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ABSTRACT

‘We show that for every connected analytic subvariety V' there is a pseudo-
convex set {2 such that every bounded matrix-valued holomorphic function
on V extends isometrically to 2. We prove that if V' is two analytic discs
intersecting at one point, if every bounded scalar valued holomorphic func-
tion extends isometrically to 2, then so does every matrix-valued function.
In the special case that 2 is the symmetrized bidisc, we show that this
cannot be done by finding a linear isometric extension from the functions
that vanish at one point.
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1. Introduction

By a Cartan pair we mean a pair (€2,V) where {2 is a connected pseudo-
convex set in C™ and V' is an analytic subvariety of 2. The name is homage to
H. Cartan, who proved that every holomorphic function on V' (i.e., a function
that locally agrees with the restriction of a holomorphic function defined on an
open set in C™) extends to a holomorphic function on all of 2 [6]. We say that a
pair (2, V) is a norm-preserving pair (np pair for short) if it is a Cartan pair
with the additional property that every bounded holomorphic function on V'
extends isometrically to a bounded holomorphic function on €.

For a fixed domain 2, several papers have studied which analytic subvarieties
gave rise to np pairs [3, 8, 14, 11, 12]. If Q is suitably nice, the conclusion of
these papers was that V' had to be a holomorphic retract of  for (2,V) to
be an np pair. However, this is not true in general. The simplest example is
the np pair (A, T), where A is the diamond {z € C? : |z1] + |22| < 1}, and
T=(Dx{0})U ({0} x D).

In [1], the perspective was shifted, to start with V' and try to find a pseudo-
convex set G so that (G, V) forms an np pair. We showed this can always be
done:

THEOREM 1.1 ([1]): If (2,V) is a Cartan pair, then there exists G such
that (G, V) is an np pair.

The first goal of this note is to extend Theorem 1.1 to the matrix and operator-
valued case.

Definition 1.2: Let G be a domain of holomorphy, and V' an analytic subvariety
of G. We say (G,V) is a complete np pair if for every separable Hilbert
space H and every bounded holomorphic function f : V' — B(H) there is a
bounded holomorphic extension F : G — B(H) such that

1Flle = [1fllv-

THEOREM 1.3: If (2,V) is a Cartan pair, and V is connected, then there
exists G such that (G, V') is a complete np pair.

We prove Theorem 1.3 in Section 3. Since any Stein manifold embeds properly
as a submanifold into C" for some n, the theorem carries over to the case when V'
is a subvariety of a Stein manifold. Notice that if V' is not connected, the
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characteristic function of any component cannot be isometrically extended to
any connected domain containing it, so the connectedness condition is necessary.
We do not know the answer to the following question:

Question 1.4: If (G, V) is an np pair, is it always a complete np pair?

In Section 4 we study the question for a particular type of V', namely one
that looks like two crossed discs.

THEOREM 1.5: Let T be the union of two analytic discs that intersect at one
point a:
(16) Dy =41(D), Dz =12(D),
T = D1UD3, D1 N Dy =a=11(0) = 12(0).
Let (G,T) be a Cartan pair. Then the following are equivalent:

(i) There is a map a : T?> — H{*(G) so that
a(m,72) (Y1 (2)) = 1z,
a(m,12)(12(2)) = Toz.

(ii) (G, T) is an np pair.

(iii) (G, T) is a complete np pair.

We shall let H>°(V) denote the algebra of bounded holomorphic functions
on V equipped with the supremum norm.

Definition 1.7: A Cartan pair (G, V) is said to be a linear np pair if there is a
linear and isometric map H>(V) — H*°(G). It is a linear np pair vanishing
at a if there is a linear and isometric map from the subspace of H> (V') that
vanishes at a to H>®(G).

The linear extension property was first studied by W. Rudin [15]. There is a
natural connection between the linear and complete extension properties. We
show in Proposition 3.7 that if (G,V) is a linear np pair vanishing at some
point a, then (G, V) is a complete np pair.

