (1.3). In [22] W. Rudin defined the Nevanlinna and

Smirnov classes on the unit ball Bd in Cd analogously to (1.2) and (1.3), replacing

integration over the circle with integration over the sphere. He conjectured that the

two classes were equal for d ≥ 2, but the solution of the inner function problem

on the ball showed that this was not true. See [23].

In this note we shall study holomorphic functions on the ball that are uniformly

in the Smirnov class on every disk through the origin. So we shall let Nu denote

the holomorphic functions on the ball Bd such that

(1.17) |||f ||| := sup
ζ∈∂Bd

sup
0<r<1

∫
log(1 + |f (reiθζ)|)

dθ

2π

is finite. This is not a norm, but we can define a metric by

ρ(f, g) = |||f − g||| = sup
ζ∈∂Bd

sup
0<r<1

∫
log(1 + |[f − g](reiθζ)|)

dθ

2π
.

We define the uniform Smirnov class N+
u by

(1.18) N+
u = {f ∈ Nu : lim

r↑1
ρ(fr, f ) = 0},

where fr(z) := f (rz). We shall show in Proposition 2.5 that (N+
u , ρ) is an F-space, i.e.,

a topological vector space in which the topology comes from a complete translation

invariant metric, and that the polynomials are dense in (N+
u , ρ). Moreover we show

that multiplication is continuous, so (N+
u , ρ) is a topological algebra. (It can be

shown that when d = 1 the definitions of the Smirnov class from (1.3) and (1.18)

coincide. We were unable to find a convenient reference, so we include a proof in

Proposition B.1.)
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In Theorem 3.7 we prove that (N+(H2
d), I) embeds in (N+

u , ρ), but the inclusion

is not continuous, and is proper whenever d ≥ 2. Indeed, in Section 7 we prove

that N(H2
d) does not even contain the ball algebra.

Theorem 1.19. For all d ≥ 2 there is a holomorphic function f on Bd that is

continuous up to the boundary, but is not in N(H2
d).

Next, we find the dual of (N+
u , ρ). For any function f holomorphic on the ball Bd

we shall use f̂ (α) to denote the Taylor coefficients, where α is a multi-index:

f (z) =
∑

α∈Nd

f̂ (α)zα.

Recall that ωα is defined by (1.14). We prove in Section 4:

Theorem 1.20. The functional

(1.21) Ŵ : f 7→
∑

α∈Nd

f̂ (α)γα

is in (N+
u , ρ)∗ if and only if there exist constants M, c > 0 so that

(1.22) |γα| ≤ Mωαe−c
√

|α| for all α ∈ Nd.

In this case, the series in (1.21) converges absolutely for every f ∈ N+
u .

Since N+(H2
d) ( N+

u , and the inclusion is not even continuous, Theorem 1.20

would not seem strong enough to answer Question 1.15. Nevertheless, our most

surprising result is that it is, and (N+(H2
d), I) and (N+

u , ρ) have the same duals.

Putting all these results together we get our principal result.

Theorem 1.23. Let h ∈ H2
d and let Ŵ = 〈·, h〉H2

d
be the associated linear

functional. The following assertions are equivalent:

(i) Ŵ ∈ (N+
u , ρ)∗,

(ii) Ŵ ∈ (N+(H2
d), I)∗,

(iii) h ∈ ran(T∗
m) for every cyclic m ∈ Mult(H2

d),

(iv) there exist M, c > 0 so that

(1.24) |ĥ(α)|ωα ≤ Me−c
√

|α|

for all α ∈ Nd.

In this case, the functional Ŵ on N+
u or on N+(H2

d) is given by

Ŵ(f ) =

∞∑

n=0

〈fn, hn〉H2
d

=

∞∑

n=0

∑

|α|=n

ω2
αf̂ (α)ĥ(α),

where both sums converge absolutely, and f =
∑∞

n=0 fn and h =
∑∞

n=0 hn are the

homogeneous expansions of f and h, respectively.
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Note: The reason ωα appears on the left in (1.24) and on the right in (1.22) is

the way we define Ŵ. In Theorem 1.23 we use the H2
d inner product, which is the

form we will use in our proofs, and in Theorem 1.20 we used the ℓ2 inner product

on the coefficients, just to make the statement of the theorem more succinct. This

means that γα = ω2
αĥ(α).

We prove Theorem 1.23 in Sections 5 and 6.

In Section 8, we prove that (N+
u , I) can be realized as a dense subspace of a

Fréchet space, i.e., a complete locally convex metrizable space, so in particular the

topology I on N+
u is metrizable. In Section Appendix A we have an appendix on

inductive limit topologies.

2 Basic properties of N+
u

The following lemma is proved in [21, II.3.1 and II.11.2], see also [27, eq. 1.3,

p. 917].

Lemma 2.1. Let g ∈ N+(D). Then for any z ∈ D, we have

(2.2) |g(z)| ≤ e
2|||g|||

1−|z| − 1.

Moreover, its Taylor coefficients satisfy

(2.3) |ĝ(n)| ≤ e
√

8n|||g|||(1+εn),

where εn is o(1), depends only on |||g|||, and decreases as |||g||| decreases.

For ζ ∈ ∂Bd, let

iζ : D → Bd, z 7→ zζ.

If f ∈ O(Bd), then f ◦ iζ ∈ O(D) is the slice function along the direction ζ.

Clearly, we have |||f ◦ iζ ||| ≤ |||f |||. So if f ∈ N+
u , then f ◦ iζ ∈ N(D) and

limr→1 |||f ◦ iζ − (f ◦ iζ)r||| = 0, which implies that f ◦ iζ ∈ N+(D) by Proposi-

tion B.1. So we get from (2.2) that

(2.4) f ∈ N+
u ⇒ |f (w)| ≤ e

2|||f |||

1−|w| − 1, ∀w ∈ Bd.

Proposition 2.5. (N+
u , ρ) is an F-space, and multiplication is continuous.

Moreover, the polynomials are dense.

Proof. It is straightforward to check that ρ defines a metric on N+
u . Observe

that if f ∈ Nu, λ ∈ C and n ∈ N with |λ| ≤ n < |λ| + 1, then

|||λf ||| ≤ |||nf ||| ≤ n|||f ||| ≤ (|λ| + 1)|||f |||
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by the triangle inequality. From this, it easily follows that N+
u is closed under scalar

multiplication, and hence is a subspace of Nu.

To see density of the polynomials, note that if f ∈ N+
u , then for each r < 1, the

function fr is holomorphic in a neighborhood of Bd and hence a uniform limit of

polynomials on Bd. Thus each fr and therefore f belongs to the ρ-closure of the

polynomials.

Continuity of addition on N+
u follows from the triangle inequality. To see

continuity of multiplication, from which scalar multiplication follows as a special

case, note that if f, g, f0, g0 ∈ N+
u then

fg − f0g0 = (f − f0)(g − g0) + f0(g − g0) + g0(f − f0).

Using the triangle inequality together with the inequality |||FG||| ≤ |||F||| + |||G|||,

we obtain

|||fg − f0g0||| ≤ |||f − f0||| + |||g − g0||| + |||f0(g − g0)||| + |||g0(f − f0)|||.

So it suffices to prove that multiplication is separately continuous.

Since |||fg||| ≤ (‖f‖∞ + 1)|||g|||, we have

|||f (g − g0)||| ≤ |||(f − fr)(g − g0)||| + |||fr(g − g0)|||

≤ |||f − fr||| + |||g − g0||| + (‖fr‖∞ + 1)|||g − g0|||.

Let ε > 0, and choose r < 1 so that |||f − fr||| < ε
3
. Then if

|||g − g0||| <
ε

3 + 3‖fr‖∞

we get |||f (g − g0)||| < ε. So multiplication is continuous.

Finally, we show completeness. Let (fn) be a Cauchy sequence in N+
u . From (2.4)

we see that (fn) converges uniformly on compact subsets of Bd to a holomorphic

function f . On the other hand, completeness of N+(D) (see [30, Thm. 1] or

[27, p. 919]) yields that each slice sequence (fn ◦ iζ) converges in N+(D) and

in particular pointwise on D, so that the limit necessarily equals f ◦ iζ . More-

over, as |||fn ◦ iζ − fm ◦ iζ ||| ≤ |||fn − fm||| it follows that the convergence is uniform

in ζ ∈ ∂Bd, hence f ∈ Nu and limn→∞ ρ(fn, f ) = 0.

