
Canad. J. Math. Vol. 00 (0), 0000 pp. 1–17
http://dx.doi.org/10.4153/xxxx
© xxx xxx 0000

Operator NC functions
Meric Augat and John E. McCarthy

Abstract. We establish a theory of NC functions on a class of vonNeumann algebras with a particular
direct sum property, e.g. 𝐵(H) . In contrast to the theory’s origins, we do not rely on appealing to
results from the matricial case. We prove that the 𝑘th directional derivative of any NC function at a
scalar point is a 𝑘-linear homogeneous polynomial in its directions. Consequences include the fact
that NC functions defined on domains containing scalar points can be uniformly approximated by
free polynomials as well as realization formulas for NC functions bounded on particular sets, e.g. the
non-commutative polydisk and non-commutative row ball.

1 Introduction

Non-commutative function theory, as first proposed in the seminal work of J.L. Taylor
[25, 26] and developed for example in the monograph [16] by Kaliuzhnyi-Verbovetskyi
and Vinnikov, is a matricial theory, that is a theory of functions of 𝑑-tuples of matrices.
LetM𝑛 denote the 𝑛-by-𝑛 square matrices, and let

M[𝑑 ] := ∪∞
𝑛=1M

𝑑
𝑛 .

Anon-commutative function 𝑓 definedon adomainΩ inM[𝑑 ] is a function that satisfies
the following two properties.

(i) The function is graded: if 𝑥 ∈ M𝑑
𝑛 then 𝑓 (𝑥) ∈ M𝑛.

(ii) It preserves intertwining: if 𝐿 : C𝑚 → C𝑛 is linear, 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ M𝑑
𝑚

and 𝑦 = (𝑦1, . . . , 𝑦𝑑) are both in Ω and 𝐿𝑥 = 𝑦𝐿 (this means 𝐿𝑥𝑟 = 𝑦𝑟𝐿 for each
1 ≤ 𝑟 ≤ 𝑑), then 𝐿 𝑓 (𝑥) = 𝑓 (𝑦)𝐿.

The theory has been very successful, and can be thought of as extending free poly-
nomials in 𝑑 variables to non-commutative holomorphic functions. See for example the
work of Helton, Klep and McCullough [10, 6, 7, 8, 9]; Salomon, Shalit and Shamovich
[23, 24]; Ball, Marx and Vinnikov [5].

However, the negative answer to Connes’s embedding conjecture [11] shows eval-
uating non-commutative polynomials on tuples of matrices is not sufficient to fully
capture certain types of information, e.g. trace positivity of a free polynomial evalu-
ated on tuples of self-adjoint contractions [17]. Thus, there is an incentive to understand
non-commutative functions applied not to matrices, but to operators on an infinite
dimensional Hilbert spaceH . Accordingly, it seems natural to exploit the fact that there
are (non-canonical) identifications of a matrix of operators with an individual operator,
and so one is led to to consider functions that map elements of 𝐵(H)𝑑 to 𝐵(H) and
preserve intertwining.
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2 M. Augat and J. McCarthy1

Such functions were studied in [2] and [19]. A key assumption in those papers, how-
ever, was that the function was also sequentially continuous in the strong operator
topology. This assumption was needed in order to prove that the derivatives at 0 were
actually free polynomials, by invoking this property from thematricial theory and using
the density of finite rank operators in the strong operator topology. The main purpose
of this note is to develop a theory of non-commutative functions of operator tuples that
does not depend on the matricial theory.

Other approaches to studying non-commutative functions of operator tuples include
the work of Pascoe and Tully-Doyle [20]; Voiculescu [27, 28]; Jury and Martin [13, 14],
and Jury,Martin and Shamovich [15]; and thework of Jury, Klep,Mancuso,McCullough
and Pascoe [12].

For the rest of this paper, the following will be fixed. We shall let H be an infinite-
dimensional Hilbert space. Let A be a unital sub-algebra of 𝐵(H) that is closed in the
norm topology. Let T𝑛 (A) denote the upper triangular 𝑛-by-𝑛 matrices with entries
fromA. We shall assume thatA has the following direct sum property:

∀𝑛 ≥ 1, ∃𝑈𝑛 : ⊕𝑛
𝑗=1H → H , unitary, with𝑈𝑛 (T𝑛 (A))𝑈∗

𝑛 ⊆ A. (1.1)

Examples of such an A include 𝐵(H); the upper triangular matrices in 𝐵(H) with
respect to a fixed basis; and any von Neumann algebra that can be written as a tensor
product of a 𝐼∞ factor with something else.

We shall let 𝑑 be a positive integer, and it will denote the number of variables. For a
𝑑-tuple 𝑥 ∈ A𝑑 , we shall write its coordinates with superscripts: 𝑥 = (𝑥1, . . . , 𝑥𝑑). We
shall toplogizeA𝑑 with the relative norm topology from 𝐵(H)𝑑 .

Definition 1.1 A set Ω ⊆ A𝑑 is called an NC domain if it is open and bounded, and
closed with respect to finite direct sums in the following sense: for each 𝑛 ≥ 2 there
exists a unitary𝑈𝑛 : H (𝑛) → H so that whenever 𝑥1, . . . , 𝑥𝑛 ∈ Ω, then

𝑈𝑛


𝑥1 0 · · · 0
0 𝑥2 · · · 0

. . .

0 0 · · · 𝑥𝑛


𝑈∗

𝑛 ∈ Ω. (1.2)

Example 1.3 The prototypical examples of NC domains are balls. The reader is wel-
come to assume that Ω is either a non-commutative polydisk, that is of the form

P(A) = {𝑥 ∈ A𝑑 : max
1≤𝑟≤𝑑

∥𝑥𝑟 ∥ < 1}, (1.4)

or a non-commutative row ball, that is

R(A) = {𝑥 ∈ A𝑑 : 𝑥1 (𝑥1)∗ + · · · + 𝑥𝑑 (𝑥𝑑)∗ < 1}. (1.5)

More examples are given in Section 6.

Definition 1.2 Let Ω ⊆ A𝑑 be an NC domain. A function 𝐹 : Ω → 𝐵(H) is inter-
twining preserving if whenever 𝑥, 𝑦 ∈ Ω and 𝐿 : H → H is a bounded linear operator
that satisfies 𝐿𝑥 = 𝑦𝐿 (i.e., 𝐿𝑥𝑟 = 𝑦𝑟𝐿 for each 𝑟) then 𝐿𝐹 (𝑥) = 𝐹 (𝑦)𝐿.
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Operator NC functions 3

We say 𝐹 is anNC function if it is intertwining preserving and locally bounded onΩ.

Remark 1.6. For any positive integer 𝑏 we may similarly define an NC mapping F :
Ω → 𝐵(H)𝑏 where F = (𝐹1, . . . , 𝐹𝑏) and each 𝐹𝑖 : Ω → 𝐵(H) is an NC function.
Many of our results can be reinterpreted for NC mappings with little to no overhead.

