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Abstract

We define a monomial space to be a subspace of L2([0, 1]) that can be approximated
by spaces that are spanned by monomial functions. We describe the structure of
monomial spaces.

1 Introduction

What sorts of subspaces in L2([0, 1]) can be limits of spans of monomials? Specifically, let

S = {s ∈ C | Re s > −1

2
},

so that s ∈ S if and only if xs ∈ L2([0, 1]). For S a finite subset of S we letM(S) denote the
span in L2([0, 1]) of the monomials whose exponents lie in S, i.e.,

M(S) = {
∑
s∈S

a(s)xs | a : S → C}.

We refer to sets in L2([0, 1]) that have the form M(S) for some finite subset S of S as finite
monomial spaces. We are interested in what the limits of such spaces are.

Definition 1.1. IfM is a subspace of a Hilbert space H and {Mn} is a sequence of closed
subspaces, we say that {Mn} tends to M and write

Mn →M as n→∞

if
M = {f ∈ H | lim

n→∞
dist(f,Mn) = 0}.

There are alternative ways to frame this definition; see Proposition 4.1.

Definition 1.2. We say that a subspace M of L2([0, 1]) is a monomial space if there exists
a sequence {Mn} of finite monomial spaces such that Mn →M.

The goal of this paper is to study monomial spaces, which have a rich structure and are
intimately related to the Müntz-Szasz theorem and generalizations thereof.
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1.1 Monotone Monomial Spaces

In this subsection we recall several classical results that can be interpreted as facts about
monomial spaces. In each example we consider there is a limitMn →M of finite monomial
spaces that is monotone, i.e.,

Mi ⊆Mj whenever i ≤ j.

For a detailed account of the results in this section, see [4] and [7].

Example 1.3. The Weierstrass Approximation Theorem Let Sn = {0, 1, 2, . . . , n}.
The Weierstrass Theorem, which implies that the polynomials are dense in L2([0, 1]) implies
that

M(Sn)→ L2([0, 1]).

In particular, L2([0, 1]) is a monomial space.

Example 1.4. Classical Müntz-Szász Theorem This was proved in [24, 28]. Fix a
strictly increasing sequence of nonnegative integers s0, s1, s2, . . . , and let

Sn = {s0, s1, . . . , sn}.

Then there exists a space M such that

S(Mn)→M.

Furthermore,

M = L2([0, 1]) if and only if
∞∑
k=1

1

sk
=∞.

Example 1.5. Szász’s Theorem (real case), (a.k.a Full Müntz-Szász Theorem in
L2([0,1])). This was proved in [29]. Fix a sequence of distinct real numbers s0, s1, s2, . . . , in
S and let

Sn = {s0, s1, . . . , sn}.

Then there exists a space M such that

M(Sn)→M.

Furthermore,

M = L2([0, 1]) if and only if
∞∑
k=0

2sk + 1

(2sk + 1)2 + 1
=∞.

Example 1.6. Szász’s Theorem (complex case) Any of the proofs known to the authors
of the previous example, including Szász’s original proof, can be adapted to show that if
s0, s1, s2, . . . , is a sequence of distinct points in S and

Sn = {s0, s1, . . . , sn},
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then there exists a space M such that

M(Sn)→M,

and where,

M = L2([0, 1]) if and only if
∞∑
k=1

2 Re sk + 1

|sk + 1|2
=∞.

What happens in the above examples when M 6= L2([0, 1])?

Example 1.7. The Clarkson-Erdős Theorem. With the setup of Example 1.4, assume
thatM 6= L2([0, 1]). Then Clarkson and Erdős proved in [12] that the elements ofM extend
to be analytic on D! Furthermore, if f ∈M, then f has a power series representation of the
form

f(z) =
∞∑
k=0

akz
sk , z ∈ D.

This result was generalized to arbitrary real powers in (−1
2
,∞) by Erdélyi and Johnson [16],

who showed that if M 6= L2([0, 1]), then every f in M is analytic in D \ (−1, 0]

In honor of this remarkable theorem we introduce the following definition.

Definition 1.8. We say thatM is a Clarkson-Erdős space if there exist a sequence {s0, s1, . . .}
in S of distinct points such that

M({s0, s1, . . . , sn})→M

where M 6= L2([0, 1]).

We want to allow for multiplicities. If an entry s is repeated in a sequence, this corre-
sponds to multiplicity in the following way. The first occurrence of s in Sn gives the function
xs in Mn. The second occurrence gives ∂

∂s
xs = xs log x. If s occurs k times, then Mn con-

tains the functions xs, xs log x, . . . , xs(log x)k−1. This leads to the following generalization of
a Clarkson-Erdős space.

Definition 1.9. We say that M is an Erdélyi-Johnson space if there exist a sequence
{s0, s1, . . .} in S, with multiplicities allowed, such that

M({s0, s1, . . . , sn})→M

where M 6= L2([0, 1]).