PROPOSITION 3.7: Let (Q,V) be a Cartan pair, a € V, and assume that there

is an isometric linear operator
E: S(V) = Z4(9).

Then (£2,V) is a complete np pair.
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In [2] Agler, Lykova and Young studied the symmetrized bidisc
Gy ={(z4+w,zw) : z,we D}.

This is C-convex, though not convex, and there are np sets that are not retracts.
More precisely, they showed that all algebraic sets V' in the symmetrized bidisc
that have the norm-preserving extension property are either retracts or are the
union of two analytic discs of the form

(1.8) {2\, X%) : A e DY U{(B+ BA,N) : A €D},

where § € D. It follows from Theorem 1.5 that for algebraic sets in Go, the
np property and the complete np property are the same. However, this cannot
be deduced using a linear extension, as we shall show in Theorem 5.1 that if V/
is as in (1.8), there is no linear isometric extension operator of the functions
vanishing at a point to all of Ga.

THEOREM 5.1: Let T be given by (1.8), and let a € T. There is no linear
isometric extension operator from .7, (T) to .7 (Gs).

2. Notation

If V is any set on which we can define holomorphic functions, we define the
Schur class (V) to be the holomorphic functions from V to D. If H is a
Hilbert space, we let .(V, B(H)) denote the holomorphic functions from V
to B(H) that are bounded by 1 in norm. Finally, if a € V, we let .7, (V)
(resp. .7, (V, B(H))) denote the Schur functions that vanish at a.

We define the map 7 : D? — G by

(2.1) m(z1,22) = (s,p) = (21 + 22, 2122).
Define A and T by

(2.2) A={zeC?: |z|+|=| <1},
(2.3) T=Dx {0}uU{0} xD.
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3. Complete np pairs

Throughout this section we shall assume that (€2, V) is a Cartan pair and that V'
is connected.

It was proved by Bishop [5] and Fujimoto [7] that if (£2,V) is a Cartan pair,
then every B(H)-valued holomorphic function on V' extends to a B(H)-valued
holomorphic function on Q. With this tool in hand one could try to prove The-
orem 1.3 by repeating the proof from the one-dimensional case. The main prob-
lem that appears here is that Montel’s theorem fails for holomorphic functions
with values in infinite-dimensional vector spaces. There are topologies on B(H)
for which a Montel-type theorem does hold and even such that Hol(V, B(H)) is
paracompact, but then the projection

Hol(, B(H)) — Hol(V, B(H))

is not open, so Michael’s selection theorem cannot be used. So we shall adopt
a new strategy, which is to establish a link between complete and linear norm-
preserving extensions.

Recall that f : Q@ — B(H) is holomorphic if and only if it is weakly holo-
morphic, i.e., A(f) is a holomorphic function for any A € B(H)'. If f is locally
bounded, a weaker condition needs to be verified for a function to be holomor-
phic:

LEMMA 3.1: If G is open, and [ : G — B(H) is locally bounded, then f is
holomorphic if and only if z — (f(z)h, k) is a holomorphic function.

Proof. This can be proved in a similar way to proving that weakly holomorphic
functions are holomorphic. See [13, Thm. 6.1] for a formal proof.

The Montel theorem fails in Hol(Q2, B(#)). However, it is true if we
equip B(H) with the WOT topology:

LEMMA 3.2: Let (f,) C (82, B(H)). Then there is a subsequence (f,,) and
fe.S(Q, B(H)) such that { f,, (2)h, k) converges to (f(z)h, k) locally uniformly
on () for each h,k € H.

Proof. For an orthonormal basis e; we apply the regular Montel theorem
to (fn(2)es, e;), and then using a Cantor diagonal argument we end up with f.
It is elementary to see that f satisfies the desired properties.
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For a final proof we need a few more preparatory results.

LEMMA 3.3: Fix a point a € V. Then (Q,V) is completely norm-preserving if
and only if each fe ., (V,B(H)) has an extension to an element Fe .7 (Q, B(H)).