In Section 2 we show that every NC function is Fréchet holomorphic. Our first main
result is proved in Theorem 3.11. A scalar point 𝑎 is a point each of whose components
is a scalar multiple of the identity.

Theorem 1.7 Suppose Ω is an NC domain containing a scalar point 𝑎, and 𝐹 is NC on Ω.
Then for each 𝑘 , the 𝑘 th derivative 𝐷𝑘𝐹 (𝑎) [ℎ1, . . . , ℎ𝑘] is a symmetric homogeneous free
polynomial of degree 𝑘 in ℎ1, . . . , ℎ𝑘 .

We derive several consequences of this result. In Theorem 4.3, we show that if Ω is
a balanced NC domain, then a function 𝐹 on Ω is an NC function if and only if it can
be uniformly approximated by free polynomials on every finite set. In Theorem 6.2 we
show thatNC functions onmost balanceddomains are automatically sequentially strong
operator continuous. This allows us to prove that every non-commutative function on
the non-commutative matrix polydisk (resp. row ball) has a unique extension to an NC
function on P(𝐵(H)) (resp. R(𝐵(H))).

Similarity preserving maps of matrices were studied by C. Procesi [21], who showed
they were all trace polynomials. In the matricial case, this can be used to prove the ana-
logue of Theorem 1.7 [18]. In the infinite dimensional case, we cannot use this theory,
whichmakes the proof of Theorem 1.7more complicated. However, we can then use the
theorem to prove that the only intertwining preserving bounded 𝑘-linear maps are the
obvious ones, the free polynomials. In Theorem 5.1 we prove:

Theorem 1.8 Let Ω be an NC domain. Let Λ : Ω𝑘 → 𝐵(H) be NC and 𝑘-linear. Then Λ
is a homogeneous free polynomial of degree 𝑘 .

2 Preliminaries

Throughout this section,we assume thatΩ is anNCdomain inA𝑑 , and𝐹 : Ω → 𝐵(H)
is an NC function. Let N+ denote the positive integers.

For each 𝑛 ∈ N+, define the unitary and similarity envelopes by

Ω̂𝑛 := {𝑈∗𝑥𝑈 | 𝑈 : H (𝑛) → H , unitary, 𝑥 ∈ Ω}
Ω̃𝑛 := {𝑆−1𝑥𝑆 | 𝑆 : H (𝑛) → H , invertible, 𝑥 ∈ Ω}.

Notably, for 𝑥1, . . . , 𝑥𝑛 ∈ Ω, ⊕𝑛
𝑗=1𝑥 𝑗 ∈ Ω̂𝑛. We can extend 𝐹 to Ω̃ = ∪∞

𝑛=1Ω̃𝑛 by

𝐹 (𝑥) = 𝑆𝐹 (𝑥)𝑆−1, (2.1)

where 𝑥 = 𝑆−1𝑥𝑆 for some 𝑥 ∈ Ω.
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4 M. Augat and J. McCarthy2

It is straightforward to prove the following from the intertwining preserving prop-
erty of 𝐹 . Nevertheless, we include a proof to showcase the simplicity of working with
𝐹 in lieu of 𝐹 .

Proposition 2.2 The function 𝐹 defined by (2.1) is well-defined, and if 𝑥 ∈ Ω̃𝑚 and 𝑦̃ ∈ Ω̃𝑚

satisfy 𝐿̃𝑥 = 𝑦̃ 𝐿̃ for some linear 𝐿̃ : H ⊗ C𝑚 → H ⊗ C𝑛, then 𝐿̃𝐹 (𝑥) = 𝐹 ( 𝑦̃) 𝐿̃.
In particular, if 𝑥 𝑗 ∈ Ω for 1 ≤ 𝑗 ≤ 𝑛, then 𝐹 (⊕𝑥 𝑗 ) = ⊕𝐹 (𝑥 𝑗 ).

Proof: Let 𝑥 = 𝑆−1𝑥𝑆 and 𝑦̃ = 𝑇−1𝑦𝑇 for 𝑥, 𝑦 ∈ Ω. Define 𝐿 : H → H by
𝐿 = 𝑇 𝐿̃𝑆−1 and consider the following intetwining:

𝐿𝑥 = 𝑇 𝐿̃𝑆−1𝑥̂ = 𝑇 𝐿̃𝑆−1𝑆𝑥𝑆−1

= 𝑇 𝐿̃𝑥𝑆−1 = 𝑇 𝑦̃𝐿̃𝑆−1 = 𝑇𝑇−1𝑦𝑇 𝐿̃𝑆−1

= 𝑦𝐿.

Thus, 𝐿𝐹 (𝑥) = 𝐹 (𝑦)𝐿 and consequently

𝐿̃𝐹 (𝑥) = 𝐿̃𝑆−1𝐹 (𝑥)𝑆 = 𝑇−1𝐿𝐹 (𝑥)𝑆 = 𝑇−1𝐹 (𝑦)𝐿𝑆 = 𝐹 ( 𝑦̃)𝑇−1𝐿𝑆

= 𝐹 ( 𝑦̃) 𝐿̃.

Finally, let 𝑃 𝑗 : H → H (𝑛) be the inclusion ofH onto the 𝑗 th-coordinate ofH (𝑛) .
Observe that (⊕𝑛

𝑖=1𝑥𝑖)𝑃 𝑗 = 𝑃 𝑗𝑥 𝑗 . Hence, 𝐹 (⊕𝑛
𝑖=1𝑥𝑖)𝑃 𝑗 = 𝑃 𝑗𝐹 (𝑥𝑖) = 𝑃 𝑗𝐹 (𝑥 𝑗 ). The

intertwining with 𝑃∗
𝑗
has 𝑥 𝑗𝑃

∗
𝑗
= 𝑃∗

𝑗
(⊕𝑛

𝑖=1𝑥𝑖). Thus, 𝑃∗
𝑗
𝐹 (𝑥 𝑗 ) = 𝑃∗

𝑗
𝐹 (⊕𝑛

𝑖=1𝑥𝑖) and
combining these two intertwining shows that 𝐹 (⊕𝑛

𝑖=1𝑥𝑖) is a diagonal block operator
and

𝐹 (⊕𝑛
𝑖=1𝑥𝑖) = ⊕𝑛

𝑖=1𝐹 (𝑥𝑖).
□

For later use, let us give a sort of converse.

Lemma 2.3 Suppose that Ω is an NC domain, and 𝐹 : Ω → 𝐵(H) satisfies

𝐹 (𝑆−1 [𝑥 ⊕ 𝑦]𝑆) = 𝑆−1 [𝐹 (𝑥) ⊕ 𝐹 (𝑦)]𝑆 (2.4)

whenever 𝑆 : H → H (2) and 𝑥, 𝑦, 𝑆−1 [𝑥 ⊕ 𝑦]𝑆 ∈ Ω. Then 𝐹 is intertwinining preserving.