1.2 A Non-monotone Monomial Space

In the study of monomial spaces it is natural to consider the class of monomial operators,
i.e., the class of bounded operators T acting on L2([0, 1]) that take monomials to monomials,
i.e.,

∀s∈S ∃τ∈S ∃c∈C Txs = cxτ . (1.10)

In [2] the authors studied the special case wherein it is assumed that there exists a fixed
number m such that in (1.10) τ can be chosen to equal s + m for all s. We call these flat
monomial operators. In the course of proving that flat monomial operators leave L2([a, 1])
invariant for each a ∈ [0, 1], the authors discovered the following example.
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Example 1.11. Fix ρ ∈ [0, 1] and choose an increasing sequence of integers N1, N2, . . . such
that

lim
n→∞

n

n+Nn

=
√
ρ.

If
Sn = {n+ 1, n+ 2, . . . , n+Nn},

then
M(Sn)→ L2([ρ, 1]).

In particular, L2([ρ, 1]) is a monomial space for each ρ ∈ [0, 1], where here and afterwards
we identify L2([ρ, 1]) with the subspace of L2([0, 1]) consisting of functions that vanish a.e.
on [0, ρ].

1.3 Characterization of monomial spaces

The Hardy operator H : L2([0, 1])→ L2([0, 1]) is defined by

Hf(x) =
1

x

∫ x

0

f(t)dt. (1.12)

This was introduced by Hardy in [21], where he proved it was bounded. As Hxs = 1
s+1

xs for
all s ∈ S, the Hardy operator leaves invariant every monomial space. The converse is true.

Theorem 1.13. A closed subspace of L2([0, 1]) is a monomial space if and only if it is
invariant for H.

A proof of 1.13 that uses real analysis techniques is given in [1].

Corollary 1.14. A bounded operator T on L2([0, 1]) is a monomial operator if and only if
for every M∈ Lat(H), the space TM is in Lat(H).

1.4 A Decomposition Theorem

Definition 1.15. We say a space M in L2([0, 1]) is a singular space if M is a monomial
space that does not contain any Clarkson-Erdős space.

Theorem 1.16. Every monomial space M has a unique decomposition,

M =M0 +M1,

where M0 is an Erdélyi-Johnson space and M1 is a singular space.

1.5 Atomic Spaces

Unitary monomial operators can be characterized using a theorem of Bourdon and Narayan
[8]. Their description is equivalent to the following reformulation, from [3].
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Theorem 1.17. The operator
T : xs 7→ c(s)xτ(s)

is a unitary map from L2([0, 1]) to L2([0, 1]) if and only if τ is a holomorphic automorphism
of S and c is given by

c(s) = c0
1 + τ(0) + τ(s)

1 + s
,

where c0 is a constant satisfying

|c0| =
1√

1 + 2Re τ(0)
.

Definition 1.18. We say a space M in L2([0, 1]) is atomic if there exist ρ ∈ (0, 1) and a
unitary monomial operator T such that M = TL2([ρ, 1]).

We can describe all atomic spaces in the following way.

Theorem 1.19. The functions

en(x) =
n∑
k=0

(
n

k

)
(ln x)k

k!
, n ≥ 0. (1.20)

form an orthonormal basis for L2([0, 1]). Furthermore, the operator J defined on L2([0, 1])
by requiring

J(en) =

{
en if n is even
−en if n is odd

is a unitary monomial operator, corresponding to the choice

τ(s) =
−s

1 + 2s
, c(s) =

1

1 + 2s
(1.21)

in Theorem 1.17.

The polynomials

pn(t) =
n∑
k=0

(
n

k

)
(t)k

k!
, n ≥ 0,

are the Laguerre polynomials. They are the orthogonal polynomials on [0,∞) for the measure
e−tdt. Under the change of variables x = e−t they become the functions en in (1.20). Their
connection to the Hardy operator was shown in [10, 23].

If c is real, the multiplication operator Mxic is also a unitary monomial operator. These
two operators can be used to build the general atomic space.

1. For any w > 0, define
A1,w := L2([e−2w, 1]).

2. Define
A−1,w := J A1,w
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3. For any τ ∈ T \ {1}, define

Aτ,w := Mxic A−1,w′ , where 2ic =
τ + 1

τ − 1
, w′ = (1 + 4c2)w.

(The reason for the strange scaling is to simplify the formulas in Section 5). Atomic spaces
are all of the form Aτ,w.

Theorem 1.22. Every atomic space is equal to Aτ,w for exactly one pair (τ, w) ∈ T×(0,∞).

1.6 The Structure of Singular Spaces

Say M is finitely atomic if M is a finite sum of atomic spaces. If

µ =
n∑
k=1

wk δτk

is a finitely atomic measure on T, with distinct atoms τk, we define a finitely atomic space
in L2([0, 1]) by the formula

M(µ) =
n∑
k=1

Aτk,wk

Theorem 1.23. The assignment µ 7→ M(µ) extends by weak-* sequential continuity to a
map from the positive singular Borel measures on T into closed subspaces of L2([0, 1]). When
extended,

µn → µ weak-* =⇒ M(µn)→M(µ).