To see that f ∈ N+
u , let ε > 0 and let n ∈ N with |||f − fn||| < ε. Then

|||f − fr||| ≤ |||f − fn||| + |||fn − (fn)r||| + |||(fn)r − fr||| ≤ 2ε + |||fn − (fn)r|||,

so lim supr→1 |||f − fr||| ≤ 2ε. Since ε > 0 was arbitrary, f ∈ N+
u . �

We shall need the next result in Section 6.
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Lemma 2.6. Let h(z) =
∑

|α|=n ĥ(α)zα be a homogeneous polynomial of de-

gree n. Then the following inequalities hold:

(a) ‖h‖∞ ≤ ‖h‖H2
d
. (n + 1)(d−1)/2‖h‖∞.

(b) maxα |ĥ(α)|ωα ≤ ‖h‖H2
d
. (n + 1)(d−1)/2 maxα |ĥ(α)|ωα.

Here, the implied constants only depend on d.

Proof. (a) We have

‖h‖∞ ≤ ‖h‖Mult(H2
d
) = ‖h‖H2

d
,

since h is homogeneous (see, e.g., [14, Prop. 6.4]). Next, if H2(∂Bd) denotes the

Hardy space on the ball, then the formula for the norm of a monomial in H2(∂Bd)

in [22, Prop. 1.4.9] shows that

‖h‖2
H2

d
=

(
d − 1 + n

d − 1

)
‖h‖2

H2(∂Bd) ≤

(
d − 1 + n

d − 1

)
‖h‖2

∞ . (n + 1)d−1‖h‖2
∞.

(b) Note that

‖h‖2
H2

d
=

∑

|α|=n

|ĥ(α)|2ω2
α,

so the inequality on the left is obvious, and the inequality on the right follows from

the fact that there are
(

d−1+n

d−1

)
. (n + 1)d−1 monomials in d variables of degree n.�

In particular, the final condition in Theorem 1.23 admits the following equiva-

lent reformulations.

Corollary 2.7. Let h =
∑

α ĥ(α)zα ∈ O(Bd) and let hn =
∑

|α|=n ĥ(α)zα be the

homogeneous component of degree n. Then the following assertions are equivalent:

(i) There exist M, c > 0 so that

|ĥ(α)|ωα ≤ Me−c
√

|α| for all α ∈ Nd;

(ii) there exist M, c > 0 so that

‖hn‖∞ ≤ Me−c
√

n for all n ∈ N;

(iii) there exist M, c > 0 so that

‖hn‖H2
d
≤ Me−c

√
n for all n ∈ N.

Proof. Clear from Lemma 2.6. �

Yanagihara [31] showed that the Taylor coefficients of a function f ∈ N+(D)

satisfy the growth estimate |f̂ (n)| = O(exp(c
√

n)) for all c > 0. We will use the

following generalization to N+
u of this fact in Section 4.



10 A. ALEMAN, M. HARTZ, J. MCCARTHY AND S. RICHTER

Lemma 2.8. Let f ∈ N+
u have homogeneous decomposition f =

∑∞
n=0 fn. Then

for all c > 0, there exists M ≥ 0 so that ‖fn‖H2
d
≤ Mec

√
n.

Proof. By (2.3), for each c > 0 there exists δ > 0 so that if |||g||| < δ then

|ĝ(n)| ≤ ec
√

n for all n ∈ N.

Since

lim
ε→0

|||εf ||| = 0,

there exists ε > 0 so that |||εf ||| < δ, hence if fζ(z) = f (zζ) denotes the slice function,

then |||εfζ ||| < δ for all ζ ∈ ∂Bd. Consequently,

ε|fn(ζ)| = |ε̂fζ(n)| ≤ ec
√

n.

This shows that ‖fn‖∞ = O(ec
√

n) for all c > 0. The claim now follows from

Corollary 2.7. �

3 N+(H2
d) is contained in N+

u

Our goal is to show that N+(H2
d) ⊂ N+

u . We begin with two lemmata.

Lemma 3.1. H2
d ⊂ N+

u and |||f ||| ≤ ‖f‖H2
d

for all f ∈ H2
d .

Proof. The inequality log(1 + x) ≤ x shows that for all ζ ∈ ∂Bd, we have

sup
0<r<1

∫ 2π

0

log(1 + |f (reiθζ)|)
dθ

2π
≤ ‖f ◦ iζ‖H1 ≤ ‖f ◦ iζ‖H2 ≤ ‖f‖H2

d
.

Hence H2
d ⊂ Nu, and the inequality in the statement holds. Moreover, ρ(fr, f ) ≤

‖f − fr‖H2
d
→ 0 as r → 1, so f ∈ N+

u . �

Lemma 3.2. Let H be a reproducing kernel Hilbert space whose reproducing

kernel does not vanish on the diagonal. Let ψ ∈ Mult(H) with ‖ψ‖Mult(H) ≤ 1.

Then for all r ∈ (0, 1), we have

∥∥∥ 1 − ψ

1 − rψ

∥∥∥
Mult(H)

≤
2

1 + r
.

Proof. By von Neumann’s inequality,

∥∥∥ 1 − ψ

1 − rψ

∥∥∥
Mult(H)

≤ sup
|z|=1

∣∣∣ 1 − z

1 − rz

∣∣∣.

Straightforward calculus shows that the supremum on the right is attained for z =−1

and hence equal to 2
1+r

. �
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A normalized complete Pick space can be defined to be a Hilbert function space

on a set X with a reproducing kernel of the form

k(x, y) =
1

1 − 〈b(x), b(y)〉,

where b is some function from X into the unit ball of a Hilbert space such

that b(x0) = 0 for some base point x0 ∈ X. See [1, 2] for how this is equiva-

lent to having the complete Pick property. The multiplier algebra Mult(H) can be

identified with a WOT-closed subalgebra of B(H). In this way, Mult(H) becomes

a dual space. On bounded subsets of Mult(H), the resulting weak-∗ topology

agrees with the topology of pointwise convergence on X. Indeed, this follows from

density of the linear span of all kernel functions in H.

It follows from a result of Davidson, Ramsey and Shalit, see [8, Cor. 2.7],

that there is a 1-to-1 correspondence between multiplier invariant subspaces of

a complete Pick space and weak-∗ closed ideals of the multiplier algebra. In

particular, if m is a cyclic multiplier, then m Mult(H) is weak-∗ dense in Mult(H).

We require the following Kaplansky density type refinement of this fact. If f ∈ H,

we shall let [f ] denote the closure in H of {mf : m ∈ Mult(H)}.

Lemma 3.3. LetH be a normalized complete Pick space and let m ∈ Mult(H).

If ϕ ∈ Mult(H) ∩ [m] with ‖ϕ‖Mult(H) ≤ 1, then there exists a sequence (ϕn) in

Mult(H) so that

(1) (ϕnm) converges to ϕ in the weak-∗ topology, and

(2) ‖ϕnm‖Mult(H) ≤ 1 for all n ∈ N.

Proof. Since ϕ ∈ [m], there exists a sequence (qn) in Mult(H) such that

(3.4)

∞∑

n=1

‖n2(qnm − ϕ)‖2
H ≤ 1.

In this setting, [4, Thm. 1.1] yields a sequence (ψn) in Mult(H) forming a con-

tractive column multiplier and a multiplier ψ ∈ Mult(H) with ‖ψ‖Mult(H) ≤ 1

and ψ 6= 1 so that

n2(qnm − ϕ) =
ψn

1 − ψ
for all n ≥ 1.

In particular, ‖ψn‖Mult(H) ≤ 1 and thus

(3.5) ‖(1 − ψ)(qnm − ϕ)‖Mult(H) ≤
1

n2
.

Let rn = 1 − 1
n

and set

ϕn =
1 − ψ

1 − rnψ
qn ∈ Mult(H).
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Then

‖ϕnm‖Mult(H) =
∥∥∥ 1 − ψ

1 − rnψ
qnm

∥∥∥
Mult(H)

≤
∥∥∥ 1 − ψ

1 − rnψ
(qnm − ϕ)

∥∥∥
Mult(H)

+
∥∥∥ (1 − ψ)ϕ

1 − rnψ

∥∥∥
Mult(H)

.

We estimate the first summand using (3.5) and the second summand using Lem-

ma 3.2 to find that

‖ϕnm‖Mult(H) ≤
1

n2(1 − rn)
+

2

1 + rn

=
1

n
+

2

2 − 1
n

,

hence lim supn→∞ ‖ϕnm‖Mult(H) ≤ 1.

