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Abstract

We define a monomial space to be a subspace of L2([0, 1]) that can be approximated
by spaces that are spanned by monomial functions. We describe the structure of
monomial spaces.

1 Introduction

What sorts of subspaces in L?([0,1]) can be limits of spans of monomials? Specifically, let
1
S={seC|Res> —5},

so that s € S if and only if * € L2([0,1]). For S a finite subset of S we let M(S) denote the
span in L2([0, 1]) of the monomials whose exponents lie in S, i.e.,

M(S) = {Z a(s)z®la: S — C}.

seSs

We refer to sets in L?([0,1]) that have the form M(S) for some finite subset S of S as finite
monomial spaces. We are interested in what the limits of such spaces are.

Definition 1.1. If M is a subspace of a Hilbert space H and {M,,} is a sequence of closed
subspaces, we say that {M,,} tends to M and write

M, - M as n— o0
if
M =A{feH| lim dist(f, M,) = 0}.
n—oo
There are alternative ways to frame this definition; see Proposition 4.1.

Definition 1.2. We say that a subspace M of L?([0,1]) is a monomial space if there exists
a sequence {M,} of finite monomial spaces such that M,, — M.

The goal of this paper is to study monomial spaces, which have a rich structure and are
intimately related to the Miintz-Szasz theorem and generalizations thereof.

*Partially supported by National Science Foundation Grant DMS 2054199
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1.1 Monotone Monomial Spaces

In this subsection we recall several classical results that can be interpreted as facts about
monomial spaces. In each example we consider there is a limit M,, — M of finite monomial
spaces that is monotone, i.e.,

M; € M, whenever 7 <j.
For a detailed account of the results in this section, see [4] and [7].

Example 1.3. The Weierstrass Approximation Theorem Let S, = {0,1,2,... n}.
The Weierstrass Theorem, which implies that the polynomials are dense in L2([0, 1]) implies
that

M(S,) — L*([0,1]).

In particular, L?([0,1]) is a monomial space.

Example 1.4. Classical Miintz-Szasz Theorem This was proved in [24, 28]. Fix a
strictly increasing sequence of nonnegative integers sq, s1, S, ..., and let

Sn = {S0,51,---,Sn}
Then there exists a space M such that
S(M,) = M.

Furthermore,

M =1%(0,1]) if and only if — = 0.

s
=1 "k

Example 1.5. Szész’s Theorem (real case), (a.k.a Full Miintz-Szész Theorem in
L2([0,1])). This was proved in [29]. Fix a sequence of distinct real numbers sg, s1, So, . . . , in
S and let

Sn ={S0,51,---,Sn}
Then there exists a space M such that

M(S,) = M.

Furthermore,

=L*([0,1]) ifandonlyif » =
M ([0,1]) if and only i 2 G+ P41

Example 1.6. Szasz’s Theorem (complex case) Any of the proofs known to the authors
of the previous example, including Szasz’s original proof, can be adapted to show that if
S0, S1, 82, - - ., 1S & sequence of distinct points in S and

Sn = {80,81, Ce ,Sn},
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then there exists a space M such that

and where,
. } 2Res, +1
712 _
M =17(]0,1]) if and only if ,;1 St 1f

What happens in the above examples when M # L*(]0, 1])?

Example 1.7. The Clarkson-Erd6s Theorem. With the setup of Example 1.4, assume
that M # L%([0,1]). Then Clarkson and Erd&s proved in [12] that the elements of M extend
to be analytic on D! Furthermore, if f € M, then f has a power series representation of the
form

f(z) = Zakzs’“, z € D.
k=0
This result was generalized to arbitrary real powers in (—%, o0) by Erdélyi and Johnson [16],
who showed that if M # L?([0,1]), then every f in M is analytic in D\ (-1, 0]
In honor of this remarkable theorem we introduce the following definition.

Definition 1.8. We say that M is a Clarkson-Erdés space if there exist a sequence {sg, s1, ...}
in S of distinct points such that

M({so,51,---,8.}) = M
where M # L2([0,1]).