1.7 The main idea

It was proved by Brown, Halmos and Shields [10] that the Hardy operator is unitarily
equivalent to 1− S∗, where S is the unilateral shift, via a unitary U : L2([0, 1])→ H2 which
we call the Sarason transform, described in Section 2. It follows that the invariant subspaces
of H can be described by Beurling’s theorem [6] in terms of model spaces, the invariant
subspaces for the backward shift described for example in [19]. However, all the theorems
above have been stated in terms that are intrinsic to L2([0, 1]). We believe that finding
proofs that are also intrinsic to L2([0, 1]) will illuminate this space with a new light. So far,
the authors have only succeeded in doing this for some of these results.

Open Problem 1.24. Find real analysis proofs to Theorems 1.16 and 1.23.

2 The Sarason Transform

2.1 The Definition

We let kα denote the Szegö kernel function for H2, the classical Hardy space of square
integrable functions on D, i.e.,

kα(z) =
1

1− ᾱz
, z ∈ D.
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As the monomials are linearly independant in L2([0, 1]), there is a well defined map L
defined on polynomials in L2([0, 1]) into H2 defined by the formula

L(
N∑
n=0

anx
n) =

N∑
n=0

an
1

n+ 1
k n
n+1

Noting that
〈L(xi) , L(xj) 〉H2 = 〈 xi , xj 〉L2([0,1])

for all nonnegative integers i and j, it follows that

〈L(p) , L(q) 〉H2 = 〈 p , q 〉L2([0,1])

for all polynomials p and q, i.e., L is isometric. Hence, as the polynomials are dense in
L2([0, 1]), L has a unique extension to an isometry U defined on all of L2([0, 1]). Finally,
noting that

{ n

n+ 1
|n is a nonegative integer}

is a set of uniqueness for H2, it follows that the range of L is dense in H2, which implies that
U is a unitary transformation from L2([0, 1]) onto H2.

Definition 2.1. We let U denote the unique unitary transformation from L2([0, 1]) onto H2

that satisfies

U(xn) =
1

n+ 1
k n
n+1

for all nonnegative integers n.

We call U the Sarason transform, as it is similar to the transform from L2([0,∞)) onto
H2 used in [27].

2.2 Moments in L2([0, 1]) and Interpolation in H2

As the monomials are dense in L2([0, 1]), a function f ∈ L2([0, 1]) is uniquely determined by
its moment sequence ∫ 1

0

xn f(x)dx, n = 0, 1, . . . .

Similarly, as the sequence {1 − 1
n+1
|n = 0, 1, . . .} is a set of uniqueness for H2, a function

h ∈ H2 is the unique solution g in H2 to the interpolation problem

g(
n

n+ 1
) = h(

n

n+ 1
), n = 0, 1, . . .

The following proposition follows immediately from Definition 2.1.

Proposition 2.2. Fix a sequence of complex numbers w0, w1, w2, . . .. If f in L2([0, 1]) solves
the moment problem ∫ 1

0

xn f(x) dx = wn, n = 0, 1, . . . ,
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then Uf ∈ H2 and solves the interpolation problem

Uf(
n

n+ 1
) = (n+ 1)wn, n = 0, 1, . . . .

If h ∈ H2 solves the interpolation problem

h(
n

n+ 1
) = wn, n = 0, 1, . . . ,

then U∗h ∈ L2([0, 1]) and solves the moment problem∫ 1

0

xn U∗h(x) dx =
1

n+ 1
wn, n = 0, 1, . . . .

The correspondence between moments and interpolation described in the preceding propo-
sition allows us to easily calculate the Sarason transform of many common functions. We
illustrate this with the following two lemmas.

Lemma 2.3. If α ∈ D, then

U∗(kα)(x) =
1

1− ᾱ
x

ᾱ
1−ᾱ , x ∈ [0, 1]. (2.4)

If Re β > −1
2
, then

U(xβ) =
1

β + 1
k β̄
β̄+1

.

Proof. We note that the two assertions of the lemma are equivalent. Therefore it suffices
to prove (2.4). Since the left and right hand sides of (2.4) are in L2([0, 1]), to show (2.4) it
suffices to show that for each n ≥ 0

〈 xn , U∗kα 〉L2([0,1]) = 〈 xn , 1

1− ᾱ
x

ᾱ
1−ᾱ 〉L2([0,1]).

But

〈 xn , 1

1− ᾱ
x

ᾱ
1−ᾱ 〉L2([0,1]) =

1

1− α
〈 xn , x

ᾱ
1−ᾱ 〉L2([0,1])

=
1

1− α

∫ 1

0

xn x
ᾱ

1−ᾱ dx

=
1

1− α
1

n+ α
1−α + 1

=
1

n+ 1

1

1− n
n+1

α

=
1

n+ 1
k n
n+1

(α)

= (Uxn)(α)

= 〈Uxn , kα 〉H2

= 〈 xn , U∗kα 〉L2([0,1])

QED
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For S a measurable set in [0, 1] let χS denote the characteristic function of S.

