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By
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Abstract. We characterize the common range of the adjoints of cyclic multi-
plication operators on the Drury—Arveson space. We show that a function belongs
to this common range if and only if its Taylor coefficients satisfy a simple decay
condition. To achieve this, we introduce the uniform Smirnov class on the ball and
determine its dual space. We show that the dual space of the uniform Smirnov class
equals the dual space of the strictly smaller Smirnov class of the Drury—Arveson
space, and that this in turn equals the common range of the adjoints of cyclic
multiplication operators.

1 Introduction

1.1 Known results on the disk. Let H? denote the Hardy space on the
unit disk D, and let H> denote the bounded analytic functions on D. If m € H*®
we let T,, : H> — H?, f — mf denote the multiplication operator. We call its
adjoint 7, a co-analytic Toeplitz operator. In [15], H. Helson asked

Question 1.1. What functions are in the range of 7, for every outer function m
in H>*?

He was led to this question from the following considerations. The Nevanlinna
class of D is defined as

(1.2) ND) = {f : holomorphic on D, sup /log(l + U”(reie)l)dﬁ < oo}

O<r<1
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The Smirnov class N*(D) is a subset of functions in N(ID):
(13) N D)= {f e N(D) : 11%111/1og[1 + [f(€?) — f(re)|1d0 = 0},

where f (') is the non-tangential limit, which exists a.e. [13, Thm. I1.5.3]. It can
be shown (see, e.g., [13, Sec. I1.5]) that

(1.4) ND)={f=g/m:gecH*, meH® m=0onD}
(1.5) N*(D) = {f = g/m: g € H*, m outer}
={f=q/m:q e H®, mouter}.

We shall use outer throughout the note to mean an outer function in H*°. Helson
considered the locally convex inductive limit topology J on N*(ID) that comes from
viewing it as

1
N*(D) = U{ —H? : m outer)}.
m
First we put a norm on each %Hz by declaring
gl 1 g = llmgllpe

(so dividing by m is a unitary from H? onto %Hz). Then J is the translation-
invariant topology that has a neighborhood base at zero consisting of all absolutely
convex sets  with the property that QN %Hz is open for each outer function m
(this is the same as saying that mQ N H? is open in H? for every outer m). In other
words, J is the finest locally convex topology on N*(ID) that makes all inclusions
%HZ — N*(D) continuous. Helson proved in [15] the following theorem:

Theorem 1.6. Let h(z) = > oo, ya2" be in H?. Then the functional

T bu" Y bava

is a continuous linear functional on (N*(D), J) if and only if h is in the range of T},
for every outer function m.

He asked for an intrinsic characterization of such 4. One can view the condition
of Question 1.1 in some ways as a smoothness condition. Indeed, if m(z) =1 —z
and 7, f = h, then denoting the k-th Taylor coefficient of a holomorphic function g
by g(k), we have ﬁ(k) = f(k) — f(k + 1). So h has a telescoping Taylor series
when evaluated at 1, and by Abel’s theorem lim,q; A(r) exists. Similarly looking
ran(T}),

at symbols that are powers of (e’ — z), one can show that if /2 is in (), oer

all its derivatives have radial limits everywhere on the unit circle.
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There is another topology on N*(ID). One can define a metric on N(D) by

(. 8) = sup / log(1 + |[f — gl(re™|)de.

O<r<1

The Nevanlinna class with the metric p is not a topological vector space, because
scalar multiplication is not continuous [27]. On the smaller Smirnov class, p
makes it into a topological vector space with a complete translation invariant
metric (however it is not locally convex). The dual of (N*(ID), p) had been found
by N. Yanagihara [30]:

Theorem 1.7. The functional

T bu" Y bava

is a continuous linear functional on (N*(D), p) if and only if there exist constants
M, ¢ > 0 so that

(1.8) lyal < Me=V"  foralln e N.

In [17] it was shown that the inclusion map from (N*(D), p) to (N*(D), J)
is continuous, and moreover J is the finest locally convex topology such that
inclusion is continuous. Consequently, both spaces have the same dual, and hence
Question 1.1 was answered.

Theorem 1.9. A function h = Zﬁ(n)z” in H? is in the range of T:, for every
outer function m in H* if and only if there exist M, ¢ > 0 so that

(1.10) [h(n)| < Me™V"  foralln e N.

Remark 1.11. If m is any non-zero function in H*°, the range of 7, depends
only on its outer part. Indeed, factoring m = um, where u is inner and m, is outer,
we have that Tj,uf = T}, f and T}, annihilates («uH?*)*. So Question 1.1 is the same
as asking for a characterization of

(1.12) ﬂ{ran(T,’;) :m € H*, not identically 0}.

Remark 1.13. Functions satisfying the smoothness condition (1.8) come up
in multiple places. For example, in [9] they are shown to be the functions that are
the multipliers of every de Branges—Rovnyak space H(b) when b is not an extreme
point of the ball of H*°; see [25] for a treatment of these spaces. In [7], the authors
give bounds on the number of zeros such functions can have in D, and discuss how
the class coincides with a certain class of Cauchy transforms.



4 A. ALEMAN, M. HARTZ, ]. MCCARTHY AND S. RICHTER

1.2 New results on the ball. Let d be a positive integer, and B; denote
the unit ball in C¢. Let us define the Drury—Arveson space H§ to be the Hilbert
space of holomorphic functions on B, with reproducing kernel given by

1
k(z, )= ————.
(Z ) 1— <Z, l>cd
We let N denote the natural numbers (including 0). The monomials {z* : o € N9}

form an orthogonal basis for Hﬁ. Their norms will come up frequently, so we shall
define

ar!...og!

1.14 =2y = ————.
(1.14) ou =1 =\ o

For many questions regarding multivariable operator theory, the Drury—Arveson
space turns out to be the right generalization of H? to the unit ball; see [6, 26] for
background on H3.
We shall let Mult(H3) denote the multiplier algebra of H3. For each m in
Mult(Hg), we shall let
Tw : f — mf

denote the multiplication operator, and we shall call its adjoint 7, a co-analytic
Toeplitz operator on H3. A multiplier m is called cyclic if ran(7},) is dense in H2;
since Mult(Hg) is densein Hﬁ, this is equivalent to saying that { pm : ¢ € Mult(Hﬁ)}
is dense in H3. Our goal is to answer the d-dimensional version of Question 1.1.

Question 1.15. What functions are in the range of 7, for every cyclic m in
Mult(H?)?

In analogy to (1.4) and (1.5), we define the Nevanlinna and Smirnov classes
of Hj by

N(H3?) = {f =g/m: g € H;,m € Mult(H3), m # 0 on B},
N*(H?) ={f =g/m: g € H3, m € Mult(H3), m cyclic}.

In [3] we proved that N*(Hﬁ) is equal to
{f =¢/m: ¢ € Mult(H?), m € Mult(H?), m cyclic}.

As before, let us define the locally convex inductive limit topology J on N*(H3).
We norm each 1 H3 by

gl Lz = lmgllgz-
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Then J is the translation-invariant topology that has a neighborhood base at zero
consisting of all absolutely convex sets €2 with the property that 2 N %Hﬁ is open
for each cyclic multiplier m. Equivalently, J is the finest locally convex topology
on N*(H?) that makes all inclusions %Hﬁ — N*(H3) continuous; see, e.g., [28,
13-1] for background. The polynomials are dense in (N*(Hﬁ), J), and Helson’s
theorem remains true; we prove this in Section 5.

Theorem 1.16. The function h € H> is in (\{ran(T}) : m cyclic} if and only
if the functional

| Zf = <fah>H3

extends to be a continuous linear functional on (N+(H§), D).

To characterize these functions by their Taylor coefficients, we need to study
an appropriate version of (1.3). In [22] W. Rudin defined the Nevanlinna and
Smirnov classes on the unit ball B, in C¢ analogously to (1.2) and (1.3), replacing
integration over the circle with integration over the sphere. He conjectured that the
two classes were equal for d > 2, but the solution of the inner function problem
on the ball showed that this was not true. See [23].

