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Operator NC functions

Meric Augat and John E. M€Carthy

Abstract. We establish a theory of NC functions on a class of von Neumann algebras with a particular
direct sum property, e.g. B(/). In contrast to the theory’s origins, we do not rely on appealing to
results from the matricial case. We prove that the k™ directional derivative of any NC function at a
scalar point is a k-linear homogeneous polynomial in its directions. Consequences include the fact
that NC functions defined on domains containing scalar points can be uniformly approximated by
free polynomials as well as realization formulas for NC functions bounded on particular sets, e.g. the
non-commutative polydisk and non-commutative row ball.

Introduction

Non-commutative function theory, as first proposed in the seminal work of J.L. Taylor
[25, 26] and developed for example in the monograph [16] by Kaliuzhnyi-Verbovetskyi
and Vinnikov, is a matricial theory, that is a theory of functions of d-tuples of matrices.
Let M, denote the n-by-n square matrices, and let

d oo d
M4l =y Me.

A non-commutative function f defined on a domain Q in M4/ is a function that satisfies
the following two properties.

(i) The function is graded: if x € M¢ then f(x) € M.

(ii) It preserves intertwining: if L : C™ — C" is linear, x = (x!,... ,xd) € Mfln
andy = (y',...,y%) are both in Q and Lx = yL (this means Lx" = y"L for each
1 <r <d),then Lf(x)= f(y)L.

The theory has been very successful, and can be thought of as extending free poly-
nomials in d variables to non-commutative holomorphic functions. See for example the
work of Helton, Klep and McCullough [10, 6, 7, 8, 9]; Salomon, Shalit and Shamovich
[23, 24]; Ball, Marx and Vinnikov [5].

However, the negative answer to Connes’s embedding conjecture [11] shows eval-
uating non-commutative polynomials on tuples of matrices is not sufficient to fully
capture certain types of information, e.g. trace positivity of a free polynomial evalu-
ated on tuples of self-adjoint contractions [17]. Thus, there is an incentive to understand
non-commutative functions applied not to matrices, but to operators on an infinite
dimensional Hilbert space H. Accordingly, it seems natural to exploit the fact that there
are (non-canonical) identifications of a matrix of operators with an individual operator,
and so one is led to to consider functions that map elements of B(H)% to B(H) and
preserve intertwining.

AMS subject classification: 47A56, 32A08, 461.89.
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2 M. Augat and J. MCCarthy'

Such functions were studied in [2] and [19]. A key assumption in those papers, how-
ever, was that the function was also sequentially continuous in the strong operator
topology. This assumption was needed in order to prove that the derivatives at 0 were
actually free polynomials, by invoking this property from the matricial theory and using
the density of finite rank operators in the strong operator topology. The main purpose
of this note is to develop a theory of non-commutative functions of operator tuples that
does not depend on the matricial theory.

Other approaches to studying non-commutative functions of operator tuples include
the work of Pascoe and Tully-Doyle [20]; Voiculescu [27, 28]; Jury and Martin [13, 14],
and Jury, Martin and Shamovich [15]; and the work of Jury, Klep, Mancuso, McCullough
and Pascoe [12].

For the rest of this paper, the following will be fixed. We shall let H be an infinite-
dimensional Hilbert space. Let A be a unital sub-algebra of B(H) that is closed in the
norm topology. Let 7, (A) denote the upper triangular n-by-n matrices with entries
from A. We shall assume that A has the following direct sum property:

Vn 21, 3Uy : &) H — H, unitary, with U, (7,(A)U, C A. (1.1)

Examples of such an A include B(H); the upper triangular matrices in B(H) with
respect to a fixed basis; and any von Neumann algebra that can be written as a tensor
product of a I, factor with something else.

We shall let d be a positive integer, and it will denote the number of variables. For a
d-tuple x € A4, we shall write its coordinates with superscripts: x = (xl, - ,xd). We
shall toplogize A< with the relative norm topology from B(7H)<.

