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Abstract. Sea level rise (SLR) may impose substantial
economic costs to coastal communities worldwide, but
characterizing its global impact remains challenging because
SLR costs depend heavily on natural characteristics and
human investments at each location — including topography,
the spatial distribution of assets, and local adaptation deci-
sions. To date, several impact models have been developed
to estimate the global costs of SLR. Yet, the limited avail-
ability of open-source and modular platforms that easily
ingest up-to-date socioeconomic and physical data sources
restricts the ability of existing systems to incorporate new
insights transparently. In this paper, we present a modular,
open-source platform designed to address this need, pro-
viding end-to-end transparency from global input data to a
scalable least-cost optimization framework that estimates
adaptation and net SLR costs for nearly 10000 global
coastline segments and administrative regions. Our approach
accounts both for uncertainty in the magnitude of global
mean sea level (g.m.s.l.) rise and spatial variability in local
relative sea level rise. Using this platform, we evaluate costs
across 230 possible socioeconomic and SLR trajectories in
the 21st century. According to the latest Intergovernmental
Panel on Climate Change Assessment Report (AR6), g.m.s.1.
is likely to rise during the 21st century by 0.40-0.69 m

if late-century warming reaches 2°C and by 0.58-0.91m
with 4 °C of warming (Fox-Kemper et al., 2021). With no
forward-looking adaptation, we estimate that annual costs of
sea level rise associated with a 2 °C scenario will likely fall
between USD 1.2 and 4.0 trillion (0.1 % and 1.2 % of GDP,
respectively) by 2100, depending on socioeconomic and sea
level rise trajectories. Cost-effective, proactive adaptation
would provide substantial benefits, lowering these values to
between USD 110 and USD 530 billion (0.02 and 0.06 %)
under an optimal adaptation scenario. For the likely SLR
trajectories associated with 4°C warming, these costs
range from USD 3.1 to 6.9 trillion (0.3 % and 2.0 %) with no
forward-looking adaptation and USD 200 billion to USD 750
billion (0.04 % to 0.09 %) under optimal adaptation. The
Intergovernmental Panel on Climate Change (IPCC) notes
that deeply uncertain physical processes like marine ice cliff
instability could drive substantially higher global sea level
rise, potentially approaching 2.0m by 2100 in very high
emission scenarios. Accordingly, we also model the impacts
of 1.5 and 2.0mg.m.s.l rises by 2100; the associated
annual cost estimates range from USD 11.2 to 30.6 trillion
(1.2% and 7.6 %) under no forward-looking adaptation
and USD 420 billion to 1.5 trillion (0.08 % to 0.20 %) under
optimal adaptation. Our modeling platform used to generate
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these estimates is publicly available in an effort to spur
research collaboration and support decision-making, with
segment-level physical and socioeconomic input character-
istics provided at https://doi.org/10.5281/zenodo.7693868
(Bolliger et al, 2023a) and model results at
https://doi.org/10.5281/zenodo.7693869 (Bolliger et al.,
2023Db).

1 Introduction

Global mean sea level (g.m.s.1.) is projected to increase be-
tween 0.40-0.69 m for 2 °C of warming and 0.58-0.91 m for
4 °C of warming by 2100, though accelerated ice-sheet insta-
bility could result in substantially higher values (approaching
2m) by the end of the century (Fox-Kemper et al., 2021).
Coastal communities and ecosystems will experience a vari-
ety of impacts, including more frequent tidal flooding, higher
extreme sea levels (ESLs),1 erosion, wetland degradation,
salinization of soils and water reservoirs, and loss of land
area to permanent inundation (Oppenheimer et al., 2019;
Nicholls et al., 2006). The magnitude of relative sea level
rise (RSLR) and associated impacts will vary by locality, de-
pending upon global greenhouse gas (GHG) emissions (Fox-
Kemper et al., 2021), ice sheet instabilities (DeConto et al.,
2021; Bamber et al., 2019; Fox-Kemper et al., 2021), local
atmosphere—ocean dynamics (Fox-Kemper et al., 2021), eco-
nomic growth along coastlines (O’Neill et al., 2017; Neu-
mann et al., 2015; Armstrong et al., 2016), and adaptation
actions (Hinkel et al., 2018; Diaz, 2016; Hinkel et al., 2014,
Lincke and Hinkel, 2021).

Despite advances in our understanding of g.m.s.l., the
global costs of these changes remain poorly constrained.
A key obstacle to quantifying these global impacts is their
strong dependence on the details of local conditions, such
as topography, the spatial distribution of populations and as-
sets, and local adaptation decisions. A challenge for model-
ers is the dual objectives of fully accounting for these various
factors at the local granularity necessary for accurate repre-
sentation while also scaling these calculations globally. Im-
provements in computation and data availability now make
achieving these two objectives feasible, but it has remained
challenging for existing custom-built systems to be regularly
updated to reflect new insights or improvements to global
datasets describing local conditions.

This paper presents what is to our knowledge the first fully
open-source coastal modeling platform that (i) integrates up-
to-date local data on socioeconomic and physical conditions
along coastlines globally; (ii) projects the physical, socioeco-
nomic, and ecological impacts of SLR along coastlines; and
(iii) directly models the costs and benefits of both retreat and

I Terminology and abbreviations for concepts related to sea level
align with those recommended for contemporary use in Gregory
et al. (2019).
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protection as potential adaptation strategies. The platform is
fully coded in the open-source computer language Python
(v3.9) and integrates recently released, satellite-augmented
global data layers describing coastal elevations, local sea lev-
els, and the distribution of population and physical capital
with widely used socioeconomic datasets. These data layers
are projected onto 9568 unique coastal segments that span
global coastlines. Each of these segments is then modeled
independently, with each segment choosing among several
local, forward-looking adaptation strategies in an effort to
minimize overall losses, following the framework developed
in Diaz (2016). Using this platform, we evaluated net costs
across 230 possible socioeconomic and SLR trajectories in
the 21st century to present here, though the tool is capable
of accommodating tens to hundreds of thousands of future
simulations in parallel if desired.

With no forward-looking adaptation, we estimate that an-
nual global costs of sea level rise associated with 2°C of
warming (+0.40-0.69 m g.m.s.1. by 2100) will fall between
USD 1.2 and 4.0 trillion (0.1 % and 1.2 % of GDP) by 2100,
depending on socioeconomic and SLR trajectories. Locally
cost-effective adaptation strategies could drastically lower
these estimates to between USD 110 and 530 billion (0.02 %
and 0.06 %). For the likely SLR trajectories associated with
4 °C warming, these costs range from USD 3.1 to 6.9 trillion
(0.3 % and 2.0 %) with no forward-looking adaptation and
USD 200 billion to 750 billion (0.04 % to 0.09 %) under op-
timal adaptation. Under a very high emissions scenario with
SLR projections that include the influence of deeply uncer-
tain physical processes like marine ice cliff instability, end-
of-century g.m.s.I. rise reaches +1.5-2.0, and the associated
annual cost estimates range from USD 11.2 to 30.6 trillion
(1.2% and 7.6 %) with no forward-looking adaptation and
USD 420 billion to 1.5 trillion (0.08 % to 0.20 %) under opti-
mal adaptation.

All code used to aggregate and combine input data, as well
as to estimate SLR impacts, is publicly available. This en-
courages further development by the coastal impact research
community and modularizes the modeling process to facili-
tate seamless incorporation of future improvements to input
datasets and additional model components.

1.1 The basic architecture of global coastal impact
models

Global coastal models that estimate impacts of SLR and
ESLs seek to quantify the exposure of some variable(s)
of concern, such as human population, capital assets, and
coastal ecosystems, to these physical hazards. They generally
report the magnitude of exposure to these hazards as their fi-
nal output and convert this exposure into some outcome of
interest, such as economic losses (Hinkel et al., 2014; Diaz,
2016; Lincke and Hinkel, 2018). These models usually con-
tain spatially explicit representations of physical coastline
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characteristics (e.g., coast lengths, elevation, and land surface
areas), exposure variables, and physical hazard variables.

To estimate future impacts, global coastal models must
assume or model trajectories of pertinent physical and so-
cioeconomic values over time. Most climate change-oriented
impact models assess multiple trajectories of g.m.s.l., and
many account for local RSLR and associated ESLs, which
commonly correspond to different GHG emissions path-
ways (Hinkel et al., 2014; Diaz, 2016; Lincke and Hinkel,
2018, 2021). They may also contain different future trajec-
tories of human population and capital asset growth, such
as those represented in the Shared Socioeconomic Pathways
(SSPs) Database (Riahi et al., 2017; Hinkel et al., 2014,
Lincke and Hinkel, 2018; Tiggeloven et al., 2020; Lincke and
Hinkel, 2021).

The spatial and temporal resolution of model components
can vary between studies and is sometimes limited by the res-
olution of available input datasets and/or by available com-
puting resources. Additionally, many models also include
some form of adaptive decision-making, such as allowing
different coastal segments to construct protective coastal bar-
riers (Hinkel et al., 2014; Diaz, 2016; Lincke and Hinkel,
2018; Tiggeloven et al., 2020; Lincke and Hinkel, 2021) or
retreating inland (Diaz, 2016; Lincke and Hinkel, 2021), usu-
ally guided by some form of local cost—benefit analysis.

1.2 Closely related efforts and platform genealogy

Several past studies employed global coastal impact models
to estimate future damages from SLR and ESLs under var-
ious trajectories of global GHG emissions, socioeconomic
scenarios, and adaptation pathways for thousands of sub-
national coastline segments (Hinkel et al., 2014; Diaz, 2016;
Lincke and Hinkel, 2018, 2021). Many of these studies used
the Dynamic Interactive Vulnerability Assessment (DIVA)
Coastal Database and modeling tool as their source of in-
formation for describing local coastlines. Originally devel-
oped by the Dynamic and Interactive Assessment of Na-
tional, Regional and Global Vulnerability of Coastal Zones
to Climate Change and Sea-Level Rise (DINAS-COAST)
project (Vafeidis et al., 2008; Hinkel and Klein, 2009), the
DIVA database partitions global coastlines into 12 148 seg-
ments and provides local physical attributes (e.g., inundation
areas by elevation, extreme sea level heights, wetland areas,
erosion characteristics) as well as socioeconomic character-
istics (e.g., population densities, land use), allowing for spa-
tially disaggregated coastal impact analyses (Vafeidis et al.,
2008; Hinkel and Klein, 2009). At the time of its initial re-
lease in 2008, DIVA represented a substantial improvement
over previous global, coastal databases and impact studies,
which were most commonly performed using data at much
coarser spatial resolutions (Hoozemans et al., 1993; Yohe and
Tol, 2002; Nicholls, 2004, 2002; Dronkers et al., 1990; Par-
daens et al., 2011; Hinkel et al., 2013). Presently, however,
the DINAS-COAST program is no longer funded, and the
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accessibility of the DIVA database has fluctuated. Recently,
a landing page was created for the DIVA model at http:
//diva.globalclimateforum.org (last access: 1 March 2023),
though the corresponding dataset was only available via di-
rect correspondence with its authors, and as of July 2023 the
site is no longer accessible. The underlying code and input
data used to construct the DIVA database are not publicly
available, making it difficult to replicate prior studies’ results
and diagnose issues that have appeared in previous versions
of the dataset (Sect. 2.5.1). In this work, we address these
issues of accessibility and transparency by generating a pub-
licly available global dataset of coastal socioeconomic met-
rics, updating all core data layers used to generate DIVA and
releasing the data assimilation model used to aggregate these
into the final data product. The full set of data updates is de-
scribed in Sect. 2 below.

In a key early analysis, Hinkel et al. (2014) employed the
DIVA database to model the combination of coastal flood
damages and adaptation (specifically, protective levee con-
struction) under 12 scenarios of future RSLR and socioeco-
nomic projections for sub-national coastal zones. Sea level
rise scenarios in this study were constructed from estimates
of global thermal expansion and regional ocean dynamic
sea level data corresponding to low-, medium-, and high-
emissions Coupled Model Intercomparison Project Phase 5
(CMIPS) experiments (Taylor et al., 2012) (representative
concentration pathways 2.6, 4.5, and 8.5) in four Earth sys-
tem models (ESMs), combined with three scenarios reflect-
ing low, medium, and high rates of land—ice melt. The study
also evaluated two different digital elevation models (DEMs)
for estimating population exposure in coastal floodplains to
SLR and ESLs, the GLOBE DEM (GLOBE Task Team et al.,
1999), which was the original DEM used in DIVA (Hinkel
and Klein, 2009), and the more recent Shuttle Radar Topog-
raphy Mission (SRTM) DEM (Farr et al., 2005). They found
that their results were highly sensitive to the choice of DEM,
which underscores the importance of updating global data
layers used in coastal impact modeling as improved products
are made available, which is one of the central aims of the
work we present in this paper.

Expanding on the approach of Hinkel et al. (2014), Diaz
(2016) developed the Coastal Impact and Adaptation Model
(CIAM), a global modeling tool that estimated 21st-century
costs and adaptation strategies for each DIVA segment. One
core innovation presented in CIAM was that it allowed for
each segment to choose between dike construction, as in
Hinkel et al. (2014), and managed or reactive retreat. How-
ever, an obstacle to widespread usage of CIAM was its de-
velopment in the commercial General Algebraic Modeling
System (GAMS) closed-source platform. We build on the
work by Diaz (2016), using the underlying decision-making
framework of CIAM; however, we adapt, re-code, and opti-
mize CIAM in the open-source Python computing language.

The architecture of CIAM was designed to capture key
aspects of local adaptive decision-making that will likely
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be used by coastal communities worldwide. The objective
of CIAM was to develop an optimization framework that
could be applied locally but generalized globally. To limit
the computational challenge of solving stochastic dynamic
programs for thousands of independent coastline segments,
Diaz (2016) simplified the set of possible adaptation choices
to a set of discrete decisions that are calibrated to local con-
ditions. CIAM differentiated between six types of costs (i.e.,
“damages”) due to RSLR and ESLs (Sect. 2.2): (a) the cost
of permanent inundation of immobile capital or land, (b)
ESL-related damages to capital, (c) mortality, (d) expendi-
tures on protection (i.e., infrastructure construction), (e) re-
location costs, and (f) wetland loss. Possible protection ac-
tions include constructing levees at the 10-, 100-, 1000-, and
10000-year ESL heights at each segment, and possible re-
treat actions include proactively vacating all land area un-
der local mean sea level or within the 10-, 100-, 1000-, or
10 000-year ESL floodplain. Simulations in CIAM are imple-
mented using discrete time steps, termed “adaptation plan-
ning periods” (40-50 years), during which each segment up-
dates their retreat or protection height based on the max-
imum RSLR projected to occur within the period. CIAM
also allows for modelers to select a “no planned adapta-
tion” option that constrains retreat to be reactive, rather than
forward-looking, such that the population and capital assets
only choose to relocate inland once they are permanently in-
undated by rising sea levels. Diaz (2016) considered a single
socioeconomic growth trajectory based on the 2012 United
Nations World Population Prospects (UN DESA, 2012),
Penn World Table version 7.0 (Heston et al., 2011), and the
2011 IMF World Economic Outlook (International Mone-
tary Fund, 2011) projections and uses DIVA’s older GLOBE
DEM. The SLR trajectories used by Diaz (2016) were the
5th, 50th, and 95th percentiles of probabilistic RSLR projec-
tions from Kopp et al. (2014) for representative concentra-
tion pathways (RCPs) 2.6, 4.5, and 8.5, as well as a no-SLR
baseline.