Moreover, since (qnm) tends to ϕ pointwise, we see that (ϕnm) tends to ϕ

pointwise and hence in the weak-∗ topology. Replacing ϕn with tnϕn for a suitable

sequence of scalars (tn) in (0, 1) converging to 1, we obtain the desired sequence.�

Remark 3.6. If J is any weak-∗ closed ideal in Mult(H) and ϕ ∈ Mult(H)

is in the closure of J in H, then a very similar argument shows that ϕ is in J (just

replace qnm in (3.4) by mn for some sequence mn in J). This yields another proof

of one direction of the Davidson–Ramsey–Shalit result. For the other direction,

we need to show that if we start with an invariant subspace M, intersect it with

Mult(H) to get an ideal J, and then take the closure of J in H, we get M back.

This can also be proved using the representation f =
ϕ

1−ψ
for functions in H; see

[4, Cor. 4.1].

We are now able to prove that N+(H2
d) is contained in N+

u .

Theorem 3.7. Let m ∈ Mult(H2
d) by cyclic. Then 1

m
H2

d ⊂ N+
u , and the

inclusion is continuous. Hence N+(H2
d) ⊂ N+

u .

Proof. Since m is cyclic, H2
d is a dense subspace of 1

m
H2

d , and we know from

Lemma 3.1 that H2
d ⊂ N+

u . Moreover, (N+
u , ρ) is an F-space by Proposition 2.5, so

it suffices to show that the inclusion H2
d ⊂ N+

u is continuous at 0 with respect to the

norm ‖ · ‖ 1
m

H2
d

on H2
d . Indeed, assuming this has been shown, then the inclusion

H2
d ⊂ N+

u is uniformly continuous with respect to ‖ · ‖ 1
m

H2
d

and ||| · |||, hence by

completness of N+
u , it extends to a continuous inclusion from 1

m
H2

d to N+
u .

Thus, we have to show the following statement: For each ε > 0, there ex-

ists δ > 0 so that f ∈ H2
d and ‖mf‖H2

d
< δ implies |||f ||| < ε. To see this, let ζ ∈ ∂Bd.

Since the slice function f ◦ iζ is in the Smirnov class on D, we see that

sup
0<r<1

∫ 2π

0

log(1 + |f (rζeiθ)|)
dθ

2π
=

∫ 2π

0

log(1 + |f (ζeiθ)|)
dθ

2π
.
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If ϕ ∈ Mult(H2
d) with ϕ(0) 6= 0 and ‖ϕm‖Mult(H2

d
) ≤ 1, then (mϕ) ◦ iζ is non-zero

almost everywhere on ∂D. Using the inequality log(1 + ab) ≤ log(1 + a) + log(b)

for a ≥ 0 and b ≥ 1, we therefore find that

log(1 + |f (ζeiθ)|) = log
(

1 +
∣∣∣ f (ζeiθ)m(ζeiθ)ϕ(ζeiθ)

m(ζeiθ)ϕ(ζeiθ)

∣∣∣
)

≤ log(1 + |f (ζeiθ)m(ζeiθ)ϕ(ζeiθ)|) − log |m(ζeiθ)ϕ(ζeiθ)|

for almost every θ. Integrating in θ, using Lemma 3.1 on the first summand and

Jensen’s inequality for holomorphic functions on the second summand, it follows

that

sup
0<r<1

∫ 2π

0

log(1 + |f (rζeiθ)|)
dθ

2π
≤ ‖fmϕ‖H2

d
− log |m(0)ϕ(0)|.

Taking the supremum over all ζ ∈ ∂Bd, we obtain

(3.8) |||f ||| ≤ ‖fm‖H2
d
‖ϕ‖Mult(H2

d
) − log |m(0)ϕ(0)|,

which is true for any ϕ ∈ Mult(H2
d) with ϕ(0) 6= 0 and ‖ϕm‖Mult(H2

d
) ≤ 1. Now,

let ε > 0. Since m is cyclic, Lemma 3.3 yields a multiplier ϕ ∈ Mult(H2
d) with

‖ϕm‖Mult(H2
d
) ≤ 1 and log |m(0)ϕ(0)| > −ε/2. Set δ = ε/(2‖ϕ‖Mult(H2

d
)). Then (3.8)

shows that if ‖fm‖H2
d
< δ, then |||f ||| < ε. �

An alternate way to prove Theorem 3.7 is to let X = H2
d in the following theorem.

We define the norm on 1
g
X by ‖

f

g
‖ 1

g
X := ‖f‖X.

Theorem 3.9. Suppose that X is a Banach space of holomorphic functions

on Bd that contains the constants and such that Mult(X) is dense in X. If X

is continuously contained in N+
u , and g ∈ X is cyclic, then 1

g
X is continuously

contained in N+
u .

Proof. We prove first that 1
g
X is continuously contained in Nu. To this end,

let ϕ ∈ Mult(X) with ϕ(0) 6= 0. If ζ ∈ ∂Bd, let vζ be the outer function on D with

|vζ(eiθ)| = max{1, |gϕ(eiθζ)|} a.e. Then |vζ | ≥ max{1, |gϕ ◦ iζ |} in D, which gives

(3.10)
∣∣∣
∣∣∣
∣∣∣ f

g

∣∣∣
∣∣∣
∣∣∣ =

∣∣∣
∣∣∣
∣∣∣ fϕ

gϕ

∣∣∣
∣∣∣
∣∣∣ ≤ sup

ζ∈Bd

sup
0<r<1

∫ 2π

0

log
(

1 +
∣∣∣ fϕvζ

gϕ
(reiθζ)

∣∣∣
) dθ

2π
.

Using (1 + ab) ≤ (1 + a)b, a ≥ 0, b ≥ 1, with b = |
vζ

gϕ
(reiθζ)|, it follows that

(3.11)

∫ 2π

0

log
(

1 +
∣∣∣ fϕvζ

gϕ
(reiθζ)

∣∣∣
) dθ

2π

≤

∫ 2π

0

log(1 + |fϕ(reiθζ)|)
dθ

2π
+

∫ 2π

0

log
∣∣∣ vζ

gϕ
(reiθζ)

∣∣∣ dθ

2π
.
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Using the definition of vζ together with the inequality |a| ≤ 1 + |a − 1|, we obtain

∫ 2π

0

log |vζ(reiθ)|
dθ

2π
≤

∫ 2π

0

log |vζ(eiθ)|
dθ

2π

≤

∫ 2π

0

log(1 + |gϕ ◦ iζ(eiθ) − 1|)
dθ

2π

≤ |||gϕ − 1|||.

Moreover, since gϕ ◦ iζ is analytic in D,

∫ 2π

0

log
∣∣∣ 1

gϕ
(reiθζ)

∣∣∣ dθ

2π
≤ − log |gϕ(0)|.

Now let ε > 0. Since g is cyclic and X is continuously contained in N+
u , we can

choose ϕ ∈ Mult(X) such that

|||gϕ − 1||| − log |gϕ(0)| <
ε

2
,

and from (3.10) and (3.11) we obtain for this choice of ϕ

(3.12)
∣∣∣
∣∣∣
∣∣∣ f

g

∣∣∣
∣∣∣
∣∣∣ <

ε

2
+ |||fϕ|||.

Since ϕ is a multiplier and X ⊂ N+
u , there is δ > 0 such that ‖

f

g
‖ 1

g
X = ‖f‖X < δ

implies |||fϕ||| < ε
2
.

Thus 1
g
X is continuously contained in Nu and by assumption, the inclusion maps

the dense set X into N+
u . Since N+

u is closed in Nu by Proposition 2.5, the result

follows. �

Remark 3.13. Note that Theorem 3.7 shows that the set N+(H2
d) is contained

in N+
u , but it does not show that the inclusion from (N+(H2

d), I) to (N+
u , ρ) is

continuous. Indeed, let Inlc be the non-locally convex inductive limit topology

on
⋃

1
m

H2
d , where a neighborhood base at 0 is given by all sets � such that �∩ 1

m
H2

d

is open for all cyclic multipliers m. Then Theorem 3.7 says that the inclusion from

(N+(H2
d), Inlc) to (N+

u , ρ) is continuous, since the inverse image under inclusion of

every open set in (N+
u , ρ) is open in Inlc.

Even when d = 1 the inclusion from (N+(H2
d), I) to (N+

u , ρ) is not continuous,

since the two sets coincide, the inclusion from (N+
u , ρ) to (N+(H2

d), I) is continuous

by [17, Thm. 2.1], but the topology induced by ρ is not locally convex, as remarked

by Yanagihara in [30]. It follows that the inclusion cannot be continuous for d > 1

either, since otherwise restricting to functions that depend only on one coordinate

would yield a contradiction (by using Lemma 6.2 below).
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4 The dual of (N+
u , ρ)

In this section, we prove Theorem 1.20. We shall assume throughout that d is a

fixed integer greater than 0.