We want to allow for multiplicities. If an entry s is repeated in a sequence, this corre-
sponds to multiplicity in the following way. The first occurrence of s in .S,, gives the function

x® in M,,. The second occurrence gives %xs = z*logx. If s occurs k times, then M,, con-
tains the functions x*, 2°logz, . .., x*(log z)*~1. This leads to the following generalization of

a Clarkson-Erdos space.

Definition 1.9. We say that M is an FErdélyi-Johnson space if there exist a sequence
{s0, 51, ..} in S, with multiplicities allowed, such that

M({s0, 81, 8.}) = M
where M # 1L2([0, 1]).

1.2 A Non-monotone Monomial Space

In the study of monomial spaces it is natural to consider the class of monomial operators,
i.e., the class of bounded operators T" acting on L?([0, 1]) that take monomials to monomials,
le.,

vseg ElTeS Elce(C Tz® =cx’. (110)

In [2] the authors studied the special case wherein it is assumed that there exists a fixed
number m such that in (1.10) 7 can be chosen to equal s + m for all s. We call these flat
monomial operators. In the course of proving that flat monomial operators leave L?([a, 1])
invariant for each a € [0, 1], the authors discovered the following example.
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Example 1.11. Fix p € [0, 1] and choose an increasing sequence of integers Ny, Ny, ... such
that

I n
im =
If
Sp,={n+1,n+2,....,n+ N,},
then

M(Sa) = L2([p, 1]).

In particular, L?([p, 1]) is a monomial space for each p € [0,1], where here and afterwards
we identify L?([p, 1]) with the subspace of L2([0,1]) consisting of functions that vanish a.e.
on [0, p].

1.3 Characterization of monomial spaces

The Hardy operator H : L2([0,1]) — L3([0, 1]) is defined by

Hf(z) = —/Ozf(t)dt. (1.12)

This was introduced by Hardy in [21], where he proved it was bounded. As Hx® = S%xs for

all s € S, the Hardy operator leaves invariant every monomial space. The converse is true.

Theorem 1.13. A closed subspace of L2([0,1]) is a monomial space if and only if it is
invariant for H.

A proof of 1.13 that uses real analysis techniques is given in [1].
Corollary 1.14. A bounded operator T' on L?([0, 1]) is a monomial operator if and only if
for every M € Lat(H), the space T'’M is in Lat(H).

1.4 A Decomposition Theorem

Definition 1.15. We say a space M in L*([0,1]) is a singular space if M is a monomial
space that does not contain any Clarkson-Erdds space.

Theorem 1.16. Every monomial space M has a unique decomposition,
M = Mo+ My,

where M is an Erdélyi-Johnson space and M, is a singular space.

1.5 Atomic Spaces

Unitary monomial operators can be characterized using a theorem of Bourdon and Narayan
[8]. Their description is equivalent to the following reformulation, from [3].



Theorem 1.17. The operator
T: 2% c(s)z™®

is a unitary map from L?([0,1]) to L%([0, 1]) if and only if 7 is a holomorphic automorphism
of S and ¢ is given by

14 7(0) + 7(s)
1+s

c(s) = o

where ¢ is a constant satisfying

I

1
|col = :
V14 2Re7(0)

Definition 1.18. We say a space M in L%([0,1]) is atomic if there exist p € (0,1) and a
unitary monomial operator T such that M = TL3([p, 1]).

We can describe all atomic spaces in the following way.

Theorem 1.19. The functions

enlz) = :0 (Z) (mkf)k, n > 0. (1.20)

form an orthonormal basis for L%([0, 1]). Furthermore, the operator J defined on L?([0, 1])
by requiring

e, 1f nis even
J(en) = { —e, if nis odd

is a unitary monomial operator, corresponding to the choice

(s) = ;o cls) = (1.21)

in Theorem 1.17.

The polynomials

—~ (n) )"
are the Laguerre polynomials. They are the orthogonal polynomials on [0, co) for the measure
e 'dt. Under the change of variables x = e~ they become the functions e, in (1.20). Their
connection to the Hardy operator was shown in [10, 23].