Here, we build on the approach of Diaz (2016), adapting
and optimizing the decision-framework of CIAM to an en-
tirely new set of global data inputs (i.e., replacing DIVA)
and an open-source computer language. Given continued ad-
vancement in sea level rise modeling efforts and the im-
provement of global data inputs (e.g., coastal DEMs), it is
essential that coastal impact modeling platforms are able to
integrate these updates. Additionally, we believe that these
platforms should be developed in an open-source, transpar-
ent, and reproducible framework that will allow for increased
collaboration and more rapid iteration amongst coastal im-
pacts researchers, as has been done for modeling communi-
ties across numerous scientific disciplines (von Krogh and
von Hippel, 2006). The platform we develop addresses these
objectives by integrating the latest available physical, cli-
mate, and socioeconomic input data for an expanded suite of
future SLR and economic growth trajectories in an updated
and open-source version of the CIAM framework that, in ad-
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dition to improved accessibility and transparency, results in
greater resolution and substantially improved computational
efficiency.

1.3 This study: the Data-driven Spatial Climate Impact
Model - Coastal Impacts

This modeling platform was developed as the sea level rise
impact module of the Data-driven Spatial Climate Impact
Model (DSCIM) architecture (Rode et al., 2021; Carleton
et al., 2022) and is thus named DSCIM-Coastal. It is parti-
tioned into two distinct components (see Fig. 1), each made
available as open-source products: (i) the collection, harmo-
nization, and aggregation of updated physical and socioeco-
nomic input datasets by coastal segment, which is named the
Sea Level Impacts Input Dataset by Elevation, Region, and
Scenario, or SLIIDERS, and (ii) the modeling platform it-
self, called pyCIAM (short for “Python-based CIAM”). Both
components have been developed in accordance with FAIR
Guiding Principles for scientific data management (Wilkin-
son et al., 2016) that are intended to improve the findability,
accessibility, interoperability, and reuse of scientific data.”

The SLIIDERS dataset is conceptually similar to DIVA in
that it contains a suite of variables defined across a collec-
tion of coastal segments designed for coastal impact model-
ing efforts. However, while DIVA is not publicly accessible,
SLIIDERS and all of its components are available with open-
access licenses, thereby supporting transparency and replica-
bility of coastal damage analyses for research communities
around the globe.? In addition, the partition of global coast-
lines that defines separate coastal segments as units of anal-
ysis has been revamped in order to achieve greater balance
in geographic coverage and reduce redundant computations.
SLIIDERS also contains updated topographic, geographic,
and socioeconomic input datasets, including refined coastal
DEMs and socioeconomic growth trajectories.

2These data and modeling components abide by the FAIR crite-
ria as specified by The Future of Research Communications and e-
Scholarship (FORCE11): (i) findable via unique and persistent iden-
tifiers, with these identifiers specified in component metadata and
indexed in a searchable resource (Zenodo, GitHub); (ii) accessible
in that they are retrievable via these identifiers and are open, free,
and universally implementable; (iii) interpretable through the use of
a formal, accessible, shared, and broadly applicable language/vo-
cabulary (manuscript and metadata in standard English and code in
Python) with the inclusion of appropriate references to other data
where necessary (e.g., input data sources); and (iv) reusable by
specifying accurate and relevant attributes, applying an accessible
data usage license and complying with coastal modeling community
standards of language and data/code provision (http://Forcel 1.org,
last access: 18 July 2023).

30ne of the input data sources used in generating SLIIDERS,
CoastalDEM (Kulp and Strauss, 2019), is not freely available at the
resolution employed in this study but is available for research use at
a lower resolution.
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pyCIAM is an open-source, computationally efficient and
functional modeling platform for segment-level adaptation
decision-making that incorporates the following improve-
ments to the original implementation of CIAM (Diaz, 2016):
(1) updates to (and expansion of) all topographic, geographic,
and socioeconomic input data using SLIIDERS and updated
oceanographic inputs using a large suite of 23 SLR pro-
jections; (ii) improvements to model representation of dif-
ferent variables, such as population and capital asset distri-
bution and storm damage calculations; (iii) availability as
an open-source, self-contained Python package and input
database, making the workflow easily accessible and modifi-
able for other researchers; and (iv) improved computational
efficiency and scalability, enabling the application of CIAM
to large, probabilistic ensembles of sea level change.

The pyCIAM model is configured to utilize the SLIIDERS
inputs and SLR projections presented here, but it can easily
be run using a modified set of inputs or SLR pathways, pro-
vided the data structure is consistent with this configuration.
Similarly, the SLIIDERS product can be used independently
from pyCIAM as inputs for other coastal analysis or as con-
textual information on coastal zones. It can also be recreated
using alternate input sources as desired, as the scripts to gen-
erate the product are provided with it.

The following sections describe how SLIIDERS and py-
CIAM are constructed, show example results of model out-
puts and diagnostics from 2005-2100 and compare them to
the results of Diaz (2016), and discuss current limitations
to the model and input datasets, outlining planned improve-
ments and future research priorities.

2 Methods and data

We constructed the Python Coastal Impacts and Adaptation
Model (pyCIAM) by adapting the original code and structure
of the Coastal Impacts and Adaptation Model (CIAM) (Diaz,
2016), obtained from http://github.com/delavane/CIAM in
June 2020, with changes subsequently made in three phases:

1. porting the model from GAMS to a standalone Python
module (creating pyCIAM);

2. updating all model inputs with the SLIIDERS data and
SLR projections, constituting newer, improved physical
and socioeconomic datasets;

3. implementing changes to the model functionality itself
for the purposes of the following:

computational efficiency

— updating assumptions where new data provided
previously unavailable insights

— aligning model implementation with the model de-
scription in Diaz (2016)

— reducing noise in numerical approximation algo-
rithms.

https://doi.org/10.5194/gmd-16-4331-2023
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2.1 Model structure

The aspects of CIAM as presented in (Diaz, 2016) that are
maintained in pyCIAM include the segment-based structure
of the model and the adaptation actions that each segment is
permitted to take throughout the modeling period, comprised
of the following options:

— Reactive retreat. When a portion of land falls below
mean sea level (m.s.1.), all people and mobile capital are
relocated to an unaffected, inland region away from the
coast that is not in danger of future impacts from SLR
or ESLs, and immobile capital is abandoned.

— Protection. A generic levee is constructed to protect the
entire coastline segment. Available choices for protec-
tion height include the 10-, 100-, 1000-, and 10 000-year
return values of ESL. This height changes linearly with
RSLR.

— Proactive retreat. All people and mobile capital below
a certain retreat height are assumed to be relocated to
a safe, inland region, and immobile capital below that
height is abandoned. The options for that retreat height
level are discretized to the same values available for pro-
tection, with the addition of a “low retreat” option rep-
resenting the maximum m.s.l. projected during a “plan-
ning period” (10 years).

Note that, as described in Diaz (2016), each coastal segment
may only choose one adaptation option, e.g., retreat-1000,
for the entire model duration. While the height of the re-
treat level changes over time as the 1000-year ESL return
value changes due to RSLR, the segment cannot, for exam-
ple, choose retreat-100 for the first 40 years and then protect-
10000.

The model is discretized into time steps (10 years in the
original CIAM, annual in pyCIAM), during which all time
evolving parameters are held constant. In addition, the seg-
ments use a configurable set of “planning periods” (40—
50 years each period in CIAM, 10 years each in pyCIAM),
in which each corresponds to a set of one or more time steps.
For each planning period, a single height is chosen for retreat
or protection (assuming the segment does not select “reac-
tive retreat”) that represents the maximum height projected
for the chosen ESL return value during the planning period.

2.2 Cost calculation

Following Diaz (2016), pyCIAM separately tracks inunda-
tion costs, retreat costs, protection costs, cost of wetland loss,
and extreme sea level damage and mortality. These categories
of costs are all used in cost minimization, and each is detailed
below.

Geosci. Model Dev., 16, 4331-4366, 2023
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DSCIM-Coastal

Open-source platform for computing global coastal impacts as part of the Climate Impact Lab’s multi-sectoral Data-driven Spatial Climate

Impact Model (DSCIM)

Coastal Characteristics Dataset

Sea Level Impacts Input Dataset by Elevation, Region,
and Scenario for each coastal segment (SLIIDERS)

/SLIIDERS

Physical Variables

- Segment location and coastline length

- Land area by elevation (0.1 m elevation bins)

- Extreme sea levels (10, 100, 1000, 10000-year)

- Wetland and mangrove area (0.1 m elevation bins)

Socioeconomic Variables

Present (2019) and projected values by SSP-IAM:
- Population

- GDP (annual per capita income)

- Physical capital
- Construction costs

Sea Level Rise Projections
Local relative SLR projections from 23 distinct
scenarios for different emissions pathways:
- IPCC Sixth Assessment Report (n=8)
- 5 medium-confidence, 3 low-confidence
- U.S. Inter-Agency SLR Technical Report (n=5)
- IPCC Fifth Assessment Report (n=3) /
- IPCC SROCC (n=3)

\- Increased ice sheet instability scenarios (n=5) /

Model
\ Inputs

Y >
~

SLR Impact Modeling Platform

Gcmm

Python-based Coastal Impacts and Adaptation Model

Least-cost adaptation option for each segment

One of the following:

- protect to a given extreme sea level (ESL) height

- retreat proactively to a given ESL height

- retreat reactively to local relative sea level rise (RSLR) alone

Segment-wise costs (i.e. damages) outputs
Under least-cost option and for reactive retreat only:
- Permanent inundation of land due to LSLR

- Wetland/mangrove loss due to LSLR

- Capital stock damage due to ESLs

- Population mortality due to ESLs

- Relocation (reactive and proactive retreat)

- Protective barrier construction

\

Figure 1. Components of the Coastal portion of the Data-driven Spatial Climate Impact Model (DSCIM-Coastal).

2.2.1 Inundation costs

This category reflects the value of land and immobile capi-
tal lost to inundation. In Diaz (2016), immobile capital was
allowed to fully depreciate if the strategy chosen is proac-
tive retreat, such that capital-related losses due to inundation
are always 0. This was based on a theoretical argument that,
for a planned retreat, a rational social planner would cease
the creation of new physical capital far enough in advance
that all remaining capital would have fully depreciated by
the time the retreat occurs (Yohe et al., 1995). However, this
assumption has been critiqued in subsequent work (Lincke
and Hinkel, 2021) due to its lack of empirical grounding.
Furthermore, it ignores the welfare loss associated with not
replacing depreciating assets in the years leading up to re-
treat. These new capital investments would have been made
in the absence of SLR, and thus the lack of investment should
be counted when assessing total SLR impacts. Therefore,
pyCIAM alters CIAM’s assumption of full depreciation, in-
stead modeling immobile capital to experience no excess de-
preciation beyond the background rate implicitly included in
the capital growth model used to generate SSP-aligned capi-
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tal projections. This results in the full estimated value of cap-
ital being lost when abandoned or inundated, in line with the
assumptions of Lincke and Hinkel (2021).

Value of land lost permanently to inundation is estimated
in accordance with the Diaz (2016) methodology, which ap-
proximates land values based on country-level assumptions
of non-coastal land value from the integrated assessment
model FUND (Tol, 1996). We assume that these national
land values appreciate over time as a function of projected
per capita income and population density growth in future
years for each country. Equation (7) of the Diaz (2016) Sup-
plemental Information details the total cost of inundation as
a function of land values and immobile capital loss. Because
pyCIAM, like CIAM, estimates land to have value even in
unpopulated regions, non-zero inundation costs are still in-
curred in unpopulated segments due to lost land (or lost wet-
land area; see Sect. 2.2.4), despite the absence of any im-
mobile capital losses. As expected, the magnitudes of these
inundation losses tend to be much lower than in highly pop-
ulated segments exposed to SLR.
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2.2.2 Retreat costs

This category reflects the costs of relocating population and
mobile capital and of demolishing immobile capital. Follow-
ing Diaz (2016), capital relocation costs are valued at 10 % of
total value, and immobile capital demolition costs are valued
at 5 %. In Diaz (2016), the intangible relocation cost is val-
ued at 1 year of per capita income, which varies by country
and over time. As described in the Diaz (2016) Supplemen-
tal Information, this was an arbitrary value chosen because it
lay between the value used in FUND (3) and a number de-
rived from personal communication with Robert Mendelsohn
(0.5). We update this value to 8 times local income, based on
the analysis described below in Sect. 2.3.

2.2.3 Protection costs

This category reflects the construction and maintenance costs
of building a protective levee, along with the value of lost
land. As in Diaz (2016), maintenance costs are assumed to
be 2 % of the initial construction cost, and the value of lost
land is calculated as the local land value (which varies over
countries and years) times the length and width of the barrier,
assuming a 60° slope.

2.2.4 Wetlands loss

This category reflects the value of wetlands lost to either SLR
or protection. As in Diaz (2016), wetlands are assumed to be
able to partially absorb SLR up to 1 cmyr~!, with the degree
of loss increasing quadratically with the rate of SLR. Above
the critical threshold of 1 cm yr’l, all inundated wetlands are
lost. In addition, all wetland area below a protective barrier
is also assumed to be lost. More details on the calculation
of wetland loss can be found in Eq. (8) of the Diaz (2016)
Supplemental Information.

2.2.5 Extreme sea level capital damage

This category reflects the value of capital loss occurring due
to ESL events, using a depth—damage relationship that takes
the shape %. The probability density function (PDF) of
ESL values at each segment location is represented as a
Gumbel distribution, derived from Muis et al. (2016) in Diaz
(2016) and from Muis et al. (2020a) in pyCIAM. The prod-
uct of this PDF and the estimated capital loss conditional on
each ESL height in the distribution is integrated to obtain the
annual expectation of ESL-driven capital loss per elevation
slice, and these costs are summed over elevation to obtain the
annual damages per segment (see Diaz, 2016, Supplementary
Material Sect. 2.1, Eqs. 9-12). For computational efficiency,
this set of discrete products, integrations, and sums is per-
formed on a variety of example inputs prior to executing the
actual CIAM model. In Diaz (2016), functions are fit to these

outputs to relate ESL height to loss for different adaptation
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options, with unique coefficients for each segment.

o0,r,s (1)
1+ OA,r,s €XpP (OB,r,s Hr,s,t)

Dr,s,t ={1- ,Os,t)cs,t (

00,p,s +01,p,sSs,t )
1404, psexp(oppsHpsi))’

Dp,s,t = (1 - p5,))Cs,t (

where D, p s, is the ESL-driven expected capital loss condi-
tional on retreat or protection to height » or p, respectively,
for segment s in time step ¢, oy, is a country-level resilience
factor (defined in Diaz, 2016), C; ; is the capital density (in
USD per square kilometer),

H,/p s is the difference between the retreat or protection
height and local mean sea level, S;; is the local mean sea
level, and o are the fitted coefficients.