In this note we shall study holomorphic functions on the ball that are uniformly
in the Smirnov class on every disk through the origin. So we shall let N, denote
the holomorphic functions on the ball B; such that

; do
(1.17) IlFIl := sup  sup 10g(1+lf(r€’95)l)§

redB, 0<r<1

is finite. This is not a norm, but we can define a metric by

. do
p(f,8) =Ilf — glll = sup sup [ log(1+|[f — g](re"’m%.

(edB, 0<r<1

We define the uniform Smirnov class N, by
(1.18) le:{feNL,:liTrrllp(ﬁ,f):O},

where f,(z) = f(rz). We shall show in Proposition 2.5 that (N;}, p) is an F-space, i.e.,
atopological vector space in which the topology comes from a complete translation
invariant metric, and that the polynomials are dense in (N, p). Moreover we show
that multiplication is continuous, so (V,, p) is a topological algebra. (It can be
shown that when d = 1 the definitions of the Smirnov class from (1.3) and (1.18)
coincide. We were unable to find a convenient reference, so we include a proof in
Proposition B.1.)
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In Theorem 3.7 we prove that (N*(H3), J) embeds in (N, p), but the inclusion
is not continuous, and is proper whenever d > 2. Indeed, in Section 7 we prove
that N(H3) does not even contain the ball algebra.

Theorem 1.19. For all d > 2 there is a holomorphic function f on B, that is
continuous up to the boundary, but is not in N(Hﬁ).

Next, we find the dual of (V;;, p). For any function f holomorphic on the ball B,
we shall use f(a) to denote the Taylor coefficients, where a is a multi-index:

f@=Y" flaz".
aeNd

Recall that w,, is defined by (1.14). We prove in Section 4:

Theorem 1.20. The functional
(1.21) T:ife> > fl@ya
aeNd

is in (N}, p)* if and only if there exist constants M, ¢ > 0 so that
(1.22) 172 < Mwge= V" forall a e N°.
In this case, the series in (1.21) converges absolutely for every f € N,,.

Since N*(H3) C N, and the inclusion is not even continuous, Theorem 1.20
would not seem strong enough to answer Question 1.15. Nevertheless, our most
surprising result is that it is, and (N*(Hﬁ), J) and (N, p) have the same duals.
Putting all these results together we get our principal result.

Theorem 1.23. Let h € H3 and let T = (-, h) w2 be the associated linear
functional. The following assertions are equivalent:
@) T e (N, p)",
(i) T e (N*(H3), )",
(iii) h € ran(T;,,) for every cyclic m € Mult(Hﬁ),
(iv) there exist M, ¢ > 0 so that

(1.24) [h(0)|w, < Me™cV1e

forall o € N?.
In this case, the functional T on N} or on N*(H?) is given by

L= ke =Y. S @2f(h(a),
n=0

n=0 |a|=n

where both sums converge absolutely, and f = Y 2 f, and h = Y2, h, are the
homogeneous expansions of f and h, respectively.
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Note: The reason w, appears on the left in (1.24) and on the right in (1.22) is
the way we define I'. In Theorem 1.23 we use the Hﬁ inner product, which is the
form we will use in our proofs, and in Theorem 1.20 we used the £? inner product
on the coefficients, just to make the statement of the theorem more succinct. This
means that y, = a)ﬁﬁ(a).

We prove Theorem 1.23 in Sections 5 and 6.

In Section 8, we prove that (V;, J) can be realized as a dense subspace of a
Fréchet space, i.e., a complete locally convex metrizable space, so in particular the
topology J on N, is metrizable. In Section Appendix A we have an appendix on
inductive limit topologies.

2 Basic properties of N}

The following lemma is proved in [21, II.3.1 and II.11.2], see also [27, eq. 1.3,
p- 917].
Lemma 2.1. Let g € N*(D). Then for any z € D, we have

2liell

(2.2) 18(2)] < e™H — 1.

Moreover, its Taylor coefficients satisfy

(2.3) |§(n)| < e\/SnIIIgIII(HSn)’

where ¢, is o(1), depends only on |||g|ll, and decreases as |||g|l| decreases.

For ¢ € 0By, let
ir:D— By, z0> 2z

If f € O(By), then f o i € O(D) is the slice function along the direction .
Clearly, we have |[|[f oi-ll < |Ifll. So if f € N, then f o i € N(D) and
lim,_1 IIf o iy — (f o ir),|ll = O, which implies that f o iy € N*(ID) by Proposi-
tion B.1. So we get from (2.2) that

21171

(2.4) feN = |f(w)| <e™wl —1, Yw e By,

Proposition 2.5. (N}, p) is an F-space, and multiplication is continuous.
Moreover, the polynomials are dense.

Proof. It is straightforward to check that p defines a metric on N;. Observe
thatif f € N,, A € Cand n € N with |1] < n < |1] + 1, then

AFIE < Nnflll < mlFIE < AAT+ DI
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by the triangle inequality. From this, it easily follows that N} is closed under scalar
multiplication, and hence is a subspace of N,,.

To see density of the polynomials, note that if f € N, then for each r < 1, the
function f, is holomorphic in a neighborhood of B, and hence a uniform limit of
polynomials on B,. Thus each £, and therefore f belongs to the p-closure of the
polynomials.

Continuity of addition on N, follows from the triangle inequality. To see
continuity of multiplication, from which scalar multiplication follows as a special
case, note that if f, g, fo, go € N, then

g8 —fogo = (f —f0)(g — go) +fo(g — go) + go(f — fo)-

Using the triangle inequality together with the inequality ||FG|| < |F|ll + G,
we obtain

/g = fogolll < IlF = Jfolll + lllg — golll + Ilfo(g — go)lll + lllgo(f — follll-

So it suffices to prove that multiplication is separately continuous.
Since [lIfglll < (Ifllsc + DIlIgIll, we have

F(g = golll < MI(F —f)(g — gollll +lllfi-(g — gl
< F = £l + Hllg = golll + (Ilfrlle + Dl = golll-

Let & > 0, and choose r < 1 so that |[|f — /|l < §. Then if

&
llg = golll < z7=77—
3+ 3[frlloo

we get |||f(g — go)lll < &. So multiplication is continuous.

Finally, we show completeness. Let (f,) be a Cauchy sequence in N;. From (2.4)
we see that (f;,) converges uniformly on compact subsets of B, to a holomorphic
function f. On the other hand, completeness of N*(D) (see [30, Thm. 1] or
[27, p. 919)) yields that each slice sequence (f, o i-) converges in N*(D) and
in particular pointwise on ID, so that the limit necessarily equals f o i-. More-
over, as |||f, o iy — fm o ir|ll < |l — fwlll it follows that the convergence is uniform
in ¢ € dB,, hence f € N, and lim,,—, »c p(f4,f) = 0.

To see that f € N, lete > 0 and let n € N with |||[f — f,|l| < &. Then

I = £l < WF = Salll + M = Gdelll + NGFdr = felll < 2& + Ufa = eIl

so limsup,_,, [Ilf —f+Ill < 2¢. Since ¢ > 0 was arbitrary, f € N;/. g

We shall need the next result in Section 6.
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Lemma 2.6. Let h(z) = Zlal:n ﬁ(a)za be a homogeneous polynomial of de-
gree n. Then the following inequalities hold:
@ llAlloo < 1ol < (n+ DYV ||A] o
(b) maxg (Al < Il < (n+ 1D/ maxg (o)l

Here, the implied constants only depend on d.
Proof. (a) We have

hlloo < ||h||Mu1t(H§) = ||h||H§a

since 4 is homogeneous (see, e.g., [14, Prop. 6.4]). Next, if H>(éB,) denotes the
Hardy space on the ball, then the formula for the norm of a monomial in H%(6B,)
in [22, Prop. 1.4.9] shows that

d—1+n d—1+n _
||h||i,3=< g )nhnip(%,,)s< g )nhniog(nﬂ)d Al

(b) Note that
IhlZ: = > Ih@)Pe},
lal=n
so the inequality on the left is obvious, and the inequality on the right follows from
the fact that there are (d;_ll'"
In particular, the final condition in Theorem 1.23 admits the following equiva-

) S(n+ 1)4~! monomials in d variables of degree n.[]

lent reformulations.