Definition 1.1 A set Q C A% is called an NC domain if it is open and bounded, and
closed with respect to finite direct sums in the following sense: for each n > 2 there

exists a unitary Uy, : H") — H so that whenever x1, . . ., x, € , then
X1 0O --- 0
0 Xy - 0
U, ) U, € Q. (1.2)
00 - x,

Example 1.3 The prototypical examples of NC domains are balls. The reader is wel-
come to assume that Q is either a non-commutative polydisk, that is of the form
P(A) = {x e A%+ max ||| < 1}, (1.4)
1<r<d

or a non-commutative row ball, that is
R(A) = {xe AL x () + - +x(@xD* < 1} (1.5)

More examples are given in Section 6.
Definition 1.2 Let Q@ € A< be an NC domain. A function F : Q — B(H) is inter-

twining preserving if whenever x,y € Qand L : H — ‘H is a bounded linear operator
that satisfies Lx = yL (i.e., Lx" = y" L for each r) then LF (x) = F(y)L.
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Operator NC functions 3

We say F is an NC function if it is intertwining preserving and locally bounded on .

Remark 1.6. For any positive integer b we may similarly define an NC mapping ¥ :
Q — B(H)? where ¥ = (F',...,F?)and each F' : Q — B(‘H) is an NC function.
Many of our results can be reinterpreted for NC mappings with little to no overhead.

In Section 2 we show that every NC function is Fréchet holomorphic. Our first main
result is proved in Theorem 3.11. A scalar point a is a point each of whose components
is a scalar multiple of the identity.

Theorem 1.7 Suppose Q is an NC domain containing a scalar point a, and F is NC on Q.
Then for each k, the k'™ derivative DXF(a)[hy, ..., hy] is a symmetric homogeneous free
polynomial of degree k in hy, . .., hg.

We derive several consequences of this result. In Theorem 4.3, we show that if € is
a balanced NC domain, then a function F on Q is an NC function if and only if it can
be uniformly approximated by free polynomials on every finite set. In Theorem 6.2 we
show that NC functions on most balanced domains are automatically sequentially strong
operator continuous. This allows us to prove that every non-commutative function on
the non-commutative matrix polydisk (resp. row ball) has a unique extension to an NC
function on P (B(H)) (resp. R(B(H))).

Similarity preserving maps of matrices were studied by C. Procesi [21], who showed
they were all trace polynomials. In the matricial case, this can be used to prove the ana-
logue of Theorem 1.7 [18]. In the infinite dimensional case, we cannot use this theory,
which makes the proof of Theorem 1.7 more complicated. However, we can then use the
theorem to prove that the only intertwining preserving bounded k-linear maps are the
obvious ones, the free polynomials. In Theorem 5.1 we prove:

Theorem 1.8 Let Q be an NC domain. Let A : Q% — B(H) be NC and k-linear. Then A
is a homogeneous free polynomial of degree k.

Preliminaries

Throughout this section, we assume that Q is an NC domain in A4 andF: Q — B (H)
is an NC function. Let N* denote the positive integers.
For each n € N*, define the unitary and similarity envelopes by

{UxU | U : H'"™ — H, unitary, x € Q}
= {S7'xS|S: H™ — H, invertible, x € Q}.

follte)
&)

3
|

Notably, for xq,...,x, € Q, GB;.’:lxj € ﬁn We can extend F to Q = U:f:lfln by
F(x) = SF(x)S7!, 2.1

where ¥ = S™!xS for some x € Q.
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4 M. Augat and J. MCCarthy?

It is straightforward to prove the following from the intertwining preserving prop-
erty of F. Nevertheless, we include a proof to showcase the simplicity of working with
F inlieu of F.

Proposition 2.2 The function ﬁdefined by (2.1) is well-defined, and if X € Qm andy € Qn
satisfy Lx = $L for some linear L : H ® C™ — H ®C", then LF(%) = F(y)L.
In particular, if x; € Q for 1 < j < n, then F(®x;) = ®F (x;).

Proof: Let ¥ = S~ 'xSand y = T7'yT for x,y € Q. Define L : H — H by
L =TLS™" and consider the following intetwining:
Lx=TLS '% =TLS'SxS~!
=TLxS ' =TyLS™ ' =TT~ 'yTLS™!
=yL.
Thus, LF(x) = F(y)L and consequently
LF(x)=LS'F(x)S=T'LF(x)S=T"'"F(y)LS = F(3)T"'LS
=F(y)L.