Proof: Suppose 𝐿𝑥 = 𝑦𝐿. Let

𝑆 =

[
1 𝐿

0 1

]
,

and (2.4) implies that 𝐿𝐹 (𝑥) = 𝐹 (𝑦)𝐿. □

Recall that 𝐹 is Fréchet holomorphic if, for every 𝑥 ∈ Ω, there is an open neighbor-
hood𝐺 of 0 inA𝑑 so that the Taylor series

𝐹 (𝑥 + ℎ) = 𝐹 (𝑥) +
∞∑︁
𝑘=1

𝐷𝑘𝐹 (𝑥) [ℎ, . . . , ℎ] (2.5)

converges uniformly for ℎ in𝐺 .
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Operator NC functions 5

Using (1.1), it follows that if 𝑥1, . . . , 𝑥𝑛 ∈ Ω, then ∃𝜀 > 0 so that if 𝑦 ∈ T𝑛 (A) and
∥𝑦−⊕𝑥 𝑗 ∥ < 𝜀, then𝑈𝑛𝑦𝑈

∗
𝑛 ∈ Ω. The following is proved in [2], and, in the form stated,

in [3, Section 16.1].

Proposition 2.6 IfΩ ⊂ A𝑑 is an NC domain and 𝐹 is an NC function on Ω then

(i) The function 𝐹 is Fréchet holomorphic.
(ii) For 𝑥 ∈ Ω, ℎ ∈ A,

𝐹

( [
𝑥 ℎ

0 𝑥

] )
=

[
𝐹 (𝑥) 𝐷𝐹 (𝑥) [ℎ]
0 𝐹 (𝑥)

]
.

We wish to prove that when 𝑥 is a scalar point, each derivative in (2.5) is actually a
free polynomial in ℎ. This is straightforward for the first derivative.

Lemma 2.7 Suppose 𝑎 = (𝑎1, . . . , 𝑎𝑑) is a 𝑑-tuple of scalar matrices in Ω. Then 𝐹 (𝑎) is
a scalar, and 𝐷𝐹 (𝑎) [𝑐] is scalar for any scalar 𝑑-tuple 𝑐.

Proof: For any 𝐿 ∈ 𝐵(H), since 𝐿𝑎 = 𝑎𝐿, we have 𝐿𝐹 (𝑎) = 𝐹 (𝑎)𝐿. Therefore
𝐹 (𝑎) is a scalar. For all 𝑡 sufficiently close to 0, 𝑎 + 𝑡𝑐 is in Ω and 𝐹 (𝑎 + 𝑡𝑐) − 𝐹 (𝑎) is
scalar, therefore 𝐷𝐹 (𝑎) [𝑐] is scalar. □

Lemma 2.8 Suppose 𝑎 = (𝑎1, . . . , 𝑎𝑑) is a 𝑑-tuple of scalar matrices in Ω. Then
𝐷𝐹 (𝑎) [ℎ] is a linear polynomial in ℎ.

Proof: First assume that ℎ = (ℎ1, 0, . . . , 0). Let 𝜀 > 0 be such that the closed
max(𝜀, 𝜀∥ℎ1∥) ball around 𝑎 ⊕ 𝑎 is in Ω̃. Let 𝐽 = (1, 0, . . . , 0) be the scalar 𝑑-tuple
with first entry 1, the others 0. As[

1 0
0 ℎ1

] [
𝑎 𝜀ℎ

0 𝑎

]
=

[
𝑎 𝜀𝐽

0 𝑎

] [
1 0
0 ℎ1

]
,

we get from Proposition 2.2 that

𝐷𝐹 (𝑎) [ℎ] = 𝐷𝐹 (𝑎) [𝐽] ℎ1. (2.9)

By Lemma 2.7, 𝐷𝐹 (𝑎) [𝐽] is a scalar, 𝑐1 say, so we get

𝐷𝐹 (𝑎) [(ℎ1, 0, . . . , 0)] = 𝑐1ℎ1.

Permuting the coordinates and using the fact that 𝐷𝐹 (𝑎) [ℎ] is linear in ℎ, we get that
for any ℎ

𝐷𝐹 (𝑎) [ℎ] =

𝑑∑︁
𝑟=1

𝑐𝑟 ℎ𝑟

for some constants 𝑐𝑟 . □
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6 M. Augat and J. McCarthy3

3 Derivatives of NC functions are free polynomials
The derivatives are defined inductively, by

𝐷𝑘𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘] =

lim𝜆→0
1
𝜆

(
𝐷𝑘−1𝐹 (𝑥 + 𝜆ℎ𝑘) [ℎ1, . . . , ℎ𝑘−1] − 𝐷𝑘−1𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘−1]

)
. (3.10)

The 𝑘 th derivative is 𝑘-linear in ℎ1, . . . , ℎ𝑘 . To extend Lemma 2.8 to higher derivatives,
we need to introduce some other operators, called nc difference-differential operators
in [16].

Δ𝑘𝐹 (𝑥1, . . . , 𝑥𝑘+1) [ℎ1, . . . , ℎ𝑘] is defined to be the (1, 𝑘 + 1) entry in the matrix

𝐹

©­­­­«

𝑥1 ℎ1 0 0 . . . 0
0 𝑥2 ℎ2 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 𝑥𝑘+1


ª®®®®¬

(3.2)

We shall show in Lemma 3.6 that it is 𝑘-linear in [ℎ1, . . . , ℎ𝑘].
The Δ𝑘 occur when applying 𝐹 to a bidiagonal matrix. This is proved in [16, Thm.

3.11].

Lemma 3.3 Let 𝐹 be NC. Then

𝐹

©­­­­«

𝑥1 ℎ1 0 . . . 0
0 𝑥2 ℎ2 . . . 0
.
.
.

.

.

.
.
.
. . . .

.

.

.

0 0 0 . . . 𝑥𝑘+1


ª®®®®¬

(3.4)

=


𝐹 (𝑥1) Δ1𝐹 (𝑥1, 𝑥2) [ℎ1] . . . Δ𝑘𝐹 (𝑥1, . . . , 𝑥𝑘+1) [ℎ1, . . . , ℎ𝑘]
0 𝐹 (𝑥2) . . . Δ𝑘−1𝐹 (𝑥2, . . . , 𝑥𝑘+1) [ℎ2, . . . , ℎ𝑘]
.
.
.

.

.

. . . .
.
.
.