Corollary 2.7. Leth =", ﬁ(a)z" € OBy) and let hy, =3, -, ?L(a)z“ be the
homogeneous component of degree n. Then the following assertions are equivalent:
(1) There exist M, ¢ > 0 so that

[h(o)|w, < Me=" for all o € N,
(i1) there exist M, ¢ > 0 so that
1hnlloo < Me™V"  foralln € N;
(iii) there exist M, ¢ > 0 so that

1l < Me=V"  foralln € N.

Proof. Clear from Lemma 2.6. O

Yanagihara [31] showed that the Taylor coefficients of a function f € N*(ID)
satisfy the growth estimate |f(n)| = O(exp(cy/n)) for all ¢ > 0. We will use the
following generalization to N of this fact in Section 4.
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Lemma 2.8. Letf € N} have homogeneous decompositionf =52 fu. Then
forall ¢ > O, there exists M > 0 so that |[fn||H§ < MeVn,

Proof. By (2.3), for each ¢ > 0 there exists d > 0 so that if |||g]|| < J then
|g(n)| < V" foralln e N.
Since
lim [[lef|ll =0,
e—0
there exists ¢ > Oso that [||f|l| < J, henceiff-(z) = f(z{) denotes the slice function,
then ||[ef; |l < 6 for all { € dB,. Consequently,
elf (O = lefe(m)] < V7.

This shows that ||f,]lec = O(e“V") for all ¢ > 0. The claim now follows from
Corollary 2.7. (|

3 N*(H?) is contained in N

Our goal is to show that N*(H3) C N;. We begin with two lemmata.

Lemma 3.1. H§ C N and ||IfIll < |[f||H§ forall f Hﬁ.

Proof. The inequality log(1 +x) < x shows that for all ¢ € dB,, we have

2r

N _ .
sup [ log(1+ [f(re*ON— < Wf ol < I o iclle < Wl
0<r<1J0 v/

Hence H3 C N,, and the inequality in the statement holds. Moreover, p(f;, f) <
If —=fillgz = Oasr — 1,s0f € Ny. 0

Lemma 3.2. Let H be a reproducing kernel Hilbert space whose reproducing
kernel does not vanish on the diagonal. Let y € Mult(H) with ||y | mun@o < 1.
Then for all r € (0, 1), we have

2
< .
Mul(H) — 147

=
1—ry

Proof. By von Neumann’s inequality,

=

< aupl 72|
1—ry

u
Mult(F) — m}? 1—rz

Straightforward calculus shows that the supremum on the right is attained forz = —1

2
and hence equal to 7. (|
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A normalized complete Pick space can be defined to be a Hilbert function space
on a set X with a reproducing kernel of the form

1
b(x), b(y))’
where b is some function from X into the unit ball of a Hilbert space such
that b(xp) = 0 for some base point xo € X. See [1, 2] for how this is equiva-
lent to having the complete Pick property. The multiplier algebra Mult(J) can be
identified with a WOT-closed subalgebra of B(J). In this way, Mult(J{) becomes
a dual space. On bounded subsets of Mult(H), the resulting weak-* topology

k(x,y) = T

agrees with the topology of pointwise convergence on X. Indeed, this follows from
density of the linear span of all kernel functions in J.

It follows from a result of Davidson, Ramsey and Shalit, see [8, Cor. 2.7],
that there is a 1-to-1 correspondence between multiplier invariant subspaces of
a complete Pick space and weak-* closed ideals of the multiplier algebra. In
particular, if m is a cyclic multiplier, then m Mult(JH) is weak-* dense in Mult(J).
We require the following Kaplansky density type refinement of this fact. If f €
we shall let [f] denote the closure in I of {mf : m € Mult(J()}.

Lemma 3.3. Let H be anormalized complete Pick space and let m € Mult(J).
If ¢ € Mult(H) N [m] with ||@|lmascy < 1, then there exists a sequence (¢,) in
Mult(H) so that

(1) (@um) converges to ¢ in the weak-+ topology, and
2) llenmlvungo < 1foralln e N.

Proof. Since ¢ € [m], there exists a sequence (g,,) in Mult(J{) such that

(3.4) > lln*(gum — )15 < 1.

n=1
In this setting, [4, Thm. 1.1] yields a sequence (y,) in Mult(J{) forming a con-
tractive column multiplier and a multiplier y € Mult(H) with ||y mun@e < 1
and y # 1 so that

n*(gum — @) = W foralln > 1.
1=y
In particular, ||y, |muge < 1 and thus
1
(3.5) (1 = y)(gnm — @) lIMurro) < et
Letr,=1— % and set
-y

On = g, € Mult(H).

T l—ry
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Then
l—w
l@nmlivuarao) = qunm‘ Mult(%0)
1— (1—w)
o R e Y et R
— Y Mult(F) 1 — rpy lIMuldo)

We estimate the first summand using (3.5) and the second summand using Lem-
ma 3.2 to find that

1 2 1 2

m < =+ = — 4+
ll@n ”Mult(ﬂ-f)_nz(l_rn) T+ n 2_D

hence lim sup,,_, . ll@xm|lMurey < 1.

Moreover, since (g,m) tends to ¢ pointwise, we see that (¢,m) tends to ¢
pointwise and hence in the weak-* topology. Replacing ¢, with #,¢,, for a suitable
sequence of scalars (#,,) in (0, 1) converging to 1, we obtain the desired sequence.[]

Remark 3.6. If J is any weak-* closed ideal in Mult(H{) and ¢ € Mult(H)
is in the closure of J in I, then a very similar argument shows that ¢ is in J (just
replace g,m in (3.4) by m, for some sequence m, in J). This yields another proof
of one direction of the Davidson—Ramsey—Shalit result. For the other direction,
we need to show that if we start with an invariant subspace M, intersect it with
Mult(H) to get an ideal J, and then take the closure of J in H, we get M back.
This can also be proved using the representation f = # for functions in H; see
[4, Cor. 4.1].

We are now able to prove that N*(H?) is contained in N;.

Theorem 3.7. Let m € Mult(Hg) by cyclic. Then %Hﬁ C N;, and the
inclusion is continuous. Hence N*(H?>) C N;.

Proof. Since m is cyclic, H3 is a dense subspace of %Hz, and we know from
Lemma 3.1 that H3 C N;. Moreover, (N}, p) is an F-space by Proposition 2.5, so
it suffices to show that the inclusion H7 C N is continuous at O with respect to the
norm || - || 12 ON Hﬁ. Indeed, assuming this has been shown, then the inclusion
Hﬁ C N/ is uniformly continuous with respect to | - ||$ H? and ||| - |Il, hence by
completness of N, it extends to a continuous inclusion from %Hﬁ to N;t.