Finally, let P; : H — H (™) be the inclusion of 7 onto the jth—coordinate of H™,
Observe that (& x;)P; = Pjx;. Hence, F(® x;)P; = P;F(x;) = PjF(x;). The
intertwining with P;. has ij;‘. = P;‘.(@;‘:lxi). Thus, P;F(xj) = P;F(@?:lxi) and
combining these two intertwining shows that F (& ,x;) is a diagonal block operator
and

F(® x;) = &L F(x;).

O
For later use, let us give a sort of converse.
Lemma 2.3  Suppose that Q is an NC domain, and F : Q — B(H) satisfies
F(S7'[x@y]S) = ST'[F(x) @ F()]S (2.4)

whenever S : H — H? and x,y,S™' [x ® y]S € Q. Then F is intertwinining preserving.

1L
=l

and (2.4) implies that LF (x) = F(y)L. O

Proof: Suppose Lx = yL. Let

Recall that F' is Fréchet holomorphic if, for every x € €, there is an open neighbor-
hood G of 0 in A4 so that the Taylor series

F(x+h) = F(x) +kaF(x)[h,...,h] (2.5)
k=1

converges uniformly for 4 in G.
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Operator NC functions 5

Using (1.1), it follows that if x1,...,x, € Q, then ¢ > 0o thatif y € 7,(A) and
lly —ox;|| < & then U,yU;, € Q. The following is proved in [2], and, in the form stated,
in [3, Section 16.1].

Proposition 2.6 If Q ¢ A% is an NC domain and F is an NC function on Q then

(i) The function F is Fréchet holomorphic.
(ii) Forx € Q, h € A,
7o) -

We wish to prove that when x is a scalar point, each derivative in (2.5) is actually a
free polynomial in /. This is straightforward for the first derivative.

x h
0x

F(x) DF(x)[h]
0 F(x)

Lemma 2.7 Suppose a = (a',...,a?%) is a d-tuple of scalar matrices in Q. Then F(a) is
a scalar, and DF (a)|[c] is scalar for any scalar d-tuple c.

Proof: For any L € B(H), since La = aL, we have LF(a) = F(a)L. Therefore
F(a) is a scalar. For all 7 sufficiently close to 0, @ + fc is in Q and F(a + tc) — F(a) is
scalar, therefore DF(a)|c] is scalar. O

Lemma 2.8 Suppose a = (a',...,a%) is a d-tuple of scalar matrices in Q. Then
DF(a)[h] is a linear polynomial in h.

Proof: First assume that & = (hy, 0,... ,0). Let & > 0 be such that the closed
max(&, ||h]|) ball around a & a is in Q. Let J = (1,0,...,0) be the scalar d-tuple
with first entry 1, the others 0. As

10| |aeh| |as&l| |1 O
0 /’l] 0 a - 0 a 0 h] ’
we get from Proposition 2.2 that
DF(a)[h] = DF(a)[J] h;. (2.9)

By Lemma 2.7, DF (a)[J] is a scalar, ¢y say, so we get
DF(a)[(h1,0,...,0)] = cihy.

Permuting the coordinates and using the fact that DF (a)[h] is linear in &, we get that
for any h

for some constants c,-. O
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6 M. Augat and J. MCCarthy?
3 Derivatives of NC functions are free polynomials

The derivatives are defined inductively, by
DKF()[h1, ... hi] =
limg o & (Dk—‘F(x + )k hot] = DKV (A, hk,l]) . (3.10)
The k™ derivative is k-linear in A1, . . ., Ag. To extend Lemma 2.8 to higher derivatives,
we need to introduce some other operators, called nc difference-differential operators

in [16].
ARF(xy,...,xg41)[h1s . .., hy] is defined to be the (1, k + 1) entry in the matrix

X1 hl 00... 0
0 X2 hz 0... 0
e . (3.2)

0 0 0 O0... xg1
We shall show in Lemma 3.6 that it is k-linear in [Ay, ..., hr].

