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ABSTRACT

We show that for every connected analytic subvariety V there is a pseudo-

convex set Ω such that every bounded matrix-valued holomorphic function

on V extends isometrically to Ω. We prove that if V is two analytic discs

intersecting at one point, if every bounded scalar valued holomorphic func-

tion extends isometrically to Ω, then so does every matrix-valued function.

In the special case that Ω is the symmetrized bidisc, we show that this

cannot be done by finding a linear isometric extension from the functions

that vanish at one point.
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1. Introduction

By a Cartan pair we mean a pair (Ω, V ) where Ω is a connected pseudo-

convex set in Cn and V is an analytic subvariety of Ω. The name is homage to

H. Cartan, who proved that every holomorphic function on V (i.e., a function

that locally agrees with the restriction of a holomorphic function defined on an

open set in Cn) extends to a holomorphic function on all of Ω [6]. We say that a

pair (Ω, V ) is a norm-preserving pair (np pair for short) if it is a Cartan pair

with the additional property that every bounded holomorphic function on V

extends isometrically to a bounded holomorphic function on Ω.

For a fixed domain Ω, several papers have studied which analytic subvarieties

gave rise to np pairs [3, 8, 14, 11, 12]. If Ω is suitably nice, the conclusion of

these papers was that V had to be a holomorphic retract of Ω for (Ω, V ) to

be an np pair. However, this is not true in general. The simplest example is

the np pair (Δ, T ), where Δ is the diamond {z ∈ C
2 : |z1| + |z2| < 1}, and

T = (D× {0}) ∪ ({0} × D).

In [1], the perspective was shifted, to start with V and try to find a pseudo-

convex set G so that (G, V ) forms an np pair. We showed this can always be

done:

Theorem 1.1 ([1]): If (Ω, V ) is a Cartan pair, then there exists G such

that (G, V ) is an np pair.

The first goal of this note is to extend Theorem 1.1 to the matrix and operator-

valued case.

Definition 1.2: Let G be a domain of holomorphy, and V an analytic subvariety

of G. We say (G, V ) is a complete np pair if for every separable Hilbert

space H and every bounded holomorphic function f : V → B(H) there is a

bounded holomorphic extension F : G → B(H) such that

‖F‖G = ‖f‖V .

Theorem 1.3: If (Ω, V ) is a Cartan pair, and V is connected, then there

exists G such that (G, V ) is a complete np pair.

We prove Theorem 1.3 in Section 3. Since any Stein manifold embeds properly

as a submanifold into Cn for some n, the theorem carries over to the case when V

is a subvariety of a Stein manifold. Notice that if V is not connected, the



Vol. TBD, 2022 COMPLETE NORM-PRESERVING EXTENSIONS 3

characteristic function of any component cannot be isometrically extended to

any connected domain containing it, so the connectedness condition is necessary.

We do not know the answer to the following question:

Question 1.4: If (G, V ) is an np pair, is it always a complete np pair?

In Section 4 we study the question for a particular type of V , namely one

that looks like two crossed discs.

Theorem 1.5: Let T be the union of two analytic discs that intersect at one

point a:

(1.6)
D1 = ψ1(D), D2 = ψ2(D),

T = D1 ∪D2, D1 ∩D2 = a = ψ1(0) = ψ2(0).

Let (G, T ) be a Cartan pair. Then the following are equivalent:

(i) There is a map α : T2 → H∞
1 (G) so that

α(τ1, τ2)(ψ1(z)) = τ1z,

α(τ1, τ2)(ψ2(z)) = τ2z.

(ii) (G, T ) is an np pair.

(iii) (G, T ) is a complete np pair.

We shall let H∞(V ) denote the algebra of bounded holomorphic functions

on V equipped with the supremum norm.

Definition 1.7: A Cartan pair (G, V ) is said to be a linear np pair if there is a

linear and isometric map H∞(V ) → H∞(G). It is a linear np pair vanishing

at a if there is a linear and isometric map from the subspace of H∞(V ) that

vanishes at a to H∞(G).

The linear extension property was first studied by W. Rudin [15]. There is a

natural connection between the linear and complete extension properties. We

show in Proposition 3.7 that if (G, V ) is a linear np pair vanishing at some

point a, then (G, V ) is a complete np pair.

Proposition 3.7: Let (Ω, V ) be a Cartan pair, a ∈ V , and assume that there

is an isometric linear operator

E : Sa(V ) → Sa(Ω).