Thus, we have to show the following statement: For each ¢ > 0, there ex-
istso > Osothatf € Hﬁ and ||mf||H3 < dimplies [||f]ll < &. Tosee this, let¢ € dB,.
Since the slice function f o i, is in the Smirnov class on D, we see that

2

o, do 2 NN
sup | log(1 +|f(rge™))5— = / log(1 + [f(¢ce”))5 .
0<r<1J0 T Jo 2n



COMMON RANGE 13

If p Mult(Hﬁ) with ¢(0) # 0 and ||q)m||Mu1[(H3) < 1, then (mg) o i is non-zero
almost everywhere on dD. Using the inequality log(1 + ab) < log(1 + a) + log(b)
fora > 0 and b > 1, we therefore find that
f(ge"ym(ge?)p(ce") )

m(ge?)p(ge?)
< log(1 +|f(¢e”m(ce™)p(ze™)]) — log Im(¢ce”)p(ze")

log(1+ If(ce™)]) = log (1 +

for almost every 6. Integrating in 6, using Lemma 3.1 on the first summand and
Jensen’s inequality for holomorphic functions on the second summand, it follows
that

2r

o, do
sup | log(1 +[f(rge™))5— < Ilfmpll 3 — log Im©)p(O)]-
0<r<1J0 T

Taking the supremum over all ¢ € dB,, we obtain

(3.8) A < [l 2z Nl I vureczy — 1og [m(0)p(O)],

which is true for any ¢ € Mult(H?) with ¢(0) # 0 and lomlivunzy < 1. Now,
let ¢ > 0. Since m is cyclic, Lemma 3.3 yields a multiplier ¢ € Mult(Hﬁ) with
llomivurzy) < 1 and log [m(0)p(0)] > —&/2. Set 6 = &/(2l|@|lpuiz))- Then (3.8)
shows that if |[fm||H3 < 0, then [||f]ll < e. O

An alternate way to prove Theorem 3.7 istolet X = H§ in the following theorem.
We define the norm on éX by ||£||1X = |Ifllx-
8

Theorem 3.9. Suppose that X is a Banach space of holomorphic functions
on B, that contains the constants and such that Mult(X) is dense in X. If X
is continuously contained in N}, and g € X is cyclic, then éX is continuously
contained in N}

Proof. We prove first that iX is continuously contained in N,. To this end,
let ¢ € Mult(X) with (0) # 0. If { € dBy, let v, be the outer function on D with
lo-(e?)| = max{1, |gp(e?¢)|} a.e. Then |v-| > max{1, |gg o i |} in D, which gives

100 (=[] = sup s, [ (1 e 37

Using (1 +ab) < (1+a)b, a>0,b > 1, withb = |%(rei9()|, it follows that

/OZE log (1 + ‘ﬁ" ¢ "’()D

(3.11) - 27:1 (1 ( o )d9 271'1 D(( o do
_/0 og(1 + [fe(re™ )| %+/0 og‘g re C)}g.
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Using the definition of v, together with the inequality |a| < 1+ |a — 1|, we obtain
2r . db 2n o do
1 i\ < / 1 i\
| rogloctreiS < [T rog oIS

2 ) ) do
< / log(1 +1gp o ic(e) — 15

0 T
< g — 1]l

Moreover, since g¢ o i is analytic in I,

2z 1 . do
/ log|—(re")| 5~ < — log Igp(0)].
0 8¢ 2z

Now let ¢ > 0. Since g is cyclic and X is continuously contained in N;/, we can
choose ¢ € Mult(X) such that

&
lige — 1l — loggp(O)] < 7.

and from (3.10) and (3.11) we obtain for this choice of ¢
f €

(3.12) IE]] < 2 + .
g 2

Since ¢ is a multiplier and X C N}, there is d > 0 such that ||£||lx =|fllx <o
8

&

implies [Ifpll < %.

Thus éX is continuously contained in N,, and by assumption, the inclusion maps
the dense set X into N;f. Since N is closed in N, by Proposition 2.5, the result
follows. (]

Remark 3.13. Note that Theorem 3.7 shows that the set N*(Hﬁ) is contained
in N}, but it does not show that the inclusion from (N*(HC%), J) to (N, p) is
continuous. Indeed, let J,. be the non-locally convex inductive limit topology
on|J %H 2, where a neighborhood base at 0 is given by all sets Q such that QN %Hﬁ
is open for all cyclic multipliers m. Then Theorem 3.7 says that the inclusion from
(N*(Hﬁ), Jnie) to (N7, p) is continuous, since the inverse image under inclusion of
every open set in (N;, p) is open in Jy.

Even when d = 1 the inclusion from (N+(H§), J) to (N}, p) is not continuous,
since the two sets coincide, the inclusion from (N}, p) to (N+(H§), J) is continuous
by [17, Thm. 2.1], but the topology induced by p is not locally convex, as remarked
by Yanagihara in [30]. It follows that the inclusion cannot be continuous ford > 1
either, since otherwise restricting to functions that depend only on one coordinate
would yield a contradiction (by using Lemma 6.2 below).
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4 The dual of (N}, p)

In this section, we prove Theorem 1.20. We shall assume throughout that d is a
fixed integer greater than 0.
For ¢ > 0, let

1
4.1 ¢C(Z)=exp(§1izz) —1.

This function is not in N*(ID), nonetheless the following two facts hold (the first is
proved in [21, I1.11.2], the second in [18, Lemma 1.5]).
Lemma 4.2. With ¢, defined by (4.1), we have forn > 0

(E(n) — peVn(+o(1)

MOV€0V€I,
10 ”l cl"

For ¢ € By, let
P.:C'>C, zv (z,0),

denote the orthogonal projection onto C¢. If I is a continuous linear functional
on H3, let

[.:H>—>C, f—T(foPy),
denote the continuous slice functional. We can regard these functionals as densely

defined functionals on N*(ID). The proof of the following lemma is an adaptation
of the proof of [18, Thm. 1.7].

Lemma 4.3. Let T' = (-, h)z be a continous linear functional on H3 and
let h = 3,20 hy be the homogeneous decomposition of h. If the slice functionals
{T;: ¢ € dBy} are equicontinuous on (N*(D), p), then there exists ¢ > 0 so that

I lloe = O(e™VM).

Proof. If f = % f(n)z" € H?, then

() = (f o Peo By = 30z )" ) = D_F0A(O).
n=0 n=0
Since the functionals {T'; : { € dB,} are equicontinuous with respect to p, there
exists § > 0 such that if f € H? and p(f, 0) < &, then |[T-(f)| < 1 for all ¢ € JB,.
Thus, if f € H? and p(f, 0) < 9, then for all n € N and all ¢ € By,

< 1.

~ 2m d
“4.4) [f(m)h, (O] = '/0 Fei'((f)emté
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Let ¢, be as in (4.1). By the second part of Lemma 4.2, there exists ¢ > 0 such
that p(¢.(rz),0) < o for all r € (0, 1). By the first part of the same lemma, we
may choose a null sequence (e,) of real numbers so that |¢.(n)| > €Y1~ Ap-
plying (4.4) to the functions ¢.(7z), we therefore find that for all ¢ € éB,, r € (0, 1)
andn € N,

PV O] < P Igmh(O] < 1,

Taking the limit » — 1, we see that for all ¢ € dB,,
()] < emeVmi=en,

SO ||h,]loo = O(e_c‘/ﬁ), for some slightly smaller ¢ > 0. U

We can now prove Theorem 1.20, which we restate in equivalent form.

Theorem 4.5. The functional

Tif = 3 @2f(h(a)

aeNd

is in (N}, p)* if and only if there exist constants M, ¢ > 0 so that

(4.6) [h(a)|w, < Me™V1,

Proof. (Sufficiency) Suppose ﬁ(a) satisfies (4.6) andleth =), ﬁ(a)z“ € Hﬁ.
We have to show that T'(f) = (f, h) 2 defines a continuous linear functional
on (N}, p). If h, denotes the homogeneous component of degree n of &, then
Corollary 2.7 implies that || A, || 0= O(e~°V™) (for some ¢ > 0 that is potentially
different from the ¢ in (4.6)). Let f € N, with homogeneous decomposition
f =32 fs Lemma 2.8 shows that |lf,ll; = O(e/>V). Hence by the Cauchy—
Schwarz inequality, the series Y -, {fu, hn) converges absolutely. For each N € N,
the linear functional Ty (f) = Z]}:’:() (fu» hu) is continuous on (N, p), as convergence
in (N}

", p) implies uniform convergence on compact subsets of B; by (2.4). Hence

the uniform boundedness principle for F-spaces (see, e.g., [24, Thm. 2.8]) shows
that I'(f) = limy_, o I'y(f) defines a continuous linear functional on (N, p).
(Necessity) Let I" be a continuous linear functional on (N, p). Lemma 3.1
shows that I is continuous on H3, so there exists & € H3 with T'(f) = (f, h) for all
f € Hj. Note that if f € N*(D) and { € 0By, thenfoP, € N with ||| o Pl = Il
This shows that the slice functionals {I' : ¢ € 0B} are equicontinuous on N*(ID),
so we deduce from Lemma 4.3 that ||A,]|cc = O(e~V") for some ¢ > 0. Now
Corollary 2.7 yields (4.6). (]
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5 The range of adjoints of cyclic multiplication opera-
tors

First we show that Helson’s theorem is true for N*(H?2).