For c > 0, let

(4.1) φc(z) = exp
( c

8

1 + z

1 − z

)
− 1.

This function is not in N+(D), nonetheless the following two facts hold (the first is

proved in [21, II.11.2], the second in [18, Lemma 1.5]).

Lemma 4.2. With φc defined by (4.1), we have for n > 0

φ̂c(n) = ec
√

n(1+o(1)).

Moreover,

lim
c↓0

|||φc||| = 0.

For ζ ∈ Bd, let

Pζ : Cd → C, z 7→ 〈z, ζ〉,
denote the orthogonal projection onto Cζ. If Ŵ is a continuous linear functional

on H2
d , let

Ŵζ : H2 → C, f 7→ Ŵ(f ◦ Pζ),

denote the continuous slice functional. We can regard these functionals as densely

defined functionals on N+(D). The proof of the following lemma is an adaptation

of the proof of [18, Thm. 1.7].

Lemma 4.3. Let Ŵ = 〈·, h〉H2
d

be a continous linear functional on H2
d and

let h =
∑∞

n=0 hn be the homogeneous decomposition of h. If the slice functionals

{Ŵζ : ζ ∈ ∂Bd} are equicontinuous on (N+(D), ρ), then there exists c > 0 so that

‖hn‖∞ = O(e−c
√

n).

Proof. If f =
∑∞

n=0 f̂ (n)zn ∈ H2, then

Ŵζ(f ) = 〈f ◦ Pζ, h〉 =

∞∑

n=0

f̂ (n)〈〈z, ζ〉n, hn〉 =

∞∑

n=0

f̂ (n)hn(ζ).

Since the functionals {Ŵζ : ζ ∈ ∂Bd} are equicontinuous with respect to ρ, there

exists δ > 0 such that if f ∈ H2 and ρ(f, 0) < δ, then |Ŵζ(f )| ≤ 1 for all ζ ∈ ∂Bd.

Thus, if f ∈ H2 and ρ(f, 0) < δ, then for all n ∈ N and all ζ ∈ ∂Bd,

(4.4) |f̂ (n)hn(ζ)| =

∣∣∣∣
∫ 2π

0

Ŵeitζ(f )eint dt

2π

∣∣∣∣ ≤ 1.
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Let φc be as in (4.1). By the second part of Lemma 4.2, there exists c > 0 such

that ρ(φc(rz), 0) < δ for all r ∈ (0, 1). By the first part of the same lemma, we

may choose a null sequence (εn) of real numbers so that |φ̂c(n)| ≥ ec
√

n(1−εn). Ap-

plying (4.4) to the functions φc(rz), we therefore find that for all ζ ∈ ∂Bd, r ∈ (0, 1)

and n ∈ N,

rnec
√

n(1−εn)|hn(ζ)| ≤ rn|φ̂c(n)hn(ζ)| ≤ 1.

Taking the limit r → 1, we see that for all ζ ∈ ∂Bd,

|hn(ζ)| ≤ e−c
√

n(1−εn),

so ‖hn‖∞ = O(e−c
√

n), for some slightly smaller c > 0. �

We can now prove Theorem 1.20, which we restate in equivalent form.

Theorem 4.5. The functional

Ŵ : f 7→
∑

α∈Nd

ω2
α f̂ (α)ĥ(α)

is in (N+
u , ρ)∗ if and only if there exist constants M, c > 0 so that

(4.6) |ĥ(α)|ωα ≤ Me−c
√

|α|.

Proof. (Sufficiency) Suppose ĥ(α) satisfies (4.6) and let h =
∑

α ĥ(α)zα ∈ H2
d .

We have to show that Ŵ(f ) = 〈f, h〉H2
d

defines a continuous linear functional

on (N+
u , ρ). If hn denotes the homogeneous component of degree n of h, then

Corollary 2.7 implies that ‖hn‖H2
d

= O(e−c
√

n) (for some c > 0 that is potentially

different from the c in (4.6)). Let f ∈ N+
u with homogeneous decomposition

f =
∑∞

n=0 fn. Lemma 2.8 shows that ‖fn‖H2
d

= O(ec/2
√

n). Hence by the Cauchy–

Schwarz inequality, the series
∑∞

n=0〈fn, hn〉 converges absolutely. For each N ∈ N,

the linear functional ŴN(f ) =
∑N

n=0〈fn, hn〉 is continuous on (N+
u , ρ), as convergence

in (N+
u , ρ) implies uniform convergence on compact subsets of Bd by (2.4). Hence

the uniform boundedness principle for F-spaces (see, e.g., [24, Thm. 2.8]) shows

that Ŵ(f ) = limN→∞ ŴN(f ) defines a continuous linear functional on (N+
u , ρ).

(Necessity) Let Ŵ be a continuous linear functional on (N+
u , ρ). Lemma 3.1

shows that Ŵ is continuous on H2
d , so there exists h ∈ H2

d with Ŵ(f ) = 〈f, h〉 for all

f ∈ H2
d . Note that if f ∈ N+(D) and ζ ∈ ∂Bd, then f ◦Pζ ∈ N+

u with |||f ◦ Pζ||| = |||f |||.

This shows that the slice functionals {Ŵζ : ζ ∈ ∂Bd} are equicontinuous on N+(D),

so we deduce from Lemma 4.3 that ‖hn‖∞ = O(e−c
√

n) for some c > 0. Now

Corollary 2.7 yields (4.6). �
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5 The range of adjoints of cyclic multiplication opera-
tors

First we show that Helson’s theorem is true for N+(H2
d).

Theorem 5.1. Let m ∈ Mult(H2
d) by cyclic. The function h is in the range

of T∗
m if and only if the functional

(5.2) f 7→
∑

ω2
αf̂ (α)ĥ(α) = 〈f, h〉H2

d

extends from H2
d to be a continuous linear functional on 1

m
H2

d .

Proof. Suppose h = T∗
mg. We wish to show that for some constant M,

(5.3) |〈f, h〉H2
d
| ≤ M‖mf‖H2

d
.

But

〈f, h〉 = 〈f, T∗
mg〉 = 〈mf, g〉,

so (5.3) holds with M = ‖g‖H2
d
.

Conversely, suppose (5.3) holds. Then

|〈f, h〉H2
d
| ≤ M‖f‖ 1

m
H2

d
,

for all f in the dense set H2
d in 1

m
H2

d . By the Riesz representation theorem there

exists a function k = g/m in 1
m

H2
d so that

〈f, h〉H2
d

= 〈f, k〉 1
m

H2
d

= 〈mf, mk〉H2
d

= 〈f, T∗
mg〉H2

d

for all f ∈ H2
d . Hence h = T∗

mg. �

By definition of the inductive limit topology, a linear functional on (N+(H2
d), I)

is continuous if and only if its restriction to 1
m

H2
d is continuous for each cyclic

multiplier m. Hence, as a corollary we get:

Theorem 1.16. The function h in H2
d is in

⋂
m cyclic multiplier ran(T∗

m) if and only

if the functional (5.2) extends from H2
d to be a continuous linear functional on

(N+(H2
d), I).

We have shown in Theorem 1.16 that conditions (ii) and (iii) are equivalent in

Theorem 1.23, and in Theorem 4.5 that conditions (i) and (iv) are equivalent. We

can now also prove that condition (iv) is sufficient for (ii) to hold.
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Proof of (iv)⇒(ii) in Theorem 1.23.

Suppose h(z) =
∑

α ĥ(α)zα is in H2
d and for some c > 0 we have

ĥ(α) = O
( 1

ωα

e−c
√

|α|
)
.

By Theorem 4.5, the functional Ŵ : f 7→ 〈f, h〉H2
d

extends to a continuous functional

on (N+
u , ρ). We showed in Theorem 3.7 that for each cyclic multiplier m of H2

d , the

space 1
m

H2
d is continuously contained in (N+

u , ρ). Hence Ŵ is continuous on 1
m

H2
d

for each cyclic multiplier m, so Ŵ is continuous on (N+(H2
d), I). �

6 Proof of necessity of (1.24)

Recall that Pζ(z) = 〈z, ζ〉. To prove that (ii) implies (iv) in Theorem 1.23, we will

analyze continuous functionals Ŵ on (N+(H2
d), I) by studying the slice function-

als Ŵζ on N+(D), defined by Ŵζ(f ) = Ŵ(f ◦ Pζ).

First, we observe that outer functions in H∞ lift to cyclic mulipliers of H2
d .