0 0 . . . 𝐹 (𝑥𝑘+1)


. (3.5)

Proof: We will prove this by induction. For 𝑘 = 1, it is the definition of Δ1. Assume it
is proved for 𝑘 − 1. Let 𝐼𝑘 denote the 𝑘-by-𝑘 matrix with diagonal entries the identity,
and off-diagonal entries 0. As

𝑥1 ℎ1 0 . . . 0
0 𝑥2 ℎ2 . . . 0
...

...
... . . .

...

0 0 0 . . . 𝑥𝑘+1


[
𝐼𝑘
0

]
(𝑘+1)×𝑘

=

[
𝐼𝑘
0

]
(𝑘+1)×𝑘


𝑥1 ℎ1 0 . . . 0
0 𝑥2 ℎ2 . . . 0
...

...
... . . .

...

0 0 0 . . . 𝑥𝑘


we conclude that the first 𝑘 columns of (3.4) agree with those of (3.5). Similarly, inter-
twining by

[
0 𝐼𝑘

]
we get that the bottom 𝑘 rows agree. Finally, the (1, (𝑘 + 1)) entry is

the definition of Δ𝑘 . □

A key property we need is that Δ𝑘 is 𝑘-linear in the directions. In the nc case, this is
proved in [16, 3.5].
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Lemma 3.6 Let 𝑥1, . . . , 𝑥𝑘+1 ∈ Ω. Then Δ𝑘𝐹 (𝑥1, . . . , 𝑥𝑘+1) [ℎ1, . . . , ℎ𝑘] is 𝑘-linear in
ℎ1, . . . , ℎ𝑘 .

Proof: Let us write Δ𝑘 [ℎ1, . . . , ℎ𝑘] for Δ𝑘𝐹 (𝑥1, . . . , 𝑥𝑘+1) [ℎ1, . . . , ℎ𝑘].
(i) First, we show this is linear with respect to ℎ1. Homogeneity follows from

observing that 
𝑥1 𝑐ℎ1 0 . . .

0 𝑥2 ℎ2 . . .
...

...
... . . .



𝑐 0 0
0 1
...
...
. . .

 =


𝑐 0 0
0 1
...
...
. . .



𝑥1 ℎ1 0 . . .

0 𝑥2 ℎ2 . . .
...

...
... . . .


and using the intertwining preserving property Prop. 2.2.

To showadditivity, let 𝑝 ≥ 1 and 𝑞 ≥ 0 be integers. Let𝑌 be the (𝑝+𝑘+𝑞)×(𝑝+𝑘+𝑞)
matrix

𝑌 =



𝑥1 0 . . . ℎ1 . . . 0 . . .

0 𝑥1 . . . 0 . . . 0 . . .

. . . . . . . . .

0 . . . 𝑥1 ℎ′1 . . . 0 . . .

0 𝑥2 ℎ2 . . . 0 . . .

. . .

𝑥𝑘+1 0
𝑥𝑘+1

. . .



.

Let 𝐿 be the (𝑘 + 1) × (𝑝 + 𝑘 + 𝑞) matrix

𝐿 =



1 0 . . . 0 . . . 0 . . . 0
0 0 . . . 1 0 . . . 0
0 . . . 0 1 0

0 . . .
. . .

0 . . . 1 0 . . . 1


Let 𝑋 be the (𝑘 + 1) × (𝑘 + 1) matrix

𝑋 =


𝑥1 ℎ1 0 0 . . . 0
0 𝑥2 ℎ2 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 𝑥𝑘+1


Then

𝐿𝑌 =


𝑥1 . . . ℎ1 0 . . . 0 . . .

0 . . . 𝑥2 ℎ2 . . .

. . .

0 . . . 0 . . . 𝑥𝑘+1 0 . . . 𝑥𝑘+1


= 𝑋𝐿.

Therefore the (1, 𝑝 + 𝑘 + 𝑞) entry of 𝐹 (𝑌 ) is Δ𝑘 [ℎ1, . . . , ℎ𝑘].
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Let 𝐿′ be the matrix obtained by replacing the first row of 𝐿 with the row that is 1
in the 𝑝th entry and 0 elsewhere. Then 𝐿′𝑌 = 𝑋 ′𝐿′, where 𝑋 ′ is 𝑋 with ℎ1 replaced by
the 𝑑-tuple ℎ′1. This gives that the (𝑝, 𝑝 + 𝑘 + 𝑞) entry of 𝐹 (𝑌 ) is Δ𝑘 [ℎ′1, . . . , ℎ𝑘].

Now let 𝐿′′ be the matrix that replaces the first row of 𝐿 with a 1 in both the first
and 𝑝th entry, and 𝑋 ′′ be 𝑋 with ℎ1 replaced by ℎ1 + ℎ′1. Then 𝐿′′𝑌 = 𝑋 ′′𝐿′′, and we
conclude that

Δ𝑘 [ℎ1, . . . , ℎ𝑘] + Δ𝑘 [ℎ′1, . . . , ℎ𝑘] = Δ𝑘 [ℎ1 + ℎ′1, . . . , ℎ𝑘] .

Therefore Δ𝑘 is linear in the first entry.
(ii) To prove that Δ𝑘 is linear in the 𝑖th entry, for 𝑖 ≥ 2, choose 𝑝, 𝑞 so that

𝑝 + 𝑖 − 1 = 𝑘 − 𝑖 + 1 + 𝑞.

Then𝑌 decomposes into a 2 × 2 block of (𝑝 + 𝑖 − 1) × (𝑝 + 𝑖 − 1) matrices.

𝑌 =

[
𝐴 𝐵

0 𝐷

]
.

Moreover 𝐵 is the matrix whose bottom left-hand entry is ℎ𝑖 , and everything else is 0.
Therefore

𝐹 (𝑌 ) =

[
𝐹 (𝐴) Δ1𝐹 (𝐴, 𝐷) [𝐵]
0 𝐹 (𝐷)

]
,

andΔ1𝐹 (𝐴, 𝐷) [𝐵] is linear in 𝐵 (and hence in ℎ𝑖 ) by part (i). Therefore the (1, 𝑝+𝑘+𝑞)
entry of 𝐹 (𝑌 ), which we have established is Δ𝑘 [ℎ1, . . . , ℎ𝑘] , is linear in ℎ𝑖 , as desired.□

Lemma 3.7 Suppose 𝑎 = (𝑎1, . . . , 𝑎𝑘+1) is a (𝑘 + 1)-tuple of points in Ω, each of which
is a 𝑑-tuple of scalars. Then Δ𝑘𝐹 (𝑎1, . . . , 𝑎𝑘+1) [ℎ1, . . . , ℎ𝑘] is a free polynomial in ℎ,
homogeneous of degree 𝑘 .