Theorem 5.1. Let m € Mult(H3) by cyclic. The function h is in the range
of T, if and only if the functional

(5.2) £ Y (@@ = (f; by
extends from H3 to be a continuous linear functional on %Hﬁ.

Proof. Suppose h =T, g. We wish to show that for some constant M,

(5.3) \{f B 2| < Mlmf 2.
But
(f.h) =, T,8) = (mf, g),

so (5.3) holds with M = ||g||H§.
Conversely, suppose (5.3) holds. Then

1, 1)z < MFN Lz

for all f in the dense set H> in %Hﬁ. By the Riesz representation theorem there
exists a function k = g/m in %Hﬁ so that

(f. h>H§ = {f, k>$y§ = (mf, mk>H§ = {f. T;g>H§

forall f € Hﬁ. Hence h =T,g. (|

By definition of the inductive limit topology, a linear functional on (N+(H§), D
is continuous if and only if its restriction to %Hﬁ is continuous for each cyclic
multiplier m. Hence, as a corollary we get:

Theorem 1.16. The function h in H§ isin ) ran(7},) if and only
if the functional (5.2) extends from HL% to be a continuous linear functional on
(N*(H), .

m cyclic multiplier

We have shown in Theorem 1.16 that conditions (ii) and (iii) are equivalent in
Theorem 1.23, and in Theorem 4.5 that conditions (i) and (iv) are equivalent. We
can now also prove that condition (iv) is sufficient for (ii) to hold.
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Proof of (iv)=(i) in Theorem 1.23.
Suppose h(z) = >, h(a)z* is in H§ and for some ¢ > 0 we have

ﬁ(a) = O(Le_c '“').

o
By Theorem 4.5, the functional I : f — (f, h) w2 extends to a continuous functional
on (N}, p). We showed in Theorem 3.7 that for each cyclic multiplier m of H3, the
space %Hﬁ is continuously contained in (N, p). Hence I' is continuous on %Hﬁ
for each cyclic multiplier m, so I' is continuous on (N*(HC%), D. U

6 Proof of necessity of (1.24)

Recall that P.(2) = (z, {). To prove that (ii) implies (iv) in Theorem 1.23, we will
analyze continuous functionals I" on (N+(H§), J) by studying the slice function-
als T’y on N*(D), defined by I'-(f) = T'(f o P;).

First, we observe that outer functions in H* lift to cyclic mulipliers of H3.

Lemma 6.1. If ¢ is in H>*(D), then for every { € 0By, the function ¢ o Py is
in Mult(H?), and ||¢ o Pellvuey < | Plloo. If ¢ is outer, then ¢ o Py is cyclic.

Proof. Multiplication by (w, ¢) is a contraction, so by von Neumann’s in-
equality, for every 0 < ¢ < 1, the norm of multiplication by ¢((w, #;)) is bounded
by the norm of ¢ in H*. As ¢ T 1, these multiplication operators converge in the
weak-* topology to multiplication by ¢({(w, ¢)).

Now suppose ¢ is outer. Then there are polynomials p, € C[z] so that
#(@)pa(z) — 1 in H?. Therefore ¢((w, O))p.((w, ) — 1 in H3, so ¢((w, ¢))
is cyclic. (|

As a consequence, we show that the Smirnov class in one variable embeds
continuously into N*(H3).

Lemma 6.2. For ( € dBy, the map

(N*(D),9) = (N*(HD,), f=>foP,

is continuous.

Proof. Let I be the map in the statement of the lemma. Recall that by the
universal property of the inductive limit topology, it suffices to show that for each
cyclic multiplier m of H?, the restriction of I to %Hz is continuous. But m o Py is
a cyclic multiplier of H§ by Lemma 6.1, and the map

Lo, 1

H?, — foP,,
m moPCd f f ¢

is an isometry, as the embedding H> — Hﬁ, f = f o P;is isometric. Since the
inclusion ﬁHﬁ C N*(H3) is continuous, it follows that / is continuous. O
¢
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In[17, Thm. 2.1], it was shown that the dual spaces of (N*(ID), J) and (N*(D), p)
coincide. So as a corollary, we get:

Corollary 6.3. Let T € (N*(H?),J)*. Then for each { € dBy, the slice
functional T is continuous on (N*(ID), p).

Proof. Lemma 6.2 shows that the slice functional I'; is continuous on
(N*(DD), J), hence it is continuous on (N*(D), p) by [17, Thm. 2.1]. O

The key step in proving (ii)=>(iv) in Theorem 1.23 is to show that the slice func-
tionals I'- are not only individually continuous, but equicontinuous on (N*(ID), p).
To this end, we require some more preliminary results. For cyclic multipliers that
arise as in Lemma 6.1, Lemma 3.3 can be refined as follows.

Lemma 6.4. Let y € H™ be outer, let { € 0B, and let m = yo P.. Then there
exists a sequence (¢,) of cyclic multipliers of H§ so that
(1) (@,m) converges to 1 in the weak-* topology of Mult(Hﬁ), and
@) Ngnmlipuzy < 1foralln € N.

Proof. We may assume without loss of generality that |||, = 1. Since v is

27 el 4 7 L
w(z) = exp ( / — log | w(e"’>|—>
o ev—z 2w

outer,

for z € D. Define

2r i
wa(z) = exp (/ ¢tz log(min(n, Iy/(eie)l_l))ﬁ).
0o ¢€ 2r

19_Z

Then y, € H* is outer, ||y, ¥|loc < 1 and for each z € D, the dominated

t//%z)‘ Define ¢, = y, o P;. Then

each ¢, is a cyclic multiplier by Lemma 6.1. Since (¢,m) = (y,y) o P;, we find

convergence theorem shows that lim,,— o0 1, (2) =

that {|@,m||pyne2) < 1 and that g,m converges to 1 pointwise and therefore in the
weak-* topology of Mult(H?). O

On bounded subsets of Mult(J(), the weak-x* topology coincides with the topol-
ogy of pointwise convergence. The following simple lemma shows that it some-
times suffices to establish convergence at a single point.

Lemma 6.5. Let I be a normalized complete Pick space on X and let (¢,) be
a sequence in the closed unit ball of Mult(H). If there exists a point xo € X so that
lim,,— 00 @u(x0) = 1, then (p,) converges to 1 in the weak-= topology of Mult(J).
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Proof. By renormalizing the kernel (cf. [2, Sec. 2.6]), we may assume that
the kernel is normalized at x(. In this setting, we find that

n—oo
11 = @all3c = 1+ llpalljc — 2Re pa(x0) < 2 — 2Re g, (xg) — 0.

In particular, lim,,_, o ¢,(x) = 1 for all x € X. O

We will make use of infinite products of multipliers.

Lemma 6.6. Let H be a normalized complete Pick space on X and let (y,)
be a sequence in the closed unit ball of Mult(H). Assume that there exists xy € X
sothat ), |1 — w,(x0)| < oo. Then:
(a) The infinite product [[,2, w, converges in the weak-* topology of Mult(3).
(b) If each y, is cyclic, then w = [[72, wx is cyclic as well.

Proof. (a) For M > N, let Yy = Hfl/lzN wn, which belongs to the closed
unit ball of Mult(F(). The assumption implies that Wy y(xp) converges to 1
as M > N — oo, hence Wy y(x) convergesto 1 as M > N — oo forall x € X
by Lemma 6.5. From this, we deduce that the partial products ]_[1,;’:1 v, converge
pointwise on X and hence in the weak-* topology of Mult(J().