Lemma 2.5. If s ∈ [0, 1], then

Uχ[0,s](z) =
√
s e

1
2

ln s 1+z
1−z (2.6)

Proof. We first observe that

sn+1

n+ 1
=

∫ s

0

xn dx

= 〈χ[0,s] , x
n 〉L2([0,1])

= 〈Uχ[0,s] , Ux
n 〉H2

= 〈Uχ[0,s] ,
1

n+ 1
k n
n+1
〉H2

=
1

n+ 1
Uχ[0,s](

n

n+ 1
),

so that
Uχ[0,s](

n

n+ 1
) = sn+1

for all n ≥ 0. On the other hand if for w > 0 we let Ew denote the singular inner function
defined by

Ew(z) = e−w
1+z
1−z = ewe−

2w
1−z ,

we have that

Ew(
n

n+ 1
) = ewe−2w(n+1) = ew(e−2w)n+1

for all n ≥ 0. Hence if we choose w = −1
2

ln s,

Uχ[0,s](
n

n+ 1
) = e−wEw(

n

n+ 1
)

for all n ≥ 0. Since {1− 1
n+1
|n ≥ 0} is a set of uniqueness for H2, it follows that

Uχ[0,s](z) = e−wEw(z)

for all z ∈ D, which implies (2.6). QED

2.3 A Formula for the Sarason Transform

Proposition 2.7. If f ∈ L2([0, 1]), then

Uf(z) =
1

1− z

∫ 1

0

f(x)x
z

1−z dx

for all z ∈ D.

9



Proof.

Uf(z) = 〈Uf , kz 〉H2

= 〈 f , U∗kz 〉L2([0,1])

(Lemma(2.3)) = 〈 f , 1

1− z̄
x

z̄
1−z̄ 〉L2([0,1])

=
1

1− z

∫ 1

0

f(x)x
z

1−z dx

QED

To obtain a nonrigorous, but highly interesting proof of the proposition, let us define the
Sarason Transform of a measure µ on [0, 1], S{µ}, to be the holomorphic function

S{µ}(z) =
1

1− z

∫
x

z
1−z dµ(x), |z| < 1.

Note that
S(χ[0,s]) =

√
s eln

√
s 1+z

1−z = U(χ[0,s]).

We have

S{δs} =
1

1− z
s

1
1−z−1 =

1

1− z
s

z
1−z .

So formally we get

Uf = S(

∫ 1

0

f(x)δx dx) =

∫ 1

0

f(x)S(δx) dx =

∫ 1

0

f(x)
1

1− z
x

z
1−z dx,

the formula in Proposition 2.17.

2.4 Transforms of H, V and X

The Hardy operator H was defined by (1.12). Let X denote multiplication by x on L2([0, 1]),
and define the Volterra operator V : L2([0, 1])→ L2([0, 1]) by V = XH, so

V f(x) =

∫ x

0

f(t)dt.

All three of these are monomial operators, and have simple descriptions in terms of mono-
mials.

H : xn 7→ 1

n+ 1
xn

X : xn 7→ xn+1

V : xn 7→ 1

n+ 1
xn+1.

If T is a bounded operator on L2([0, 1]), let us write T̂ = UTU∗ for the unitarily equivalent
operator on H2. Monomial operators then become operators that map kernel functions to
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multiples of other kernel functions, which are adjoints of weighted composition operators.
For more about weighted composition operators, see e.g. [17, 13, 22, 14, 8, 5, 11].

We shall let Mg denote the operator of multiplication by g, and Cβ denote composition
with β. It was observed in [20] that it is possible for the product MgCβ to be bounded even
when Mg is not. The following theorem is proved in [3].

Theorem 2.8. The operator T : L2([0, 1]) → L2([0, 1]) is a monomial operator if and only

if T̂ ∗ : H2 → H2 is a bounded operator of the form MgCβ for some holomorphic β : D → D
and some g ∈ H2.

Let γ(z) = 1
2−z . This maps D to D, and maps n

n+1
to n+1

n+2
. Using Lemma 2.3 and the

preceding formulas, it is easy to verify the following. We shall let S denote the unilateral
shift, the operator of multiplication by z on H2.

Proposition 2.9. We have

Ĥ = 1− S∗

X̂ = S∗C∗γ

V̂ = (1− S∗)C∗γ .

The fact that 1−H is unitarily equivalent to a backward shift operator was first proved in
[10], and a proof similar to ours is in [23]. In [18] Fricain and Lefévre study other properties
that can be ported between L2[0, 1] and the Hardy space via the Sarason transform (they
actually look at the Hardy space of the right-half plane).

2.5 The Sarason Transform and Lat(V )

The invariant subspaces of the Volterra operator were described by Brodskii [9] and Donoghue
[15].

Theorem 2.10. The space M ⊆ L2([0, 1]) is a closed invariant subspace for V if and only
if M = L2([ρ, 1]) for some ρ ∈ [0, 1].

How do these spaces transform under the Sarason Transform?
For s ∈ (0, 1] let Φs be the singular inner function defined by

Φs(z) = e
1
2

ln s 1+z
1−z , z ∈ D.