If ¢ is real, the multiplication operator M, is also a unitary monomial operator. These
two operators can be used to build the general atomic space.

1. For any w > 0, define
Arw = LP([e7®1]).

2. Define
A—l,w = JAl,w
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3. For any 7 € T \ {1}, define

T+1

Ay = Myic Ay, where 2ic = T
s

w = (1+4c)w.

(The reason for the strange scaling is to simplify the formulas in Section 5). Atomic spaces
are all of the form A, .

Theorem 1.22. Every atomic space is equal to A, ,, for exactly one pair (7, w) € T x (0, 00).

1.6 The Structure of Singular Spaces

Say M is finitely atomic if M is a finite sum of atomic spaces. If

W= Z Wy, Or,
k=1

is a finitely atomic measure on T, with distinct atoms 75, we define a finitely atomic space
in L%([0, 1]) by the formula

M(p) = Z Ar
k=1

Theorem 1.23. The assignment p — M(u) extends by weak-* sequential continuity to a
map from the positive singular Borel measures on T into closed subspaces of L?([0, 1]). When
extended,

o — o weak-* = M(u,) = M(p).

1.7 The main idea

It was proved by Brown, Halmos and Shields [10] that the Hardy operator is unitarily
equivalent to 1 — S*, where S is the unilateral shift, via a unitary U : L?(]0, 1]) — H? which
we call the Sarason transform, described in Section 2. It follows that the invariant subspaces
of H can be described by Beurling’s theorem [6] in terms of model spaces, the invariant
subspaces for the backward shift described for example in [19]. However, all the theorems
above have been stated in terms that are intrinsic to L%([0,1]). We believe that finding
proofs that are also intrinsic to L?([0, 1]) will illuminate this space with a new light. So far,
the authors have only succeeded in doing this for some of these results.

Open Problem 1.24. Find real analysis proofs to Theorems 1.16 and 1.23.

2 The Sarason Transform

2.1 The Definition

We let k, denote the Szego kernel function for H2, the classical Hardy space of square
integrable functions on D, i.e.,




As the monomials are linearly independant in L2([0, 1]), there is a well defined map L
defined on polynomials in L?([0,1]) into H? defined by the formula

N N ]
L(Z0 apx") = Zoann n 1/{#1

Noting that ‘ ‘ o
(L(z"), L(27) Ju> = (2", 27 )r2(o,1)

for all nonnegative integers 7 and j, it follows that

(L(p), L(q) )u= = <p7Q>L2([0,1])

for all polynomials p and ¢, i.e., L is isometric. Hence, as the polynomials are dense in
L2([0,1]), L has a unique extension to an isometry U defined on all of L2([0,1]). Finally,
noting that

n is a nonegative integer

! g ger}

is a set of uniqueness for H?, it follows that the range of L is dense in H?, which implies that
U is a unitary transformation from L?([0, 1]) onto H.

Definition 2.1. We let U denote the unique unitary transformation from L?([0, 1]) onto H?

that satisfies .
U(x™) = k_n_
(@) = e,

for all nonnegative integers n.

We call U the Sarason transform, as it is similar to the transform from L?([0,00)) onto
H? used in [27].

2.2 Moments in L?([0,1]) and Interpolation in H?

As the monomials are dense in L?([0,1]), a function f € L*([0,1]) is uniquely determined by
its moment sequence

1
/ " f(z)dx, n=0,1,....
0

Similarly, as the sequence {1 — —<|n =0,1,...} is a set of uniqueness for H?, a function

h € H? is the unique solution g in H? to the interpolation problem

n n
n—|—1>:h<n—|—1

g( ), n=01,...

The following proposition follows immediately from Definition 2.1.

Proposition 2.2. Fix a sequence of complex numbers wy, wy, ws, . ... If f in L%(]0, 1]) solves
the moment problem

1
/a:”f(x)da::wn, n=01,...,
0
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then U f € H? and solves the interpolation problem

Uf(

n+1):(n+1)wn, n=0,1,....