Proof. If || f(a)|| < 1, there exists an automorphism m of the unit ball of B(H)
such that (mo f)(a) =01[9]. As h=mo f € (V,B(H)), the assumption of
the lemma implies that there exists H € .%(2, B(H)) such that H|V = h. But
then if we define F =m~'o H, F € .(Q,B(H)) and F|V = f.

If ||f(a)]| = 1, we approximate f uniformly with f, € (9, B(H)) such
that |[fn(a)|| < 1 (e.g., fr = ™' f). It follows from the previous case that
there are F,, € (2, B(H)) that extend f,. Applying Lemma 3.2 to F,, we
find F' € .7(§2, B(H)) that clearly extends f.

LEMMA 3.4 ([1, Lem. 3.3]): If (2, V) is a Cartan pair and a € V, then .,(V)
is a compact subset of O(V).

The following result was proved in [1, Thm. 3.5].

LEMMA 3.5: If a € V, there is a continuous function S : Hol(V') — Hol(f2)
such that S(f)|V = f for f € O(V'). Moreover, for each a € V there is an open
G C Q such that (G, V) is a Cartan pair and S(Z,(V)) C Z.(G).

With this tool in hand we can prove the following linear extension result.
Let L?(G) denote the weighted Bergman space obtained from using the Gauss-
ian measure. (If G has finite volume, we could just use the standard Bergman
space.)

LEMMA 3.6: Fix a € V. Then there is a pseudoconvex domain D,V C D C (2,

and a linear isomorphic extension map
Fa(V) = La(D).

Proof. Let G and S : Hol(V') — Hol(G) be as in Lemma 3.5.
Then the inclusion ¢ : .%,(G) C L3(G) is continuous; composing with S we
get a continuous extension operator

1oS: 7 (V) = Li(Q).
Let P be the orthogonal projection from L? (G) onto {g € L%():g|y =0}*. Then

E(f) = PleoS(f)]
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is the element in L? (G) that extends f and has minimal norm. It is straightfor-
ward to see that it is linear. By the Cauchy formulas the inclusion L? (G) C O(G)
is continuous. Thus, we can construct a continuous and linear extension oper-
ator (which we will also call E)

E: 7,(V)—= OG).
Define
Dy = (ﬂ{z €G|E(f)(2)| <1Vfe ya(V)}) .

To see V. C Dy, suppose b € V' \ D;. Then there exist sequences b, € G
converging to b, and f,, in .4, (V), such that |E(f,)(b,)| > 1. By Lemma 3.4,
some subsequence of (f,) converges to a function f € #,(V). Since E is
continuous, |E(f)(b)| > 1. This would violate the maximum principle.

Define D to be the connected component of D; that contains V. By [10,
Prop. 4.1.7], D is pseudoconvex.

PROPOSITION 3.7: Let (2,V) be a Cartan pair, a € V, and assume that there

is an isometric linear operator
E: 2,(V)—= Z.(9Q).
Then (£2,V) is a complete np pair.

Proof. Tt follows from Lemma 3.3 that it is enough to show that any mapping
in Z,(V,B(H)) has an extension to .#(Q, B(H)). So fix f € Z.(V,B(H))
and z € Q. Applying the Riesz reprezentation theorem to the maps

H k= E({f()h F))(2),
where h € H, we get, for each z € Q and h € H, a vector ¥(z, h) € H such that
E((f()h, k))(2) = (¥(2, h), k).
Note that h +— ¥(z, h) is linear since E is, so we can define F(z) : H — H by
F(z)h =T(z,h).

It is straightforward to check that F'(z) € B(H)) and ||F(z)|| <1. Since z— F(z)
is holomorphic by Lemma 3.1, we are done.

Combining Proposition 3.7 and Lemma 3.6, we have proved Theorem 1.3.
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4. Two crossed discs

In this section we shall prove Theorem 1.5. When H is one-dimensional, the
result was essentially proved in [1]. The key argument used there relied on the
Herglotz representation theorem. To go to infinite dimensions, we shall use
realization formulas.