Lemma 6.1. If φ is in H∞(D), then for every ζ ∈ ∂Bd, the function φ ◦ Pζ is

in Mult(H2
d), and ‖φ ◦ Pζ‖Mult(H2

d
) ≤ ‖φ‖∞. If φ is outer, then φ ◦ Pζ is cyclic.

Proof. Multiplication by 〈w, ζ〉 is a contraction, so by von Neumann’s in-

equality, for every 0 < t < 1, the norm of multiplication by φ(〈w, tζ〉) is bounded

by the norm of φ in H∞. As t ↑ 1, these multiplication operators converge in the

weak-∗ topology to multiplication by φ(〈w, ζ〉).
Now suppose φ is outer. Then there are polynomials pn ∈ C[z] so that

φ(z)pn(z) → 1 in H2. Therefore φ(〈w, ζ〉)pn(〈w, ζ〉) → 1 in H2
d , so φ(〈w, ζ〉)

is cyclic. �

As a consequence, we show that the Smirnov class in one variable embeds

continuously into N+(H2
d).

Lemma 6.2. For ζ ∈ ∂Bd, the map

(N+(D), I) → (N+(H2
d), I), f 7→ f ◦ Pζ,

is continuous.

Proof. Let I be the map in the statement of the lemma. Recall that by the

universal property of the inductive limit topology, it suffices to show that for each

cyclic multiplier m of H2, the restriction of I to 1
m

H2 is continuous. But m ◦ Pζ is

a cyclic multiplier of H2
d by Lemma 6.1, and the map

1

m
H2 →

1

m ◦ Pζ

H2
d, f 7→ f ◦ Pζ,

is an isometry, as the embedding H2 → H2
d, f 7→ f ◦ Pζ is isometric. Since the

inclusion 1
m◦Pζ

H2
d ⊂ N+(H2

d) is continuous, it follows that I is continuous. �
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In [17, Thm. 2.1], it was shown that the dual spaces of (N+(D), I) and (N+(D), ρ)

coincide. So as a corollary, we get:

Corollary 6.3. Let Ŵ ∈ (N+(H2
d), I)∗. Then for each ζ ∈ ∂Bd, the slice

functional Ŵζ is continuous on (N+(D), ρ).

Proof. Lemma 6.2 shows that the slice functional Ŵζ is continuous on

(N+(D), I), hence it is continuous on (N+(D), ρ) by [17, Thm. 2.1]. �

The key step in proving (ii)⇒(iv) in Theorem 1.23 is to show that the slice func-

tionals Ŵζ are not only individually continuous, but equicontinuous on (N+(D), ρ).

To this end, we require some more preliminary results. For cyclic multipliers that

arise as in Lemma 6.1, Lemma 3.3 can be refined as follows.

Lemma 6.4. Let ψ ∈ H∞ be outer, let ζ ∈ ∂Bd and let m = ψ◦Pζ . Then there

exists a sequence (ϕn) of cyclic multipliers of H2
d so that

(1) (ϕnm) converges to 1 in the weak-∗ topology of Mult(H2
d), and

(2) ‖ϕnm‖Mult(H2
d
) ≤ 1 for all n ∈ N.

Proof. We may assume without loss of generality that ‖ψ‖∞ = 1. Since ψ is

outer,

ψ(z) = exp

(∫ 2π

0

eiθ + z

eiθ − z
log |ψ(eiθ)|

dθ

2π

)

for z ∈ D. Define

ψn(z) = exp

(∫ 2π

0

eiθ + z

eiθ − z
log(min(n, |ψ(eiθ)|−1))

dθ

2π

)
.

Then ψn ∈ H∞ is outer, ‖ψnψ‖∞ ≤ 1 and for each z ∈ D, the dominated

convergence theorem shows that limn→∞ ψn(z) = 1
ψ(z)

. Define ϕn = ψn ◦ Pζ . Then

each ϕn is a cyclic multiplier by Lemma 6.1. Since (ϕnm) = (ψnψ) ◦ Pζ , we find

that ‖ϕnm‖Mult(H2
d
) ≤ 1 and that ϕnm converges to 1 pointwise and therefore in the

weak-∗ topology of Mult(H2
d). �

On bounded subsets of Mult(H), the weak-∗ topology coincides with the topol-

ogy of pointwise convergence. The following simple lemma shows that it some-

times suffices to establish convergence at a single point.

Lemma 6.5. Let H be a normalized complete Pick space on X and let (ϕn) be

a sequence in the closed unit ball of Mult(H). If there exists a point x0 ∈ X so that

limn→∞ ϕn(x0) = 1, then (ϕn) converges to 1 in the weak-∗ topology of Mult(H).



20 A. ALEMAN, M. HARTZ, J. MCCARTHY AND S. RICHTER

Proof. By renormalizing the kernel (cf. [2, Sec. 2.6]), we may assume that

the kernel is normalized at x0. In this setting, we find that

‖1 − ϕn‖
2
H = 1 + ‖ϕn‖

2
H − 2Re ϕn(x0) ≤ 2 − 2Re ϕn(x0)

n→∞
−−−→ 0.

In particular, limn→∞ ϕn(x) = 1 for all x ∈ X. �

We will make use of infinite products of multipliers.

Lemma 6.6. Let H be a normalized complete Pick space on X and let (ψn)

be a sequence in the closed unit ball of Mult(H). Assume that there exists x0 ∈ X

so that
∑

n |1 − ψn(x0)| < ∞. Then:

(a) The infinite product
∏∞

n=1 ψn converges in the weak-∗ topology of Mult(H).

(b) If each ψn is cyclic, then ψ =
∏∞

n=1 ψn is cyclic as well.

Proof. (a) For M ≥ N, let 9N,M =
∏M

n=N ψn, which belongs to the closed

unit ball of Mult(H). The assumption implies that 9N,M(x0) converges to 1

as M ≥ N → ∞, hence 9N,M(x) converges to 1 as M ≥ N → ∞ for all x ∈ X

by Lemma 6.5. From this, we deduce that the partial products
∏N

n=1 ψn converge

pointwise on X and hence in the weak-∗ topology of Mult(H).

(b) Since H is a normalized complete Pick space, Mult(H) is dense in H, so

it suffices to show that 1 ∈ [ψ]. Since ψ1 is cyclic, there is a sequence (ϕk) in

Mult(H) so that ψ1ϕk → 1 in H. Therefore
∏∞

n=2 ψn ∈ [ψ]. Iterating, we get for

every N that
∏∞

n=N ψn ∈ [ψ]. As N → ∞,
∏∞

n=N ψn converges weakly to 1 in H by

part (a), so 1 ∈ [ψ]. �

Remark 6.7. It is in general not true that non-zero weak-∗ limits of cyclic

multipliers are cyclic. For instance, if f ∈ H∞ is a singular inner function, then fr

is outer for each 0 < r < 1 and fr converges to f in the weak-∗ topology of H∞

as r → 1.

The following is the key lemma needed to prove equicontinuity of the slice

functionals.

Lemma 6.8. Let f ∈ N+(D). Then the map

∂Bd → (N+(H2
d), I), ζ 7→ f ◦ Pζ,

is continuous.

Proof. Let (ζn) be a sequence in ∂Bd that tends to ζ. It suffices to show that a

subsequence of (f ◦ Pζn
) converges to f ◦ Pζ in (N+(H2

d), I). Let

F = f ◦ Pζ ∈ N+(H2
d).

It is elementary to construct a sequence (Un) of d × d unitaries tending to I so that

Unζn = ζ for all n.
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Then Pζ ◦ Un = Pζn
, so we have to show that a subsequence of (F ◦ Un) tends

to F in (N+(H2
d), I).

We will construct a cyclic multiplier M so that a subsequence of (F ◦ Un) tends

to F in 1
M

H2
d . Continuity of the inclusion 1

M
H2

d ⊂ (N+(H2
d), I) then shows that

the subsequence also converges to F in (N+(H2
d), I), as desired. To construct M,

write f =
g

u
for some g ∈ H2 and some outer function u ∈ H∞. Let G = g ◦ Pζ

and m = u ◦ Pζ , so F = G
m

. The multiplier M will essentially be an infinite product

of multipliers of the form m ◦ Un, suitably corrected to ensure convergence.

First, by Lemma 6.4, there exists a sequence (ϕn) of cyclic multipliers of H2
d

so that ‖ϕnm‖Mult(H2
d
) ≤ 1 for all n and so that |1 − ϕn(0)m(0)| ≤ 2−n. Next,

since m ◦ Un converges to m in the norm of H2
d , we may pass to a subsequence

of (Un) to achieve that

∞∑

n=1

24n‖ϕn‖
2
Mult(H2

d
)
‖m − m ◦ Un‖

2
H2

d

≤ 1.