The AX occur when applying Ftoa bidiagonal matrix. This is proved in [16, Thm.
3.11].

Lemma 3.3 Let F be NC. Then

x1 hy 0 ... O
0 X2 h2 0
Fl|. . (3.4
0 0 0 ... xg41
F(x1) A'F(xi,x2)[h1] ... ARFQer, .. oxge) Bt hid
0 F(x2) Ak_lF(Xz,...,xk+1)[h2,...,hk]
= . . . (3.5
0 0 F()Ck_H)

Proof: We will prove this by induction. For k = 1, it is the definition of A!. Assume it
is proved for k — 1. Let I} denote the k-by-k matrix with diagonal entries the identity,
and off-diagonal entries 0. As

X1 I’ll 0o ... 0 X1 /’l1 0... 0
0 x, h ... O [Ik] [Ik:| 0 x3 hp ... O
S O (ketyxk O ke |10 1 .0
0 0 0 ... Xk41 0 0 0 ... xk

we conclude that the first k columns of (3.4) agree with those of (3.5). Similarly, inter-
twining by [O I k] we get that the bottom k rows agree. Finally, the (1, (k + 1)) entry is
the definition of AX. m]

A key property we need is that A¥ is k-linear in the directions. In the nc case, this is
proved in [16, 3.5].
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Operator NC functions 7

Lemma 3.6 Letxi,...,Xpe1 € Q Then AKF(x1,...,xx41)[h1, ..., ] is k-linear in
hi,..., "

Proof: Let us write AK[ Ay, ..., hi] for AKF(x1, ..., xks1) [h1, .. ., hi].
(i) First, we show this is linear with respect to /&;. Homogeneity follows from
observing that

x;1chy 0 ...]]lc0 O cO0 Offxg hy O ...
0x2h2...01 :01 O)Czhz...

and using the intertwining preserving property Prop. 2.2.
To show additivity,let p > 1and ¢ > Obeintegers. LetY be the (p+k+q) X (p+k+q)
matrix

_)Cl 0 ... I’l1 0

0 x; ... 0 ... 0

0 ... X1 hll 0

Y = 0)62 hz 0
Xk+1 O

Xk+1

Let L be the (k + 1) X (p + k + ¢g) matrix

10 . 0. 0...0
0 0 .10 0
L= |0. 01 0
0.
0 10 1
Let X be the (k + 1) X (k + 1) matrix
X1 ]’l] 00... 0
0)(2 /’120 0
X=1. . ..
0 0 0 O0... xp41
Then
X1 ... hl 0 ... 0...
0 oo X2 /’lz
LY = . = XL.
0... 0 ... X1 O o ov Xis1

Therefore the (1, p + k + g) entry of F(Y)is A¥[hy, ..., he].
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8 M. Augat and J. MCCarthy*

Let L’ be the matrix obtained by replacing the first row of L with the row that is 1
in the p™ entry and 0 elsewhere. Then L’Y = X’L’, where X’ is X with /; replaced by
the d-tuple A/. This gives that the (p, p + k + q) entry of F(Y)is AK[), ... hy).

Now let L”" be the matrix that replaces the first row of L with a 1 in both the first
and p'™ entry, and X’ be X with h; replaced by h; + h{.Then L"Y = X" L", and we
conclude that

ARy, o i+ ARTR, k] = ARR + R, .

Therefore AX is linear in the first entry.
(ii) To prove that A¥ is linear in the i entry, fori > 2, choose p, g so that

p+i—-1=k—-i+1l+gq.
Then Y decomposes into a 2 X 2 block of (p +i — 1) X (p +i — 1) matrices.
A B
[

Moreover B is the matrix whose bottom left-hand entry is £;, and everything else is 0.
Therefore
—_~ r 1 r
oy - [F) aF.D)1B)]
0 F(D)
and A! I::(~A, D)[B] islinear in B (and hence in h;) by part (i). Therefore the (1, p+k+q)
entry of F(Y), which we have established is Ak [A1, ..., hi],islinear in h;, as desired. O

Lemma 3.7 Suppose a = (ay,...,ax+1) is a (k + 1)-tuple of points in Q, each of which
is a d-tuple of scalars. Then AkF(al, ceos Qi) [P, ..., hi] is a free polynomial in h,
homogeneous of degree k.