However, this has two notable issues. First, this fixed func-
tional form may not fully represent heterogeneous relation-
ships between adaptation height, m.s.l., and damage across
segments, due to differing elevational distributions of capital
at each segment. Second, in Diaz (2016) the damages con-
ditional on a given retreat standard (e.g., 1-in-10-year ESL
height) are a function only of the difference between m.s.l.
and the retreat standard, not of the absolute m.s.l. height. This
approximation would be accurate if the same amount of cap-
ital exists at all elevations, independent of the area of land
available at those elevations; however, elsewhere in the orig-
inal CIAM model it is assumed that the elevation distribution
of capital follows that of land area.

In pyCIAM, we address these issues by employing a multi-
dimensional lookup table instead of these two functions. For
each segment, we find the lowest and highest values of m.s.1.
(S) and of the difference between retreat/protection height
and m.s.1. (H) across all SLR scenarios we wish to simulate,
all adaptation choices, and all time steps. We then choose
100 equally spaced values between these bounds for each
of the two variables. For both of the adaptation categories
(retreat and protection), we now have 10000 scenarios re-
flecting different combinations of H and S. We normalize
capital stock so that it sums to 1, yielding fractional capi-
tal stock in each elevation slice. The current implementation
assumes that these ratios remain fixed over time. However,
should one wish to model within-country migration due to
considerations such as SSP-consistent coastal urbanization
and migration flows (e.g., Jones and O’Neill, 2016; Merkens
et al., 2016), such changes can be accommodated by updat-
ing the appropriate variables in the SLIIDERS input dataset.
For each of the 20000 scenarios, we calculate damages us-
ing a discrete double integral over ESL height and elevation
slice. In the pyCIAM model, the equations for damage are
thus

Dr/p,s,t =(1- ps,t)Ks,ty(Hr/p,s,t’ Ss,t)v 3)

where D, s ; is the ESL-driven expected capital loss condi-
tional on retreat or protection to height r or p, respectively,
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for segment s in time step ¢, ps ; is a country-level resilience
factor (defined in Diaz, 2016), K ; is the total value of cap-
ital stock in segment s at time ¢, H,/, s, is the difference
between the retreat or protection height and local mean sea
level, S;; is the local mean sea level, and y is the bilinear
interpolation function across H and S, using the previously
defined lookup table.

2.2.6 Extreme sea level mortality

This category reflects the expectation of annual costs of mor-
tality occurring due to ESL events, where death equivalents
are valued using a value of a statistical life (VSL) framework,
as employed in Diaz (2016), which assumes 1 % mortality for
all populations exposed to a given ESL, based on Jonkman
and Vrijling (2008). This is modeled similarly to the ESL-
driven capital loss, except that the 1 % mortality assumption
is used in place of the depth—damage function. In the im-
plementation of Diaz (2016), both the mortality assumption
and the depth—damage function appear to have been used
in conjunction, although the text of the Diaz (2016) paper
states that the depth—-damage function should only be used
in the estimation of capital stock damage, not mortality. We
therefore corrected this discrepancy in our implementation of
ESL-driven mortality estimates in pyCIAM.

2.2.7 Least-cost optimization

For each planning period, every segment considers each of
the possible adaptation options and assesses costs at each an-
nual time step within the period. Following Diaz (2016), we
maintain the assumption that these decision-making agents
have perfect foresight of projected RSLR over this plan-
ning period; however, we reduce these periods from 40-50
to 10 years (Sect. 2.7.2). The maximum heights of projected
RSLR at each segment during a given planning period in turn
influence the heights at which protection or retreat adaptation
options are employed. For segments that adapt via reactive
retreat, the height of retreat exactly matches this projected
RSLR, while segments employing 10-, 100-, 1000-, 10 000-
year retreat or protection actions consider the heights of these
ESLs atop this projected RSLR baseline for that planning pe-
riod. Once adaptation costs are calculated for all adaptation
periods, we follow Diaz (2016) and calculate the net present
value (NPV) across the entire model duration for each adap-
tation option, and each segment chooses the least-cost op-
tion.*

2.3 Estimating non-market costs of relocation

In pyCIAM we introduce a calibration of non-market retreat
costs based on observed patterns of settlement. Non-market
retreat costs are those costs that are not directly visible to the

4In contrast to Diaz (2016), we include initial adaptation costs
from the first planning period in this NPV calculation (Sect. 2.7.3).
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market but which nonetheless are incurred by individuals if
they chose to relocate. For example, the non-pecuniary emo-
tional cost associated with moving or the loss of social net-
works due to moving would both be non-market retreat costs.
Accounting for these impacts would indicate that the total
welfare impact of forced relocation is greater than simply the
market costs associated with abandoning immobile capital.
The existence of non-market relocation costs are thought to
explain the observation that some patterns of coastal adapta-
tion currently would not appear to be economically rational
based on market costs alone (McNamara et al., 2015; Arm-
strong et al., 2016; Haer et al., 2017; Bakkensen et al., 2018;
Hinkel et al., 2018; Suckall et al., 2018). Using only market
costs, least-cost optimization would indicate that many real-
world populations should relocate or protect themselves; thus
there must exist unobserved non-market costs that keep those
populations in their current locations. We leverage this obser-
vation to estimate the approximate magnitude of non-market
relocation costs that would be necessary to explain current
global settlement patterns.

Though CIAM does include some non-market costs asso-
ciated with moving, equivalent to 1 year of GDP, the model
does not re-create observed patterns of settlement when it
is initialized and run under an optimal adaptation scenario.
Instead, it results in an excess of instantaneous relocation
in the first period of the model run. This indicates that the
non-market costs specified are likely too small, because they
are insufficient to hold populations to their observed present
locations before any SLR occurs in the model. Specifically,
when the optimal adaptation scenario is run under the base-
line parameterization in Diaz (2016) and with the assumption
of no climate-driven sea level rise, we observe that USD 1.26
trillion of capital and 33 million people instantly relocate.
Adjusting for population and capital growth over the cen-
tury, this instant relocation represents 41 % and 44 % of the
cumulative relocation realized by the end of the century un-
der the median SLR scenario for RCP 4.5. This instantaneous
relocation conflicts with the distribution of people and cap-
ital observed in the world today and suggests that there are
larger costs of relocation than are accounted for in the origi-
nal parameterization of CIAM used in Diaz (2016).

The original parameterization of CIAM in Diaz (2016)
assumed that non-market costs are equal in value to con-
sumption of 1 year of local GDP per capita, based on this
value falling between two alternative estimates: 0.5 years
(obtained from the author’s personal communication with
Robert Mendelsohn) and 3.0 years, the value assumed in the
FUND Integrated Assessment Model (Tol, 1996). Notably,
the more recent evolution of FUND — the GIVE model (Ren-
nert et al., 2022) — relies directly on CIAM for estimating
costs of SLR and thus now assumes costs equivalent to 1
year of local GDP per capita. In a similar modeling frame-
work to CIAM, Lincke and Hinkel (2021) used the FUND
value directly and further provided a literature review that
finds empirical and theoretical estimates of total relocation
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costs varying between 2.3 and 9.5 years of average local in-
come per capita. These findings suggest that the factor of 1
used in Diaz (2016) may underestimate relocation costs.

To address this, we adopt an approach to calibrate these
unobserved non-market costs of relocation against real-world
behavior. Our calibration approximates a “revealed prefer-
ence” approach, in which the behavior of agents is thought
to reveal information about their preferences and values that
is not otherwise visible (other elements of DSCIM adopt re-
lated methods to estimate the undocumented costs of adapta-
tion decisions in other sectors; e.g., see Carleton et al., 2022).
Intuitively, this strategy relies on the insight that if individu-
als found the benefits of moving to be larger than the com-
bined market and non-market costs, they would relocate. We
cannot observe the non-market costs, but we can estimate the
benefits and the market costs. If we observe that individuals
have not relocated but CIAM computes that the benefits out-
weigh the market costs even before considering SLR, then
we can estimate a lower bound on the implied non-market
costs (equal to the benefits minus the market costs) that must
be present in order to prevent them from relocating and ra-
tionalize their observed behavior.

Our ability to recover non-market costs using a revealed
preference approach is constrained by our ability to accu-
rately model benefits and market costs of relocation. There
are inherent limitations in a global model (e.g., input data
inaccuracies, preference heterogeneity) such that, at a seg-
ment level, there will likely be some segments where bene-
fits and/or market relocation costs are not measured exactly.
Thus, we choose a relocation cost parameter by taking the
exposure-weighted median value of segment-specific esti-
mates of non-market costs.

To do this, we identify the total population and phys-
ical capital that would instantaneously relocate when the
model is initialized in the absence of non-market relocation
costs, assuming median estimates of RSLR in a no-climate
change scenario (i.e., no change in g.m.s.l., RSLR associated
only with land subsidence). For this simulation, we choose
middle-of-the-road socioeconomic projections characterized
by SSP2 and the International Institute for Applied Systems
Analysis (IIASA) GDP growth model (Crespo Cuaresma,
2017). We then steadily increase the relocation cost parame-
ter until 50 % of this population, and capital no longer instan-
taneously relocates under the optimal adaptation scenario.
This median approach balances the desire to capture the non-
market costs causing observed non-relocation with the recog-
nition that data and parameter limitations associated with
a global model will inevitably cause some discrepancy be-
tween modeled and observed behavior. Because this median
occurs at different values for population and physical capital,
we average the two values (6.7 and 10.9 years of local in-
come, respectively) to obtain the 8.0 factor used in pyCIAM.
Figure 2 illustrates this calculation.

We note that this approach is facilitated by the resolution
of the input data represented in SLIIDERS. The DIVA in-
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puts used in Diaz (2016) assume that population and capi-
tal density are homogeneously distributed throughout each
segment and are non-varying by elevation. This both distorts
the elevation distribution of the observed present-day state
of these two variables and prohibits the analysis described
above. By leveraging global gridded datasets of population,
capital, and elevation, SLIIDERS and pyCIAM capture het-
erogeneous density and better represent the true present-day
elevation distribution of population and capital within each
segment (Sect. 2.6.1, 2.6.3, and 2.5.3).

After updating the non-market relocation cost parameter,
we additionally follow the approach of Lincke and Hinkel
(2021) and do not distinguish between the non-market costs
of reactive and proactive retreat. Diaz (2016) assigns 5 times
higher costs to reactive retreat, though there is no empirical
basis reported for this additional cost. Thus, we assume that
both proactive and reactive retreat in pyCIAM incur losses
equivalent to 8.0 years of income, rather than 1 and 5 years,
respectively, in Diaz (2016).

2.4 Porting CIAM from GAMS to Python

CIAM was constructed in the closed-source General Alge-
braic Modeling System (GAMS) language. However, the
model does not require the dynamic programming capabil-
ities offered by GAMS. Therefore, porting the model to
Python, a commonly used open-source programming lan-
guage, offers greater flexibility, access, and efficiency with-
out loss of functionality. Before adding additional resolution
to the model, pyCIAM computed a global run of a single SLR
trajectory in 15-20 s, compared to 6—8 h for CIAM. To ensure
that this first stage of changes did not introduce changes to
model functionality, we ensured that this version of pyCIAM
replicated the results from the CIAM (in GAMS) model ob-
tained from its source repository before updating model in-
puts. This replication was largely confirmed, with only very
minor deviations between the computed results and those re-
ported in Diaz (2016). The observed deviations were also re-
flected in the outputs of the unaltered CIAM model we ob-
tained, suggesting that the configuration of the publicly avail-
able CIAM model was likely slightly altered from that used
in Diaz (2016) (Table 1).

2.5 Physical model inputs in SLIIDERS
2.5.1 Coastal segments

To improve the traceability of data inputs and the efficiency
of model optimization, we replaced the irregular DIVA
coastal segments with segments based on the points at which
ESLs are estimated in the Coastal Dataset for the Evaluation
of Climate Impacts (CoDEC). This represents a roughly uni-
form 50km spacing of global coastline points (Muis et al.,
2020a). We made a number of slight alterations to the orig-
inal CoDEC point set and used these points as midpoints
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Figure 2. Calibration of the non-market relocation cost parameter based on the revealed preference of current populations. Curves show
the magnitude of the population (orange) and physical capital (blue) that is instantaneously relocated in the optimal adaptation scenario
of pyCIAM, assuming SSP2-IIASA socioeconomic projections and median no-climate change RSLR, as a function of this parameter.
The parameter is normalized by local GDP per capita. We identify the parameter values for which 50 % of the population and capital
instantaneously relocated under an assumption of zero non-market costs are no longer relocated and average these two values to estimate the
relocation parameter used in pyCIAM.

Table 1. Comparison of select model estimated costs (in billions of USD in 2010) as reported in Diaz (2016) with those calculated from the
original CIAM code in GAMS obtained from its online source repository and those calculated by pyCIAM after porting CIAM to Python
and before any additional changes. Values reflect median relative sea level rise projections from Kopp et al. (2014) under a high-emissions
scenario (RCP 8.5). Estimates also reflect total coastal costs. In other words, costs from a baseline “no climate change” scenario, including
only background local relative sea level changes unrelated to changing global sea level, have not been subtracted. Model runs were conducted
on an Apple MacBook Pro laptop with a 2.8 GHz Quad-Core Intel Core i7 processor and 16 GB of RAM.

Diaz (2016) (GAMS, CIAM (GAMS, pyCIAM (Python,

reported in original paper) computed in this study) computed in this study)

Global net present value (2010-2100) 1700 1692.2 1692.2
US net present value (2010-2100) 419 419.7 419.7
Australia net present value (2010-2100) 208 208.6 208.6
Brazil net present value (2010-2100) 98 97.5 97.5
China net present value (2010-2100) 87 87.0 87.0
Global costs of wetland loss in 2100 80 79.3 79.3
Global total costs in 2100 (optimal adaptation) 270 282.1 282.1
Global total costs in 2100 (no adaptation) 2200 2251.5 2251.5
Calculation runtime - 6-8h 15-20s

of 50km coastline segments (Sect. A). The alterations en-
sured that (a) the coastline segments were nested by coun-
try boundaries, as the DIVA segments are, and (b) any ex-
tra points corresponding to offshore buoy gauges (used for
validation in CoDEC) were removed. We also thinned Eu-
ropean CoDEC points, originally provided at an extra fine
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10km spacing, to 50km in order to have globally uniform
spacing. In addition, we manually added 19 segments for
small island states or small slivers of national coastlines
not represented in the original CoDEC point set (e.g., An-
guilla, Tokelau, Jordan’s small coastline). The final subset of
CoDEC coastal points utilized in pyCIAM totaled 9568. Nat-
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ural Earth coastlines were used to make the point-to-segment
conversion (1:10m resolution®). The coastline lengths of
each segment, used to calculate the potential costs of build-
ing protective barriers, were derived from this final set of seg-
ments (Sect. Al).