Then [4, Thm. 1.1] yields a sequence (ψn) in Mult(H2
d) forming a contractive

column multiplier and a contractive multiplier ψ ∈ Mult(H2
d) with ψ(0) = 0 so that

22n‖ϕn‖Mult(H2
d
)(m − m ◦ Un) =

ψn

1 − ψ
,

whence

(6.9) ‖(1 − ψ)(m − m ◦ Un)‖Mult(H2
d
) ≤ 2−2n‖ϕn‖

−1
Mult(H2

d
)
.

Let rn = 1 − 2−n and let

ηn = ϕn(m ◦ Un)
1 − ψ

1 − rnψ
,

which is a product of cyclic multipliers and hence cyclic (cyclicity of 1 − ψ was

shown in [3, Lemma 2.3]). Then

‖ηn‖Mult(H2
d
) ≤

∥∥∥ϕn(m ◦ Un − m)
1 − ψ

1 − rnψ

∥∥∥
Mult(H2

d
)
+
∥∥∥ϕnm

1 − ψ

1 − rnψ

∥∥∥
Mult(H2

d
)
.

We estimate the first summand using (6.9) and the second summand using Lem-

ma 3.2 combined with the bound ‖ϕnm‖Mult(H2
d
) ≤ 1 to find that

‖ηn‖Mult(H2
d
) ≤ 2−2n 1

1 − rn

+
2

1 + rn

≤ 1 + 2−n+1.

Let tn = 1 − 2−n+1. Then ‖tnηn‖Mult(H2
d
) ≤ 1 and tnηn is cyclic for n ≥ 2. Moreover,

since ψ(0) = 0, we have ηn(0) = ϕn(0)m(0). Since |1−ϕn(0)m(0)| ≤ 2−n, it follows
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that
∑∞

n=2 |1 − tnηn(0)| < ∞. Thus, Lemma 6.6 shows that the infinite product of

the tnηn converges to a cyclic multiplier. Let

M = m2
∞∏

n=2

tnηn.

Then M is a cyclic multiplier.

We finish the proof by showing that limn→∞ ‖M(F ◦ Un − F)‖H2
d

= 0. Indeed,

since F = G
m

, we have

‖M(F ◦ Un − F)‖H2
d
≤ ‖m2ηn(F ◦ Un − F)‖H2

d

≤
∥∥∥ϕnm

1 − ψ

1 − rnψ

∥∥∥
Mult(H2

d
)
‖m(m ◦ Un)(F ◦ Un − F)‖H2

d

≤ 2‖m(G ◦ Un) − (m ◦ Un)G‖H2
d
,

where in the last estimate, we used again that ‖ϕnm‖Mult(H2
d
) ≤ 1 and Lemma 3.2.

Since G ◦ Un tends to G in H2
d and the sequence of multipliers (m ◦ Un) tends to m

in the strong operator topology, we conclude that limn→∞ ‖M(F ◦ Un − F)‖H2
d

= 0,

as desired. �

We are ready to prove equicontinuity of the slice functionals Ŵζ defined

by Ŵζ(f ) = Ŵ(f ◦ Pζ).

Lemma 6.10. If Ŵ ∈ (N+(H2
d), I)∗, then the functionals {Ŵζ : ζ ∈ ∂Bd} are

equicontinuous on (N+(D), ρ).

Proof. By Corollary 6.3, each Ŵζ is continuous on (N+(D), ρ). By the uniform

boundedness principle for F-spaces (see, e.g., [24, Thm. 2.6]), it therefore suffices

to show that the functionals Ŵζ are pointwise bounded. If f ∈ N+(D), then

{f ◦ Pζ : ζ ∈ ∂Bd} is a compact set in (N+(H2
d), I) by Lemma 6.8 and compactness

of ∂Bd. Hence,

sup
ζ∈∂Bd

|Ŵζ(f )| = sup
ζ∈∂Bd

|Ŵ(f ◦ Pζ)| < ∞,

establishing pointwise boundedness. �

Finally, we can finish the proof of Theorem 1.23.

Proof of (ii)⇒(iv) in Theorem 1.23. If Ŵ = 〈·, h〉 ∈ (N+(H2
d), I)∗, then the

slice functionals {Ŵζ : ζ ∈ ∂Bd} are equicontinuous on (N+(D), ρ) by Lemma 6.10.

Thus, an application of Lemma 4.3 shows that the homogeneous components hn of h

satisfy the decay condition ‖hn‖∞ = O(e−c
√

n) for some c > 0. From Corollary 2.7,

we get (1.24), for some c > 0. �
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7 N+(H2
d) vs. N+

u

The goal of this section is to construct functions in the ball algebra A(Bd) (and

hence in N+
u ) that do not belong to N+(H2

d). Let d ∈ N and let

τ : Bd → D, z 7→ dd/2z1z2 · · · zd.

It follows from the inequality of arithmetic and geometric means that τ maps Bd

onto D and Bd onto D. Let

an = ‖τn‖−2
H2

d

and let Kd be the reproducing kernel Hilbert space on D with reproducing kernel

K(z, w) =

∞∑

n=0

an(zw)n.

Then Kd embeds isometrically into H2
d . For a proof of the following lemma, see [5,

Lemma 7.1]. The weighted Dirichlet space D1/2 is the reproducing kernel Hilbert

space of holomorphic functions on D with reproducing kernel (1 − zw)−1/2.

Lemma 7.1. The map

V : Kd → H2
d, f 7→ f ◦ τ,

is an isometry whose range is the space of all functions in H2
d that are power series

in z1z2 · · · zd.

Moreover, K2 is the weighted Dirichlet space D1/2, and Kd ⊂ A(D) for d ≥ 4.

The following proposition makes it possible to construct functions in H∞(Bd)

that do not belong to N+(H2
d). In fact, the resulting functions are not even quotients

of multipliers with non-vanishing denominators.

Proposition 7.2. Let f ∈ H∞(D) be a function with the property that

g · f /∈ Kd for all g ∈ Kd \ {0}.

Then f ◦ τ ∈ H∞(Bd), but f ◦ τ /∈ N(H2
d).

We first consider an example showing that the hypothesis of the proposition

can be satisfied.

Example 7.3. Let d ≥ 4 and let f be a Blaschke product whose zeros accu-

mulate at every point of T. Since Kd ⊂ A(D) by Lemma 7.1, we find that gf /∈ Kd

for all g ∈ Kd \ {0}. Thus, f ◦ τ ∈ H∞(Bd), but f ◦ τ /∈ N+(H2
d) by the proposition.
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Proof of Proposition 7.2. Let f ∈ H∞(D) be as in the statement of

Proposition 7.2. Since f ∈ H∞(D), we have f ◦ τ ∈ H∞(Bd). Suppose towards a

contradiction that f ◦ τ =
ϕ
ψ

for functions ϕ,ψ ∈ H2
d and ψ non-vanishing, hence

ϕ = ψ(f ◦ τ).

We will show that we can achieve that ϕ and ψ belong to the range of the

isometry V of Lemma 7.1. To this end, we decompose ϕ = ϕ1 +ϕ2 and ψ = ψ1 +ψ2

into holomorphic functions so that ϕ1 and ψ1 are power series in z1z2 · · · zd and

so that no monomial of the form (z1z2 · · · zd)n occurs in ϕ2 or ψ2. Since f ◦ τ is a

power series in z1z2 · · · zd, it follows that

(7.4) ϕ1 = (f ◦ τ)ψ1.

Moreover, since ϕ,ψ ∈ H2
d , we also have ϕ1, ψ1 ∈ H2

d and ψ1(0) = ψ(0) 6= 0.

Hence, ϕ1 and ψ1 belong to the range of the isometry V of Lemma 7.1, so there

exist g, h ∈ Kd such that ϕ1 = h ◦ τ and ψ1 = g ◦ τ, and clearly g(0) = ψ1(0) 6= 0.

From (7.4), we infer that (h ◦ τ) = (f ◦ τ) · (g ◦ τ). As τ maps Bd onto D, this

means that h = f · g, contradicting the assumption on f . Thus, f ◦ τ /∈ N(H2
d). �

The construction of Example 7.3 can be refined to work for all d ≥ 2 and to

yield a function in the ball algebra A(Bd).

Theorem 1.19. A(Bd) 6⊂ N(H2
d) for all natural numbers d ≥ 2.

Proof. We first consider the case d = 2. We will use Lemma 7.1 to embed the

weighted Dirichlet space D1/2 into H2
2 .