Proof: Let us write AK[ 1y, ..., hy] for AKF(ay, ..., axe1)[h, ..., hi]. By Lemma
3.6, we know that A¥ [A1, ..., hi]is k-linear. So we can assume that each /; is a d-tuple
with only one non-zero entry. Say h; = H;ej,, where e, is the d-tuple that is 1 in the j;
slot, O else, and H; is an operator.

Claim:

Ak[Hlejl,Hzejz,...] = H1H2...HkAk[ejl,ejz,...,ejk]. (3.8)

This follows from the intertwining

H\H,...H, 0 0 ...1[a1ej, O
0 Hz...Hk 0o ... 0 aj) €J'2
1 A+l
ap elel 0 H1H2...Hk 0 0
0 aj eszz 0 Hz...Hk 0
A+l 1
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Operator NC functions 9

Let
aq EJ']Hl 0

0 aj é’szz
X =

Ak+1
As Xisad-tuple of (k+1)Xx(k+1) matrices of scalars, it commutes with any (k+1) X (k+

1) matrix that has a constant operator L on the diagonal. Therefore L commutes with

Ak[ej] €y, .5 ej]. As L is arbitrary, it follows that Ak[ej] ,€jys .5 €] is ascalar.
So from (3.8), we get that A [Hiej,,Hsej,,...] is a constant times H{H, ... Hy, and
by linearity we are done. O

Now we relate A¥ to D,

Lemma 3.9 Let F be NC. Then

AF(x,....x)[h,...,h] = leF(x)[h,...,h]

k!
Proof: Let T be the upper-triangular Toeplitz matrix given by
1L 1
A 202 " kiAk
1 1
T = o1 7 ... (k—=1)1Ak=1
00 O 1
Its inverse is
1 =l L (=D*
1 22 k1ak
-1 1 _(=n*t
T'=101 7 ... T
00 O ... 1
We have, componentwise in x and £,
x 0 O0... 0 x h 0... 0
Ox+Ah O ... 0 Ox+Ah h ... 0
T, . . .| T =
0 0 O0...x+kah 0 0 0... x+kadh
Therefore
AYF(x,x +Ah, ..., x + kAh)[h, h _ & ”kZ( 1)/ f(x+ Ah)
s s Jh, .. = F ; jah).

Take the limit as 4 — 0 and the right-hand side converges to

1
EDkF(x)[h, h,...,h].
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10 M. Augat and J. MCCarthy®

By continuity, the left-hand side converges to A*F(x,....x)[h,...,h]. O
Derivatives of NC functions are symmetric. The case k = 2 was proved in [4].
Proposition 3.10 Suppose F is an NC function and k > 1 is an integer. If o is any
permutation in &y then
DYF(x)[hy, ..., hi] = D*F(X)[ho(1)s- - > ho )]
for any x in the domain of F and forall hy, .. ., h; € A<
Proof The case k = 1 is trivial, and k = 2 was proved in [4]. Assume k > 3 and that
the result holds for k — 1. If we can show that we can swap the last two entries
D*F(x)[hy, ..., hi—1, hi] = D*F(x)[hy, ..., by, hi—1] (3.9)

and also permute the first k — 1 entries

D*F(x)[hi, ..., hi—1, hi] = DXF(x)[ho 1y, - ooy hork-1), hi] (3.10)

then the result follows. Set G = D¥2F and consider it as a function of x, A1, . . ., hx_».
Then G is an NC function, and by the k = 2 case,

D?G(x,hy,...,hi=)[(Co, . ... C=2), (Lo, . .., Ek=2)]
=D*G(x,hy,.... ) [(os .. .. Ek—2), (Co, - .. €k2)].
Since
D*G(x, hy,...,hi,))[he-1,0,...,0,ht,0,...,0] = DXF(x)[hy, ..., k],
we see that Equation (3.9) holds. The induction hypothesis says that
D*'F(x)[h1,. .. hee1] = DX VEF () o (1)s -+ -5 B k-1 (3.11)