Then (Ω, V ) is a complete np pair.
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In [2] Agler, Lykova and Young studied the symmetrized bidisc

G2 = {(z + w, zw) : z, w ∈ D}.

This is C-convex, though not convex, and there are np sets that are not retracts.

More precisely, they showed that all algebraic sets V in the symmetrized bidisc

that have the norm-preserving extension property are either retracts or are the

union of two analytic discs of the form

(1.8) {(2λ, λ2) : λ ∈ D} ∪ {(β + β̄λ, λ) : λ ∈ D},

where β ∈ D. It follows from Theorem 1.5 that for algebraic sets in G2, the

np property and the complete np property are the same. However, this cannot

be deduced using a linear extension, as we shall show in Theorem 5.1 that if V

is as in (1.8), there is no linear isometric extension operator of the functions

vanishing at a point to all of G2.

Theorem 5.1: Let T be given by (1.8), and let a ∈ T . There is no linear

isometric extension operator from Sa(T ) to S (G2).

2. Notation

If V is any set on which we can define holomorphic functions, we define the

Schur class S (V ) to be the holomorphic functions from V to D. If H is a

Hilbert space, we let S (V,B(H)) denote the holomorphic functions from V

to B(H) that are bounded by 1 in norm. Finally, if a ∈ V , we let Sa(V )

(resp. Sa(V,B(H))) denote the Schur functions that vanish at a.

We define the map π : D2 → G by

(2.1) π(z1, z2) = (s, p) = (z1 + z2, z1z2).

Define Δ and T by

Δ = {z ∈ C
2 : |z1|+ |z2| < 1},(2.2)

T = D× {0} ∪ {0} × D.(2.3)
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3. Complete np pairs

Throughout this section we shall assume that (Ω, V ) is a Cartan pair and that V

is connected.

It was proved by Bishop [5] and Fujimoto [7] that if (Ω, V ) is a Cartan pair,

then every B(H)-valued holomorphic function on V extends to a B(H)-valued

holomorphic function on Ω. With this tool in hand one could try to prove The-

orem 1.3 by repeating the proof from the one-dimensional case. The main prob-

lem that appears here is that Montel’s theorem fails for holomorphic functions

with values in infinite-dimensional vector spaces. There are topologies on B(H)

for which a Montel-type theorem does hold and even such that Hol(V,B(H)) is

paracompact, but then the projection

Hol(Ω, B(H)) → Hol(V,B(H))

is not open, so Michael’s selection theorem cannot be used. So we shall adopt

a new strategy, which is to establish a link between complete and linear norm-

preserving extensions.

Recall that f : Ω → B(H) is holomorphic if and only if it is weakly holo-

morphic, i.e., Λ(f) is a holomorphic function for any Λ ∈ B(H)′. If f is locally

bounded, a weaker condition needs to be verified for a function to be holomor-

phic:

Lemma 3.1: If G is open, and f : G → B(H) is locally bounded, then f is

holomorphic if and only if z �→ 〈f(z)h, k〉 is a holomorphic function.

Proof. This can be proved in a similar way to proving that weakly holomorphic

functions are holomorphic. See [13, Thm. 6.1] for a formal proof.

The Montel theorem fails in Hol(Ω, B(H)). However, it is true if we

equip B(H) with the WOT topology:

Lemma 3.2: Let (fn) ⊂ S (Ω, B(H)). Then there is a subsequence (fnk
) and

f ∈ S (Ω, B(H)) such that 〈fnk
(z)h, k〉 converges to 〈f(z)h, k〉 locally uniformly

on Ω for each h, k ∈ H.

Proof. For an orthonormal basis ei we apply the regular Montel theorem

to 〈fn(z)ei, ej〉, and then using a Cantor diagonal argument we end up with f .

It is elementary to see that f satisfies the desired properties.
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For a final proof we need a few more preparatory results.

Lemma 3.3: Fix a point a∈V . Then (Ω, V ) is completely norm-preserving if

and only if each f∈Sa(V,B(H)) has an extension to an element F∈S (Ω, B(H)).

Proof. If ||f(a)|| < 1, there exists an automorphism m of the unit ball of B(H)

such that (m ◦ f)(a) = 0 [9]. As h = m ◦ f ∈ S (V,B(H)), the assumption of

the lemma implies that there exists H ∈ S (Ω, B(H)) such that H |V = h. But

then if we define F = m−1 ◦H , F ∈ S (Ω, B(H)) and F |V = f .