If h € H? solves the interpolation problem
n

h
(n +1
then U*h € L*([0,1]) and solves the moment problem

) = wy, n=20,1,...,

1
w
n+1

s n=20,1,....

1
/ 2" U'h(x) dox =
0

The correspondence between moments and interpolation described in the preceding propo-
sition allows us to easily calculate the Sarason transform of many common functions. We
illustrate this with the following two lemmas.

Lemma 2.3. If o € D, then

1 _a
U* (ko) (z) = —rl-a x € [0,1]. (2.4)
1—a
If Re 6 > —%, then
1
U@P) = ——k 5 .
@) = gk

Proof. We note that the two assertions of the lemma are equivalent. Therefore it suffices
to prove (2.4). Since the left and right hand sides of (2.4) are in L2([0,1]), to show (2.4) it
suffices to show that for each n > 0

(2", U ka )12, = (2", T1=0 )p2((0,1])-

But

l—an+ % +1
1 1
n+11-— niﬂoc
1
n—l—lk#l(a)
= (Uz")(a)
Uz"™ | kq Yu2
L

U ko )12 (0,1))

-
-

QED



For S a measurable set in [0, 1] let ys denote the characteristic function of S.

Lemma 2.5. If s € [0, 1], then

Proof. We first observe that

so that

(2.6)

for all n > 0. On the other hand if for w > 0 we let E,, denote the singular inner function

defined by

i1tz _ 2w
Ey(z) =€ "1 =¢eYe 12,

we have that

w(n Z 1) — ewe—Qw(n—&-l) _ ew(e—Qw)n-l—l
for all n > 0. Hence if we choose w = —% Ins,
n n
U s =e "Ey,
Xl (o) = ¢ Bul =)
for all n > 0. Since {1 — 5|7 > 0} is a set of uniqueness for H?, it follows that

Uxp,s(2) = e Ew(2)

for all z € D, which implies (2.6).

2.3 A Formula for the Sarason Transform

Proposition 2.7. If f € L*([0,1]), then

1
1—=z2

Ui =1 [ et

for all z € D.

QED



Proof.

QED

To obtain a nonrigorous, but highly interesting proof of the proposition, let us define the
Sarason Transform of a measure p on [0, 1], S{u}, to be the holomorphic function

S(ne) = 1 [a = duta), o <1,
Note that
S(xp.) = Vs €"VF T = Ulxp)-
We have
S{os} = L szt = ! Pye=
1— 1—2

So formally we get

1
1—2

2
ri-=dx,

vi=s([ s, dn = [ 56 dr= [ it

the formula in Proposition 2.17.

2.4 Transforms of H,V and X

The Hardy operator H was defined by (1.12). Let X denote multiplication by x on L2([0, 1]),
and define the Volterra operator V' : L2([0,1]) — L2([0,1]) by V = X H, so

Vi) = / " p(tya.

All three of these are monomial operators, and have simple descriptions in terms of mono-
mials.

1
H:2" — z"

n+1
Xz o gt

1
Viz" — any

n+1

If T is a bounded operator on L2([0,1]), let us write T = UTU* for the unitarily equivalent
operator on H?. Monomial operators then become operators that map kernel functions to
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multiples of other kernel functions, which are adjoints of weighted composition operators.
For more about weighted composition operators, see e.g. [17, 13, 22, 14, 8, 5, 11].

We shall let M, denote the operator of multiplication by g, and Cs denote composition
with 8. It was observed in [20] that it is possible for the product M,Cj to be bounded even
when M, is not. The following theorem is proved in [3].

Theorem 2.8. The operator T : L*([0, 1]) — L?([0,1]) is a monomial operator if and only

if T* : H? — H2 is a bounded operator of the form M Cs for some holomorphic 5 : D — D
and some g € H2.

Let v(z) = Q%Z This maps D to D, and maps ;15 to Z—i; Using Lemma 2.3 and the

preceding formulas, it is easy to verify the following. We shall let S denote the unilateral
shift, the operator of multiplication by z on H2.