The decision to replace the coastal segments was mo-
tivated by several reasons. First, in the version of DIVA
(v1.5.5) used in Diaz (2016), we found that many of the
coastal segment lengths in high-latitude regions were sub-
stantially overestimated, likely due to a geographic projec-
tion error. This error appeared to be corrected in versions
of DIVA used in subsequent studies; however, we never-
theless wished to avoid dependence of pyCIAM on DIVA,
with uncertainty surrounding its ongoing development sup-
port and dataset availability. Second, we found that DIVA
contains a substantial over-representation of small, mostly
unpopulated land masses in island regions within its set of
12 148 segments. For example, DIVA contains 1316 individ-
ual segments for French Polynesia, constituting 10.8 % of all
global segments but representing less than 0.004 % of the
global population. This created substantial computational in-
efficiencies, as all segments require roughly equivalent com-
putation.

2.5.2 Extreme sea levels

We obtained ESL distributions from CoDEC v1 (Muis et
al., 2020b), which uses the third-generation Global Tide and
Surge Model (GTSM) combined with the ERAS reanalysis
to create a reanalysis product of historical sea levels (Muis
et al., 2020a). The CoDEC data provide the location and
scale parameters of a Gumbel extreme value distribution fit to
modeled ESLs at each coastline point, which we used to ob-
tain the return periods required by CIAM (1, 10, 100, 1000,
10000 years). In validation analysis that compares CoDEC
to observed tide gauge values, CoDEC values slightly un-
derestimate annual ESL maxima by an average of 0.04 m
across all observed tide gauge stations, with 1-in-10-year
mean ESL heights underestimated by 0.10 m. Certain areas
exhibit greater model bias, with 25 % of tide gauge stations
included in the validation showing absolute biases greater
than 0.2 and 0.3 m for annual and decadal maxima, respec-
tively. In regions with a large tidal range and/or frequent
tropical cyclones, biases are generally larger. See Muis et al.
(2020a) for a full discussion of CoDEC model validity.

2.5.3 Elevation

The use of accurate elevation data is crucial to appropriately
representing sea level rise impacts (Kulp and Strauss, 2019).

SThe “1: 10m” label indicates the scale of the physical vec-
tor layers, which can also be thought of as the maximum length
of coastline across which simplification of complex coastlines into
straight line segments can occur. 1: 10 m coastlines are the most
granular product provided by Natural Earth.
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We have implemented an updated elevation model used to
define the population and physical capital exposed to SLR in
pyCIAM in the following manner.

1. We utilize the CoastalDEM v2.1 dataset (Kulp and
Strauss, 2021) to define elevations at 1 arcsec resolu-
tion (roughly 30m). The v2.1 release of CoastalDEM
represents further improvements to the initially released
product (v1.1) (Kulp and Strauss, 2018), though both
datasets represent substantial accuracy improvements to
prior DEMs, such as the widely used SRTM DEM. In
addition to higher-resolution elevation estimates com-
pared to the 30arcsec GLOBE DEM used in Diaz
(2016), Coastal DEM significantly reduces bias found in
SRTM, as presented in a comparative analysis based on
CoastalDEM’s initial release (v1.1) (Kulp and Strauss,
2019). Compared to SRTM, CoastalDEM v1.1 suggests
that roughly 3 times the amount of the present-day pop-
ulation resides below projected high-tide levels under
low-emissions sea level rise scenarios by 2100 glob-
ally (Kulp and Strauss, 2019). It should be noted that
the high-resolution version of CoastalDEM v2.1 is the
only input used in this study that is not publicly avail-
able. It is obtained via license with Climate Central, the
developers of the DEM, though lower-resolution ver-
sions of the dataset are freely available for academic
use. For the small number of regions that we model
where CoastalDEM does not exist (e.g., above and be-
low 60° N and 60° S, respectively), we derive elevations
from the SRTM15+ v2.5 dataset (Tozer et al., 2019).

2. We pair this DEM with 30 arcsec population estimates
(LandScan 2021, Sims et al., 2022) and capital stock
(LitPop; Eberenz et al., 2020a) rasters, which allows
for independent calculations of the distribution of land
area, capital, and population with respect to eleva-
tion. We also rescale LitPop at the country level to
match more recently available data from Penn World
Table 10.0 (Feenstra et al., 2015) and other sources (see
Sect. 2.6.3). This approach differs from that of Diaz
(2016), where population and capital stock densities
were defined at the segment level and assumed to be
homogeneously distributed within a segment.

3. We discretize the distributions of population and capital
to 0.1 m elevation slices, rather than 1.0 m.

4. We mask all pixels that are not hydraulically connected
to the ocean at 20 m of SLR from analysis. This screens
out most inland low-elevation areas not exposed to SLR;
20m is the highest-elevation bin that we consider, re-
flecting the upper end of the ESLs that we consider com-
bined with the upper end of local RSLR.
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Figure 3. Example pyCIAM coastal segments (areas) and their centroids (points) for a region within the Caribbean.

2.5.4 Wetlands and mangroves

For wetland areas, pyCIAM utilizes the European Space
Agency’s GLOBCOVER v2.3 global land cover dataset from
2009, offered at a 300 m resolution (http://due.esrin.esa.int/
page_globcover.php, last access: 31 May 2021) (Arino et al.,
2012). Three different land cover classifications from this
layer, as defined in (Hu et al., 2017), were coded as “wet-
lands™:

1. closed to open (> 15%) broadleaved forest regularly
flooded (semi-permanently or temporarily) — fresh or
brackish water

2. closed (> 40 %) broadleaved forest or shrubland perma-
nently flooded — saline or brackish water

3. closed to open (>15 %) grassland or woody vegetation
on regularly flooded or waterlogged soil — fresh, brack-
ish, or saline water.

Mangrove extents were updated using values from UNEP’s
Global Mangrove Watch 2016 dataset (Bunting et al., 2018;
Bunting et al., 2022). The final wetland area used in pyCIAM
consists of the spatial union of these two datasets.

2.5.5 Sealevel rise

We integrate local SLR projections from 23 different fu-
ture scenarios drawn from six different global and regional
sea level change research efforts conducted in recent years.
These are detailed in Table 2. We model and present results
for the median projections for each of these 23 future SLR
scenarios in this paper, although we also ran pyCIAM using
the 17th and 83rd percentile SLR runs for all 23 scenarios.
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The broad range of scenarios covered in our analysis (from
0.25 to 2 m of g.m.s.1. rise in 2100) covers the plausible set of
SLR trajectories; however, it can also be useful to assess the
variation in impacts across different quantiles within a single
scenario to assess uncertainty in impacts conditional on one
emissions scenario. Such within-scenario assessment is out-
side of the scope of this article but is an appropriate use of
pyCIAM. To address this, results for the 17th and 83rd per-
centile of each SLR scenario are available in the model out-
put dataset available on Zenodo (“Code and data availabil-
ity” section). We also note that pyCIAM is also configurable
to run a probabilistic large ensemble of SLR trajectories on
a multi-core computing platform, an approach used in recent
research efforts using pyCIAM (Climate Impact Lab (CIL),
2022).

Our modeled future SLR pathways include the seven prin-
cipal projections underlying the future sea level change tra-
jectories detailed in the Intergovernmental Panel on Climate
Change’s (IPCC) Sixth Assessment Report (AR6) (Fox-
Kemper et al., 2021). The data for these projections were
generated using the Framework for Assessing Changes To
Sea Level (FACTS, Kopp et al. (2023)) and were obtained
from the report’s public data repository (Garner et al., 2021).
These seven trajectories represent different combinations of
future emissions and underlying physical processes that in-
fluence sea levels. These scenarios are partitioned into two
groups — low confidence (n =2) and medium confidence
(n = 5) — which refer to the relative level of confidence of the
underlying physical processes reflected in each future sce-
nario. Medium-confidence projections are considered to be
of higher likelihood but do not incorporate deeply uncertain
physical processes, such as marine ice cliff instability, that
could have large impacts on future sea levels, particularly in
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higher-emission scenarios. These processes are represented
in the low-confidence AR6 projections and project higher
end-of-century g.m.s.l. values compared to their medium-
confidence counterparts (Table 2).

It should be noted that each of the AR6 emissions scenar-
ios was originally constructed using integrated assessment
models (IAMs) driven by a single socioeconomic trajectory
(i.e., a single SSP). However, when assessing economic im-
pacts of climate change it is often useful to separate future
changes in welfare caused by non-climate-related socioeco-
nomic trends from climate impacts. This is done by holding
baseline growth rates fixed across emissions scenarios. For
this reason, we assess damages from each of the AR6 emis-
sions scenarios under each of the five SSPs, even though
some emissions trajectories may be more or less plausible
under different SSPs.

We also incorporate the five main SLR scenarios repre-
sented in the US interagency Sea Level Rise Technical Re-
port (2022), led by the National Oceanic and Atmospheric
Administration (NOAA) (Sweet et al., 2022a) and derived
from the FACTS-based projections in Garner et al. (2021).
The SLR pathways in this report were organized by their pro-
jected g.m.s.l. value in 2100 rather than by global emissions
trajectories. As such, they are grouped into five bins, based
on different plausible g.m.s.l. values in 2100: low (0.3 m),
intermediate low (0.5 m), intermediate (1.0 m), intermediate
high (1.5m), and high (2.0 m).°

The remaining 11 SLR projections are derived from the
LocalizeSL framework (Kopp et al., 2014, 2017; Kopp and
Rasmussen, 2021). LocalizeSL was used in the IPCC AR5
report (Church et al., 2013) and in subsequent publications
(e.g., Kopp et al., 2017; Sweet et al., 2017; Rasmussen et al.,
2018; Bamber et al., 2019; DeConto et al., 2021; Tebaldi
et al., 2021) prior to the introduction of FACTS. Similar to
the AR6 SLR projections derived from FACTS, these based
on LocalizeSL reflect a distribution across emissions scenar-
ios, as well as across the component models used to represent
the various contributing factors to SLR. These differences in
component models refer to alternate assumptions and pro-
cess representations regarding all contributors to sea level
rise, with particularly influential differences in assumptions
related to ice sheet contributions.

Overall, these 23 scenarios cover a likely range of plausi-
ble SLR trajectories in the 21st century and allow us to es-
timate the marginal welfare costs of additional SLR across
this full range (Fig. 4). Scenarios based on emissions trajec-
tories may be most relevant for users interested in evaluating
the benefits of emissions mitigation, while those based on

5These g.m.s.l. values are expressed relative to g.m.s.l. in 2000,
while pyCIAM expresses g.m.s.l. relative to 2005, making its end-
of-century values associated with these scenarios in pyCIAM ap-
proximately 2 cm lower (Table 2) than those specified in Sweet et al.
(2022a).
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g.m.s.l. levels may be most relevant for local planners seek-
ing to design adaptation strategies.

Notably, each of these scenarios contains a Monte Carlo
sampling of a distribution of local SLR projections. However,
because the 23 scenarios we reflect in this analysis cover a
broad range of outcomes, for the purposes of this paper, we
present results only for the median SLR projection at each
coastal segment. In other words, the presented results reflect
impacts in a world in which all regions experience the me-
dian projected RSLR for that scenario. Given the computa-
tional improvements in pyCIAM and its scalable design, it is
suited for execution on a full Monte Carlo distribution. Cli-
mate Impact Lab (CIL) (2022), for example, applies CIAM
to a 110 000-sample ensemble, using 10 000 draws from each
of the 11 LocalizeSL-based SLR projections.

In addition to projections of climate-change-induced SLR,
and in alignment with Diaz (2016), we run a “no climate
change” counterfactual scenario in which all SLR compo-
nents are set to 0 except for a spatially heterogeneous and
empirically estimated background rate of change parameter
that includes drivers assumed to be unaffected by climate
change (e.g., glacial isostatic adjustment, tectonics, sediment
compaction, and other processes contributing to vertical land
motion). This is a probabilistic parameter in the LocalizeSL
and FACTS frameworks that is held fixed across all sce-
narios from a given modeling framework. The impacts esti-
mated under these scenarios are subtracted from those in the
climate-change-driven scenarios to isolate the contributions
of climate change to global 21st-century coastal economic
impacts (see Fig. 4).

To estimate local sea level extremes, we linearly combine
the fixed ESL distributions from CoDEC with an annually in-
terpolated version of the decadal SLR projections from each
of these 23 scenarios. This allows us to maintain a globally
consistent representation of extremes at reasonably fine res-
olution. Limitations of this “local bathtub” approach are de-
scribed in Sect. 3.3.

Values for median g.m.s.1. rise throughout the 21st century
are detailed in Table 2 below. For reference, an equivalent
table for the 17th and 83rd percentile SLR projections for
each scenario is provided as Table C1 in the Appendix.

2.6 Socioeconomic variables
2.6.1 Population

In SLIIDERS, we use information from LandScan 2021
(Sims et al., 2022) to represent the present-day spatial distri-
bution of population. We then maintain this within-country
distribution and scale the country totals to match the SSPs
(Riahi et al., 2017), exponentially interpolated between 5-
year projections to annual values. Because the SSPs begin in
2010 and pyCIAM begins in 2005, we must scale populations
back to 2005. To do so, we use observed country-level growth
rates from 2005 to 2010 to backcast from the 2010 SSP pro-
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Table 2. The g.m.s.1. rise between 2005 and 2100 for each median SLR scenario used in the pyCIAM and Diaz (2016) models, representing

the x-axis positions of the costs displayed in Fig. 4.

ID SLR scenario Model(s) used g.m.s.l. in 2100 [m] (median)
NCC no climate change* CIAM, pyCIAM  0.00
AR6-Med IPCC AR6 medium confidence (2021): pyCIAM 0.38, 0.44, 0.56, 0.68, 0.77
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0,
SSP5-8.5
AR6-Low  IPCC ARG low confidence (2021): pyCIAM 0.45,0.88
SSP1-2.6, SSP5-8.5
Sweet US interagency SLR Technical Report (2022): pyCIAM 0.28, 0.48, 0.98, 1.48, 1.98
Low, Int-Low, Int, Int-High, High
K14 Kopp et al. (2014): CIAM, pyCIAM  0.48, 0.58,0.78
RCP 2.6, RCP 4.5, RCP 8.5
SR IPCC Special Report on the Ocean and the pyCIAM 0.49, 0.60, 0.88
Cryosphere in a Changing Climate (SROCC):
RCP 2.6, RCP 4.5, RCP 8.5
B19 Bamber et al. (2019): pyCIAM 0.68, 1.10
low (2°C), high (5°C)
D21 DeConto et al. (2021): pyCIAM 0.52,0.62, 1.10

RCP 2.6, RCP 4.5, RCP 8.5

* Includes local background rates of relative sea level rise at each segment due to non-climatic background processes. Because of model differences,
the FACTS-based projections (AR6 and Sweet) will use slightly different no-climate-change scenarios than those based on LocalizeSL.

jections, which are constant across all SSPs. Observed rates
are drawn primarily from the Penn World Table (PWT) 10.0
dataset (Feenstra et al., 2015), with missing countries filled
through a variety of sources including the 2022 UN World
Population Prospects (United Nations, Department of Eco-
nomic and Social Affairs, Population Division, 2022), multi-
ple iterations of the CIA World Factbook (United States Cen-
tral Intelligence Agency, 2021), World Bank World Develop-
ment Indicators (WDI, Bank, 2021), and local government
statistics for some small island states. To project population
forward for countries and territories not covered by the SSP
data, we use global average population growth rates applied
to 2010 estimates.