Proof of Theorem 1.5. The implications (iii)=(ii)=>(i) are trivial. Let us
show (1)=-(iii).

Let ¢ € 7(T,B(H)). By Lemma 3.3, we can assume that ¢(a) = 0. By
using the newtwork realization formula ([4, Thm. 3.16]) for the functions

p(1(N) <P(¢2()\))’
A A
we get Hilbert spaces K1, Ko and unitary operators

A, B
U1<1 1):7—[@/@%7—[@/&

A=

C, D
and
Uy = <‘é§ ﬁi) HEK, > HE K,
such that
01 (X)) = AN+ BT — DA LCi A
and

©(12(N)) = Ag\ + BaA(I — Do) "LO.
Replacing U; with

Ay By 0
Ci Dy O
0 0 Ik,
and Us with
A, 0 By
0 Ix, 0],
Cg 0 D2

we have that
U,Uy - HOK - HDK,

where K = K1 & Ks.
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Let M =H @ K. Consider the following holomorphic map 7 — B(M)

1(N\) = AUy,

CLAM: There is a sequence ®,, € (G, B(M)) that approximates (1) in the
following sense: ®,,(11(\)) = AUy and ®,,(y2(N\)) = AW,,, where W,, are uni-

tary and converge to Us in norm.

Observe that the Claim implies the assertion. Indeed, with respect to the
decomposition M = H @ I, write

D1p n
B, = |1 P2m)
(I)B,n q)4,n

fu(2) = @1a(2) + P2 (2) (] — an(2)) ' D30 (2)

is an extension from which we can take a subsequence converging to the exten-

Then

sion we are looking for.

Proof of the claim. Without loss of generality we can assume that U; is the
identity. If M is finite-dimensional, we use the fact that the eigenvalues of Us
are unimodular, and by hypothesis we can extend the function 7 for any uni-
modular 7. In the infinite-dimensional case, choose unitaries V,, that are di-
agonalizable and converge to Us. Each V,, = W, D, W,
and D,, is diagonal. For each diagonal entry 7y, let gx be the Schur function on G
that extends the function 11 (\) — A and ¢2(\) — 7% A. Then ®,, = W,, D, W}

where Dy, is the diagonal operator with entries gj,.

where W, is unitary

5. Linear vs. complete

Consider two particular examples:
(1) The diamond A = {z € C?: |z1| + |22] < 1} and the two crossed discs
T:=(Dx{0})U ({0} x D).
(2) The symmetrized bidisc G2 and the set
T ={2\ ) : A eD}U{(B+ B\ A) : A e D}

from (1.8).
It follows from Theorem 1.5 that both (A, T') and (G2, 7) are complete np pairs.
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Another way to prove this for (A, T) is to observe that the map that sends f
in (T, B(H)) to the function

{z= f(21,0) + f(0, 22)}

in (A, B(H)) is linear, and then apply Proposition 3.7. We shall show that
this argument cannot be used for (G, 7).
Let us introduce some additional notation before proving this. Let

Y={(2\)N?): AeD} and Dy = {0} xD.
Let [f(\), g(\)] denote the function on ¥ U Dy that is equal to f(A) on (2, A?)
and g(\) on (0,\). For b € D let m;p be a Mobius map
b=
C1-bA
THEOREM b5.1: Let T be given by (1.8), and let a € T. There is no linear
isometric extension operator from .7, (T) to .7 (Gs).

mb(/\)

Proof. Since all sets of the form (1.8) are holomorphically equivalent, it suffices
to prove the assertion for 7 = X U Dy.
For unimodular o and 3 consider the function f, g : 7 — D given by the
formula
as/2, on X,
5177 Oon DO-

So fap = [\, BA]. Let w = Ba~t. It was shown in [2] that a®,, extends f, s

where

fa,ﬁ(svp) =

_5/24wp

P, (s,p) = .
(s,p) 1+ ws/2

Cramm: We shall show that a®g,-1 is the unique np extension of fu s
to GQ — D.