If G’ = D*='F is treated as function in x, k1, . . ., hg_1, then applying Equation (3.11),
we have

D*F(x)[h1, ..., hi-1, hi] = DG’ (x, hy,. .., hk—1)[hk. 0, ..., 0]
= DG’ (x, Re(1)s--os ho-(k—l))[hk,oy ...,0]

=DFF()[ho(1)s - - s Borket), Bk

Thus, both Equation (3.9) and Equation (3.10) hold. Therefore, the k™™ derivative of F is
symmetric in its arguments. ]

Combining Lemma 3.7, Lemma 3.9 and Proposition 3.10, we get our first main result.
Theorem 3.11  Suppose Q is an NC domain that contains a scalar point a and F is an NC
function on Q. Then for each k, the k™ derivative D¥F(a)[hy, ..., hx] is a homogeneous

polynomial of degree k, it is k-linear, and it is symmetric with respect to the action of S.

Proof: We know that DXF(a)[hy, ..., hi] is k-linear, so we can assume that each
h; is a d-tuple with only one entry; we can write h; = H;ej,, as in the proof of Lemma
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Operator NC functions 11

3.7. We want to show that

D*F(a)[Hiej,, ..., Hyej,] (3.12)
is a homogeneous polynomial of degree k in the operators H, .. ., Hy. Let s; be scalars
for 1 <i < k, and consider

DkF(a)[slHlej1 +--+spHej, s1Hiej + -+ spHej, .. . (3.13)

Since all the arguments are the same, by Lemma 3.9 this agrees with k! times A, which
by Lemma 3.7 is a homogeneous polynomial of degree k. Group the terms in (3.13) by
what the commutative monomial in 51, . . ., S is, and consider the sum of the terms in
(3.13) that are a multiple of sy . . . sg. These correspond to

> DF(@)[Ho1yej, )5 Ho(K)ej, 1] (3.14)
0'66)(

By Proposition 3.10, (3.14) is just k! times (3.12), and hence this is a homogeneous
polynomial in Hy, . . ., Hg, as desired. ]

Approximating NC functions by free polynomials

The results in this section are in improvement over those in [2], as they do not need the
a priori assumption that the function is sequentially strong operator continuous. Recall
that a set £ in a vector space is balanced if €2 C € whenever a is a complex number
of modulus less than or equal to 1. Importantly,  (A) and R(A) are balanced.

If Q contains a scalar point @, and F is NC on Q, then F is given by a convergent
series of free Taylor polynomials near «. For convenience, we assume @ = 0.

Lemma 4.1 Let Q be an NC domain containing O, and let I be an NC function on Q. Then
there is an open set Y C Q containing 0, and homogeneous free polynomials py of degree k so
that

F(x) = Z pr(x) Yxel, (4.2)
k=0
and the convergence is uniform in Y.

Proof: By Proposition 2.6, we know that F is Fréchet holomorphic at 0, and by
Theorem 3.11, we know that the k™ derivative is a homogeneous polynomial py of
degree k. Therefore (4.2) holds. |

Theorem 4.3 Let Q be a balanced NC domain, and F : Q — B(H). The following
statements are equivalent.

(i) The function F is NC.
(ii) There is a power series expansion Y. o px(X) that converges absolutely and locally uni-
formly at each point x € Qto F(x), and such that each py, is a homogeneous free polynomial
of degree k.
(iii) For any triple of points in €, there is a sequence of free polynomials that converge uniformly
to F on a neighborhood of each point in the triple.
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12 M. Augat and J. MCCarthy®

Proof: (i) = (if) : By Lemma 4.1, F is given by a power series expansion (4.2) in a
neighborhood of 0. We must show that this series converges absolutely on all of Q.

Let x € Q. Since Q is open and balanced, there exists r > 1 so that D(0,r)x C Q.
Define a function f : D(0,r) — B(H) by

f() = F({x).