Proof: Let us write Δ𝑘 [ℎ1, . . . , ℎ𝑘] for Δ𝑘𝐹 (𝑎1, . . . , 𝑎𝑘+1) [ℎ1, . . . , ℎ𝑘]. By Lemma
3.6, we know thatΔ𝑘 [ℎ1, . . . , ℎ𝑘] is 𝑘-linear. So we can assume that each ℎ𝑖 is a 𝑑-tuple
with only one non-zero entry. Say ℎ𝑖 = 𝐻𝑖𝑒 𝑗𝑖 , where 𝑒 𝑗𝑖 is the 𝑑-tuple that is 1 in the 𝑗𝑖
slot, 0 else, and 𝐻𝑖 is an operator.

Claim:

Δ𝑘 [𝐻1𝑒 𝑗1 , 𝐻2𝑒 𝑗2 , . . . ] = 𝐻1𝐻2 . . . 𝐻𝑘Δ
𝑘 [𝑒 𝑗1 , 𝑒 𝑗2 , . . . , 𝑒 𝑗𝑘 ] . (3.8)

This follows from the intertwining
𝐻1𝐻2 . . . 𝐻𝑘 0 0 . . .

0 𝐻2 . . . 𝐻𝑘 0 . . .

. . .

1



𝑎1 𝑒 𝑗1 0 . . .

0 𝑎2 𝑒 𝑗2 . . .

. . .

𝑎𝑘+1


=


𝑎1 𝑒 𝑗1𝐻1 0 . . .

0 𝑎2 𝑒 𝑗2𝐻2 . . .

. . .

𝑎𝑘+1



𝐻1𝐻2 . . . 𝐻𝑘 0 0 . . .

0 𝐻2 . . . 𝐻𝑘 0 . . .

. . .

1



2022/03/21 14:35



Operator NC functions 9

Let

𝑋 =


𝑎1 𝑒 𝑗1𝐻1 0 . . .

0 𝑎2 𝑒 𝑗2𝐻2 . . .

. . .

𝑎𝑘+1


As 𝑋 is a 𝑑-tuple of (𝑘+1)×(𝑘+1)matrices of scalars, it commuteswith any (𝑘+1)×(𝑘+
1) matrix that has a constant operator 𝐿 on the diagonal. Therefore 𝐿 commutes with
Δ𝑘 [𝑒 𝑗1 , 𝑒 𝑗2 , . . . , 𝑒 𝑗𝑘 ]. As 𝐿 is arbitrary, it follows that Δ𝑘 [𝑒 𝑗1 , 𝑒 𝑗2 , . . . , 𝑒 𝑗𝑘 ] is a scalar.
So from (3.8), we get that Δ𝑘 [𝐻1𝑒 𝑗1 , 𝐻2𝑒 𝑗2 , . . . ] is a constant times 𝐻1𝐻2 . . . 𝐻𝑘 , and
by linearity we are done. □

Now we relate Δ𝑘 to 𝐷𝑘 .

Lemma 3.9 Let 𝐹 be NC. Then

Δ𝑘𝐹 (𝑥, . . . , 𝑥) [ℎ, . . . , ℎ] =
1
𝑘 !
𝐷𝑘𝐹 (𝑥) [ℎ, . . . , ℎ]

Proof: Let 𝑇 be the upper-triangular Toeplitz matrix given by

𝑇 =



1 1
𝜆

1
2!𝜆2 . . . 1

𝑘!𝜆𝑘

0 1 1
𝜆

. . . 1
(𝑘−1) !𝜆𝑘−1

...
...

...
...

0 0 0 . . . 1


.

Its inverse is

𝑇−1 =



1 −1
𝜆

1
2!𝜆2 . . .

(−1)𝑘
𝑘!𝜆𝑘

0 1 1
𝜆

. . .
(−1)𝑘−1

(𝑘−1) !𝜆𝑘−1

...
...

...
...

0 0 0 . . . 1


.

We have, componentwise in 𝑥 and ℎ,

𝑇


𝑥 0 0 . . . 0
0 𝑥 + 𝜆ℎ 0 . . . 0
...

...
...

...

0 0 0 . . . 𝑥 + 𝑘𝜆ℎ


𝑇−1 =


𝑥 ℎ 0 . . . 0
0 𝑥 + 𝜆ℎ ℎ . . . 0
...

...
...

...

0 0 0 . . . 𝑥 + 𝑘𝜆ℎ


Therefore

Δ𝑘𝐹 (𝑥, 𝑥 + 𝜆ℎ, . . . , 𝑥 + 𝑘𝜆ℎ) [ℎ, ℎ, . . . , ℎ] =
(−1)𝑘
𝑘 !𝜆𝑘

𝑘∑︁
𝑗=0

(−1) 𝑗
(
𝑘

𝑗

)
𝑓 (𝑥 + 𝑗𝜆ℎ).

Take the limit as 𝜆 → 0 and the right-hand side converges to
1
𝑘 !
𝐷𝑘𝐹 (𝑥) [ℎ, ℎ, . . . , ℎ] .
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10 M. Augat and J. McCarthy5

By continuity, the left-hand side converges to Δ𝑘𝐹 (𝑥, . . . , 𝑥) [ℎ, . . . , ℎ]. □

Derivatives of NC functions are symmetric. The case 𝑘 = 2 was proved in [4].

Proposition 3.10 Suppose 𝐹 is an NC function and 𝑘 ≥ 1 is an integer. If 𝜎 is any
permutation in S𝑘 then

𝐷𝑘𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘] = 𝐷𝑘𝐹 (𝑥) [ℎ𝜎 (1) , . . . , ℎ𝜎 (2) ]

for any 𝑥 in the domain of 𝐹 and for all ℎ1, . . . , ℎ𝑘 ∈ A𝑑 .

Proof The case 𝑘 = 1 is trivial, and 𝑘 = 2 was proved in [4]. Assume 𝑘 ≥ 3 and that
the result holds for 𝑘 − 1. If we can show that we can swap the last two entries

𝐷𝑘𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘−1, ℎ𝑘] = 𝐷𝑘𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘 , ℎ𝑘−1] (3.9)

and also permute the first 𝑘 − 1 entries

𝐷𝑘𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘−1, ℎ𝑘] = 𝐷𝑘𝐹 (𝑥) [ℎ𝜎 (1) , . . . , ℎ𝜎 (𝑘−1) , ℎ𝑘] (3.10)

then the result follows. Set𝐺 = 𝐷𝑘−2𝐹 and consider it as a function of 𝑥, ℎ1, . . . , ℎ𝑘−2.
Then𝐺 is an NC function, and by the 𝑘 = 2 case,

𝐷2𝐺 (𝑥, ℎ1, . . . , ℎ𝑘−2) [(ℓ0, . . . , ℓ𝑘−2), (ℓ̃0, . . . , ℓ̃𝑘−2)]
= 𝐷2𝐺 (𝑥, ℎ1, . . . , ℎ𝑘−2) [(ℓ̃0, . . . , ℓ̃𝑘−2), (ℓ0, . . . , ℓ𝑘−2)] .