Proposition 2.9. We have

H = 1-§
X = s
Vo= (1-89C

The fact that 1— H is unitarily equivalent to a backward shift operator was first proved in
[10], and a proof similar to ours is in [23]. In [18] Fricain and Lefévre study other properties
that can be ported between L?[0,1] and the Hardy space via the Sarason transform (they
actually look at the Hardy space of the right-half plane).

2.5 The Sarason Transform and Lat(V)

The invariant subspaces of the Volterra operator were described by Brodskii [9] and Donoghue
[15].

Theorem 2.10. The space M C L?([0,1]) is a closed invariant subspace for V' if and only
if M =12([p,1]) for some p € [0, 1].

How do these spaces transform under the Sarason Transform?
For s € (0,1] let @, be the singular inner function defined by

81+Z

1
Dy(2) = e2 51 z € D.
For s € [0, 1], define orthogonal projections P* on L?([0,1]) by the formulas

Prf=xpsf and Pff=xp1f, feL?([0,1]).

Lemma 2.11.
Uran P. = ®,H? and Uran P} = ®,H>"

Proof. As ran P, is invariant for H*, it follows from Proposition 2.9 that U ran P, is invari-
ant for the shift S, and is therefore of the form uH? for some inner function u by Berurling’s
theorem [6]. Moreover, u is a constant multiple of the projection of 1 onto the invariant

subspace. By Lemma 2.5, the projection of 1 is 1/s®,, so u = ®,. QED
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2.6 The Sarason Transform and the Laplace Transform

Recall that the Laplace Transform is defined by the formula

£ = [ s
0
Further, if for f € L2([0,1]) we define f~ by the formula

frt)=e2f(e™),  te(o,00),

then the assignment f + f~ is a Hilbert space isomorphism from L?([0,1]) onto L?(0, c0).
By making the substitution z = e~ we find that

/f T zd:c—/f Y eTltE (—eTh) dt

[ etren et a

/ F) e M) gt

—c{f }<““>

Hence,
11+2
Uf(e) = LU G1—)
21—
So after changes of variable from LQ([O, 1}) of the disc to L?(0,00) and from H? to H? of
the right half plane, the Sarason Transform is simply the Laplace Transform.

3 The Inverse Sarason Transform

We know from Proposition 2.9 that 1 — H* is unitarily equivalent to the unilateral shift. Let
us find what the orthonormal basis 2" in H? corresponds to. This was first done in [10],
and studied further in [23]. In this section we shall use the notation ¢ ~ g to mean that the
function f € L2([0,1]) is mapped to ¢ € H? by the Sarason transform.

Lemma 3.1.

(H) 1= (-1) (3:2)

Proof. We proceed by induction. Clearly, (3.2) holds when j = 0. Assume j > 0 and (3.2)

12



holds. Then
(H*y*' 1= H*((H") 1)

= (;DjH*(ln )’

QED

The following result is proved in [10] and [23]; we include a proof for expository reasons.

" /n\ (Inz)’
a3 (MR
=\
Proof. We have S =1 — H*. Therefore,
=S~ (1= H)" L.

Lemma 3.3.

But using Lemma 3.1,

QED
Define

e.(z) = z”: (n) (inz)’

|
= \i/) 7

We just proved that e, = (1 — H*)"1. The fact that the functions e, are an orthonormal
basis is already well-known. Indeed, the Laguerre polynomials

o - )5

are orthogonal polynomials of norm 1 in L?([0,00)) with weight e™*. By the change of
variables x = In %, we get immediately that e, (x) is an orthonormal basis for L?([0, 1]).
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Lemma 3.4. If f € H? extends to be analytic on a neighborhood of 1, then

A~ Y 0

Proof. 1f
By
n=0

is the power series representation of f, then by Lemma 3.3

f(z) ~ ian(i (j) ()’

n=0 7=0 ‘7'
= (nz)y Kol "
=2 G (™)

QED

As a reality check let us let us verify the formula in Lemma 2.3 using Lemma 3.4. Note
that A
g a?
(1 —a)itt