Then f is holomorphic, and so norm continuous [22, Thm 3.31]. Therefore

1+r
sap {17001 5 161 =52} = <
By the Cauchy integral formula,
1 dk 2 k
= — ||— < M .
Il = g |z 0h| < (3]

Therefore the power series ), px(x) converges absolutely, to f(1) = F(x).
Since F is NG, it is bounded on some neighborhood of x, and by the Cauchy estimate
again, the convergence of the power series is uniform on that neighborhood.

(it) = (iii) :Letxy, xp,x3 € Q.Letqy = Z;f:o Pk-Then g (x) converges uniformly
to F'(x) on an open set containing {x, x2,x3}.

(iiif) = (i) : Since F is locally uniformly approximable by free polynomials, it is
locally bounded. To see that it is also intertwining preserving, we shall show that it sat-
isfies the hypotheses of Lemma 2.3. Let S : H — ‘%) be invertible, and assume that
x,yand z = S7![x @ y]S are all in Q. Let g, be a sequence of free polynomials that
approximate F on {x, y, z}. Then

1 |X 0 T 1 |X 0
F (S 0 y} S) = hinqk (S 0 y} S)
0
=i S—] pk(x) :|S
1Iin( 0 pi(y)
4 |F(x) 0 ] )
= |57 S|.
( [ 0 F(y)
So by Lemma 2.3, F is intertwining preserving. O

The requirement that F be intertwining preserving forces F(x) to always lie in the
double commutant of x. Butif F' is also locally bounded on a balanced domain containing
X, we get a much stronger conclusion as a corollary of Theorem 4.3.

Corollary 4.4 Suppose F is an NC function on a balanced NC domain Q. Then F(x) is in
the norm closed unital algebra generated by {x', . .. x4},

k-linear NC functions

In the following theorem, we assume that A is NC as a function of all dk variables at once,
and is k-linear if they are broken up into d-tuples. If we had an independent proof of
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Operator NC functions 13

Theorem 5.1, we could use it to prove Theorem 3.11 with the aid of Lemma 5.4. Instead,
we deduce it as a consequence of Theorem 3.11.

Theorem 5.1  Let Q be an NC domain. Let A : Q% — B(H) be NC and k-linear. Then A
is a homogeneous free polynomial of degree k.

Proof: Let § = (hy, ..., hi) be a k-tuple of d-tuples in Q. Calculating, and using
k-linearity, we get

lim % [AGx+Ah) — A(¥)]

A(hl,XZ, e ,Xk) +A(X1,h2, ce ,Xk) +....

DA(x)[b]

Repeating this calculation, we get that DA (x) [, ] is 2! times the sum of A evaluated at
every k-tuple that has k — 2 entries from (x1, . .., xg) and 2 entries from ). Continuing,
we get

D*A)[D,....0] = k' A(hy,. .., hi). (5.2)

By Theorem 3.11, the left-hand side of (5.2) is a homogeneous free polynomial of degree
k, so the right-hand side is too. m]

It is worth singling out a special case of Theorem 5.1.

Corollary 53 Let A : [B(H)]4* — B(H) be k-linear, intertwining preserving, and
bounded. Then A is a homogeneous nc polynomial of degree k.

Lemma 5.4 The k™ derivative D¥F (x)[hy, ..., hi] isNCon Q X A Ifa € Qisa
scalar point, then DKF(a)[hy, ..., hi] is NC on A,

Proof: The first assertion follows from induction, and the observation that difference
quotients preserve intertwining. The second assertion follows from the fact that if a is
scalar,

D*F(a)[S™'hS,...,S 'hiS] = D*F(S™'aS)[S™'hyS,. .., S  hS].

Realization formulas

One can generalize Example 1.3. For ¢ a matrix of free polynomials, let
Bs(A) = {x e AT 50| < 1}.

These sets are all NC domains. If

xto... 0
0x>... 0
o(x) = . ,
0 0 ...x%
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14 M. Augat and J. MCCarthy’

then Bs(A) is P (A) from (1.4). If we set
5(x) = (x'x% - x9),

then Bs(A) is R(A) from (1.5).
The sets Bs(A) are closed not just under finite direct sums, but countable direct
sums, in the following sense.