A sequence (zn) in D is called a zero set for D1/2 if there exists a function

f ∈ D1/2 \ {0} that vanishes precisely on {zn : n ∈ N}. By [20, Thm. 2], there

exists a Blachke sequence (zn) that is not a zero set for D1/2 and whose only cluster

point is 1. Let B the Blaschke product with zeros (zn) and let f (z) = B(z)(1 − z).

Then f ∈ A(D). Since (zn) is not a zero set for D1/2, it is a uniqueness set for D1/2

by [2, Prop. 9.37], meaning that any function in D1/2 vanishing on {zn : n ∈ N}

is identically zero. Thus, g · f /∈ D1/2 for any g ∈ D1/2 \ {0}. In this setting,

Lemma 7.1 and Proposition 7.2 imply that f ◦ τ /∈ N(H2
2), but clearly f ◦ τ ∈ A(B2).

The case of an arbitrary natural number d ≥ 2 is easily deduced from the

case d = 2. Indeed, let F ∈ A(B2) but F /∈ N(H2
2), let P : Bd → B2 be the

projection onto the first 2 coordinates and define G = F ◦ P. Then G ◦ P ∈ A(Bd).

If G were of the form G = ϕ/ψ for ϕ,ψ ∈ Mult(H2
d) and ψ non-vanishing, then

F = G
∣∣
B2

=
ϕ
∣∣
B2

ψ
∣∣
B2

would be a quotient of two functions in Mult(H2
2), a contradiction. Thus,

G /∈N(H2
d). �
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Theorem 1.19 also implies the following fact about topologies on the Smirnov

class N+(H2
d).

Proposition 7.5. Let d ≥ 2 be a natural number and let τ be a topology on

N+(H2
d) that gives N+(H2

d) the structure of a topological vector space. Suppose that

(1) point evaluations at points in Bd are τ-continuous, and

(2) (N+(H2
d), τ) is sequentially complete.

Then there exists a sequence (fn) of functions analytic in a neighborhood of Bd

such that (fn) tends to zero uniformly on Bd, but is not null with respect to τ.

Proof. By Theorem 1.19, there exists f ∈ A(Bd) but f /∈ N+(H2
d). For n ∈ N,

let

gn(z) = f
((

1 −
1

n + 1

)
z
)
,

so that (gn) is analytic in a neighborhood of Bd and converges to f uniformly on Bd.

Since f /∈ N+(H2
d), the first assumption on τ implies that (gn) does not converge with

respect to τ, and hence it is not τ-Cauchy by the second assumption. Therefore,

there exist strictly increasing sequences (nk) and (mk) of natural numbers and a

τ-neighborhood U of the origin such that gnk
− gmk

/∈ U for all k ∈ N. Let

fk = gnk
− gmk

. Then (fk) is not τ-null, but converges to zero uniformly on Bd. �

8 The containing Fréchet space of N+
u

In [29], Yanagihara described a Fréchet space F+ that contains the Smirnov class,

a sort of “locally convex completion”. In this section, we shall do the same for N+
u .

Throughout this section, we shall assume that f is a holomorphic function on Bd

and that f =
∑∞

n=0 fn is its decomposition into homogeneous polynomials.

Lemma 8.1. Let f be analytic on Bd, and for 0 ≤ r < 1 write

M(r, f ) = sup
|z|=r

|f (z)|.

Then the following are equivalent:

(i) lim sup
r→1

(1 − r) log M(r, f ) ≤ 0,

(ii) lim sup
n→∞

log ‖fn‖∞√
n

≤ 0,

(iii) lim sup
n→∞

log ‖fn‖H2
d√

n
≤ 0,

(iv) lim sup
|α|→∞

log |ĥ(α)|ωα√
|α|

≤ 0.
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Proof. The equivalence of (ii), (iii), and (iv) follows from Lemma 2.6. If z ∈ D

and w ∈ Bd, then f (zw) =
∑∞

n=0 fn(w)zn. Thus the equivalence of (i) and (ii) follows

from Lemma 1 of [29], p. 96. �

Let F+
u be the collection of all analytic functions on Bd that satisfy any of the

conditions of Lemma 8.1. For a positive constant c and f ∈ F+
u set

(8.2) ‖f‖2
c =

∞∑

n=0

‖fn‖
2
H2

d
e−c

√
n,

and define a locally convex topology on F+
u by the family of seminorms {‖ · ‖c}c>0.

Since ‖f‖2
c is increasing as c decreases to 0, it is clear that F+

u is metrizable, and a

translation invariant metric is given by

(8.3) dF(f, g) =

∞∑

k=1

2−k ‖f − g‖1/k

1 + ‖f − g‖1/k

.

Furthermore, one easily checks that for each f =
∑

n≥0 fn, the partial sums

pn =
∑n

k=0 fk converge to f in ‖ · ‖c for each c > 0, hence the polynomials are

dense in F+
u . Moreover, a routine argument shows that F+

u is complete with respect

to the metric dF. Therefore F+
u is a Fréchet space. Finally, point evaluations are

continuous on F+
u .

Proposition 8.4. (N+
u , ρ) embeds continuously into F+

u .

Proof. This is immediate from Lemma 2.8 and the closed graph theorem for

F-spaces; see, e.g., [24, Thm. 2.15].

The next result, combined with Theorem 4.5 and Corollary 2.7, shows that F+
u

has the same dual space as N+
u .

Proposition 8.5. Let h be analytic on Bd, let h =
∑

n≥0 hn be its expansion

into homogeneous polynomials, and assume that there are M, c > 0 such that

‖hn‖H2
d
≤ Me−c

√
n for each n ∈ N. Then for each f ∈ F+

u , the series

Ŵh(f ) =
∑

n≥0

〈fn, hn〉H2
d

=

∞∑

n=0

∑

|α|=n

ω2
α f̂ (α)ĥ(α)

converges absolutely, and Ŵh defines a continuous linear functional on F+
u .

Moreover, every continuous linear functional on F+
u is of this form.

Proof. For each n ∈ N the Cauchy–Schwarz inequality implies that

∑

|α|=n

ω2
α|f̂ (α)ĥ(α)| ≤ ‖fn‖H2

d
‖hn‖H2

d
≤ M‖fn‖H2

d
e−c

√
n.
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Hence, by another application of the Cauchy–Schwarz inequality, we see that

∞∑

n=0

∑

|α|=n

ω2
α|f̂ (α)ĥ(α)| ≤ M‖f‖c

√√√√
∞∑

n=0

e−c
√

n

holds for each f ∈ F+
u . This implies that Ŵh is continuous on F+

u .

The converse follows from the continuous inclusion (N+
u , ρ) ⊂ F+

u in Proposi-

tion 8.4 and our earlier description of the dual space of (N+
u , ρ) in Theorem 4.5.

We provide a direct argument.

If 8 is a continuous linear functional on F+
u , then it follows from the definition of

the topology on F+
u in terms of the seminorms ‖·‖c that there exist c > 0 and M ≥ 0

so that |8(f )| ≤ M‖f‖c for every f ∈ F+
u . To see this from the metric dF, notice

that by continuity of 8, there is δ > 0 such that |8(f )| < 1, whenever f ∈ F+
u with

dF(f, 0) < δ. Choose N such that 2−N < δ/2 and set ε = δ
2N

. Then for each f ∈ F+
u

with ‖f‖1/N < ε we have

dF(f, 0) ≤

N∑

k=1

2−k‖f‖1/k + 2−N ≤ N‖f‖1/N + δ/2 < δ.

This implies that |8(f )| ≤ 1
ε
‖f‖1/N for every polynomial f . Let HN denote the

Hilbert space of holomorphic functions on Bd with norm given by (8.2) with c = 1
N

.

Then 8 extends to define a bounded linear functional on HN . By the Riesz

representation theorem, there is g =
∑∞

n=0 gn ∈ HN such that ‖g‖1/N ≤ 1/ε and

8(f ) =

∞∑

n=0

e−
√

n

N 〈fn, gn〉H2
d
.