Therefore, Lemma 3.4 implies that

01—a3+1 )2
j=

—_
—_
Q1
‘M8
| —
—~
Qi
=
8
SN—
o

—_

—_
Qi

—
Q

[S—y
|
Qi

14



The formula in Lemma 3.4 reminds one of Bessel functions. Indeed,

Proposition 3.5. If f € H? extends to be analytic on a neighborhood of 1, then ® : (0,1] —
C defined by
O(x) =U"f(x), x € (0,1],

extends holomorphically to C \ (—o0,0]. Furthermore, if f_; denotes the function defined

by f-1(2) = f(—=2), then X
U'fale) = ®(=),  x€(0,1]

Proof. Observe that as f is assumed to be analytic on a neighborhood of 1, the Cauchy-
Hadamard radius of convergence formula implies that F', defined by the formula,

F(w) = 3 190) s

k=0

is an entire function. Consequently, as Lemma 3.4 implies that
O(z) =U"f(x) = F(lnx)

and Inz extends holomorphically to C \ (—o0,0], so also, ® extends holomorphically to
C\ (—o0,0].
To see the second assertion of the lemma, note using Lemma 3.4 (with f replaced with

f-1),

QED
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4 Proofs and auxiliary results

4.1 Convergence of Subspaces

Proposition 4.1. Let M,, be a sequence of closed subspaces of a Hilbert space H. The
following are equivalent.

(i) M, > M

(i1) Pum, Py — Pa in the strong operator topology on B(H), and there is no larger space
N D M such that Py, Py — Py

(iii) Pum, Pv — Pu in the weak operator topology on B(#H), and larger space N' 2 M
such that Py, Py — Py.

Proof. (i) = (ii). Let f € H. Let Py f = g. By (i), there exist g, € M,, so that ||g,—g|| — 0.
Therefore

| Prng — Pagll < llgn — gl =0,

SOPMnPM%PM SOT.

If a space N' O M existed for which Py, Py — Py, let h € N & M. Let h, = Py, h.
Then h,, € M,, and h,, — h. By (i), this means h € M, so h =0 and N' = M.

(ii) = (i). If f € M, then Py, f — f, so f € lim M,,. If there were some h = lim g, for
a sequence g, € M, then N'= M + Ch would satisfy Py, Py — Py SOT. So by (ii), this
means h € M, so M = lim M,,.

(ii) < (iii): This is because a sequence of projections in a Hilbert space converge WOT
if and only if they converge SOT. Indeed, suppose @, — @ WOT, and @) and each @), is a
projection. Then

Q= Qu)fI? = (QF f) — 2Re(Qnf, Qf) + (Quf, f) —0.
QED

4.2 Proof of Theorem 1.19

Proof. We have already shown that e, are an orthonormal basis. Clearly J is unitary, so
must be given by Theorem 1.17 for some ¢(s) and 7(s). As J1 = 1, we have 7(0) = 0 and
c(0) =1. As J?2 =1, we have 7(7(s)) = s and ¢(7(s))c(s) = 1.

So 7 is an automorphism of S that fixes 0 and is period 2. Once we know 7/(0), this will
uniquely determine 7. To calculate 7/(0), note that

0
er(r) = 14+ —2°|s=0.

0s
Therefore
Jey(x) = -1+ 9 [c(s)xT(s)}
Os s=0
= 1+(0)+¢(0)7(0)Inz.
This yields 7/(0) = —1, so (1.21) hold. QED
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4.3 Proof of Corollary 1.14
Lemma 4.2. Suppose T is a bounded monomial operator given by

Tz® = c(s)z™®. (4.3)
Then 7 is a holomorphic function from S to S, and ¢ is a holomorphic function on S.

Proof. The map s + z* is a holomorphic map from S to L?([0, 1]). Therefore, for each t € S,
the map
c(s)

s = (2%, TFx") =

1+7(s)+t
is holomorphic. Letting £ = 0 and 1 and taking the quotient, we get
2+4+7(s) N 1
L+7(s) 14 7(s)

is a meromorphic function of s. Hence 7 is meromorphic in S. Moreover, 7 cannot have a pole,
since otherwise in a neighborhood of this pole it would take on all values in a neighborhood
of 0o, including ones not in S. Therefore 7 is holomorphic, and consequently so is ¢(s) since
we have

o(s) = (1+7()(@" T"0).
QED

Proof. (Of Corollary 1.14). If 7' maps Lat(H) to Lat(H), it must be a monomial operator,
since each monomial functions spans a one-dimensional H-invariant subspace.