If ||f(a)|| = 1, we approximate f uniformly with fn ∈ S (Ω, B(H)) such

that ||fn(a)|| < 1 (e.g., fn = n−1
n f). It follows from the previous case that

there are Fn ∈ S (Ω, B(H)) that extend fn. Applying Lemma 3.2 to Fn we

find F ∈ S (Ω, B(H)) that clearly extends f .

Lemma 3.4 ([1, Lem. 3.3]): If (Ω, V ) is a Cartan pair and a ∈ V , then Sa(V )

is a compact subset of O(V ).

The following result was proved in [1, Thm. 3.5].

Lemma 3.5: If a ∈ V , there is a continuous function S : Hol(V ) → Hol(Ω)

such that S(f)|V = f for f ∈ O(V ). Moreover, for each a ∈ V there is an open

G ⊂ Ω such that (G, V ) is a Cartan pair and S(Sa(V )) ⊂ Sa(G).

With this tool in hand we can prove the following linear extension result.

Let L2
h(G) denote the weighted Bergman space obtained from using the Gauss-

ian measure. (If G has finite volume, we could just use the standard Bergman

space.)

Lemma 3.6: Fix a ∈ V . Then there is a pseudoconvex domain D, V ⊂ D ⊂ Ω,

and a linear isomorphic extension map

Sa(V ) → Sa(D).

Proof. Let G and S : Hol(V ) → Hol(G) be as in Lemma 3.5.

Then the inclusion ι : Sa(G) ⊂ L2
h(G) is continuous; composing with S we

get a continuous extension operator

ι ◦ S : Sa(V ) → L2
h(G).

Let P be the orthogonal projection from L2
h(G) onto {g∈L2

h(Ω):g|V =0}⊥. Then

E(f) = P [ι ◦ S(f)]
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is the element in L2
h(G) that extends f and has minimal norm. It is straightfor-

ward to see that it is linear. By the Cauchy formulas the inclusion L2
h(G)⊂O(G)

is continuous. Thus, we can construct a continuous and linear extension oper-

ator (which we will also call E)

E : Sa(V ) → O(G).

Define

D1 :=
(⋂

{z ∈ G : |E(f)(z)| < 1 ∀f ∈ Sa(V )}
)◦

.

To see V ⊂ D1, suppose b ∈ V \ D1. Then there exist sequences bn ∈ G

converging to b, and fn in Sa(V ), such that |E(fn)(bn)| ≥ 1. By Lemma 3.4,

some subsequence of (fn) converges to a function f ∈ Sa(V ). Since E is

continuous, |E(f)(b)| ≥ 1. This would violate the maximum principle.

Define D to be the connected component of D1 that contains V . By [10,

Prop. 4.1.7], D is pseudoconvex.

Proposition 3.7: Let (Ω, V ) be a Cartan pair, a ∈ V , and assume that there

is an isometric linear operator

E : Sa(V ) → Sa(Ω).

Then (Ω, V ) is a complete np pair.

Proof. It follows from Lemma 3.3 that it is enough to show that any mapping

in Sa(V,B(H)) has an extension to S (Ω, B(H)). So fix f ∈ Sa(V,B(H))

and z ∈ Ω. Applying the Riesz reprezentation theorem to the maps

H � k �→ E(〈f(·)h, k〉)(z),

where h ∈ H, we get, for each z ∈ Ω and h ∈ H, a vector Ψ(z, h) ∈ H such that

E(〈f(·)h, k〉)(z) = 〈Ψ(z, h), k〉.

Note that h �→ Ψ(z, h) is linear since E is, so we can define F (z) : H → H by

F (z)h = Ψ(z, h).

It is straightforward to check that F (z) ∈ B(H)) and ||F (z)||≤1. Since z �→F (z)

is holomorphic by Lemma 3.1, we are done.

Combining Proposition 3.7 and Lemma 3.6, we have proved Theorem 1.3.
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4. Two crossed discs

In this section we shall prove Theorem 1.5. When H is one-dimensional, the

result was essentially proved in [1]. The key argument used there relied on the

Herglotz representation theorem. To go to infinite dimensions, we shall use

realization formulas.

Proof of Theorem 1.5. The implications (iii)⇒(ii)⇒(i) are trivial. Let us

show (i)⇒(iii).