For s ∈ [0, 1], define orthogonal projections P±s on L2([0, 1]) by the formulas

P−s f = χ[0,s]f and P+
s f = χ[s,1]f, f ∈ L2([0, 1]).

Lemma 2.11.
U ranP−s = ΦsH

2 and U ranP+
s = ΦsH

2⊥

Proof. As ranP−s is invariant for H∗, it follows from Proposition 2.9 that U ranP−s is invari-
ant for the shift S, and is therefore of the form uH2 for some inner function u by Berurling’s
theorem [6]. Moreover, u is a constant multiple of the projection of 1 onto the invariant
subspace. By Lemma 2.5, the projection of 1 is

√
sΦs, so u = Φs. QED
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2.6 The Sarason Transform and the Laplace Transform

Recall that the Laplace Transform is defined by the formula

L{f}(s) =

∫ ∞
0

e−stf(t)dt.

Further, if for f ∈ L2([0, 1]) we define f∼ by the formula

f∼(t) = e−
t
2f(e−t), t ∈ (o,∞),

then the assignment f 7→ f∼ is a Hilbert space isomorphism from L2([0, 1]) onto L2(0,∞).
By making the substitution x = e−t we find that∫ 1

0

f(x)x
z

1−z dx =

∫ 0

∞
f(e−t) e−t

z
1−z (−e−t) dt

=

∫ ∞
0

e−
t
2f(e−t) e−t(

z
1−z+ 1

2
) dt

=

∫ ∞
0

f∼(t) e−t(
1
2

1+z
1−z ) dt

= L{f∼}(1

2

1 + z

1− z
).

Hence,

Uf(z) =
1

1− z
L{f∼}(1

2

1 + z

1− z
).

So after changes of variable from L2([0, 1]) of the disc to L2(0,∞) and from H2 to H2 of
the right half plane, the Sarason Transform is simply the Laplace Transform.

3 The Inverse Sarason Transform

We know from Proposition 2.9 that 1−H∗ is unitarily equivalent to the unilateral shift. Let
us find what the orthonormal basis zn in H2 corresponds to. This was first done in [10],
and studied further in [23]. In this section we shall use the notation φ ∼ g to mean that the
function f ∈ L2([0, 1]) is mapped to φ ∈ H2 by the Sarason transform.

Lemma 3.1.

(H∗)j 1 = (−1)j
(ln x)j

j!
(3.2)

Proof. We proceed by induction. Clearly, (3.2) holds when j = 0. Assume j ≥ 0 and (3.2)
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holds. Then

(H∗)j+1 1 = H∗((H∗)j 1)

=
(−1)j

j!
H∗(ln x)j

=
(−1)j

j!

∫ 1

x

(ln t)j

t
dt

=
(−1)j

j!

∫ 0

lnx

ujdu

= (−1)j+1 (ln x)j+1

(j + 1)!

QED

The following result is proved in [10] and [23]; we include a proof for expository reasons.

Lemma 3.3.

zn ∼
n∑
j=0

(
n

j

)
(ln x)j

j!

Proof. We have S = 1− Ĥ∗. Therefore,

zn = Sn 1 ∼ (1−H∗)n 1.

But using Lemma 3.1,

(1−H∗)n 1 =
n∑
j=0

(−1)j
(
n

j

)
(H∗)j 1

=
n∑
j=0

(−1)j
(
n

j

)(
(−1)j

(ln x)j

j!

)
=

n∑
j=0

(
n

j

)
(ln x)j

j!
.

QED

Define

en(x) =
n∑
j=0

(
n

j

)
(ln x)j

j!
.

We just proved that en = (1 − H∗)n1. The fact that the functions en are an orthonormal
basis is already well-known. Indeed, the Laguerre polynomials

pn(t) =
n∑
j=0

(
n

j

)
(−t)j

j!

are orthogonal polynomials of norm 1 in L2([0,∞)) with weight e−t. By the change of
variables x = ln 1

t
, we get immediately that en(x) is an orthonormal basis for L2([0, 1]).
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Lemma 3.4. If f ∈ H2 extends to be analytic on a neighborhood of 1, then

f(z) ∼
∞∑
j=0

f (j)(1)
(ln x)j

(j!)2

Proof. If

f(z) =
∞∑
n=0

anz
n

is the power series representation of f , then by Lemma 3.3

f(z) ∼
∞∑
n=0

an
( n∑
j=0

(
n

j

)
(ln x)j

j!

)

=
∞∑
j=0

(ln x)j

(j!)2

( ∞∑
n=j

n!

(n− j)!
an
)

=
∞∑
j=0

f (j)(1)
(ln x)j

(j!)2
.

QED

As a reality check let us let us verify the formula in Lemma 2.3 using Lemma 3.4. Note
that

k(j)
α (1) =

j! ᾱj

(1− ᾱ)j+1

Therefore, Lemma 3.4 implies that

kα(z) ∼
∞∑
j=0

j! ᾱj

(1− ᾱ)j+1

(ln x)j

(j!)2

=
1

1− ᾱ

∞∑
j=0

1

j!