Conversely, suppose T is a monomial operator given by (4.3), and M € Lat(H). By
Lemma 4.2, the function 7 is a holomorphic map from S to S. Define the function ¢ €
H>(D(1,1)) by

1
¢(z) = T4 (=)
Then for every s € S we have
(|
¢(1——|—8) C1+7(s)
Therefore HT' = T'¢(H ), since they agree on all monomials, so HTM = T¢(H)M C TM,
as required. QED

Remark 4.4. We used the fact that if ¢ € H*(D(1,1)) then ¢(H) is a bounded operator.
We define ¢(H) to be the monomial operator

S 1 S
O(H):2® — ¢(1+8)x .
This will be bounded by M if and only if M? — ¢(H)*¢(H) > 0, which is equivalent to
M? — ¢(35)9(5)
I+s+t

The fact that (4.5) is equivalent to the assertion that ¢ has norm at most M in H*(D(1,1))
is, after a change of variables, the content of Pick’s theorem [26].

> 0. (4.5)
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4.4 Proof of Theorem 1.22

Proof. Let T be a unitary monomial operator, given by
Tz® = c¢(s)z™™. (4.6)

By Theorem 1.17, we know that 7 is a holomorphic automorphism of S. It is well-known
that holomorphic automorphisms of the upper half plane are given by linear fractional trans-
formations with coefficients from SL(2,R). So any holomorphic automorphism of S is of the

form A( 1) 5
S + 5) Z 1
_ _Z 4.7
7(s) iC(s+3)+D 2 (4.7)

where é IB)) is in SL(2,R). Let o(s) = 175;-
Case (i): 7(00) = oo. Then 7 is of the form 7(s) = as +  + 7, where a > 0, 3,7 € R,

1
and f = 251 As T is given by (4.6) and

c(s) = ¢ 1+B+as+h _ Cov
- 1+s -
we have
T:2° — coaz’z.
Therefore
T: f(z) — coax’f(z®).
Therefore )
T LQ([pv 1]) = Lz[pa7 1] = A17ilog%'
Case (ii): 7(c0) = —3. Then ¢ o 7(c0) = 0. So by Case (i), we have

JT L¥([p.1]) = Arw

for some w. Therefore
T L(p 1) = Ay

Case (iii) 7(c0) = —4 + id. Then

My—isT - 2° v &(s)z™®),

where 7(c0) = —3. By Case (ii), we have
T L2([p, 1]) = zi‘SA—l,w’ = AT,wa
for 7= 201 and w = #'

Uniqueness of representation: We need to show that if A,, = A, ,, then 7 = 7 and
w’ = w. Observe that if U is a unitary, and Py f = g, then PuyUf = Ug.
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Let us calculate Py, 2° If 7 =1, then
PAl,wa = X[672w,1]$57

and

S 1 —2zW €S
|Pa, ,2°|I” = 1T 9Res [1— gm2wleaRes)] (4.8)

Otherwise, 7 = 28+ for some § € R. Then

Py, ,a° = MysJPy, ,Jo* "

From (1.21),
. 1 —s5+1id
Jrs0 — _— T2,
o 1+ 25— 2i6 "
Therefore
[Pa. 2P = [P, Jo* "
1 ! :
2R, —s+1id

— : 2R T
|1 + 28 - 225|2 e—Qw/

When s = u + v , this gives

<112 1 —ow’ Li-2u 5
1Pa P = g |1 - ¢ T (4.9)

Comparing (4.8) and (4.9), we see that 7 and w are completely determined by ||Pa, ,z*|>.
QED

5 Proofs using Hardy space theory

Although Theorems 1.16 and 1.23 are stated without using the language of Hardy spaces,
the authors do not know how to prove them directly.