To prove the claim let F' be some extension of f, g that hasnorm 1. Let w € T.
Then

F(s,p) = as/2+ B(p — (s/2)*) + O(s(s* — 4p)),
since F minus the first two terms vanishes on 7. With 7 as in (2.1), we get

1+w

F(r(\wA) =« 9

/\fﬂ(l ;“)2A2 OO,
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Then the Schwarz lemma implies that the map
1
A )\F(w()\,w)\))
is a Mobius map from D to D. Thus if G is another extension, F ow and Gom
coincide on {|A\| = |p| : (A, u) € D?}, and the claim follows.
Suppose that there is a € 7 and a linear isometric operator L:.%, (T )—+.(G2).
Let us consider two cases.

(i) @ = (0, Ao) € Dy. Note that X — [mg,(aX), mgq(BA)] belongs to the Schur
class .7, (T). The crucial fact following from the Claim is that the equality

(5.2) Llmpgx, (@), max, (BA)] = max, (a®s/q)
holds for any «, 8 € T. Writing out (5.2), and using w = a3, we get
p[ Moo Mo pA)_ B~ adu(s)
1—Bgar” 1—A)\g 1 — Bhoa®,(s,p)
Dividing by 5 we get
(53) |:)\0—)\(D )\0—)\:| . Ao—@(l)w(s,p)
' 1—)\5\0@,1—)\5\0 o 1—5\0@(1)“,(8,])).

Write
Boy(s,p) = s/2 4 wp _ ws/2+p
“r 1+ws/2  w+s/27

and expand both sides of (5.3) in powers of @. Expanding the left-hand side
we get

[)\077/\@ Ao*f\} :anf

1— XMo@ 1— XX = "
Ao — A

- [’\0’17AX0

| +a1020f2 = A0+ > @,

n>2
where f,, € H*(T), fn(a) = 0, and the series converges uniformly, so L can be
applied term by term. The right-hand side gives
A0 - wq)w (Sa p)
1- XOajq)u)(sap)
Comparing the constant terms, we would have
)\0 - A :|
N = A0,
1— Ao

2
= o= (1= M) +0@).

L [AO,

a contradiction.
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(ii) We are left with the case a = (2X9, A3) € &, Ao # 0. We shall proceed as
before starting with a function [max, (@), max, (6A)] that clearly lies in .7, (T).
As before, we get that
A=A do—wA] Ao —Du(s,p)
L— XA 1— Xom} 1= Dy (s,p)’

Expanding in powers of w and looking at the coefficient of w, we get

(5.4) L weT.

p—(s/2)
5.9 L[0,\| = 2 .
As [0, A] lies in .7, (T), we must have that the function
p—(s/2)°
(Svp) = (1 _ 5\08/2)2

sends the symmetrized bidisc to the unit disc. In particular, putting
(s,p) = (A + 1, Aw)

for A, p in the unit disc we would get that the inequality

(5.6) (A= m)/2] < 1= XA+ p)/2]

holds for (A, ) € D?. This however is not possible whenever \g # 0. Indeed,
let t = [A\g|. Then (5.6) is equivalent to the claim that

A—uf? < 2=t +p))* V(A p) eD?

since by continuity the inequality would extend to the boundary. Assume both A
and p are unimodular, then this becomes

21+ tHRAw) + RN+ p) < 24262
Let A = e and u = e . We get the inequality
(5.7) —2(1 +t%) cos(20) + 4t cos() < 2+ 2t2.

By calculus, the maximum of the left-hand side comes when we choose 6 so that

t . 2
cos(f) = s sin(f) = \/1 T (1422

Then (5.7) becomes
1+ 482 + ¢4 )
< 2(1+1t%).
1412 < 201+19)
This clearly fails unless ¢ = 0.
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