( ᾱ

1− ᾱ
lnx
)j

=
1

1− ᾱ
e

ᾱ
1−ᾱ lnx

=
1

1− ᾱ
x

ᾱ
1−ᾱ .
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The formula in Lemma 3.4 reminds one of Bessel functions. Indeed,

ez−1 ∼
∞∑
j=0

(ln x)j

(j!)2

=
∞∑
j=0

(−1)j

(j!)2
(− lnx)j

=
∞∑
j=0

(−1)j

(j!)2

(√lnx−4

2

)2j

= J0

(√
lnx−4

)
Proposition 3.5. If f ∈ H2 extends to be analytic on a neighborhood of 1, then Φ : (0, 1]→
C defined by

Φ(x) = U∗f(x), x ∈ (0, 1],

extends holomorphically to C \ (−∞, 0]. Furthermore, if f−1 denotes the function defined
by f−1(z) = f(−z), then

U∗f−1(x) = Φ(
1

x
), x ∈ (0, 1].

Proof. Observe that as f is assumed to be analytic on a neighborhood of 1, the Cauchy-
Hadamard radius of convergence formula implies that F , defined by the formula,

F (w) =
∞∑
k=0

f (k)(1)
wk

(k!)2
,

is an entire function. Consequently, as Lemma 3.4 implies that

Φ(x) = U∗f(x) = F (ln x)

and ln x extends holomorphically to C \ (−∞, 0], so also, Φ extends holomorphically to
C \ (−∞, 0].

To see the second assertion of the lemma, note using Lemma 3.4 (with f replaced with
f−1),

U∗f−1(x) =
∞∑
k=0

f
(k)
−1 (1)

(ln x)k

(k!)2

=
∞∑
k=0

f (k)(1)
(ln x)k

(k!)2

QED
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4 Proofs and auxiliary results

4.1 Convergence of Subspaces

Proposition 4.1. Let Mn be a sequence of closed subspaces of a Hilbert space H. The
following are equivalent.

(i) Mn →M
(ii) PMnPM → PM in the strong operator topology on B(H), and there is no larger space

N )M such that PMnPN → PN .
(iii) PMnPM → PM in the weak operator topology on B(H), and larger space N )M

such that PMnPN → PN .

Proof. (i)⇒ (ii). Let f ∈ H. Let PMf = g. By (i), there exist gn ∈Mn so that ‖gn−g‖ → 0.
Therefore

‖PMng − PMg‖ ≤ ‖gn − g‖ → 0,

so PMnPM → PM SOT.
If a space N ⊇ M existed for which PMnPN → PN , let h ∈ N 	M. Let hn = PMnh.

Then hn ∈Mn and hn → h. By (i), this means h ∈M, so h = 0 and N =M.
(ii) ⇒ (i). If f ∈M, then PMnf → f , so f ∈ limMn. If there were some h = lim gn for

a sequence gn ∈ Mn, then N =M+ Ch would satisfy PMnPN → PN SOT. So by (ii), this
means h ∈M, so M = limMn.

(ii) ⇔ (iii): This is because a sequence of projections in a Hilbert space converge WOT
if and only if they converge SOT. Indeed, suppose Qn → Q WOT, and Q and each Qn is a
projection. Then

‖(Q−Qn)f‖2 = 〈Qf, f〉 − 2Re 〈Qnf,Qf〉+ 〈Qnf, f〉 → 0.

QED

4.2 Proof of Theorem 1.19

Proof. We have already shown that en are an orthonormal basis. Clearly J is unitary, so
must be given by Theorem 1.17 for some c(s) and τ(s). As J1 = 1, we have τ(0) = 0 and
c(0) = 1. As J2 = 1, we have τ(τ(s)) = s and c(τ(s))c(s) = 1.

So τ is an automorphism of S that fixes 0 and is period 2. Once we know τ ′(0), this will
uniquely determine τ . To calculate τ ′(0), note that

e1(x) = 1 +
∂

∂s
xs|s=0.

Therefore

Je1(x) = −1 +
∂

∂s

[
c(s)xτ(s)

]
s=0

= 1 + c′(0) + c(0)τ ′(0) ln x.

This yields τ ′(0) = −1, so (1.21) hold. QED
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4.3 Proof of Corollary 1.14

Lemma 4.2. Suppose T is a bounded monomial operator given by

Txs = c(s)xτ(s). (4.3)

Then τ is a holomorphic function from S to S, and c is a holomorphic function on S.

Proof. The map s 7→ xs is a holomorphic map from S to L2([0, 1]). Therefore, for each t ∈ S,
the map

s 7→ 〈xs, T ∗xt〉 =
c(s)

1 + τ(s) + t̄

is holomorphic. Letting t = 0 and 1 and taking the quotient, we get

2 + τ(s)

1 + τ(s)
= 1 +

1

1 + τ(s)

is a meromorphic function of s. Hence τ is meromorphic in S. Moreover, τ cannot have a pole,
since otherwise in a neighborhood of this pole it would take on all values in a neighborhood
of ∞, including ones not in S. Therefore τ is holomorphic, and consequently so is c(s) since
we have

c(s) = (1 + τ(s))〈xs, T ∗1〉.
QED

Proof. (Of Corollary 1.14). If T maps Lat(H) to Lat(H), it must be a monomial operator,
since each monomial functions spans a one-dimensional H-invariant subspace.