2.6.2 GDP

pyCIAM combines SSP-consistent, country-level GDP pro-
jections from two growth models — one from ITASA (Cre-
spo Cuaresma, 2017) and one from the Organisation for Eco-
nomic Co-operation and Development (OECD, Dellink et al.
(2017)) — and population projections from ITASA (Kc and
Lutz, 2017) to create country-level GDP per capita projec-
tions. These data are available on the SSP Database (Riahi
et al., 2017). SSP interpolation and extrapolation approaches
match those used for population values. Observed values for
2005-2010 are again drawn from PWT 10.0 where avail-
able, with alternative sources including (Fariss et al., 2022a),
OECD Regional Statistics (OECD, 2022a), the 2021 Interna-
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tional Monetary Foundation World Economic Outlook (In-
ternational Monetary Fund, 2021), and the WDI. Where and
when country-level estimates are unavailable but estimates
do exist for associated sovereign entities, we use a regres-
sion estimator described in Bertram (2004) to estimate per
capita GDP for the territories. For the countries and territo-
ries not covered by IIASA and OECD projections, we take
the global-average per capita estimates in 2010 and interpo-
late/extrapolate using the global average yearly growth rates
for missing years.

To create per capita GDP estimates (ypc) for coastal seg-
ments in pyCIAM for each year (f), we use the same national-
to-segment downscaling approach as Diaz (2016), which re-
lates population density to income. See Eq. (8) in the Diaz
(2016) Supplemental Information for further details. In Diaz
(2016) population density is assumed to be homogeneous
within segment, which implies that all elevation slices within
a coastal segment are prescribed the same local income.
In pyCIAM, each elevation slice within each region has a
unique population density. Thus, we apply this downscaling
approach separately to each elevation slice.

2.6.3 Physical capital

In addition to assessing the exposure of human popula-
tion to SLR-related hazards, pyCIAM also assesses the ex-
posure of physical capital stock to these threats. Both the
ITASA and OECD GDP growth models utilize projections
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of physical capital; however, neither model has publicly re-
leased these projections. Therefore, to create future capital
stock estimates, we extract the relevant growth equations for
OECD’s ENV-Growth model as described in Dellink et al.
(2017). The capital growth trajectory in the IIASA model
is exogenously specified, is constant across SSP scenario,
and yielded implausibly large capital stocks in later years.
For instance, the IIASA model projects that Macau reaches
USD 30.8 quadrillion in 2100 capital stock, which is 23 times
that of the United States in 2100 (USD 1.3 quadrillion) and
200000 times that of Macau in 2010 (USD 134 billion) (all
values in constant 2019 purchasing power parity, PPP, USD).
Due to such implausible growth rates, we do not use the
ITASA capital growth trajectory in pyCIAM.

We use country-level capital stock estimates up through
2020 and then use 2020 estimates as the initial conditions for
this growth model. Like with population and GDP, historical
estimates of capital come primarily from PWT 10.0. Where
these values are missing and outside of the special cases of
Cuba and North Korea, SLIIDERS uses estimates of the ra-
tios of non-financial wealth (NFW) to GDP derived from the
2022 Credit Suisse Global Wealth Databook (Credit Suisse
Research Institute, 2022), combined with nominal GDP in-
formation from United Nations System of National Accounts
(UNSD, 2021). Following the approach taken in (Eberenz
et al., 2020a), we then multiply PPP GDP by these NFW-to-
GDP ratios to acquire proxies of physical capital. For Cuba,
we use the ratio of Cuban and the US capital stock values
from Berlemann and Wesselhoft (2017) and multiply this ra-
tio with the US capital stock values from PWT 10.0. For
North Korea, we multiply the capital-to-GDP ratio in Pyo
and Kim (2020) with PPP GDP.

Then, we apply the OECD capital stock equations with the
estimated 2020 capital stock values and SSP-consistent GDP
projections to obtain projections of capital stock for each SSP
scenario and for each GDP growth model. To parameterize
these equations, we use a value for the partial elasticity of
GDP with respect to capital taken from Crespo Cuaresma
(2017) (0.326), since this is not reported in Dellink et al.
(2017). We also estimate country-specific initial conditions
for the marginal product of capital using a modified Cobb—
Douglas production function fit to the historical capital data.
See Sect. A3 for further methodological detail.

pyCIAM uses the LitPop dataset (Eberenz et al., 2020a) to
represent within-country spatial distribution of physical cap-
ital stock at 30 arcsec resolution. LitPop combines popula-
tion information from the Gridded Population of the World
dataset (v4.1) (Center for International Earth Science Infor-
mation Network — CIESIN — Columbia University, 2016)
with nightlight intensity (Romaén et al., 2018) to downscale
country-level estimates of total physical assets. In some
countries, e.g., Libya and Syria, LitPop does not provide any
downscaled estimates. In these locations, we use the down-
scaled estimates provided by the GEG-15 dataset (Bono and
Chatenoux, 2014). For the small number of island coun-
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tries that do not have capital distributions reflected in either
dataset, we assume homogeneous capital stock.

In pyCIAM, the ratio of mobile to immobile capital is used
to determine costs of inundation. Diaz (2016) used a fixed
ratio of 10 %. However, PWT 10.0 contains country-level in-
formation that can be used to estimate across-country hetero-
geneity in this ratio. PWT decomposes physical capital into
four categories:

1. residential and non-residential structures
2. machinery and non-transport equipment
3. transport equipment

4. other assets.

For SLIIDERS, we assume that the first category (residential
and non-residential structures) represents immobile capital
and the others represent mobile capital. We take the average
mobile fraction from 2000-2019 and apply this at the coun-
try level. These country-specific values vary from 1 % (Haiti)
to 52 % (Equatorial Guinea) with 25th, 50th, and 75th per-
centiles of 14 %, 18 %, and 20 %, respectively.

2.6.4 Construction costs

We maintained the same reference unit cost of coastal pro-
tection utilized in CIAM but updated the national construc-
tion cost index scaling factors by using the ratio of construc-
tion cost indices from ICP 2017 (World Bank, 2020) instead
of 2011. For countries not included in this dataset, we aug-
ment with the country-level construction cost indices used
in Lincke and Hinkel (2021), averaged across the rural and
urban distinction.

2.7 Other features

2.7.1 Model duration

Diaz (2016) runs from 2000-2200. However, the SSPs stop
at 2100 and thus the SLIIDERS dataset does as well. Be-
cause of this, and because the AR6 SLR scenarios begin in
2005, we limit pyCIAM to 2005-2100. Using the 4 % dis-
count rate employed in Diaz (2016) and pyCIAM, the dis-
count factors for 2100-2200 costs vary from 2 % in 2100 to
0.03 % in 2200, so the exclusion of these additional years is
unlikely to have a substantial effect on the optimal adaptation
option selected by each segment.

2.7.2 Time steps and planning periods

We increase temporal resolution from the decadal time steps
used in Diaz (2016) to annual. In addition to the exponential
interpolation of 5-year SSP inputs described above, decadal
SLR projections are linearly interpolated to yield annual val-
ues. The 40-50-year planning periods used in Diaz (2016)
yield substantial step changes in realized costs at mid-century
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and the end of the century due to substantial simultaneous
global adaptation actions. To generate a smoother time series
of costs, we use decadal planning periods. A potential trade-
off of using shorter planning periods is that this may over-
estimate the frequency with which governments and popula-
tions are able to update major adaptation actions. An unreal-
istically agile representation of large-scale adaptation actions
may underestimate associated net present cost because some
adaptation costs can be postponed to future years with lower
discount factors. Future work may empirically estimate the
frequency at which adaptation approaches are updated and
explore further options for incorporating planning periods
that are not globally simultaneous and thus do not lead to
substantial step changes in global SLR costs at the start of
each period.

2.7.3 Net present value calculation

In Diaz (2016), the NPV each segment uses to calculate an
optimal adaptation approach is calculated from 2010-2200,
excluding the initial planning period of 2000-2009. In this
way, each segment is allowed a “free” initial relocation or
protection action. For example, if a segment chooses to pro-
tect to the 1-in-10 000-year sea level height, which is 3m in
2000, it does not consider the costs of building a correspond-
ing seawall when calculating the NPV of this action. It only
considers the marginal cost of extensions to this seawall to
remain at the 1-in-10 000-year height as local sea levels in-
crease.

The rationale for this initial “spinup” period in Diaz (2016)
was to allow each segment to choose an optimal adaptation
approach without including costs for adaptation measures
that may already exist but are not reflected in observed values
due to the lack of high-quality global input data describing
population distribution and coastal protection measures. In
other words, segments were allowed to choose their optimal
adaptation approach based only on adaptation costs associ-
ated with updating adaptation (e.g., through height increases
of protection or additional managed retreat) but not based on
the costs of initial implementation (e.g., the initial protection
construction or managed retreat).

By using finer-resolution population and capital stock esti-
mates, SLIIDERS partially ameliorates this need by provid-
ing more accurate observed measures of coastal exposure.
In addition, we argue that any existing adaptation measures
would have to have been implemented at some point in his-
tory when they were presumably determined to be a cost-
effective approach, even including the initial costs of imple-
mentation. This deviates from the assumption in Diaz (2016)
that such initial adaptation does not incur costs, which we be-
lieve is likely to overestimate the state of present-day adapta-
tion. Including the costs in this “spinup” period when calcu-
lating NPV, along with calibrating the non-market costs of re-
location (see Sect. 2.3), reduces the amount of instantaneous
relocation observed under the optimal adaptation scenario.
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For these reasons, in the configuration of pyCIAM pre-
sented here, each segment uses costs from the entire model
duration of 2005-2100, inclusive of the initial adaptation
costs, to calculate NPV and choose an optimal adaptation
approach. This configuration is applied to costs from all sce-
narios, including those from the “no climate change” coun-
terfactual scenario that are subtracted from the “with climate
change” scenarios in order to isolate the climate change con-
tributions to coastal welfare impacts.

Because of this consistency in application, the choice of
the initial NPV year is likely to have a minimal effect on
the estimated climate change costs. However, it will sub-
stantially affect the “un-differenced” total costs associated
with both the “with climate change” and “no climate change”
in the initial adaptation period. This is reflected in substan-
tially different NPV calculations between this paper and Diaz
(2016) in this un-differenced context (see Fig. B1). pyCIAM
provides users with a configurable parameter to determine
whether initial adaptation costs should be accounted for in
each segment’s NPV calculation or not.

In addition to modifying the starting year of the NPV cal-
culation, we make one change to the application of a discount
rate. Diaz (2016) applied the discount rate at the start of each
decadal time step to the full 10 years of costs incurred in that
time step. This approximation overestimates the discounted
cost for all years after the first. We avoid this issue by us-
ing annual time steps; however, when comparing NPV results
to Diaz (2016) (Fig. 4), we apply annually varying discount
rates to the Diaz (2016) outputs as well.

2.7.4 Manual correction factors

In pyCIAM, the following manual correction factors in the
original code underlying Diaz (2016) have been removed.
These correction factors were originally used by Diaz (2016)
in order to correct for certain limitations in data availability
or quality that are no longer necessary after incorporating the
data updates in SLIIDERS:

1. Doubling the price of construction on all “island” seg-
ments. The new construction cost index values utilized
in pyCIAM should reflect any increased construction
costs on island nations. Additionally, segments defined
as “island” in CIAM were not entirely consistent, with
some islands receiving the label and others not.

2. Halving the protection heights under the protection
adaptation scenario corresponding to 10-year ESL
heights. This was originally implemented to account for
elevation profiles found in the GLOBE DEM that were
deemed physically implausible (extremely high area to-
tals from O—1m), but it is no longer required following
the updated CoastalDEM elevation values.

3. Averaging of the inundated land area-by-elevation bins
for the first two (0—1, 1-2 m) bins in order to smooth the
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elevation profile due to the high 0—1 m area totals in the
GLOBE DEM values. This adjustment, too, is no longer
required following the updated CoastalDEM elevation
values.

3 Results and discussion

Upon implementing the changes described above, global
costs estimated by pyCIAM diverge modestly from those in
Diaz (2016). Additionally, we obtain estimates for a greater
breadth of socioeconomic and SLR trajectories that reflect
deep uncertainty in these processes. Figure 4 displays esti-
mated global costs for the following global SLR-driven cost
metrics reported in Diaz (2016): (i) global net present costs
under an optimal adaptation scenario using a 4 % discount
rate, (ii) end-of-century annual total costs under that same
scenario, (iii) end-of-century annual total costs under a “re-
active retreat only” scenario, and (iv) end-of-century annual
costs of wetland loss under the optimal adaptation scenario.
Global NPV and end-of-century costs for the highlighted sce-
narios in Fig. 4 and for a “middle of the road” socioeconomic
growth scenario (SSP2-IIASA) are shown in Table 3.

Results are shown for the pyCIAM model both in its repli-
cated CIAM configuration and after all the above changes
were applied. Values are expressed such that each vertical
group of points comprises the spread of results between the
different socioeconomic projections for a given SLR sce-
nario, with the position along the x axis representing that
scenario’s median g.m.s.l. value in 2100. As described in
Sect. 2.5.5, all of the pyCIAM results use a constructed “me-
dian” SLR trajectory where each location experiences the
median RSLR across the probabilistic projected distribution.
This matches the approach used in Diaz (2016).

3.1 Total SLR costs

The global distribution of end-of-century average annual
costs of climate-driven SLR under optimal adaptation, ag-
gregated to first-level administrative regions (equivalent to
state level in the United States), is shown in Fig. 5, using
the AR6 (medium-confidence) SSP2-4.5 SLR scenario and
SSP2-ITASA socioeconomic trajectory. Figure 6 similarly
demonstrates spatial heterogeneity in the annual cost savings
realized through optimal adaptation, relative to costs in the
reactive retreat scenario.

Median global NPV values from 2005-2100 under opti-
mal adaptation ranges from USD 600 billion to 3.4 trillion in
pyCIAM across its 230 SLR—-SSP—economic growth model
scenarios, corresponding to end-of-century g.m.s.l. rise val-
ues between 0.28 and 1.98 m, relative to 2005 mean sea level
(Fig. 4). Estimates of global NPV from Diaz (2016) range
from USD 1.0 to 1.4 trillion in the three SLR scenarios con-
sidered (end-of-century g.m.s.l. rise from 0.48 to 0.78 m, Ta-
ble 2). Comparing the three SLR scenarios used in pyCIAM
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that match those employed in Diaz (2016) (K14 RCPs 2.6,
4.5, 8.5), pyCIAM’s median global NPV values from 2005—
2100 are similar to those estimated by CIAM, with some so-
cioeconomic projections yielding higher estimates and some
yielding lower (Fig. 4, Table C2).