Since

𝐷2𝐺 (𝑥, ℎ1, . . . , ℎ𝑘2 ) [ℎ𝑘−1, 0, . . . , 0, ℎ𝑘 , 0, . . . , 0] = 𝐷𝑘𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘],

we see that Equation (3.9) holds. The induction hypothesis says that

𝐷𝑘−1𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘−1] = 𝐷𝑘−1𝐹 (𝑥) [ℎ𝜎 (1) , . . . , ℎ𝜎 (𝑘−1) ] . (3.11)

If𝐺′ = 𝐷𝑘−1𝐹 is treated as function in 𝑥, ℎ1, . . . , ℎ𝑘−1, then applying Equation (3.11),
we have

𝐷𝑘𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘−1, ℎ𝑘] = 𝐷𝐺′ (𝑥, ℎ1, . . . , ℎ𝑘−1) [ℎ𝑘 , 0, . . . , 0]
= 𝐷𝐺′ (𝑥, ℎ𝜎 (1) , . . . , ℎ𝜎 (𝑘−1) ) [ℎ𝑘 , 0, . . . , 0]
= 𝐷𝑘𝐹 (𝑥) [ℎ𝜎 (1) , . . . , ℎ𝜎 (𝑘−1) , ℎ𝑘] .

Thus, both Equation (3.9) and Equation (3.10) hold. Therefore, the 𝑘 th derivative of 𝐹 is
symmetric in its arguments. ■

Combining Lemma3.7, Lemma3.9 and Proposition 3.10, we get our firstmain result.

Theorem 3.11 Suppose Ω is an NC domain that contains a scalar point 𝑎 and 𝐹 is an NC
function on Ω. Then for each 𝑘 , the 𝑘 th derivative 𝐷𝑘𝐹 (𝑎) [ℎ1, . . . , ℎ𝑘] is a homogeneous
polynomial of degree 𝑘 , it is 𝑘-linear, and it is symmetric with respect to the action of S𝑘 .

Proof: We know that 𝐷𝑘𝐹 (𝑎) [ℎ1, . . . , ℎ𝑘] is 𝑘-linear, so we can assume that each
ℎ𝑖 is a 𝑑-tuple with only one entry; we can write ℎ𝑖 = 𝐻𝑖𝑒 𝑗𝑖 , as in the proof of Lemma
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3.7. We want to show that

𝐷𝑘𝐹 (𝑎) [𝐻1𝑒 𝑗1 , . . . , 𝐻𝑘𝑒 𝑗𝑘 ] (3.12)

is a homogeneous polynomial of degree 𝑘 in the operators 𝐻1, . . . , 𝐻𝑘 . Let 𝑠𝑖 be scalars
for 1 ≤ 𝑖 ≤ 𝑘 , and consider

𝐷𝑘𝐹 (𝑎) [𝑠1𝐻1𝑒 𝑗1 + · · · + 𝑠𝑘𝐻𝑘𝑒 𝑗𝑘 , 𝑠1𝐻1𝑒 𝑗1 + · · · + 𝑠𝑘𝐻𝑘𝑒 𝑗𝑘 , . . . ] . (3.13)

Since all the arguments are the same, by Lemma 3.9 this agrees with 𝑘 ! times Δ𝑘 , which
by Lemma 3.7 is a homogeneous polynomial of degree 𝑘 . Group the terms in (3.13) by
what the commutative monomial in 𝑠1, . . . , 𝑠𝑘 is, and consider the sum of the terms in
(3.13) that are a multiple of 𝑠1 . . . 𝑠𝑘 . These correspond to∑︁

𝜎∈S𝑘

𝐷𝑘𝐹 (𝑎) [𝐻𝜎 (1)𝑒 𝑗𝜎 (1) , . . . , 𝐻𝜎 (𝑘)𝑒 𝑗𝜎 (𝑘 ) ] . (3.14)

By Proposition 3.10, (3.14) is just 𝑘 ! times (3.12), and hence this is a homogeneous
polynomial in 𝐻1, . . . , 𝐻𝑘 , as desired. □

4 Approximating NC functions by free polynomials

The results in this section are in improvement over those in [2], as they do not need the
a priori assumption that the function is sequentially strong operator continuous. Recall
that a set Ω in a vector space is balanced if 𝛼Ω ⊆ Ω whenever 𝛼 is a complex number
of modulus less than or equal to 1. Importantly, P(𝐴) and R(𝐴) are balanced.

If Ω contains a scalar point 𝛼, and 𝐹 is NC on Ω, then 𝐹 is given by a convergent
series of free Taylor polynomials near 𝛼. For convenience, we assume 𝛼 = 0.

Lemma 4.1 LetΩ be an NC domain containing 0, and let 𝐹 be an NC function onΩ. Then
there is an open setΥ ⊂ Ω containing 0, and homogeneous free polynomials 𝑝𝑘 of degree 𝑘 so
that

𝐹 (𝑥) =

∞∑︁
𝑘=0

𝑝𝑘 (𝑥) ∀ 𝑥 ∈ Υ, (4.2)

and the convergence is uniform in Υ.

Proof: By Proposition 2.6, we know that 𝐹 is Fréchet holomorphic at 0, and by
Theorem 3.11, we know that the 𝑘 th derivative is a homogeneous polynomial 𝑝𝑘 of
degree 𝑘 . Therefore (4.2) holds. □

Theorem 4.3 Let Ω be a balanced NC domain, and 𝐹 : Ω → 𝐵(H). The following
statements are equivalent.

(i) The function 𝐹 is NC.
(ii) There is a power series expansion

∑∞
𝑘=0 𝑝𝑘 (𝑥) that converges absolutely and locally uni-

formly at each point 𝑥 ∈ Ω to𝐹 (𝑥), and such that each 𝑝𝑘 is a homogeneous free polynomial
of degree 𝑘 .

(iii) For any triple of points inΩ, there is a sequence of free polynomials that converge uniformly
to 𝐹 on a neighborhood of each point in the triple.
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12 M. Augat and J. McCarthy6

Proof: (𝑖) ⇒ (𝑖𝑖) : By Lemma 4.1, 𝐹 is given by a power series expansion (4.2) in a
neighborhood of 0. We must show that this series converges absolutely on all of Ω.

Let 𝑥 ∈ Ω. Since Ω is open and balanced, there exists 𝑟 > 1 so that D(0, 𝑟)𝑥 ⊆ Ω.
Define a function 𝑓 : D(0, 𝑟) → 𝐵(H) by

𝑓 (𝜁) = 𝐹 (𝜁𝑥).

Then 𝑓 is holomorphic, and so norm continuous [22, Thm 3.31]. Therefore

sup
{
∥ 𝑓 (𝜁)∥ : |𝜁 | = 1 + 𝑟

2

}
=: 𝑀 < ∞.