(b) Since I is a normalized complete Pick space, Mult(H) is dense in I, so
it suffices to show that 1 € [y]. Since w; is cyclic, there is a sequence (@) in
Mult(H) so that w9 — 1 in H. Therefore [[2, v, € [w]. Iterating, we get for
every N that [[2y wn € [w]. AsN — oo, [[2y v, converges weakly to 1 in H by
part (a),so 1 € [y]. O

Remark 6.7. It is in general not true that non-zero weak-* limits of cyclic
multipliers are cyclic. For instance, if f € H* is a singular inner function, then f,
is outer for each 0 < r < 1 and f, converges to f in the weak-* topology of H*
asr — 1.

The following is the key lemma needed to prove equicontinuity of the slice
functionals.

Lemma 6.8. Letf € N*(D). Then the map
oBa — (N*(H, D, ¢ foPr
is continuous.
Proof. Let () be a sequence in B, that tends to . It suffices to show that a
subsequence of (f o P;,) converges to f o P, in (N+(H§), J). Let
F=foP,eN‘H)).

It is elementary to construct a sequence (U,,) of d x d unitaries tending to / so that
Uy, = ¢ for all n.
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Then P; o U, = P,,, so we have to show that a subsequence of (F' o U,,) tends
to F in (N*(H3), J).

We will construct a cyclic multiplier M so that a subsequence of (¥ o U,) tends
to F in +H3. Continuity of the inclusion & H3; C (N*(H7),J) then shows that
the subsequence also converges to F in (N+(H§), J), as desired. To construct M,
write f = § for some g € H? and some outer function u € H®. Let G = g o P
andm=uoP;,s0F = % The multiplier M will essentially be an infinite product
of multipliers of the form m o U,, suitably corrected to ensure convergence.

First, by Lemma 6.4, there exists a sequence (¢,,) of cyclic multipliers of H3
so that ||gonm||Mu1t(H3) < 1 for all n and so that |1 — ¢,(0)m(0)] < 27". Next,

since m o U, converges to m in the norm of H3, we may pass to a subsequence
of (U,) to achieve that

o0

4, 2 2
2" Ml @nllsputey llm — m o Unllye < 1.
*H) 2

n=1

Then [4, Thm. 1.1] yields a sequence (y,,) in Mult(Hﬁ) forming a contractive
column multiplier and a contractive multiplier € Mult(H3) with y(0) = 0 so that

Wn
11—y’

2
27 @nllmunezy(m — m o Uy) =
whence

(6.9) (L= ) = m o Uy < 27" I9allsunnz)-

Letr,=1—27"and let

1
Nn = Con(m o Un)l 5
—ray

which is a product of cyclic multipliers and hence cyclic (cyclicity of 1 — y was
shown in [3, Lemma 2.3]). Then

l—y
1 —r,y

p,(mo U, —m)

Mult(H2)

1—1//‘
1 —ry

2y < * H "
70 a2y < ’ ) |17

We estimate the first summand using (6.9) and the second summand using Lem-
ma 3.2 combined with the bound ||@,m || py2) < 1 to find that

1

N < 2—2}1— +
HrlnllMult(Hd = 1 — iy 1+ T'n

< 14271

Lets, = 1 —27"*1 Then ||fn’ln||Mu1:(H§) < 1 and ¢,7, is cyclic for n > 2. Moreover,
since w(0) = 0, we have #,(0) = ¢,(0)m(0). Since |1 —¢,(0)m(0)] < 27", it follows



22 A. ALEMAN, M. HARTZ, J. MCCARTHY AND S. RICHTER

that >°72, |1 — #,77,(0)| < co. Thus, Lemma 6.6 shows that the infinite product of
the t,,1,, converges to a cyclic multiplier. Let

(o0}
M =m? H .
n=2

Then M is a cyclic multiplier.
We finish the proof by showing that lim,_, o, |[M(F o U, — F)|| 0= 0. Indeed,
since F = % we have

IM(F o Uy = Pllg < lm*na(F o Uy = F)ll

< }Q’nm

—y }

U)FolU,—F
1—row Mult(H5)||m(mO ) F o )||H§
<2|lm(GoU,) —(mo Un)G||H5,

where in the last estimate, we used again that |[@,m||ypy2) < 1 and Lemma 3.2.
Since G o U, tends to G in Hﬁ and the sequence of multipliers (i o U,,) tends to m
in the strong operator topology, we conclude that lim,,—, o, |M(F o U, — F)|| o= 0,
as desired. g

We are ready to prove equicontinuity of the slice functionals T'- defined

Lemma 6.10. If T € (N+(H§), J)*, then the functionals {T'; : { € B4} are
equicontinuous on (N*(D), p).

Proof. By Corollary 6.3, each I is continuous on (N*(ID), p). By the uniform
boundedness principle for F-spaces (see, e.g., [24, Thm. 2.6]), it therefore suffices
to show that the functionals I'; are pointwise bounded. If f € N*(D), then
{foP;: ¢ € 0B} is acompact set in (N*(H3), J) by Lemma 6.8 and compactness
of dB,;. Hence,

sup |T:(f)| = sup |T'(f o Py)| < oo,

(€dBy redBy
establishing pointwise boundedness. (|
Finally, we can finish the proof of Theorem 1.23.

Proof of (ii)=(iv) in Theorem 1.23. IfT'= (., k) € (N+(H§), J)*, then the
slice functionals {T'; : { € dB,} are equicontinuous on (N*(ID), p) by Lemma 6.10.
Thus, an application of Lemma 4.3 shows that the homogeneous components 4, of &
satisfy the decay condition ||/, || = O(e=°V™) for some ¢ > 0. From Corollary 2.7,
we get (1.24), for some ¢ > 0. U
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7 N*(H?) vs. N}

The goal of this section is to construct functions in the ball algebra A(B;) (and
hence in N;) that do not belong to N+(H§). Let d € N and let

t:B;—> D, zv— dd/22122~~zd.

It follows from the inequality of arithmetic and geometric means that 7 maps B,
onto D and B, onto D. Let

a, = 117"l12
and let K, be the reproducing kernel Hilbert space on D with reproducing kernel
o0
K@z w) =) a,zm)"
n=0

Then X, embeds isometrically into H3. For a proof of the following lemma, see [5,

Lemma 7.1]. The weighted Dirichlet space D, is the reproducing kernel Hilbert

space of holomorphic functions on D with reproducing kernel (1 — zw)~!/2.

Lemma 7.1. The map
V:X;— H3, fefor,

is an isometry whose range is the space of all functions in Hﬁ that are power series
inzizz2- 24
Moreover, X, is the weighted Dirichlet space D >, and X, C A(D) for d > 4.

The following proposition makes it possible to construct functions in H*(B,)
that do not belong to N*(H?). In fact, the resulting functions are not even quotients
of multipliers with non-vanishing denominators.

Proposition 7.2. Letf € H*® (D) be a function with the property that

g-f¢Xy forallge X, \{0}.
Thenf ot € H®(B,), but f o t ¢ N(H?).

We first consider an example showing that the hypothesis of the proposition
can be satisfied.

Example 7.3. Letd > 4 and let f be a Blaschke product whose zeros accu-
mulate at every point of T. Since K,; C A(D) by Lemma 7.1, we find that gf ¢ X,
forall g € K, \ {0}. Thus, f o7 € H*(B,), butf o ¢ N*(H?) by the proposition.
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Proof of Proposition 7.2. Let f € H*(D) be as in the statement of
Proposition 7.2. Since f € H*(D), we have f o 7 € H*(B,). Suppose towards a
contradiction that f o 7 = % for functions ¢, w € H and y non-vanishing, hence
p=y(for).