When considering total damages, rather than the differ-
ence between them, pyCIAM estimates significantly higher
global NPV (~ 5-6x) and moderately higher end-of-century
costs (~2x) compared to Diaz (2016) (Fig. B1). There
are several reasons for these differences. First, the deci-
sion to include initial adaptation costs in the NPV calcula-
tion and optimal adaptation selection for each segment con-
tributes to the substantially higher NPV values seen in py-
CIAM (see Sect. 2.7.3). Second, we use a calibrated value
for non-market relocation costs almost an order of magni-
tude larger than that used in Diaz (2016) (see Sect. 2.3). This
drives more segments toward choosing protection and thus
drives up global construction and maintenance costs in ad-
dition to relocation costs. Third, Diaz (2016) assumes that
all abandoned capital has fully depreciated by the time of
abandonment for proactive retreat scenarios, while pyCIAM
avoids this assumption due to a lack of empirical evidence
(Sect. 2.2.1). Fourth, in Diaz (2016), segments choosing re-
active adaptation were assumed to retreat at least up to a
height deemed optimal under current sea levels. This often
led to retreat higher than mean sea level in order to mini-
mize ESL-related damages; however, land abandonment and
relocation costs were not assessed for this full retreat height.
Instead, they were only assessed up to mean sea level, low-
ering estimated costs for these two cost types. Fifth, Diaz
(2016) reduced the 10-year protection height by 50 % for
all segments as an ad hoc adjustment to account for an im-
plausibly large land area contained in the 0-1 m elevation
slice, as reported by DIVA and derived from GLOBE DEM
(Sect. 2.7.4). Sixth, projected capital stock and population
in SLIIDERS across its SSP and growth model scenarios
are significantly higher than those modeled in Diaz (2016).
For example, the mid-century global capital stock located
between 0 and 15 m above sea level ranges from USD 220
to 370trillion (2019 USD) across the five SSPs and two
growth models in SLIIDERS, compared to USD 97 trillion in
Diaz (2016). Similarly, SLIIDERS’ mid-century population
ranges from 1.19 to 1.35 billion people across the five SSPs
(population is equivalent in each economic growth model),
compared to 1.18 billion in Diaz (2016). The SSP-based
ranges differ most from the Diaz (2016) trajectories around
mid-century before beginning to converge toward the end of
the century. Finally, higher modeled costs in pyCIAM may
also be driven by updated topographic maps and other phys-
ical input datasets used for estimating exposure to SLR in
pyCIAM.

Annual global costs due to climate-driven SLR in
2100 under optimal adaptation range from USD 70 billion
to 1.5trillion across all pyCIAM scenarios and from
USD 100billion to 540billion across the K14-pyCIAM
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Figure 4. Comparison of global cost estimates under each SLR scenario. Values are costs from climate-change-induced SLR only, i.e., after
differencing the costs under a “no climate change” scenario that reflects median projections of non-climatic RSLR rates and no g.m.s.1. rise.
All costs are expressed in constant 2019 PPP USD. Each vertical group of points describes a single SLR scenario, with each point in the group
representing a unique combination of SSP and economic growth model. For visual clarity, only medium-confidence AR6 and Sweet et al.
(2022a) scenarios are indicated with colored markers and jittered slightly along the x axis based on runs using the OECD (—1 cm) or [IASA
(+1 cm) economic growth model. The remaining SLR scenarios are shown in grey without jitter. Dashed lines represent fitted relationships
between the cost metric and 2100 g.m.s.1. across the full set of SLR scenarios. Relationships are estimated for each SSP scenario and are

linear for all metrics except for global annual costs under a reactive adaptation scenario.

scenarios that correspond to those used in Diaz (2016).
The corresponding values from Diaz (2016) range from
USD 150 billion to 290 billion, with the smaller range being
largely driven by Diaz (2016) considering only one socioe-
conomic growth scenario. Under a reactive retreat scenario,
pyCIAM values are generally similar to those of Diaz (2016)
for low- and medium-SLR scenarios and higher for high-end
SLR scenarios (Fig. 4).
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Considering the AR6 (low-confidence and medium-
confidence) warming scenarios and associated ranges of
global SLR by 2100, we estimate that under 2 °C of warm-
ing by 2100 (4-0.40-0.69 m g.m.s.1.), annual end-of-century
costs will be between USD 110 billion and 530 billion (be-
tween 0.02 % and 0.07 % of global GDP), depending on SSP,
economic growth model, and SLR magnitude and assum-
ing optimal adaptation. For AR6’s 4 °C scenario (40.58-
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Table 3. Global estimated NPV (2005-2100) and annual costs of climate-driven SLR in 2100, expressed in trillions of constant 2019 PPP
USD (USD Tn), for the medium-confidence AR6 and Sweet et al. (2022a) SLR scenarios. Each metric is presented for both the optimal
adaptation and reactive retreat modeling configurations, using the SSP2-IIASA socioeconomic growth model. Numbers in parentheses show
the fraction of global GDP associated with these costs under the SSP2-ITASA growth scenario in units of basis points (bp, 1/100th of a
percent). For columns 3 and 4, the NPV of GDP 2005-2100 is used for this calculation; for columns 5 and 6, GDP in 2100 is used.

SLR scenario g.m.s.]l. [m] NPV NPV  Costs (2100)  Costs (2100)
(2100) USDTn(bp) USDTn(bp) USDTn(bp) USDTn (bp)
optimal reactive optimal reactive
Low (Sweet) 0.28 0.66 (1) 1.21 (3) 0.09 (2) 0.56 (11)
SSP1-1.9 (AR6-Med) 0.38 0.80 (2) 2.00 (4) 0.12 (2) 1.03 (20)
SSP1-2.6 (AR6-Med) 0.44 0.86 (2) 2.41(5) 0.15(3) 1.47 (28)
Int-Low (Sweet) 0.48 0.91 (2) 2.46 (5) 0.18 (3) 1.74 (33)
SSP2-4.5 (AR6-Med) 0.56 0.98 (2) 3.28 (7) 0.21 (4) 2.46 (47)
SSP3-7.0 (AR6-Med) 0.68 1.08 (2) 4.15(9) 0.27 (5) 3.66 (69)
SSP5-8.5 (AR6-Med) 0.77 1.20 (3) 5.24 (11) 0.31 (6) 4.79 91)
Int (Sweet) 0.98 134 (3) 6.19 (14) 0.42 (8) 6.64 (126)
Int-High (Sweet) 1.48 1.84 (4) 13.62 (30) 0.58 (11) 13.93 (264)
High (Sweet) 1.98 2.38(5) 24.61 (54) 0.79 (15) 24.85 (471)
—— 0.91 m g.m.s.1.), these costs range from USD 200 billion to
a? 55 ‘ 750 billion (0.04 % to 0.09 %). Also, for two low-likelihood,
y 7 e I8 high-impact scenarios (Sweet-IntHigh, Sweet-High), which

$100M
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Figure 5. Estimated annual average costs in 2100 by first-level ad-
ministrative region (equivalent to state level in the United States).
Results shown reflect optimal adaptation, using the AR6 (medium-
confidence) SSP2-4.5 SLR scenario and SSP2-ITASA socioeco-
nomic projections.
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Figure 6. Estimated annual adaptation benefits in 2100 by first-level
administrative region (equivalent to state level in the United States).
Results shown reflect the AR6 (medium-confidence) SSP2-4.5 SLR
scenario and SSP2-IIASA socioeconomic projections.
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incorporate more uncertain physical processes like acceler-
ated marine ice sheet and marine ice cliff instability, corre-
spond to g.m.s.l. rises of 1.5-2.0m by 2100; global annual
costs range from USD 420 billion to 1.5 trillion (0.08 % to
0.20 %) by the end of the century under the same set of as-
sumptions.

Upon projecting costs across this wide range of SLR
scenarios, we find a strongly linear relationship for both
NPV and annual end-of-century wetland and total dam-
ages with respect to end-of-century g.m.s.l. Depending on
socioeconomic projections, the marginal NPV costs as-
sociated with 1cm of end-of-century g.m.s.l. range from
USD 8billion to 14 billion, the marginal annual end-of-
century total costs range from USD 3 billion to 7 billion, and
the marginal annual end-of-century wetland costs range from
USD 110 million to 350 million. In a scenario with only re-
active adaptation, annual end-of-century costs not only are
much higher in absolute terms but also increase in a much
sharper (quadratic) manner with respect to g.m.s.1.

3.2 Adaptation costs and benefits

The results of this analysis support the finding of Diaz
(2016) that adaptive measures (through protection or re-
treat) can dramatically reduce the cost of sea level rise.
For a gm.s.l. rise of 1 m by 2100 and a “middle-of-the-
road” socioeconomic growth trajectory (SSP2-ITIASA), opti-
mal adaptation would reduce the NPV of coastal impacts by
about USD 5 trillion, inclusive of these adaptation costs. This
represents ~ 0.9 % of the net present value of GDP over that
same time horizon. Similarly, it would reduce average an-
nual costs at the end of the century, inclusive of adaptation
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costs, by ~USD 6 trillion (1.2 % of end-of-century annual
GDP) (Table 3). This would require substantial global in-
vestment in protection (USD 770 billion NPV under the same
scenario) and retreat (USD 310 billion NPV, including both
market and non-market costs of relocation). Across all so-
cioeconomic and SLR scenarios modeled, we find that opti-
mal adaptation can lower the NPV of impacts by a factor of
1.6 to 12, relative to a reactive adaptation approach.

The global distribution of optimal adaptation strategies is
displayed in Fig. 7 for the AR6 (medium-confidence) SSP2-
4.5 SLR and SSP2-ITASA scenario. Notably, the majority of
segments that protect are located in Asia, where coastal pop-
ulation densities are generally high and construction costs,
at least as parameterized by CIAM and pyCIAM, are rela-
tively low. Scattered high-density areas across OECD coun-
tries in Europe and North America are protected as well.
The fact that most protecting segments opt for the maximum
level of protection (1-in-10000-year ESL height) also sug-
gests that, for segments where protection is optimal, the pa-
rameterized marginal costs of building higher protection are
almost always lower than the benefits they provide, up to the
point where the protection heights have provided safety from
an exceedingly rare event. Future work should develop ap-
proaches to empirically calibrate the construction cost func-
tions used in Diaz (2016) and ported to pyCIAM, as these
may control the spatial distribution of protection. Similar to
the pattern of maximizing protection, there is a common pref-
erence to retreat to the 1-in-10-year ESL height amongst seg-
ments that adopt retreat as their optimal strategy. This sug-
gests that increasing the resolution of retreat options around
this level may better reflect heterogeneity in optimal retreat
height. Finally, segments for which reactive retreat is optimal
are generally sparsely populated or unpopulated.

Figure 8 displays the proportion of global segment pop-
ulations adopting different adaptation strategies (protection,
proactive retreat, and reactive retreat), across the various
socioeconomic and SLR scenarios for both pyCIAM/SLI-
IDERS and CIAM. In general, while CIAM indicates that
roughly 50 % of the world’s population would be protected
under optimal adaptation and 50 % would be relocated, py-
CIAM, paired with SLIIDERS inputs, finds these ratios to
be closer to 80 % and 20 %, respectively. This is largely due
to our increased relocation cost parameter (Sect. 2.3), which
disincentivizes retreat relative to protection. In contrast to the
influence of relocation cost on adaptation type, little varia-
tion is observed in these percentages across pyCIAM’s dif-
ferent socioeconomic scenarios (Fig. 8). This stability is vis-
ible even within individual segments’ adaptation choices and
suggests that particular choices of adaptation strategy (pro-
tection versus retreat) and the return value to which the cho-
sen adaptation strategy is enacted may be robust to a range of
future socioeconomic and SLR trajectories for most coastal
regions. Similar results are shown normalized by coastline
length rather than population in Fig. B2.
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3.3 Model limitations and planned improvements

pyCIAM is subject to some of the same limitations as its pre-
decessor CIAM. First, adaptation is limited to the 10 possi-
ble options introduced in Diaz (2016): 4 protection heights,
5 proactive retreat heights, and 1 reactive retreat action. Sec-
ond, segments are only allowed one protection or retreat stan-
dard throughout the model duration. They cannot, for ex-
ample, retreat to the 1-in-10-year ESL height for the first
20 years and then retreat to the 1-in-100-year height. Rather
a single optimal standard is chosen given the full distribu-
tion of potential future outcomes. Similarly, segments can-
not combine both retreat and protection. More flexible ap-
proaches may enable lower-cost outcomes (Kopp et al., 2019;
Haasnoot et al., 2019), though computational constraints
have limited the implementation of more dynamic adapta-
tion approaches to models with local domains (Lickley et al.,
2014). A preliminary approach to this problem, such as al-
lowing for a one-time mid-century alteration of adaptation
strategies, could be a simple scheme to allow for some level
of dynamic adaptation strategies. Third, insurance, subsidies,
or other policies may discourage proactive retreat even when
the NPV would be positive, and these interventions are not
taken into account by segment agents in the model when de-
termining the least-cost adaptation path. Fourth, many cost
functions and parameters in the model are based on limited
empirical evidence, as little evidence is available at fine res-
olution and global scale to inform the magnitude and hetero-
geneity of these costs.

Existing coastal protections are not directly modeled due
to a lack of globally consistent data. Instead, existing pro-
tections are assigned in the model like those of any other
year based on the least-cost adaptation scenario for each seg-
ment. This means that protection costs in the initial year of
the model will include the cost of constructing these existing
structures, though these additional costs will be differenced
out of our climate impact estimates because they will occur
in both the “with climate change” and “no climate change”
SLR trajectories.

Retreat or protection heights within each decadal planning
period are chosen under perfect foresight of projected RSLR
at that segment during the entire period, such that any max-
imum projected change in ESL return values due to RSLR
is perfectly anticipated and incorporated into adaptation cost
considerations and decisions. Notably, segments also chose
their optimal adaptation strategy (e.g., protection to the 1-in-
100-year ESL height) based on an NPV calculation that uti-
lizes perfect foresight over the entire model duration. While
this assumption cannot be correct in its extreme form, Fig. 8
suggests that these choices are very robust to uncertainty in
future sea level and socioeconomic change.

pyCIAM also does not currently represent accommodation
measures (e.g., infrastructure hardening and building eleva-
tion), which in some cases may be more cost-effective than
either protection or retreat (Oppenheimer et al., 2019; Kopp
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Figure 7. Adaptation strategies chosen by each segment in the optimal adaptation scenario. Each segment is represented by a marker at its
centroid. Results reflect the AR6 (medium-confidence) SSP2-4.5 SLR scenario and SSP2 and ITASA socioeconomic growth projections.
Return periods indicate the level of protection/retreat that is adopted by each segment.

et al., 2019; Rasmussen et al., 2020). Accommodation en-
compasses a broad range of actions and is thus difficult to
parameterize within the model. To our knowledge, accom-
modation is not represented in other coastal modeling plat-
forms but could be the subject of future updates to pyCIAM.
Additionally, the potential changing feasibility of both adap-
tation and accommodation measures in future decades, due
to potential factors related or unrelated to climate change,
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like shifting supply chain and/or labor market dynamics, is
not currently represented. These may prove to be relevant to
society’s capacity to effectively adapt in the future.