Conversely, suppose T is a monomial operator given by (4.3), and M ∈ Lat(H). By
Lemma 4.2, the function τ is a holomorphic map from S to S. Define the function φ ∈
H∞(D(1, 1)) by

φ(z) =
1

1 + τ(1−z
z

)
.

Then for every s ∈ S we have

φ(
1

1 + s
) =

1

1 + τ(s)
.

Therefore HT = Tφ(H), since they agree on all monomials, so HTM = Tφ(H)M ⊆ TM,
as required. QED

Remark 4.4. We used the fact that if φ ∈ H∞(D(1, 1)) then φ(H) is a bounded operator.
We define φ(H) to be the monomial operator

φ(H) : xs 7→ φ(
1

1 + s
)xs.

This will be bounded by M if and only if M2 − φ(H)∗φ(H) ≥ 0, which is equivalent to

M2 − φ( 1
1+s

)φ( 1
1+t

)

1 + s+ t̄
≥ 0. (4.5)

The fact that (4.5) is equivalent to the assertion that φ has norm at most M in H∞(D(1, 1))
is, after a change of variables, the content of Pick’s theorem [26].
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4.4 Proof of Theorem 1.22

Proof. Let T be a unitary monomial operator, given by

Txs = c(s)xτ(s). (4.6)

By Theorem 1.17, we know that τ is a holomorphic automorphism of S. It is well-known
that holomorphic automorphisms of the upper half plane are given by linear fractional trans-
formations with coefficients from SL(2,R). So any holomorphic automorphism of S is of the
form

τ(s) =
A(s+ 1

2
)− iB

iC(s+ 1
2
) +D

− 1

2
, (4.7)

where

(
A B
C D

)
is in SL(2,R). Let σ(s) = −s

1+2s
.

Case (i): τ(∞) =∞. Then τ is of the form τ(s) = αs + β + iγ, where α > 0, β, γ ∈ R,
and β = α−1

2
. As T is given by (4.6) and

c(s) = c0
1 + β̄ + αs+ β

1 + s
= c0α,

we have
T : xs 7→ c0αx

βxαs.

Therefore
T : f(x) 7→ c0αx

βf(xα).

Therefore
T L2([ρ, 1]) = L2[ρ

1
α , 1] = A1, 1

2α
log 1

ρ
.

Case (ii): τ(∞) = −1
2
. Then σ ◦ τ(∞) =∞. So by Case (i), we have

JT L2([ρ, 1]) = A1,w

for some w. Therefore
T L2([ρ, 1]) = A−1,w.

Case (iii) τ(∞) = −1
2

+ iδ. Then

Mx−iδT : xs 7→ c̃(s)xτ̃(s),

where τ̃(∞) = −1
2
. By Case (ii), we have

T L2([ρ, 1]) = MxiδA−1,w′ = Aτ,w,

for τ = 2iδ+1
2iδ−1

and w = w′

1+4δ2 .

Uniqueness of representation: We need to show that if Aτ,w = Aτ ′,w′ , then τ ′ = τ and
w′ = w. Observe that if U is a unitary, and PMf = g, then PUMUf = Ug.
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Let us calculate PAτ,wx
s. If τ = 1, then

PA1,wx
s = χ[e−2w,1]x

s,

and

‖PA1,wx
s‖2 =

1

1 + 2Re s

[
1− e−2w(1+2Re s)

]
. (4.8)

Otherwise, τ = 2iδ+1
2iδ−1

for some δ ∈ R. Then

PAτ,wx
s = MxiδJPA1,w′

Jxs−iδ.

From (1.21),

Jxs−iδ =
1

1 + 2s− 2iδ
x
−s+iδ

1+2s−2iδ .

Therefore

‖PAτ,wxs‖2 = ‖PA1,w′
Jxs−iδ‖2

=
1

|1 + 2s− 2iδ|2

∫ 1

e−2w′
x2Re −s+iδ

1+2s−2iδ dx

When s = u+ iv , this gives

‖PAτ,wxs‖2 =
1

1 + 2u

[
1− e−2w′ 1+2u

(1+2u)2+4(δ−v)2

]
. (4.9)

Comparing (4.8) and (4.9), we see that τ and w are completely determined by ‖PAτ,wxs‖2.
QED

5 Proofs using Hardy space theory

Although Theorems 1.16 and 1.23 are stated without using the language of Hardy spaces,
the authors do not know how to prove them directly.

5.1 Proof of 1.16

Proof. Let M be in Lat(H). Define a sequence S ⊂ S by S = {s : 〈f, xs〉 = 0 ∀ f ∈ M}.
The number s will occur in S with multiplicity m where m is the largest number so that
M⊥ {xs, (ln x)xs, . . . , (ln x)m−1xs}. Let M0 =M(S).