We will show that we can achieve that ¢ and y belong to the range of the
isometry V of Lemma 7.1. To this end, we decompose ¢ = @1+ ¢, and ¥ = w1+ y»
into holomorphic functions so that ¢; and y; are power series in z;2; - - - 7z and
so that no monomial of the form (z;z, - - - z4)" occurs in @, or y,. Since f o 7is a
power series in 212, - - - Z4, it follows that

(7.4) o1 = oDy1.

Moreover, since ¢, y € H3, we also have ¢, y; € H3 and w(0) = w(0) # 0.
Hence, ¢, and y; belong to the range of the isometry V of Lemma 7.1, so there
exist g, h € K, such that ¢; = ho r and w; = g o 7, and clearly g(0) = w;(0) #O0.
From (7.4), we infer that (ho 7) = (f o 7) - (g o 7). As t maps B, onto DD, this
means that 2 =f - g, contradicting the assumption on f. Thus, f ot ¢ N(H3). O
The construction of Example 7.3 can be refined to work for all d > 2 and to
yield a function in the ball algebra A(B,).

Theorem 1.19. A(B,) ¢ N(Hﬁ)for all natural numbers d > 2.

Proof. We first consider the case d = 2. We will use Lemma 7.1 to embed the
weighted Dirichlet space D, into Hj.

A sequence (z,) in D is called a zero set for D, if there exists a function
f € Dy \ {0} that vanishes precisely on {z, : n € N}. By [20, Thm. 2], there
exists a Blachke sequence (z,) that is not a zero set for D, » and whose only cluster
point is 1. Let B the Blaschke product with zeros (z,) and let f(z) = B(z)(1 — z).
Then f € A(D). Since (z,) is not a zero set for D 5, it is a uniqueness set for D,
by [2, Prop. 9.37], meaning that any function in D/, vanishing on {z, : n € N}
is identically zero. Thus, g -f ¢ D;/ for any g € D;/» \ {0}. In this setting,
Lemma 7.1 and Proposition 7.2 imply that f o 7 ¢ N(H3), but clearly f o 7 € A(B,).

The case of an arbitrary natural number d > 2 is easily deduced from the
case d = 2. Indeed, let F € A(B,) but F ¢ N(H%), let P : B; — B, be the
projection onto the first 2 coordinates and define G = F o P. Then G o P € A(B,).
If G were of the form G = ¢/ for ¢, w € Mult(H3) and y non-vanishing, then

®
W

B,

F=G|]B2 =

B,

would be a quotient of two functions in Mult(H%), a contradiction. Thus,
G¢N(H?). O



COMMON RANGE 25

Theorem 1.19 also implies the following fact about topologies on the Smirnov
class N*(Hﬁ).

Proposition 7.5. Let d > 2 be a natural number and let T be a topology on
N*(H3) that gives N*(H3) the structure of a topological vector space. Suppose that
(1) point evaluations at points in B, are t-continuous, and
2) (N*(Hﬁ), 7) is sequentially complete.
Then there exists a sequence (f,) of functions analytic in a neighborhood of By
such that (f,,) tends to zero uniformly on By, but is not null with respect to .

Proof. By Theorem 1.19, there exists f € A(B,) but f ¢ N+(H§). Forn € N,

let |
@ =f((1-—7)7):

so that (g, is analytic in a neighborhood of B, and converges to f uniformly on B,.
Since f ¢ N+(H§), the first assumption on 7 implies that (g,) does not converge with
respect to 7, and hence it is not 7-Cauchy by the second assumption. Therefore,
there exist strictly increasing sequences (n;) and (my) of natural numbers and a
7-neighborhood U of the origin such that g, — g, ¢ U for all k € N. Let
fx = &n. — &m,- Then () is not z-null, but converges to zero uniformly on B;. [

8 The containing Fréchet space of N}

In [29], Yanagihara described a Fréchet space F™* that contains the Smirnov class,
a sort of “locally convex completion”. In this section, we shall do the same for N;; .
Throughout this section, we shall assume that f is a holomorphic function on B,
and that f = > ° f, is its decomposition into homogeneous polynomials.

Lemma 8.1. Let f be analytic on B;, and for 0 < r < 1 write

M(r, f) = sup |[f(2)].

lzl=r

Then the following are equivalent:
(1) limsup(l —r)logM(r,f) <0,

r—1
1 nioo
(ii) Tim sup 2&Wnlle _ ¢
n— oo
log [[full 2
(i) lim sup& <0,
n— 00 \f/ﬁ
log [h(a)]w,
(iv) Tim sup 2EOI@w _

la|— o0 V |0(|
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Proof. Theequivalence of (ii), (iii), and (iv) follows from Lemma 2.6. Ifz € D
and w € By, then f(zw) = 2 fu(w)zZ". Thus the equivalence of (i) and (ii) follows
from Lemma 1 of [29], p. 96. O

Let F} be the collection of all analytic functions on B, that satisfy any of the
conditions of Lemma 8.1. For a positive constant ¢ and f € F? set

o0
2 _ 2 —eyn
(8.2) IVFIE =D Wallzpe™",
n=0
and define a locally convex topology on F; by the family of seminorms { || - ||¢}¢=0-
Since ||f]|? is increasing as ¢ decreases to 0, it is clear that F is metrizable, and a
translation invariant metric is given by

[e e}

. W =gl
(8.3) dr(f, g) = o~k ST R
ro- ; T+ 17 — gl

Furthermore, one easily checks that for each f = > _,f,, the partial sums
Pn = Y i_ofx converge to f in || - || for each ¢ > 0, hence the polynomials are
dense in F;}. Moreover, a routine argument shows that F;} is complete with respect

to the metric dr. Therefore F}} is a Fréchet space. Finally, point evaluations are
continuous on F7.

Proposition 8.4. (N, p) embeds continuously into F}.

Proof. This is immediate from Lemma 2.8 and the closed graph theorem for
F-spaces; see, e.g., [24, Thm. 2.15].

The next result, combined with Theorem 4.5 and Corollary 2.7, shows that F}
has the same dual space as N, .

Proposition 8.5. Let h be analytic on By, let h = ), hy, be its expansion
into homogeneous polynomials, and assume that there are M, c > 0 such that
||hn||H§ < Me_c\/ﬁfor eachn € N. Then for eachf € F}, the series

Tu) =3 bz = > > f(e)h(ar)
n>0 n=0 |a|=n

converges absolutely, and T, defines a continuous linear functional on F}.
Moreover, every continuous linear functional on F, is of this form.

Proof. Foreach n € N the Cauchy—Schwarz inequality implies that

S G @] < Wl Wrallys < MLl e

la|=n
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Hence, by another application of the Cauchy—Schwarz inequality, we see that

3" @Rlf(@h()] < Mlfle

n=0 |a|=n

o
> e
n=0

holds for each f € F};. This implies that I', is continuous on F7.
The converse follows from the continuous inclusion (N, p) C F; in Proposi-

tion 8.4 and our earlier description of the dual space of (N, p) in Theorem 4.5.

ws P
We provide a direct argument.

If @ is a continuous linear functional on F}, then it follows from the definition of
the topology on F} in terms of the seminorms || - || that there existc > O and M > 0
so that |O(f)| < M||f||. for every f € F;}. To see this from the metric dF, notice
that by continuity of @, there is d > 0 such that |®(f)| < 1, whenever f € F, with
dr(f, 0) < 6. Choose N such that 27V < §/2 and set ¢ = %. Then for each f € F}}

with ||f|l1/y < & we have

N
dp(£,0) < > 27If e +27V < NIlflliyn +6/2 < &
k=1
This implies that |D(f)| < %|[f|| 1nv for every polynomial f. Let Hy denote the
Hilbert space of holomorphic functions on B, with norm given by (8.2) with ¢ = %
Then @ extends to define a bounded linear functional on Hy. By the Riesz

representation theorem, there is g = Y2 g, € Hy such that ||g|l;y < 1/¢ and
(D(f) Z e <fn: gn H7

N
Forn € Nseth, = e~ ~ g,, then

_yn

_vn _n e
Veallg = e lgallie < e H gl < —,

and ® =17, O

From Proposition 8.4, we get that N embeds continuously into F;, and by
Theorem 3.7, so does %Hﬁ for each cyclic multiplier m. Since F; is locally
convex, it follows that (N+(H§), J) embeds continuously into F;. So if we use the
metric dr from (8.3), we get that the identity map is continuous from (N*(H?2), J)
to (N*(Hﬁ), dr). Moreover, since the polynomials are dense in F}, we have
that N*(Hﬁ) is dense in F7. Therefore (N+(H§), dr) has the same dual as F}, and
by Theorem 1.23 and Proposition 8.5, this is the same as the dual of (N+(H§), 7.
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If V is a locally convex vector space with dual V*, there is a finest topology
on V with this dual, called the Mackey topology for the pair. Certain conditions
on a topology force it to coincide with the Mackey topology; these include being
metrizable (as dp is) [28, 8-4.10] or being barrelled (as J is) [28, 10-1.9]. Putting
these facts together, we get the following conclusion.