Definition 6.1 A family {E}}7_, is an exhaustion of Q if

(1) Ex C int(Eg4q) for all k;

2 Q= Uzozl Ey;

(3) each E is bounded;

(4) each Ey is closed under countable direct sums: if x; is a sequence in Ey, then there
exists a unitary U : H — H () such that

X1 0
vl x|y e Eg. 6.1)

If we set
Ex = {x € Bs(A) : [[0(x)|| < 1-1/k, and ||x]| < k},

then Ey is an exhaustion of B 5(A).
We have the following automatic continuity result for NC functions on balanced
domains that have an exhaustion.

Theorem 6.2 Suppose Q C A is a balanced NC domain that has an exhaustion (E}.), and
F : Q — B(H) is NC and bounded on each Ey. Suppose for some k, there is a sequence
(x;) in Ey that converges to x € Ey in the strong operator topology. Then F(x ) converges
to F(x) in the strong operator topology.

Proof: Let U : H — (™) be a unitary so that U*l[eax,-]U =z € E. LetIl; :
H> — H be projection onto the j™ component. Let L; =11;U.Then L;z = x;Lj.
Therefore F(z) = U™ [®F (x;)]U.

Let v be any unit vector, and & > 0. By Theorem 4.3, there is a free polynomial p so
that ||p(x)—=F(x)|| < &/3and ||p(z)-F(2)|| < &/3.Therefore ||p(x;)—F (x;)|| < &/3
for each j.

Now choose N so that j > N implies ||[p(x) — p(x;)]v|| < &/3, which we can do
because multiplication is continuous on bounded sets in the strong operator topology.
Then we get for j > N that

IIF () = Fxeplvll < [1F @) = p)ll+IIp(x) = pepIvii+1p(xj) - F(xpIl < e.

O
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Definition 6.2 Let § be an I X J matrix of free polynomials, and F : Bs(A) — B(H).
A realization for F consists of an auxiliary Hilbert space M and an isometry
[A B

CD] CoM! ->Cao M’ (6.3)

such that for all x in B5(A)
Fx) = Ao l1+(Bo1)(186x) [1-(De1)(18sw)] ' (Co1). (64

In [2] it was shown that if B 5(B(H)) is connected and contains 0, then every sequen-
tially strong operator continuous function (in the sense of Theorem 6.2) NC function
from B s(B(H)) that is bounded by 1 has a realization. The strong operator continuity
was needed to pass from a realization of B s in the matricial case given in [1] to a realiza-
tion for operators. In light of Proposition 6.2, though, this hypothesis is automatically
fulfilled. So we get:

Corollary 6.5 Let & be an I X J matrix of free polynomials, and F : Bs(B(H)) — B(H)
satisfy sup | F(x)|| < 1. Assume that Bs(B(H)) is balanced. Then F is NC if and only if it

has a realization.

As another consequence, we get that every bounded non-commutative function on
B s (M) (by which we mean {x € M9 : ||§(x)|| < 1}), has a unique extension to an NC
function on Bs(B(H)), where we embed M!“] into B(H )¢ by choosing a basis of H
and identifying an n-by-n matrix with the finite rank operator that is 0 outside the first
n-by-n block.

Corollary 6.6 Assume Bs(B(H)) is balanced. Then every non-commutative bounded
function f on Bs(M) has a unique extension to an NC function on B s(B(H)).

Proof: Suppose F; and F, are both extensions of f, andlet F = F; — F,. As 0 €
Bs(B(H)) and 6 is continuous, there exists r > 0 so that rP (B(H)) € Bs(B(H)).

Let x € rP(B(H)). Then there exists a sequence (x;) in 7P (M) that converges
to x in the strong operator topology. As F'(x;) = 0 for each j, by Theorem 6.2 we get
F(x) = 0. Therefore F vanishes on an open subset of Bs(B(H)). As F is holomorphic,
and Bs(B(H)) is connected, we conclude that F is identically zero. O

Question 6.7 Are the previous results true if Bs(B(%)) is not balanced?
If one has a realization formula (Equation 6.4) for Bs(A), then it automatically
extends to Bs(B(H)). We do not know how different choices of algebra A; and A,

satisfying (1.1) affect the set of NC functions on their balls.
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