To see that M =M0 +M1 for some singular space M1, we use the Sarason transform
to move to H2. Then M becomes (BSH2)⊥, where B is a Blaschke product and S is a
singular inner function. As BSH2 = BH2 ∩ SH2, we have

(BSH2)⊥ = (BH2)⊥ + (SH2)⊥,

and M1 is the inverse Sarason transform of (SH2)⊥. QED

19



5.2 Proof of 1.23

Let Sτ,w denote the singular inner function

Sτ,w(z) = exp

(
−wτ + z

τ − z

)
.

Let U : L2 → H2 be the Sarason transform. By Lemma 2.11 we have that

UA1,wU
∗ =

(
S1,wH

2
)⊥
.

We wish to extend this to other values of τ .

Lemma 5.1.
UMxicU

∗(S−1,w′) = FSτ,w, (5.2)

where τ = 2ic+1
2ic−1

, w = 1
1+4c2

w′ and F (z) = exp(−2icw) 1
1+ic−icz .

Proof. Observe first that M̂x−ic is a unitary operator that takes kα to φ(α)kψ(α), where

φ(z) =
1

1 + ic− icz

ψ(z) =
(1− ic)z + ic

1 + ic− icz
.

Therefore
M̂x−ic = C∗ψM

∗
φ,

and so
M̂xic = MφCψ. (5.3)

We have

CψS−1,w′(z) = exp

(
w′
−1 + ψ(z)

−1− ψ(z)

)
.

A calculation shows that

−1 + ψ(z)

−1− ψ(z)
=

1

1 + 4c2

τ + z

τ − z
− 2ic

1 + 4c2
.

Therefore CψS−1,w′(z) is a unimodular constant times Sτ,w, and (5.2) holds. QED

Lemma 5.4.
UAτ,wU∗ =

(
Sτ,wH

2
)⊥
. (5.5)

Proof. We have already proved the case τ = 1, so assume τ 6= 1. Consider next τ = −1.
Then

UA−1,wU
∗ = UJA1,wU

∗

= UJU∗UA1,wU
∗

= UJU∗
(
S1,wH

2
)⊥
.
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As UJU∗f(z) = f(−z), we have

UJU∗
(
S1,wH

2
)

=
(
S−1,wH

2
)
,

so
UJU∗

(
S1,wH

2
)⊥

=
(
S−1,wH

2
)⊥
.

For τ 6= ±1, we have, with φ and ψ as in (5.3) and F as in Lemma 5.1,

UA⊥τ,wU∗ = UMxicJA⊥1,w′U∗

= UMxicU
∗ (S−1,w′H

2
)

= {φ(z)F (z)Sτ,w(z)h(ψ(z)) : h ∈ H2}.
As F and φ are outer and ψ is an automorphism of D, this proves that

UA⊥τ,wU∗ = Sτ,wH
2,

and hence (5.5). QED

Proof. (Of Theorem 1.23.) From Lemma 5.4, we have, for distinct points τk,

U M(
n∑
k=1

wkδτk) U
∗ =

n∑
k=1

(
Sτk,wkH

2
)⊥

=

(
(
n∏
k=1

Sτk,wk) H
2

)⊥
.

Suppose that µn → µ weak-*, where µ and each µn are singular. Define singular inner
functions by

ϕn(z) = exp

[
−
∫

eiθ + z

eiθ − z
dµn(θ)

]
ϕ(z) = exp

[
−
∫

eiθ + z

eiθ − z
dµ(θ)

]
.

Then ‖ϕn − ϕ‖H2 → 0. Indeed, ϕn tends to ϕ weakly in H2, since the functions all have
norm 1 and converge pointwise on D. Therefore

‖ϕn − ϕ‖2 = 2− 2Re 〈ϕn, ϕ〉
→ 0.

This means that not only do the Toeplitz operators Tϕn converge to Tϕ in the strong operator
topology, but TϕnTϕn converges to TϕTϕ̄ SOT. This is proved in [25, p. 34]; for the convenience
of the reader, we include the proof. Let f ∈ H2. Then

‖TϕnTϕ̄nf − TϕTϕf‖ ≤ ‖Tϕn(Tϕn − Tϕ)f‖+ ‖(Tϕn − Tϕ)Tϕ)f‖

≤ sup
n
‖ϕn‖H∞‖(Tϕn − Tϕ)f‖+

(∫
|ϕn − ϕ|2|Tϕ̄f |2

) 1
2

.

The first term tends to zero because Tϕn tends to Tϕ̄ in the SOT, and the second term
tends to 0 because ϕn tends to ϕ in measure and |ϕn − ϕ| ≤ 2. As TϕnTϕn is the projection
onto (ϕnH

2)⊥, this means by Proposition 4.1 that the spaces (ϕnH
2)⊥ converge to (ϕH2)⊥.

Applying the inverse Sarason transform, we conclude thatM(µn) converges toM(µ). QED
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