Theorem 8.6. On N*(H?), the inductive limit topology I and the metric
topology dr coincide.

For the convenience of the reader, here is a direct proof.

Proof. As the identity map is continuous from (N*(H?2),J) to (N*(H?), dr)
by the discussion preceding the theorem, we need to prove that the identity map
from (N*(H?), dr) to (N*(H3), J) is also continuous. To do this, it suffices to show
that for each continuous seminorm p on (N+(H§), J), the inclusion (N*(Hg), dr)
to (N*(Hg), p) is continuous, since the topology on any locally convex space is
given by its continuous seminorms (see, e.g., [11, 1.10.1]).

So let (f,) be a sequence in (N*(HC%), dr) tending to zero. We claim that (f;,)
tends to zero weakly in (N*(Hﬁ), p). Indeed, if T" is a continuous linear functional
on (N*(Hg), p), then T is continuous on (N*(Hg), J) and hence on (N+(H§), dr) by
Theorem 1.23 and Proposition 8.5. Thus, I'(f;) tends to O for all I', establishing
weak convergence. The uniform boundedness principle for the seminormed space
(N*(H3), p) implies that sup, p(f;,) < co. (This follows from the uniform bound-
edness principle for normed spaces by taking a quotient.) So we have shown that
if dp(f,,, 0) — 0, then p(f;,) is bounded. But if dr(f,, 0) — O, then by passing to a
subsequence, we may achieve that dp(nf,, 0) — 0, hence p(nf,) is bounded, so (f;,)
tends to 0 in (N*(H?3), p). This proves continuity of (N*(H2), dr) — (N*(H3), p).00

9 Open Questions

Lemma 6.4 says that if m is the lift of an outer function, then one can find cyclic
multipliers ¢, so that ¢,m is in the unit ball and tends to 1 weak-*. Is this true for
all cyclic m?

Question 9.1. If m is a cyclic multiplier and ¢ = 1, can Lemma 3.3 be
improved to conclude that each ¢, can be chosen to be cyclic?

As pointed out in Section 1, when d = 1 there is no difference between the
common range of co-analytic Toeplitz operators with cyclic symbols, and all non-
zero co-analytic Toeplitz operators. Is this true for d > 27

Question 9.2. What is (\{ran(T};) : m € Mult(Hﬁ), m #0}?
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In [19], M. Nawrocki showed that the dual of the full Smirnov class on the
ball B, consists of those functionals I" satisfying
9.3) TG < Moge™ ™.
In [16], it is shown that Condition (9.3) is not necessary for a function to be in
the common range of all co-analytic Toeplitz operators on the Hardy space of the
sphere.

Question 9.4. What is the common range of all non-zero co-analytic Toeplitz
operators on H>(6B,)?

Question 9.5. Do Questions 9.2 and 9.4 have the same answer?

Appendix A Inductive limits

Let V be a topological vector space, and for each a in some index set A let X, be a
topological vector space that embeds continuously in V. For example, V could be
all holomorphic functions on some domain €2, with the topology of locally uniform
convergence, and each X, could be some Banach space of holomorphic functions
on Q.

Let Y = {J,eq Xo. There are at least two different ways to define an inductive
limit topology on Y. The first, which we shall call the locally convex inductive
limit topology and denote J, has as a neighborhood basis at 0 all absolutely convex
sets U with the property that U N X,, is open for every o € A. A basis for the
topology is sets of the form y+ U, where y € Y and U is a neighborhood of 0. The
topology J has advantages:

e It is a vector space topology (addition and scalar multiplication are continu-

ous).

e The TVS (¥, J) is locally convex.

But:
e It can be hard to describe what a general open set is.
e The topology may be trivial, with Y the only non-empty open set (see Exam-
ple A.1).

A second topology, which we shall call the non-locally convex inductive limit
topology and denote J, has as a basis all sets U with the property that U N X,,
is open for every a € A. In general, the topologies J and J,. are distinct, though
G. Edgar points out in [10] that even Choquet did not realize this. Topology Jyc
has advantages:
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e It is much simpler to describe the open sets.
e It frequently turns out to be given by a complete metric (e.g., for N*(D) [17],
or Example A.1).
However:
e It may not be a vector space topology — addition may not be continuous
[10], where the example is all continuous functions with compact support on
R, viewed as the union of the continuous functions supported on [—n, n].

It is immediate that (Y, J,) embeds continuously in (Y, J). Moreover, if " is a
linear functional on Y, one can check its continuity just by looking at the preimage
of convex open sets in C, so the continuous linear functionals are the same on both
spaces:

(¥, Jnie)* = (¥, )"

Example A.1. An illuminating example is to let V denote the space of all
measurable functions on [0, 1], identifying those that are zero a.e. with respect to
Lebesgue measure. For w any integrable function that is positive a.e., let

()= {f : /Ww < o).

Then V = |J,, L?(w). The topology J is the trivial topology, and the topology Jyc is
the topology of convergence in measure, which is given by a complete metric.
Indeed, let us define a metric on V by

1
du(fg) = /O min(L, [f(x) — g(x)])dx.

This is complete, and gives the topology of convergence in measure. It can be
shown that the topologies given by d;, and Jy. coincide.

Appendix B Smirnov class on the disk

On the disk, the following three definitions of the Smirnov class N*(D) are equiv-
alent.

Proposition B.1. Letf € N(D). The following assertions are equivalent.
() lim,1 [;™ log* |f(re™) |42 = [7™ log* |f ()| 42.
.. . 2z i i
(ii) lim,; [y" log(1 + [f(re”) — f(e”)]) 57 = 0.
(iii) Tim, 1 [If — £l = 0.
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Proof. (i)=(iii): By [12, Thm. A.3.7], (i) implies that {log* |f;| : 0 < r < 1}
is uniformly integrable over T. Hence {log(l + |f;]) : 0 < r < 1} is uni-
formly integrable. Moreover, if g € O(D), then log(1l + |g|) is subharmonic
because ¢ — log(1l + ¢") is increasing and convex; see [13, Sec. 1.6]. Thus, by
Vitali’s convergence theorem, we find that

) 2r . p d0
Il = £l = lim / log(1 + [f(se”) — f(rse”))5—
s—1 Jo 2r
2 ) ) do
= [ togt1 417 — e S
0 T
Applying Vitali’s convergence theorem again, we see that the last expression tends
to O as r — 1, so (iii) holds.

(iii))=(i): By Fatou’s lemma,

27 ) ) do
| toe + e - s
0 T

IA

2
sup /0 log(1 + |f(sre) — f(seie)l)ﬁ

O<s<l1 2

r—1
If = £l — 0,

so (ii) holds.
(i))=(i): From the elementary inequality | log* a — log* b| < log(1 + |a — b|)
for a, b > 0, we deduce that

o + 0 + 0 do 2 0 0 do
| g e = tog” IF IS < [ tog(1 + e e .

0 2 0 2w
so (ii) implies that log" |f;| tends to log* |f| as » — 1 in L!(T). In particular, (i)
holds. O
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