By the Cauchy integral formula,

∥𝑝𝑘 (𝑥)∥ =
1
𝑘 !





 𝑑𝑘

𝑑𝜁 𝑘
𝑓 (𝜁)

��
0





 ≤ 𝑀

(
2

1 + 𝑟

) 𝑘
.

Therefore the power series
∑

𝑝𝑘 (𝑥) converges absolutely, to 𝑓 (1) = 𝐹 (𝑥).
Since 𝐹 is NC, it is bounded on some neighborhood of 𝑥, and by the Cauchy estimate

again, the convergence of the power series is uniform on that neighborhood.

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) :Let 𝑥1, 𝑥2, 𝑥3 ∈ Ω. Let 𝑞𝑘 =
∑𝑘

𝑗=0 𝑝𝑘 . Then 𝑞𝑘 (𝑥) converges uniformly
to 𝐹 (𝑥) on an open set containing {𝑥1, 𝑥2, 𝑥3}.

(𝑖𝑖𝑖) ⇒ (𝑖) : Since 𝐹 is locally uniformly approximable by free polynomials, it is
locally bounded. To see that it is also intertwining preserving, we shall show that it sat-
isfies the hypotheses of Lemma 2.3. Let 𝑆 : H → H (2) be invertible, and assume that
𝑥, 𝑦 and 𝑧 = 𝑆−1 [𝑥 ⊕ 𝑦]𝑆 are all in Ω. Let 𝑞𝑘 be a sequence of free polynomials that
approximate 𝐹 on {𝑥, 𝑦, 𝑧}. Then

𝐹

(
𝑆−1

[
𝑥 0
0 𝑦

]
𝑆

)
= lim

𝑘
𝑞𝑘

(
𝑆−1

[
𝑥 0
0 𝑦

]
𝑆

)
= lim

𝑘

(
𝑆−1

[
𝑝𝑘 (𝑥) 0
0 𝑝𝑘 (𝑦)

]
𝑆

)
=

(
𝑆−1

[
𝐹 (𝑥) 0
0 𝐹 (𝑦)

]
𝑆

)
.

So by Lemma 2.3, 𝐹 is intertwining preserving. □

The requirement that 𝐹 be intertwining preserving forces 𝐹 (𝑥) to always lie in the
double commutant of 𝑥. But if𝐹 is also locally boundedon a balanceddomain containing
𝑥, we get a much stronger conclusion as a corollary of Theorem 4.3.

Corollary 4.4 Suppose 𝐹 is an NC function on a balanced NC domain Ω. Then 𝐹 (𝑥) is in
the norm closed unital algebra generated by {𝑥1, . . . , 𝑥𝑑}.

5 𝑘-linear NC functions

In the following theorem,we assume thatΛ isNCas a functionof all 𝑑𝑘 variables at once,
and is 𝑘-linear if they are broken up into 𝑑-tuples. If we had an independent proof of
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Theorem 5.1, we could use it to prove Theorem 3.11 with the aid of Lemma 5.4. Instead,
we deduce it as a consequence of Theorem 3.11.

Theorem 5.1 Let Ω be an NC domain. Let Λ : Ω𝑘 → 𝐵(H) be NC and 𝑘-linear. Then Λ
is a homogeneous free polynomial of degree 𝑘 .

Proof: Let 𝔥 = (ℎ1, . . . , ℎ𝑘) be a 𝑘-tuple of 𝑑-tuples in Ω. Calculating, and using
𝑘-linearity, we get

𝐷Λ(𝑥) [𝔥] = lim
𝜆→0

1
𝜆
[Λ(𝑥 + 𝜆ℎ) − Λ(𝑥)]

= Λ(ℎ1, 𝑥2, . . . , 𝑥𝑘) + Λ(𝑥1, ℎ2, . . . , 𝑥𝑘) + . . . .

Repeating this calculation,we get that𝐷2Λ(𝑥) [𝔥, 𝔥] is 2! times the sumofΛ evaluated at
every 𝑘-tuple that has 𝑘 −2 entries from (𝑥1, . . . , 𝑥𝑘) and 2 entries from 𝔥. Continuing,
we get

𝐷𝑘Λ(𝑥) [𝔥, . . . , 𝔥] = 𝑘 ! Λ(ℎ1, . . . , ℎ𝑘). (5.2)

By Theorem 3.11, the left-hand side of (5.2) is a homogeneous free polynomial of degree
𝑘 , so the right-hand side is too. □

It is worth singling out a special case of Theorem 5.1.

Corollary 5.3 Let Λ : [𝐵(H)]𝑑𝑘 → 𝐵(H) be 𝑘-linear, intertwining preserving, and
bounded. Then Λ is a homogeneous nc polynomial of degree 𝑘 .

Lemma 5.4 The 𝑘 th derivative 𝐷𝑘𝐹 (𝑥) [ℎ1, . . . , ℎ𝑘] is NC on Ω × A𝑑𝑘 . If 𝑎 ∈ Ω is a
scalar point, then 𝐷𝑘𝐹 (𝑎) [ℎ1, . . . , ℎ𝑘] is NC onA𝑑𝑘 .

Proof: The first assertion follows from induction, and the observation that difference
quotients preserve intertwining. The second assertion follows from the fact that if 𝑎 is
scalar,

𝐷𝑘𝐹 (𝑎) [𝑆−1ℎ1𝑆, . . . , 𝑆−1ℎ𝑘𝑆] = 𝐷𝑘𝐹 (𝑆−1𝑎𝑆) [𝑆−1ℎ1𝑆, . . . , 𝑆−1ℎ𝑘𝑆] .

□

6 Realization formulas

One can generalize Example 1.3. For 𝛿 a matrix of free polynomials, let

𝐵𝛿 (A) = {𝑥 ∈ A𝑑 : ∥𝛿(𝑥)∥ < 1}.

These sets are all NC domains. If

𝛿(𝑥) =


𝑥1 0 . . . 0
0 𝑥2 . . . 0

. . .

0 0 . . . 𝑥𝑑


,
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14 M. Augat and J. McCarthy7

then 𝐵𝛿 (A) is P(A) from (1.4). If we set

𝛿(𝑥) = (𝑥1 𝑥2 · · · 𝑥𝑑),

then 𝐵𝛿 (A) is R(A) from (1.5).
The sets 𝐵𝛿 (A) are closed not just under finite direct sums, but countable direct

sums, in the following sense.

Definition 6.1 A family {𝐸𝑘}∞𝑘=1 is an exhaustion ofΩ if

(1) 𝐸𝑘 ⊆ int(𝐸𝑘+1) for all 𝑘 ;
(2) Ω =

⋃∞
𝑘=1 𝐸𝑘 ;

(3) each 𝐸𝑘 is bounded;
(4) each 𝐸𝑘 is closed under countable direct sums: if 𝑥 𝑗 is a sequence in 𝐸𝑘 , then there

exists a unitary𝑈 : H → H (∞) such that

𝑈−1


𝑥1 0 · · ·
0 𝑥2 · · ·

· · · · · · . . .