Let ϕ ∈ S (T , B(H)). By Lemma 3.3, we can assume that ϕ(a) = 0. By

using the newtwork realization formula ([4, Thm. 3.16]) for the functions

λ �→ ϕ(ψ1(λ))

λ
and λ �→ ϕ(ψ2(λ))

λ
,

we get Hilbert spaces K1, K2 and unitary operators

U1 =

(
A1 B1

C1 D1

)
: H⊕K1 → H⊕K1

and

U2 =

(
A2 B2

C2 D2

)
: H⊕K2 → H⊕K2

such that

ϕ(ψ1(λ)) = A1λ+B1λ(I −D1λ)
−1C1λ

and

ϕ(ψ2(λ)) = A2λ+B2λ(I −D2λ)
−1C2λ.

Replacing U1 with ⎛
⎜⎝A1 B1 0

C1 D1 0

0 0 IK2

⎞
⎟⎠

and U2 with ⎛
⎜⎝A2 0 B2

0 IK1 0

C2 0 D2

⎞
⎟⎠ ,

we have that

U1, U2 : H⊕K → H⊕K,

where K = K1 ⊕K2.
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Let M = H⊕K. Consider the following holomorphic map T → B(M)

(†)

⎧⎨
⎩ψ1(λ) �→ λU1,

ψ2(λ) �→ λU2.

Claim: There is a sequence Φn ∈ S (G,B(M)) that approximates (†) in the

following sense: Φn(ψ1(λ)) = λU1 and Φn(ψ2(λ)) = λWn, where Wn are uni-

tary and converge to U2 in norm.

Observe that the Claim implies the assertion. Indeed, with respect to the

decomposition M = H⊕K, write

Φn =

(
Φ1,n Φ2,n

Φ3,n Φ4,n

)
.

Then

fn(z) := Φ1,n(z) + Φ2,n(z)(I − Φ4,n(z))
−1Φ3,n(z)

is an extension from which we can take a subsequence converging to the exten-

sion we are looking for.

Proof of the claim. Without loss of generality we can assume that U1 is the

identity. If M is finite-dimensional, we use the fact that the eigenvalues of U2

are unimodular, and by hypothesis we can extend the function τλ for any uni-

modular τ . In the infinite-dimensional case, choose unitaries Vn that are di-

agonalizable and converge to U2. Each Vn = WnDnW
∗
n , where Wn is unitary

andDn is diagonal. For each diagonal entry τk, let gk be the Schur function onG

that extends the function ψ1(λ) �→ λ and ψ2(λ) �→ τkλ. Then Φn = WnDgkW
∗
n

where Dgk is the diagonal operator with entries gk.

5. Linear vs. complete

Consider two particular examples:

(1) The diamond Δ = {z ∈ C
2 : |z1|+ |z2| < 1} and the two crossed discs

T := (D× {0}) ∪ ({0} × D).

(2) The symmetrized bidisc G2 and the set

T = {(2λ, λ2) : λ ∈ D} ∪ {(β + β̄λ, λ) : λ ∈ D}

from (1.8).

It follows from Theorem 1.5 that both (Δ, T ) and (G2, T ) are complete np pairs.
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Another way to prove this for (Δ, T ) is to observe that the map that sends f

in S0(T,B(H)) to the function

{z �→ f(z1, 0) + f(0, z2)}

in S (Δ, B(H)) is linear, and then apply Proposition 3.7. We shall show that

this argument cannot be used for (G2, T ).

Let us introduce some additional notation before proving this. Let

Σ = {(2λ, λ2) : λ ∈ D} and D0 = {0} × D.

Let [f(λ), g(λ)] denote the function on Σ∪D0 that is equal to f(λ) on (2λ, λ2)

and g(λ) on (0, λ). For b ∈ D let mb be a Möbius map

mb(λ) =
b− λ

1− b̄λ
.

Theorem 5.1: Let T be given by (1.8), and let a ∈ T . There is no linear

isometric extension operator from Sa(T ) to S (G2).

Proof. Since all sets of the form (1.8) are holomorphically equivalent, it suffices

to prove the assertion for T = Σ ∪ D0.

For unimodular α and β consider the function fα,β : T → D given by the

formula

fα,β(s, p) =

⎧⎨
⎩αs/2, on Σ,

βp, on D0.

So fα,β = [αλ, βλ]. Let ω = βα−1. It was shown in [2] that αΦω extends fα,β

where

Φω(s, p) :=
s/2 + ωp

1 + ωs/2
.

Claim: We shall show that αΦβα−1 is the unique np extension of fα,β

to G2 → D.

To prove the claim let F be some extension of fα,β that has norm 1. Let ω ∈ T.