Our current estimation of the non-market costs of relo-
cation detailed in Sect. 2.3 is intended to represent the fact
that many coastal areas are observed to currently be under-
adapted to present ESL hazards (Hsiang et al., 2017; McNa-
mara and Keeler, 2013; McNamara et al., 2015; Armstrong
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Figure 8. Comparison of optimal adaptation strategies adopted across all segments. Values represent percentages of global population
residing at elevations below 15m in segments adopting each respective adaptation strategy. Proactive retreat and protection values are
aggregates of all possible heights for each. Solid black squares represent the results from Diaz (2016). For visual clarity, only medium-
confidence AR6 and Sweet et al. (2022a) scenarios are indicated with colored markers and jittered slightly along the x axis based on runs
using the OECD (—1 c¢m) or IIASA (41 cm) economic growth model. The remaining SLR scenarios are shown in grey without jitter.

et al., 2016; Haer et al., 2017; Hinkel et al., 2018; Suck-
all et al., 2018; Lorie et al., 2020). For example, Mendel-
sohn et al. (2020) estimated the cost—benefit ratio of build-
ing seawalls to be at least 2: 1 in East Haven, CT, Multi-
hazard Mitigation Council (2017) estimates this ratio for ele-
vating coastal homes up to 9: 1 in some US locations, and
Bakkensen and Mendelsohn (2016) found that the United
States, in particular, may be up to 14x less adapted to
tropical cyclone hazards than other OECD countries threats
presently. Improved estimates of these non-market relocation
costs could potentially be guided by more detailed empir-
ical assessments of present-day under-adaptation to coastal
hazards. While some of this under-adaptation is rationalized
by our non-market costs of relocation, other factors includ-
ing challenges of permitting and funding costly infrastructure
projects, subsidized insurance (Craig, 2019), or limited risk
information may play a role as well. We are aware of efforts
to further understand adaptation costs and the reasons for
under-adaptation (Bower and Weerasinghe, 2021; Berrang-
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Ford et al., 2021), but the current extent of empirical evi-
dence quantifying sub-optimal adaptation is limited. If and
when such evidence is available, the modularity of pyCIAM
enables future integration of these estimates to improve its
adaptation cost—benefit implementation.

Better global data describing existing coastal protection
infrastructure would improve the accuracy of pyCIAM. Spa-
tially resolved data on constructed protection around the
globe are sparse. To overcome this, some studies assume
a certain level of protection as being present in all coastal
regions, making stylized assumptions based on population
densities and national GDP (Sadoff et al., 2015). Other
studies develop statistical models to empirically ground
such relationships (Scussolini et al., 2016), and these have
been incorporated in other global coastal adaptation models
(Tiggeloven et al., 2020) and could be evaluated for use in
future versions of pyCIAM. Further improvements to certain
regions could also be made using protection data collected
by Hallegatte et al. (2013) for 136 coastal cities.
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Our reflection of local mean and extreme sea levels is lim-
ited by the resolution of our local m.s.l. projections (1° in
FACTS, 2° in LocalizeSL) and our ESL distributions from
CoDEC (50 km coastline spacing). Because of the desire to
build a globally consistent model using these inputs, we em-
ploy a “local bathtub” model in which all points nearest to
a given pair of ESL and m.s.l. prediction points receive the
same mean and extreme sea level projections. While this lo-
cal model preserves the substantial large-scale spatial het-
erogeneity in SLR and ESL, sub-grid-scale variation is ig-
nored. In particular, bathtub models are known to overesti-
mate storm surge in inland areas largely due to the deceler-
ation of flows caused by surface roughness (Bootsma, 2022;
Vousdoukas et al., 2016). A more sophisticated, dynamic rep-
resentation of ESL based on local hydrodynamic simulations
for each m.s.1./ESL combination is beyond the computational
scope of this analysis but may yield improved future results
and could be incorporated either “on the fly” within the py-
CIAM model or in a pre-processing step that updates the ESL
distributions in SLIIDERS.

Because pyCIAM linearly combines present-day ESL es-
timates and SLR predictions, our current approach also ig-
nores changing ESL distributions due to (a) climate-driven
changes to storm surge distributions from, for example, al-
tered tropical cyclone frequency and intensity and (b) the dy-
namic interaction between storm surge and m.s.l., moderated
by local topography.

Despite these limitations in estimating sea levels, it is im-
portant to note that when isolating climate-change-induced
coastal costs, we difference the costs of a no-climate change
baseline scenario that uses the same local bathtub flood
model. This differencing also serves as a bias correction step,
partially mitigating any overestimates of flooding damages
potentially introduced by the bathtub approach, though some
high or low bias may still be present in the final results. To-
tal (un-differenced) cost estimates (Fig. B1), however, will
reflect any bias associated with the bathtub flood model. Ac-
counting for these future changes is important for planning
purposes, but it represents a major computational challenge.

Additional geophysical dynamics associated with SLR in-
undation and related flooding, such as erosion and saliniza-
tion of aquifers and estuaries, are also not currently addressed
in our approach. Finer-scale wave setup and ESL behavior
within complex coastlines at the sub-segment scale could
also be useful to capture in future modeling. This would re-
quire estimates of ESLs at a much higher spatial resolution
than is provided in the CoDEC dataset and is therefore cur-
rently infeasible given available input data.

Future development that refines the spatial resolution of
our coastal segments from the current 50 km spacing would
enable a finer analysis of the local dynamics of hazard, ex-
posure, and potential adaptation decisions for hyper-local
decision-making entities. At present, such an effort is ham-
pered by a lack of more granular global inputs used to gen-
erate the SLIIDERS dataset. In particular, the 50 km resolu-
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tion CoDEC ESL dataset and the 1° (FACTS) or 2° (Local-
izeSL) resolution of the SLR projections represent the best
available observations and projections of sea levels at global
scale. Using finer-resolution coastal segments would provide
limited gains in model precision, because sub-50km vari-
ation in results would arise solely from enabling decision-
making to occur at finer scales, rather than through incorpo-
rating higher-resolution hazard information. The resolution
at which protection and retreat decisions are and will be made
likely varies substantially around the world, and thus it is
unclear whether such an approach would yield more or less
valid adaptation projections. As the quality and resolution of
related input datasets evolve, SLIIDERS and pyCIAM can
be updated to reflect these advances.

Finally, our hydraulic connectivity model masks only
those regions that are not connected at 20 m of SLR rela-
tive to 2005 levels. Some areas may not meet this criterion
but still may be non-connected at lower sea levels. For ex-
ample, a location that is 1 m above sea level but is behind a
hill 2 m above sea level would be flooded by our model for
sea levels of 1.5 m. Future work could address this by assign-
ing each pixel not only an elevation but also a barrier height
that would be treated similarly to how human-made protec-
tion heights are treated in pyCIAM. This would increase the
dimensionality of several calculations in pyCIAM and is thus
outside of the scope of the current implementation.

4 Conclusion

Modeling the social and economic impact of future sea level
rise can inform our understanding of costs in different cli-
mate change mitigation scenarios and support the analysis of
adaptation policies. To construct global estimates, modelers
face the dual challenge of developing a globally generaliz-
able approach that is also capable of representing the detailed
local information relevant to accurately estimating SLR im-
pacts and adaptation. Prior modeling studies have developed
frameworks for conducting such analyses; however, contin-
ued iteration of these data and models is necessary in order
to improve the accuracy and precision of projections and to
keep pace with relevant advancements in data, modeling, and
computing. Achieving this through community-wide collab-
oration requires a collection of open-source and transparent
datasets as well as modeling tools.

This paper has summarized improvements to the qual-
ity and accessibility of both coastal impact data products
and related modeling platforms. The Sea Level Impacts In-
put Dataset by Elevation, Region and Scenarios (SLIIDERS)
represents a globally comprehensive and consistent collec-
tion of physical, ecological, and socioeconomic variables for
roughly 10000 coastal localities. SLIIDERS is a segment-
wise data product for coastal impacts, similar to previous
products like DIVA (Vafeidis et al., 2008) but with sig-
nificant improvements to the quality of represented vari-
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ables. It is available as an open-source resource following
the FAIR guidelines (Wilkinson et al., 2016). Any researcher
can download, inspect, and alter SLIIDERS to utilize in their
own coastal modeling studies.

The Python Coastal Impacts and Adaptation Model (py-
CIAM), a companion model that utilizes SLIIDERS as an
input, was developed as an open-source update to the origi-
nal Coastal Impacts and Adaptation Model (Diaz, 2016) and
incorporates numerous improvements to model functionality
and efficiency. pyCIAM is also made available as a modu-
lar, open-source tool meant to be modified by users seeking
to add functionality or improve input sources, with users able
to combine the model with their own input datasets, provided
they are formatted similarly to SLIIDERS. An additional key
advancement of pyCIAM is that it is designed to simulate
impacts from tens to hundreds of thousands of future SLR
scenarios in parallel, facilitating scalable probabilistic impact
modeling research.

Results from pyCIAM v1.1, paired with SLIIDERS v1.1,
show the model produces roughly similar estimates of the
global net present cost of SLR to those of CIAM (Diaz, 2016)
under the SSP5 socioeconomic scenario, with all other SSP—
economic growth model configurations producing slightly
smaller values (Fig. 4). Median annual end-of-century costs
under optimal adaptation in pyCIAM are also very simi-
lar to CIAM when averaging across all SSPs and growth
models. When prohibiting proactive adaptation, costs are
higher in pyCIAM for almost all scenarios as compared to
CIAM. However, when comparing total yearly coastal dam-
ages, rather than just the climate-driven component, pyCIAM
projects global NPV of all coastal damages between 2005—
2100 to be roughly 3—4x those of CIAM (Fig. B1), likely
due to greater population and capital stock estimates in these
SSPs as compared to the trajectories used in Diaz (2016).
The median annual end-of-century total costs under optimal
adaptation in pyCIAM are also higher than CIAM for all sce-
narios, with only the SSP4-ITASA scenario producing simi-
lar values.

Despite the improvements represented by the SLIIDERS
data product and pyCIAM platform, there are aspects of them
that should be improved in the future. We believe that a pri-
ority for future work should be to incorporate empirical evi-
dence on coastal damages and adaptation behavior due to ris-
ing and extreme sea levels in order to better inform model as-
sumptions. We hope that improvements to SLIIDERS can be
made regularly as new, higher-quality data sources for each
of its constituent variables are made available. Additionally,
the segmentation of coastlines in SLIIDERS v1.1 can be im-
proved beyond a uniform (50 km) spacing nested at the coun-
try level to better approximate coastal regions that behave as
distinct decision-making units, for example by capturing the
extent of coastal urban centers. We intend to make many of
these improvements moving forward and will make updated
versions available as such efforts are carried out. However,
our hope is that the open-source nature of both SLIIDERS
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and pyCIAM will enable community-driven development to
spur more rapid and substantial improvements to both tools.

Appendix A: Additional methodological detail
Al Coastlines creation and length calculation

To create each segment represented in SLIIDERS and used
in pyCIAM, we assembled a set of polylines according to the
following steps:

1. We downloaded highly resolved 1:10m Natu-
ral Earth Coastlines (http://www.naturalearthdata.
com/downloads/10m-physical-vectors, last access:
21 March 2023).

2. We removed Caspian Sea borders from both coastline
layers to avoid modeling along this inland sea.

3. We removed all line segments south of 60° S (Antarc-
tica) from both coastline layers to avoid inclusion of
these coastlines in any final coastal segments, due to the
lack of population and capital exposure any latitudes be-
low 60° S.

4. We converted coastlines layers to polygons in order
to get land areas that correspond to the 1: 10 m scale
coastline resolutions.

5. We intersected resulting polygon layer of land masses
with exposure grid of population and capital assets and
removed land masses that contained no capital or popu-
lation exposure. In these completely unpopulated areas,
we cannot accurately represent value of lost land within
the pyCIAM framework, nor is this value likely to be
large.

6. We converted this 1 : 10 m land area polygon layer back
to polylines for use as our final vector layer of global
coastlines.

7. We constructed a set of Voronoi polygons from the
CoDEC-derived coastal segment centroids and inter-
sected these with the coastlines layer constructed in
Steps 1-8. This partitioned coastlines according to seg-
ment, allowing for the calculation of the total length (in
kilometers) of coastline by coastal segment.

A2 Aligning geographic and socioeconomic datasets to
build SLIIDERS

Socioeconomic variables expressed in SLIIDERS and used
in pyCIAM are defined at various geographic aggregation
levels, from the fine “elevation bin by admin-1 region” scale
to the coarse country scale. Input data sources also come
in various formats, from gridded estimates of coastal eleva-
tion, population and capital distribution, and wetland area, to
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country-level SSP-based projections of income, population,
and capital growth trajectories, to vector representations of
country boundaries and coastlines. To create SLIIDERS, we
must harmonize these various input sources. We start by as-
signing admin-1 and country labels to each grid cell in the
gridded elevation and exposure input sources, using bound-
aries from GADM 4.1 (GADM, 2023). Notably, GADM uses
the “country” label broadly, including many inhabited and
uninhabited islands, regardless of sovereignty.

There are 211 countries in GADM 4.1 that are coastal and
contain non-zero land under 20 m elevation. The boundaries
of the admin-1 regions within these 199 countries are over-
laid on gridded elevation and exposure datasets, including
those defining spatial distributions of population (LandScan
2021) and physical capital (LitPop and GEG-15), to assign
elevations and admin-1 labels to each grid cell. The gridded
dryland and wetland area, population, and physical capital
estimates are then binned by 10 cm elevation increments and
grouped within admin-1 regions and coastal segments. Each
admin-1 region is then assigned its corresponding country la-
bel, which is matched to the SSP-based country-level growth
trajectories.

A3 Estimating 2005-2020 capital stock values

Out of the 204 inhabited countries included in SLIIDERS,
143 have capital stock values from 2005 to 2019 in PWT
10.0 that we use as initial conditions for projecting capital
stock consistent with the SSPs. We extend these 1 year using
the perpetual inventory method (PIM) and fill and/or impute
the 61 remaining values using the following approach:

1. For 10 countries with ratios of non-financial wealth
(NFW) to nominal GDP recorded in the 2022 Credit
Suisse Global Wealth Databook (GWDB, Credit Suisse
Research Institute, 2022), we use these ratios applied to
previously gathered GDP estimates from PWT 10.0 and
other sources and assume that the resulting NFW values
are equivalent to physical capital stock, following the
assumptions in Eberenz et al. (2020a).

2. For five island departments of France, we use the
NFW : GDP ratio from mainland France.

3. For 44 additional countries without individual estimates
in the GWDB, we use regional averages, with regions
defined by UNSD subregions (UNSD, 2021).

4. For North Korean estimates, we use capital : GDP ratios
estimated in Pyo and Kim (2020) along with a perpetual
inventory method (PIM) parameterized by other param-
eters from Pyo and Kim (2020).