 𝑈 ∈ 𝐸𝑘 . (6.1)

If we set

𝐸𝑘 = {𝑥 ∈ 𝐵𝛿 (A) : ∥𝛿(𝑥)∥ ≤ 1 − 1/𝑘, and ∥𝑥∥ ≤ 𝑘},

then 𝐸𝑘 is an exhaustion of 𝐵𝛿 (A).
We have the following automatic continuity result for NC functions on balanced

domains that have an exhaustion.

Theorem 6.2 SupposeΩ ⊆ A𝑑 is a balanced NC domain that has an exhaustion (𝐸𝑘), and
𝐹 : Ω → 𝐵(H) is NC and bounded on each 𝐸𝑘 . Suppose for some 𝑘 , there is a sequence
(𝑥 𝑗 ) in 𝐸𝑘 that converges to 𝑥 ∈ 𝐸𝑘 in the strong operator topology. Then 𝐹 (𝑥 𝑗 ) converges
to 𝐹 (𝑥) in the strong operator topology.

Proof: Let 𝑈 : H → H (∞) be a unitary so that 𝑈−1 [⊕𝑥 𝑗 ]𝑈 = 𝑧 ∈ 𝐸𝑘 . Let Π 𝑗 :
H∞ → H be projection onto the 𝑗 th component. Let 𝐿 𝑗 = Π 𝑗𝑈. Then 𝐿 𝑗 𝑧 = 𝑥 𝑗𝐿 𝑗 .
Therefore 𝐹 (𝑧) = 𝑈−1 [⊕𝐹 (𝑥 𝑗 )]𝑈.

Let 𝑣 be any unit vector, and 𝜀 > 0. By Theorem 4.3, there is a free polynomial 𝑝 so
that ∥𝑝(𝑥)−𝐹 (𝑥)∥ < 𝜀/3 and ∥𝑝(𝑧)−𝐹 (𝑧)∥ < 𝜀/3. Therefore ∥𝑝(𝑥 𝑗 )−𝐹 (𝑥 𝑗 )∥ < 𝜀/3
for each 𝑗 .

Now choose 𝑁 so that 𝑗 ≥ 𝑁 implies ∥ [𝑝(𝑥) − 𝑝(𝑥 𝑗 )]𝑣∥ < 𝜀/3, which we can do
because multiplication is continuous on bounded sets in the strong operator topology.
Then we get for 𝑗 ≥ 𝑁 that

∥ [𝐹 (𝑥) − 𝐹 (𝑥 𝑗 )]𝑣∥ ≤ ∥𝐹 (𝑥) − 𝑝(𝑥)∥ + ∥[𝑝(𝑥) − 𝑝(𝑥 𝑗 )]𝑣∥ + ∥𝑝(𝑥 𝑗 ) − 𝐹 (𝑥 𝑗 )∥ ≤ 𝜀.

□
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Definition 6.2 Let 𝛿 be an 𝐼 × 𝐽 matrix of free polynomials, and 𝐹 : 𝐵𝛿 (A) → 𝐵(H).
A realization for 𝐹 consists of an auxiliary Hilbert spaceM and an isometry[

𝐴 𝐵

𝐶 𝐷

]
: C ⊕ M 𝐼 → C ⊕ M𝐽 (6.3)

such that for all 𝑥 in 𝐵𝛿 (A)

𝐹 (𝑥) = 𝐴 ⊗ 1 +
(
𝐵 ⊗ 1

) (
1 ⊗ 𝛿(𝑥)

) [
1 −

(
𝐷 ⊗ 1

) (
1 ⊗ 𝛿(𝑥)

) ]−1 (
𝐶 ⊗ 1

)
. (6.4)

In [2] it was shown that if 𝐵𝛿 (𝐵(H)) is connected and contains 0, then every sequen-
tially strong operator continuous function (in the sense of Theorem 6.2) NC function
from 𝐵𝛿 (𝐵(H)) that is bounded by 1 has a realization. The strong operator continuity
was needed to pass from a realization of 𝐵𝛿 in thematricial case given in [1] to a realiza-
tion for operators. In light of Proposition 6.2, though, this hypothesis is automatically
fulfilled. So we get:

Corollary 6.5 Let 𝛿 be an 𝐼 × 𝐽 matrix of free polynomials, and 𝐹 : 𝐵𝛿 (𝐵(H)) → 𝐵(H)
satisfy sup ∥𝐹 (𝑥)∥ ≤ 1. Assume that 𝐵𝛿 (𝐵(H)) is balanced. Then 𝐹 is NC if and only if it
has a realization.

As another consequence, we get that every bounded non-commutative function on
𝐵𝛿 (M) (by which wemean {𝑥 ∈ M[𝑑 ] : ∥𝛿(𝑥)∥ < 1}), has a unique extension to anNC
function on 𝐵𝛿 (𝐵(H)), where we embedM[𝑑 ] into 𝐵(H)𝑑 by choosing a basis ofH
and identifying an 𝑛-by-𝑛matrix with the finite rank operator that is 0 outside the first
𝑛-by-𝑛 block.

Corollary 6.6 Assume 𝐵𝛿 (𝐵(H)) is balanced. Then every non-commutative bounded
function 𝑓 on 𝐵𝛿 (M) has a unique extension to an NC function on 𝐵𝛿 (𝐵(H)).

Proof: Suppose 𝐹1 and 𝐹2 are both extensions of 𝑓 , and let 𝐹 = 𝐹1 − 𝐹2. As 0 ∈
𝐵𝛿 (𝐵(H)) and 𝛿 is continuous, there exists 𝑟 > 0 so that 𝑟P(𝐵(H)) ⊆ 𝐵𝛿 (𝐵(H)).

Let 𝑥 ∈ 𝑟P(𝐵(H)). Then there exists a sequence (𝑥 𝑗 ) in 𝑟P(M) that converges
to 𝑥 in the strong operator topology. As 𝐹 (𝑥 𝑗 ) = 0 for each 𝑗 , by Theorem 6.2 we get
𝐹 (𝑥) = 0. Therefore 𝐹 vanishes on an open subset of 𝐵𝛿 (𝐵(H)). As 𝐹 is holomorphic,
and 𝐵𝛿 (𝐵(H)) is connected, we conclude that 𝐹 is identically zero. □

Question 6.7 Are the previous results true if 𝐵𝛿 (𝐵(H)) is not balanced?

If one has a realization formula (Equation 6.4) for 𝐵𝛿 (A), then it automatically
extends to 𝐵𝛿 (𝐵(H)). We do not know how different choices of algebra A1 and A2
satisfying (1.1) affect the set of NC functions on their balls.
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