Then

F (s, p) = αs/2 + β(p− (s/2)2) +O(s(s2 − 4p)),

since F minus the first two terms vanishes on T . With π as in (2.1), we get

F (π(λ, ωλ)) = α
1 + ω

2
λ− β

(1− ω

2

)2

λ2 +O(λ3).
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Then the Schwarz lemma implies that the map

λ �→ 1

λ
F (π(λ, ωλ))

is a Möbius map from D to D. Thus if G is another extension, F ◦ π and G ◦ π
coincide on {|λ| = |μ| : (λ, μ) ∈ D2}, and the claim follows.

Suppose that there is a∈T and a linear isometric operator L :Sa(T )→S (G2).

Let us consider two cases.

(i) a = (0, λ0) ∈ D0. Note that λ �→ [mβa(αλ),mβa(βλ)] belongs to the Schur

class Sa(T ). The crucial fact following from the Claim is that the equality

(5.2) L[mβλ0(αλ),mβλ0(βλ)] = mβλ0(αΦβ/α)

holds for any α, β ∈ T. Writing out (5.2), and using ω = ᾱβ, we get

L
[ βλ0 − αλ

1− β̄λ̄0αλ
,
βλ0 − βλ

1− λλ̄0

]
=

βλ0 − αΦω(s, p)

1− β̄λ̄0αΦω(s, p)
.

Dividing by β we get

(5.3) L
[ λ0 − λω̄

1− λλ̄0ω̄
,
λ0 − λ

1− λλ̄0

]
=

λ0 − ω̄Φω(s, p)

1− λ̄0ω̄Φω(s, p)
.

Write

Φω(s, p) =
s/2 + ωp

1 + ωs/2
=

ω̄s/2 + p

ω̄ + s/2
,

and expand both sides of (5.3) in powers of ω̄. Expanding the left-hand side

we get[ λ0 − λω̄

1− λλ̄0ω̄
,
λ0 − λ

1− λλ̄0

]
=

∑
n≥0

ω̄nfn

=
[
λ0,

λ0 − λ

1− λλ̄0

]
+ ω̄[(|λ0|2 − 1)λ, 0] +

∑
n≥2

ω̄nfn,

where fn ∈ H∞(T ), fn(a) = 0, and the series converges uniformly, so L can be

applied term by term. The right-hand side gives

λ0 − ω̄Φω(s, p)

1− λ̄0ω̄Φω(s, p)
= λ0 − ω̄

2p

s
(1− |λ0|2) +O(ω̄2).

Comparing the constant terms, we would have

L
[
λ0,

λ0 − λ

1− λλ̄0

]
= λ0,

a contradiction.
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(ii) We are left with the case a = (2λ0, λ
2
0) ∈ Σ, λ0 �= 0. We shall proceed as

before starting with a function [mαλ0(αλ),mαλ0 (βλ)] that clearly lies in Sa(T ).

As before, we get that

(5.4) L
[ λ0 − λ

1− λ̄0λ
,
λ0 − ωλ

1− λ̄0ωλ

]
=

λ0 − Φω(s, p)

1− λ̄0Φω(s, p)
, ω ∈ T.

Expanding in powers of ω and looking at the coefficient of ω, we get

(5.5) L[0, λ] =
p− (s/2)2

(1− λ̄0s/2)2
.

As [0, λ] lies in Sa(T ), we must have that the function

(s, p) �→ p− (s/2)2

(1− λ̄0s/2)2

sends the symmetrized bidisc to the unit disc. In particular, putting

(s, p) = (λ+ μ, λμ)

for λ, μ in the unit disc we would get that the inequality

(5.6) |(λ − μ)/2| ≤ |1− λ̄0(λ+ μ)/2|

holds for (λ, μ) ∈ D2. This however is not possible whenever λ0 �= 0. Indeed,

let t = |λ0|. Then (5.6) is equivalent to the claim that

|λ− μ|2 ≤ |2− t(λ+ μ)|2 ∀(λ, μ) ∈ D2,

since by continuity the inequality would extend to the boundary. Assume both λ

and μ are unimodular, then this becomes

−2(1 + t2)�(λ̄μ) + 4t�(λ+ μ) ≤ 2 + 2t2.

Let λ = eiθ and μ = e−iθ. We get the inequality

(5.7) −2(1 + t2) cos(2θ) + 4t cos(θ) ≤ 2 + 2t2.

By calculus, the maximum of the left-hand side comes when we choose θ so that

cos(θ) =
t

1 + t2
, sin(θ) =

√
1− t2

(1 + t2)2
.

Then (5.7) becomes

2
1 + 4t2 + t4

1 + t2
≤ 2(1 + t2).

This clearly fails unless t = 0.
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