5. For Cuba, we take ratios of Cuban to US capital stock
from Berlemann and Wesselhoft (2017).
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A4 Projecting SSP-consistent (2020-2100) capital stock
values

Using actual and imputed historical 2020 country-level cap-
ital stocks as initial conditions, we extract the capital por-
tion of the OECD ENV-Growth model (Dellink et al., 2017)
and apply it to the SSP trajectories of GDP and population.
The model requires global GDP elasticity of capital and 2020
country-level marginal products of capital (MPKs), which
are not described in Dellink et al. (2017). We use a global
GDP elasticity of capital of 0.326 from Crespo Cuaresma
(2017) and estimate 2010 MPKs using a modified Cobb—
Douglas production function that contains only capital in-
puts. Coefficients of the function are derived by fitting to
the compiled dataset of historical GDP and capital. Alter-
native approaches for obtaining these necessary inputs, in-
cluding the use of a production function with labor and capi-
tal inputs and deriving the global elasticity directly from the
production function, were also evaluated; however, these ap-
proaches yielded greater discrepancies in projected capital
stocks when compared with the limited set of results pre-
sented in Dellink et al. (2017). To align most closely with
Dellink et al. (2017), the aforementioned specification was
chosen. The comparison of these alternative specifications
is available in the SLIIDERS code repository accompanying
this article.

Geosci. Model Dev., 16, 4331-4366, 2023



4356

N. Depsky et al.: DSCIM-Coastal v1.1

Appendix B: Additional figures
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Figure B1. Comparison of global cost metrics for median model results under each SLR scenario. Values represent total coastal losses
(inclusive of hazards not attributable to climate change), expressed in constant 2019 PPP USD. Each vertical group of points is a single SLR
scenario, with each point in the group representing a unique combination of SSP—economic growth model. Differencing values associated
with 0 g.m.s.1. rise from the other values yields Fig. 4. For visual clarity, only medium-confidence AR6 and Sweet et al. (2022a) scenarios
are indicated with colored markers and jittered slightly along the x axis based on runs using the OECD (—1 cm) or [IASA (+1 cm) economic

growth model. The remaining SLR scenarios are shown in grey without jitter.
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Figure B2. Comparison of optimal adaptation strategies adopted across all segments. Values represent percentages of global coastline as-
sociated with segments adopting each respective adaptation strategy. Proactive retreat and protection values are aggregates of all possible
heights for each. Solid black squares represent the results from Diaz (2016). For visual clarity, only medium-confidence AR6 and Sweet et al.
(2022a) scenarios are indicated with colored markers and jittered slightly along the x axis based on runs using the OECD (—1 cm) or IIASA
(+1 cm) economic growth model. The remaining SLR scenarios are shown in grey without jitter.
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Appendix C: Additional tables

Table C1. The g.m.s.1. rise between 2005 and 2100 for each 17th and 83rd percentile SLR scenario used in the pyCIAM and Diaz (2016)
models.

1D SLR scenario Model(s) used g.m.s.l. in 2100 [m] g.m.s.l. in 2100 [m]
(17th percentile) (83rd percentile)
NCC no climate change* CIAM, pyCIAM  0.00 0.00
AR6-Med IPCC AR6 medium-confidence pyCIAM 0.28, 0.32, 0.44, 0.55,0.63  0.55, 0.61, 0.76, 0.90, 1.02

(2021) (SSP1-1.9, SSP1-2.6,
SSP2-4.5, SSP3-7.0, SSP5-8.5)

AR6-Low IPCC AR6 low-confidence pyCIAM 0.32,0.63 0.79, 1.61
(2021) (SSP1-2.6, SSP5-8.5)

Sweet US interagency SLR Technical pyCIAM 0.28,0.48,0.98, 1.47,1.95 0.29,0.49, 0.99, 1.50, 2.02
Report (2022) (Low, Int-Low,
Int, Int-High, High)

K14 Kopp et al. (2014) (RCP 2.6, CIAM, pyCIAM 0.35,0.43,0.61 0.65, 0.76, 1.00
RCP 4.5, RCP 8.5)

SR IPCC Special Report on the pyCIAM 0.39,0.48,0.71 0.60, 0.76, 1.11
Ocean and the Cryosphere in
a Changing Climate (SROCC):
(RCP 2.6, RCP 4.5, RCP 8.5)

B19 Bamber et al. (2019) (low, high) pyCIAM 0.48, 0.79 0.96, 1.71

D21 DeContoetal. (2021) (RCP 2.6, pyCIAM 0.43,0.52, 0.90 0.61,0.74, 1.32
RCP 4.5, RCP 8.5)

* Includes local background rates of relative sea level rise at each segment due to non-climatic background processes.

Table C2. Comparison of global estimated NPV (2005-2100) and annual costs of climate-driven SLR in 2100, expressed in constant 2019
PPP USD, between pyCIAM (standard font) and Diaz (2016) (italics). Each metric is presented for both the optimal adaptation and reactive
retreat modeling configurations. pyCIAM results are shown for the SSP2-IIASA socioeconomic growth scenario, while Diaz (2016) results
are shown for the IMF World Economic Outlook (2011) projections used in that analysis. NPV for Diaz (2016) have been recalculated to be
consistent with the 2005-2100 period used in pyCIAM. Numbers in parentheses show the fraction of global GDP associated with these costs
in units of basis points (1/100 of a percent). For columns 3 and 4, the NPV of GDP 2005-2100 is used for this calculation; for columns 5 and
6, GDP in 2100 is used. For Diaz (2016) scenarios, the 2100 global GDP used associated with the socioeconomic projections used in that
analysis (USD 147.6 trillion 2010 USD) is reported in the paper. We use that value, adjusted to 2019 USD, to normalize the GDP impacts
from Diaz (2016) scenarios. The NPV of GDP from 2005-2010 is not reported in Diaz (2016); thus we do not normalize Diaz (2016) NPV
impacts.

SLR Model Socioecon. g.m.s.l. [m] NPV NPV  Costs (2100)  Costs (2100)
scenario scenario (2100) USDTn(bp) USDTn(bp) USDTn (bp) USDTn (bp)

optimal reactive optimal reactive
RCP2.6 pyCIAM SSP2-IIASA 0.48 1.00 (2) 2.94 (6) 0.14 (3) 1.67 (32)
RCP2.6 CIAM IMF WEO 0.48 1.05 6.84 0.15(8) 1.58(92)
RCP4.5 pyCIAM SSP2-TIASA 0.58 1.11 (2) 3.80 (8) 0.18 (3) 2.53 (48)
RCP 4.5 CIAM IMF WEO 0.58 1.17 7.93 0.20(12) 2.04 (118)
RCP 8.5 pyCIAM SSP2-1IASA 0.78 1.31 (3) 5.83 (13) 0.27 (5) 4.68 (89)
RCP 8.5 CIAM IMF WEO 0.78 1.42 9.70 0.29(17) 2.50 (145)

Geosci. Model Dev., 16, 4331-4366, 2023 https://doi.org/10.5194/gmd-16-4331-2023



N. Depsky et al.: DSCIM-Coastal v1.1

Table C3. Input data sources used to construct physical variables in SLIIDERS.
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Input dataset

Source and description

DOI/URL

Coastal segments

CoDEC (Muis et al., 2020a): defines
segment centroids

Natural Earth 10 m Physical Layers: de-
fines global coastlines

https://doi.org/10.5281/zenodo.
3660927 (Muis et al., 2020b)

https://www.naturalearthdata.com/
downloads/10m-physical-vectors/ (last
access: 21 March 2023)

Extreme sea levels (ESLs)

CoDEC (Muis et al., 2020a)

https://doi.org/10.5281/zenodo.
3660927 (Muis et al., 2020b)

Elevation

CoastalDEM v2.1 (Kulp and Strauss,
2021): primary elevation data source

SRTM15+ v2.5 (Tozer et al., 2019):
used to fill elevation data where
CoastalDEM is undefined (e.g., polar
latitudes)

MDT Global CNES-CLS18 (Mulet
et al., 2021): estimates of present-day
mean sea level height relative to geoid

https://assets.ctfassets.
net/cxgxgstp8r5d/
3f1LzJSnp7ZjFD4loDYnrA/
71eaba2b8f8d642dd9a7e6581dce0c66/
CoastalDEM_2.1_Scientific_Report_
.pdf (last access: 21 March 2023)

https://topex.ucsd.edu/pub/srtm15_
plus/ (last access: 21 March 2023)

https://www.aviso.altimetry.fr/en/
data/products/auxiliary-products/
mdt/mdt-global-cnes-cls18.html
access: 21 March 2023)

(last

Wetland and mangrove extent

GLOBCOVER v2.3: defines wetland
extent

Global Mangrove Watch 2016 (Bunting
et al., 2018): defines mangroves extent

https://doi.org/10.1594/PANGAEA.
787668 (Arino et al., 2012)

https://doi.org/10.5281/zenodo.
6894273 (Bunting et al., 2022)

Local and global sea level rise projections

LocalizeSL (projections corresponding
to Kopp et al., 2014; Bamber et al.,
2019; Oppenheimer et al., 2019; De-
Conto et al., 2021): local sea level rise
projection outputs from the LocalizeSL
model (used with AR5 emissions sce-
narios and other custom global temper-
ature trajectories)

Framework for Assessing Changes to
Sea Level (FACTS) (Fox-Kemper et al.,
2021; Kopp et al., 2023; Garner et
al., 2021; Sweet et al., 2022a): local
sea level rise projection outputs from
the FACTS model used with AR6 and
Sweet projections.

https://doi.org/10.5281/zenodo.
6029807 (Kopp and Rasmussen,
2021)

https://doi.org/10.5281/zenodo.
6382554 (Garner et al., 2021) and
https://doi.org/10.5281/zenodo.
6067895 (Sweet et al., 2022b)
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Input dataset

Source and description

DOI/URL

Historical pop-
ulation

LandScan 2021 (Sims et al., 2022): spatial distribution of global population in
2019 at a 30 arcsec resolution (~ 1 km at Equator)

PWT 10.0 (Feenstra et al., 2015): country-level time series of population
UN World Population Prospects (UN DESA, 2019): used to fill population data
for countries missing in PWT

CIA World Factbook (United States Central Intelligence Agency, 2021): used
to fill population data for countries missing in PWT

‘World Bank World Development Indicators (Bank, 2021): used to fill population
data for countries missing in PWT

Statistics and Research Aland (Statistics | Alands, 2023): used to estimate pop-
ulation in Aland Islands

StatBank Norway (StatBank Norway, 2023): used to estimate population in
Svalbard and Jan Mayen

https://doi.org/10.48690/1527702
https://doi.org/10.15141/S5Q94M (Groningen Growth
and Development Centre, 2023)

https://population.un.org/wpp/Download (last access:
21 March 2023)

https://www.cia.gov/the-world-factbook/ (last access:
21 March 2023)

https://doi.org/10.57966/6rwy-0b07 (The World Bank,
2022)

https://www.asub.ax/en (last access: 21 March 2023)

https://www.ssb.no/en/statbank/table/07429 (last ac-
cess: 21 March 2023)

Historical GDP

PWT 10.0 (Feenstra et al., 2015): country-level estimates of GDP per capita

Fariss et al. (2022a): used to fill GDP data for countries missing in PWT

World Bank World Development Indicators (Bank, 2021): used to fill GDP data

for countries missing in PWT

IMF World Economic Outlook (International Monetary Fund, 2021): used to
fill GDP data for countries missing in PWT

OECD regional statistics (OECD, 2022a, b): used to disaggregate French pop-
ulation into overseas departments

United Nations System of National Accounts (UNSD, 2021): used to fill GDP
data for countries missing in PWT

Bank of Korea: North Korean GDP estimates

https://doi.org/10.15141/S5Q94M (Groningen Growth
and Development Centre, 2023)

https://doi.org/10.7910/DVN/FALCGS (Fariss et al.,
2022b)

https://doi.org/10.57966/6rwy-0b07 (The World Bank,
2022)

https://www.imf.org/en/Publications/WEO/
weo-database/2022/April (last access: 21 March 2023)

https://doi.org/10.1787/region-data-en (OECD,
2022a, b)

https://unstats.un.org/unsd/snaama (last access:
21 March 2023)

https://www.bok.or.kr/portal/main/contents.do?
menuNo=200091 (last access: 21 March 2023)

Physical capital

LitPop (Eberenz et al., 2020a): gridded estimates of physical capital stock

2015 Global Assessment Report (GEG-15) (Bono and Chatenoux, 2014): grid-
ded of physical capital stock used to fill missing regions in LitPop

PWT 10.0 (Feenstra et al., 2015): country-level time series of capital stock es-
timates

Credit Suisse Global Wealth Databook (Credit Suisse Research Institute, 2022):
country-level time series of non-financial wealth used to fill capital stock esti-
mates for countries missing in PWT

Berlemann and Wesselhoft (2017); Pyo and Kim (2020): estimates of capital
stock : GDP ratios for select countries not contained in other sources

https://doi.org/10.3929/ethz-b-000331316 (Eberenz et
al., 2020b)

https://data.humdata.org/dataset/
1c9cfleb-c20a-4a06-8309-9416464af746  (last ac-
cess: 21 March 2023)

https://doi.org/10.15141/S5Q94M (Groningen Growth
and Development Centre, 2023)

https://www.credit-suisse.com/about-us/en/
reports-research/global-wealth-report.html (last
access: 21 March 2023)

https://doi.org/10.1515/roe-2017-0004 and https://doi.
org/10.2139/ssrn.3727104

Mobile capital

PWT 10.0 (Feenstra et al., 2015): capital is reported in PWT by category; struc-

https://doi.org/10.15141/S5Q94M (Groningen Growth

fraction tures are assumed to be immobile, with all other categories assumed as mobile ~ and Development Centre, 2023)
Socioeconomic  Shared Socioeconomic Pathways (Riahi et al., 2017): contains population pro-  https://tntcat.iiasa.ac.at/SspDb (last access:
growth trajec- jections from Kc and Lutz (2017) and GDP projections from Crespo Cuaresma 21 March 2023)
tories (2017) and Dellink et al. (2017). We augment these with capital stock projec-
tions derived from the model defined in Dellink et al. (2017)
Construction World Bank ICP (World Bank, 2020) https://doi.org/10.57966/vm5h-a627

cost indices

Lincke and Hinkel (2021)

https://doi.org/10.5281/zen0odo0.4459151 (daniellincke,
2021)
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Code and data availability. Version 1.1 of both the SLIIDERS
dataset and pyCIAM model is associated with the results presented
in this article. The SLIIDERS dataset, along with the code to create
it, is available at https://doi.org/10.5281/zenodo.7693868 (Bolliger
et al., 2023a). Source code for SLIIDERS is also available at https:
/lgithub.com/ClimateImpactLab/sliiders (last access: 18 July 2023),
where the 1.1 release corresponds to the version used in this arti-
cle and included in the Zenodo deposit. The model outputs used
in this article, along with the pyCIAM source code, are available
at https://doi.org/10.5281/zenodo.7693869 (Bolliger et al., 2023b).
Similarly, the pyCIAM source code is available at https://github.
com/ClimateImpactLab/pyCIAM (last access: 18 July 2023), with
release 1.1 again corresponding to the model used for this article.
pyCIAM is also available on PyPI as the python-CIAM package.
Scripts and notebooks associated with running pyCIAM and cre-
ating the results contained in this article are also included in the
pyCIAM GitHub repository and the Zenodo repository.
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