5.1 Proof of 1.16

Proof. Let M be in Lat(H). Define a sequence S C S by S = {s: (f,2°) =0V f € M}.
The number s will occur in .S with multiplicity m where m is the largest number so that
M L A{a* (Inz)z®, ..., (Inz)™ Tz} Let Mo = M(S).

To see that M = Mg + M, for some singular space M, we use the Sarason transform
to move to H?. Then M becomes (BSH?)*, where B is a Blaschke product and S is a
singular inner function. As BSH? = BH?* N SH?, we have

(BSH*)* = (BH?)* + (SH?)L,

and M is the inverse Sarason transform of (SH?)*. QED
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5.2 Proof of 1.23

Let S:,, denote the singular inner function

Srw(z) = exp (—wT il Z) :

T —Z

Let U : L?> — H? be the Sarason transform. By Lemma 2.11 we have that
UALU* = (S1wH?) "
We wish to extend this to other values of 7.

Lemma 5.1.
UM icU*(S_14) = FS:ruw, (5.2)

where 7 = 2i¢tL "y = —L 4w/ and F(z) = exp(—2icw)

2ic—1" 1+4c2 1+ic—icz "

— -

Proof. Observe first that M, is a unitary operator that takes k, to ¢(a)ky(q), where

1
o) = 1+ ic —icz
(1 —ic)z +ic
¥(z) = 1+ic—icz
Therefore -
foic = C’ZZJM(Z’

and so -
We have

Cosorule) = o (0 0.

—1-9(2)

A calculation shows that

—14+9Y(z) 1 74z  2ic
—1—(z) 144 71—z 1+4c
Therefore CyS_1,4,/(2) is a unimodular constant times S ,,, and (5.2) holds. QED
Lemma 5.4. .
UA,,U* = (S:.H?)" . (5.5)
Proof. We have already proved the case 7 = 1, so assume 7 # 1. Consider next 7 = —1.
Then
UA_, U = UJA LU"
= UJU'UA, ,U"

— UJU (S ,H?)".
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As UJU*f(z) = f(—=z), we have
UJU* (S1uH?) = (S_1,H?),
SO
UJU* (S1H?) " = (S_1,H?)".
For 7 # +1, we have, with ¢ and ¢ as in (5.3) and F as in Lemma 5.1,
UA: U = UMucJAL, U
= UM,U* (S_1,,H?)

{6(2)F(2)Srw(2)h(¥(2)) - h € H?}.
As I and ¢ are outer and v is an automorphism of D, this proves that

VAU = S:H?,
and hence (5.5). QED
Proof. (Of Theorem 1.23.) From Lemma 5.4, we have, for distinct points 7,

n

U M(i wkdﬂ'k) ur = Z (‘97'kﬂv1c[{2)L

k=1 k=1

- ((H o) H2> .

k=1
Suppose that p, — p weak-*, where p and each pu, are singular. Define singular inner
functions by

pn(z) = exp [— / Z:—fzdun(e)l
p(z) = exp [— / jzzdu(e)].

Then ||, — ||z — 0. Indeed, ¢, tends to ¢ weakly in H?, since the functions all have
norm 1 and converge pointwise on D. Therefore

len —@l> = 2—2Re{(pn, )
— 0.

This means that not only do the Toeplitz operators T;; converge to 1 in the strong operator
topology, but T, T3, converges to 7,7 SOT. This is proved in [25, p. 34]; for the convenience
of the reader, we include the proof. Let f € H?. Then

1TeTo f = ToTof |l < T (T, = To) fIl + [(Te, = To)TR) |

3
< sup lonllu=|(Ts, — Tl + ( / Iwn—90|2|T¢f|2> .

The first term tends to zero because T tends to Tj; in the SOT, and the second term
tends to 0 because ¢, tends to ¢ in measure and |, — ¢| < 2. As T, T is the projection
onto (i, H*)*, this means by Proposition 4.1 that the spaces (0, H*)* converge to (¢H?)*.
Applying the inverse Sarason transform, we conclude that M (u,,) converges to M(u). QED
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