For n ∈ N set hn = e−
√

n

N gn, then

‖hn‖H2
d

= e−
√

n

N ‖gn‖H2
d
≤ e−

√
n

2N ‖g‖1/N ≤
e−

√
n

2N

ε
,

and 8 = Ŵh. �

From Proposition 8.4, we get that N+
u embeds continuously into F+

u , and by

Theorem 3.7, so does 1
m

H2
d for each cyclic multiplier m. Since F+

u is locally

convex, it follows that (N+(H2
d), I) embeds continuously into F+

u . So if we use the

metric dF from (8.3), we get that the identity map is continuous from (N+(H2
d), I)

to (N+(H2
d), dF). Moreover, since the polynomials are dense in F+

u , we have

that N+(H2
d) is dense in F+

u . Therefore (N+(H2
d), dF) has the same dual as F+

u , and

by Theorem 1.23 and Proposition 8.5, this is the same as the dual of (N+(H2
d), I).
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If V is a locally convex vector space with dual V∗, there is a finest topology

on V with this dual, called the Mackey topology for the pair. Certain conditions

on a topology force it to coincide with the Mackey topology; these include being

metrizable (as dF is) [28, 8-4.10] or being barrelled (as I is) [28, 10-1.9]. Putting

these facts together, we get the following conclusion.

Theorem 8.6. On N+(H2
d), the inductive limit topology I and the metric

topology dF coincide.

For the convenience of the reader, here is a direct proof.

Proof. As the identity map is continuous from (N+(H2
d), I) to (N+(H2

d), dF)

by the discussion preceding the theorem, we need to prove that the identity map

from (N+(H2
d), dF) to (N+(H2

d), I) is also continuous. To do this, it suffices to show

that for each continuous seminorm p on (N+(H2
d), I), the inclusion (N+(H2

d), dF)

to (N+(H2
d), p) is continuous, since the topology on any locally convex space is

given by its continuous seminorms (see, e.g., [11, 1.10.1]).

So let (fn) be a sequence in (N+(H2
d), dF) tending to zero. We claim that (fn)

tends to zero weakly in (N+(H2
d), p). Indeed, if Ŵ is a continuous linear functional

on (N+(H2
d), p), then Ŵ is continuous on (N+(H2

d), I) and hence on (N+(H2
d), dF) by

Theorem 1.23 and Proposition 8.5. Thus, Ŵ(fn) tends to 0 for all Ŵ, establishing

weak convergence. The uniform boundedness principle for the seminormed space

(N+(H2
d), p) implies that supn p(fn) < ∞. (This follows from the uniform bound-

edness principle for normed spaces by taking a quotient.) So we have shown that

if dF(fn, 0) → 0, then p(fn) is bounded. But if dF(fn, 0) → 0, then by passing to a

subsequence, we may achieve that dF(nfn, 0) → 0, hence p(nfn) is bounded, so (fn)

tends to 0 in (N+(H2
d), p). This proves continuity of (N+(H2

d), dF) → (N+(H2
d), p).�

9 Open Questions

Lemma 6.4 says that if m is the lift of an outer function, then one can find cyclic

multipliers ϕn so that ϕnm is in the unit ball and tends to 1 weak-*. Is this true for

all cyclic m?

Question 9.1. If m is a cyclic multiplier and ϕ = 1, can Lemma 3.3 be

improved to conclude that each ϕn can be chosen to be cyclic?

As pointed out in Section 1, when d = 1 there is no difference between the

common range of co-analytic Toeplitz operators with cyclic symbols, and all non-

zero co-analytic Toeplitz operators. Is this true for d ≥ 2?

Question 9.2. What is
⋂

{ran(T∗
m) : m ∈ Mult(H2

d), m 6= 0}?
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In [19], M. Nawrocki showed that the dual of the full Smirnov class on the

ball Bd consists of those functionals Ŵ satisfying

(9.3) |Ŵ(zα)| ≤ Mωαe−c|α|d/(d+1)

.

In [16], it is shown that Condition (9.3) is not necessary for a function to be in

the common range of all co-analytic Toeplitz operators on the Hardy space of the

sphere.

Question 9.4. What is the common range of all non-zero co-analytic Toeplitz

operators on H2(∂Bd)?

Question 9.5. Do Questions 9.2 and 9.4 have the same answer?

Appendix A Inductive limits

Let V be a topological vector space, and for each α in some index set A let Xα be a

topological vector space that embeds continuously in V. For example, V could be

all holomorphic functions on some domain �, with the topology of locally uniform

convergence, and each Xα could be some Banach space of holomorphic functions

on �.

Let Y =
⋃

α∈A Xα. There are at least two different ways to define an inductive

limit topology on Y . The first, which we shall call the locally convex inductive

limit topology and denote I, has as a neighborhood basis at 0 all absolutely convex

sets U with the property that U ∩ Xα is open for every α ∈ A. A basis for the

topology is sets of the form y + U, where y ∈ Y and U is a neighborhood of 0. The

topology I has advantages:

• It is a vector space topology (addition and scalar multiplication are continu-

ous).

• The TVS (Y, I) is locally convex.

But:

• It can be hard to describe what a general open set is.

• The topology may be trivial, with Y the only non-empty open set (see Exam-

ple A.1).

A second topology, which we shall call the non-locally convex inductive limit

topology and denote Inlc, has as a basis all sets U with the property that U ∩ Xα

is open for every α ∈ A. In general, the topologies I and Inlc are distinct, though

G. Edgar points out in [10] that even Choquet did not realize this. Topology Inlc

has advantages:



30 A. ALEMAN, M. HARTZ, J. MCCARTHY AND S. RICHTER

• It is much simpler to describe the open sets.

• It frequently turns out to be given by a complete metric (e.g., for N+(D) [17],

or Example A.1).

However:

• It may not be a vector space topology — addition may not be continuous

[10], where the example is all continuous functions with compact support on

R, viewed as the union of the continuous functions supported on [−n, n].

It is immediate that (Y, Inlc) embeds continuously in (Y, I). Moreover, if Ŵ is a

linear functional on Y , one can check its continuity just by looking at the preimage

of convex open sets in C, so the continuous linear functionals are the same on both

spaces:

(Y, Inlc)
∗ = (Y, I)∗.

Example A.1. An illuminating example is to let V denote the space of all

measurable functions on [0, 1], identifying those that are zero a.e. with respect to

Lebesgue measure. For w any integrable function that is positive a.e., let

L2(w) = {f :

∫
|f |2w < ∞}.

Then V =
⋃

w L2(w). The topology I is the trivial topology, and the topology Inlc is

the topology of convergence in measure, which is given by a complete metric.

Indeed, let us define a metric on V by

dL(f, g) =

∫ 1

0

min(1, |f (x) − g(x)|)dx.

This is complete, and gives the topology of convergence in measure. It can be

shown that the topologies given by dL and Inlc coincide.

Appendix B Smirnov class on the disk

On the disk, the following three definitions of the Smirnov class N+(D) are equiv-

alent.

Proposition B.1. Let f ∈ N(D). The following assertions are equivalent.

(i) limr→1

∫ 2π

0
log+ |f (reiθ)| dθ

2π
=
∫ 2π

0
log+ |f (eiθ)| dθ

2π
.

(ii) limr→1

∫ 2π

0 log(1 + |f (reiθ) − f (eiθ)|) dθ
2π

= 0.

(iii) limr→1 |||f − fr||| = 0.
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Proof. (i)⇒(iii): By [12, Thm. A.3.7], (i) implies that {log+ |fr| : 0 < r < 1}

is uniformly integrable over T. Hence {log(1 + |fr|) : 0 < r < 1} is uni-

formly integrable. Moreover, if g ∈ O(D), then log(1 + |g|) is subharmonic

because t 7→ log(1 + et) is increasing and convex; see [13, Sec. I.6]. Thus, by

Vitali’s convergence theorem, we find that

|||f − fr||| = lim
s→1

∫ 2π

0

log(1 + |f (seiθ) − f (rseiθ)|)
dθ

2π

=

∫ 2π

0

log(1 + |f (eiθ) − f (reiθ)|)
dθ

2π
.

Applying Vitali’s convergence theorem again, we see that the last expression tends

to 0 as r → 1, so (iii) holds.

(iii)⇒(ii): By Fatou’s lemma,

∫ 2π

0

log(1 + |f (reiθ) − f (eiθ)|)
dθ

2π

≤ sup
0<s<1

∫ 2π

0

log(1 + |f (sreiθ) − f (seiθ)|)
dθ

2π

= |||f − fr|||
r→1
−−→ 0,

so (ii) holds.

(ii)⇒(i): From the elementary inequality | log+ a − log+ b| ≤ log(1 + |a − b|)

for a, b ≥ 0, we deduce that

∫ 2π

0

| log+ |f (reiθ)| − log+ |f (eiθ)||
dθ

2π
≤

∫ 2π

0

log(1 + |f (reiθ) − f (eiθ)|)
dθ

2π
,

so (ii) implies that log+ |fr| tends to log+ |f | as r → 1 in L1(T). In particular, (i)

holds. �
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